几何形体的联想和思维导图
2020秋新人教版高中数学必修二第八章立体几何初步复习课题型课知识框架思维导图
第八章立体几何初步复习课要点训练一空间几何体的结构特征1.紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定.2.通过举反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.1.设有四个命题:①底面是矩形的平行六面体是长方体;②棱长都相等的直四棱柱是正方体;③侧棱垂直于底面两条边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中真命题的个数是()A.1B.2C.3D.4解析:底面是矩形的直平行六面体是长方体,①错误;棱长都相等的直四棱柱是正方体,②正确;侧棱垂直于底面两条相邻边的平行六面体是直平行六面体,③错误;任意侧面上两条对角线相等的平行六面体是直平行六面体,④错误.故命题正确的个数是1.答案:A2.在四棱锥的四个侧面中,直角三角形最多可有()A.1个B.2个C.3个D.4个解析:如图所示,在长方体ABCD-A1B1C1D1中,取四棱锥A1-ABCD,则此四棱锥的四个侧面都是直角三角形.答案:D要点训练二空间几何体的表面积与体积1.空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积问题注意衔接部分的处理.(3)旋转体的表面积问题,应注意其侧面展开图的应用.2.空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体问题是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,再根据条件求解.1.已知一个六棱锥的体积为2√3 ,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为12.解析:由题意可知,该六棱锥是正六棱锥.设该六棱锥的高为h ,则13×6×√34×22×h =2√3,解得h =1.由题意,得底面正六边形的中心到其边的距离为√3,所以侧面等腰三角形底边上的高为√(√3)2+1=2,所以该六棱锥的侧面积为6×12×2×2=12. 2.如图所示,三棱锥O -ABC 为长方体的一角,其中OA ,OB ,OC 两两垂直,三个侧面OAB ,OAC ,OBC 的面积分别为1.5 cm 2,1 cm 2,3 cm 2,求三棱锥O -ABC 的体积.解:设OA ,OB ,OC 的长依次为x cm,y cm,z cm,由已知可得12xy =1.5,12xz =1,12yz =3,解得x =1,y =3,z =2. 将三棱锥O -ABC 看成以C 为顶点,以OAB 为底面,易知OC 为三棱锥C -OAB 的高.故V 三棱锥O -ABC =V C -OAB =13S △OAB ·OC =13×1.5×2=1(cm 3). 3.如图所示,已知三棱柱ABC -A'B'C',侧面B'BCC'的面积是S ,点A'到侧面B'BCC'的距离是a ,求三棱柱ABC -A'B'C'的体积.解:连接A'B ,A'C ,如图所示,这样就把三棱柱ABC -A'B'C'分割成了两个棱锥,即三棱锥A'-ABC 和四棱锥A'-BCC'B'.设所求体积为V ,显然三棱锥A'-ABC 的体积是13V. 而四棱锥A'-BCC'B'的体积为13Sa , 故有13V +13Sa =V ,所以V =12Sa. 要点训练三 与球有关的切、接问题与球相关问题的解题策略(1)作适当的截面(如轴截面等)时,对于球内接长方体、正方体,则截面一要过球心, 二要过长方体或正方体的两条体对角线,才有利于解题.(2)对于“内切”和“外接”等问题,首先要弄清几何体之间的相互关系,主要是指特殊的点、线、面之间的关系,然后把相关的元素放到这些关系中来解决.1.正四棱锥的顶点都在同一球面上,若该棱锥的高为6,底面边长为4,则该球的表面积为( )A.443πB.4849πC.814πD.16π 解析:如图所示,设PE 为正四棱锥P -ABCD 的高,则正四棱锥P -ABCD 的外接球的球心O 必在其高PE 所在的直线上,延长PE 交球面于一点F ,连接AE ,AF.由球的性质可知△PAF 为直角三角形,且AE ⊥PF.因为该棱锥的高为6,底面边长为4,所以AE =2√2,PE =6,所以侧棱长PA =√PE 2+AE 2=√62+(2√2)2=√44=2√. 设球的半径为R ,则PF =2R. 由△PAE ∽△PFA ,得PA 2=PF ·PE ,即44=2R ×6,解得R =113,所以S =4πR 2=4π×(113)2=484π9.答案:B2.一个球与一个正三棱柱的三个侧面和两个底面都相切,如果这个球的体积是323π,那么这个正三棱柱的体积是( ) A.96√3 B.16√3 C.24√3 D.48√3解析:由球的体积公式可求得球的半径R =2. 设球的外切正三棱柱的底面边长为a ,高即侧棱长,为h ,则h =2R =4. 在底面正三角形中,由正三棱柱的内切球特征,得a 2×√33=R =2,解得a =4√3. 故这个正三棱柱的体积V =12×√32×(4√3)2×4=48√3.答案:D要点训练四 空间中的平行关系1.平行问题的转化关系2.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面与面平行的性质.3.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a ⊥α,a ⊥β⇒α∥β.1.如图所示,三棱柱ABC -A'B'C'中,M ,N 分别为BB',A'C'的中点.求证:MN ∥平面ABC'.证明:取B'C'的中点P ,连接MP ,NP (图略),则MP ∥BC',NP ∥A'B'. 因为A'B'∥AB ,所以NP ∥AB.因为AB ⊂平面ABC',NP ⊄平面ABC',所以NP ∥平面ABC'.同理MP∥平面ABC'.因为NP∩MP=P,所以平面MNP∥平面ABC'.因为MN⊂平面MNP,所以MN∥平面ABC'.2.两个全等的正方形ABCD和ABEF所在平面相交于AB, M∈AC,N∈FB,且AM=FN,过点M作MH⊥AB于点H.求证:平面MNH∥平面BCE.证明:因为正方形ABCD中,MH⊥AB,BC⊥AB,所以MH∥BC.因为BF=AC,AM=FN,所以FNBF =AM AC.因为MH∥BC,所以AMAC =AH AB,所以FNBF =AH AB,所以NH∥AF∥BE.因为MH⊂平面MNH,NH⊂平面MNH,MH∩NH=H, BC⊂平面BCE,BE⊂平面BCE,BC∩BE=B,所以平面MNH∥平面BCE.要点训练五空间中的垂直关系1.空间中垂直关系的相互转化2.判定线线垂直的方法(1)平面几何中证明线线垂直的方法.(2)线面垂直的性质:a⊥α,b⊂α⇒a⊥b;a⊥α,b∥α⇒a⊥b.3.判定线面垂直的常用方法(1)利用线面垂直的判定定理.(2)利用“两平行线中的一条与平面垂直,则另一条也与这个平面垂直”.(3)利用“一条直线垂直于两平行平面中的一个,则与另一个平面也垂直”.(4)利用面面垂直的性质.4.判定面面垂直的方法(1)利用定义:两个垂直平面相交,所成的二面角是直二面角.(2)判定定理:a⊂α,a⊥β⇒α⊥β.1.如图所示,Rt△AOC可以通过Rt△AOB以直角边AO所在直线为轴旋转得到,且二面角B-AO-C是直二面角,D是AB上任意一点.求证:平面COD⊥平面AOB.证明:由题意,得CO⊥AO,BO⊥AO,所以∠BOC是二面角B-AO-C 的平面角.因为二面角B-AO-C是直二面角,所以∠BOC=90°,所以CO⊥BO.因为AO∩BO=O,所以CO⊥平面AOB.因为CO⊂平面COD,所以平面COD⊥平面AOB.2.如图所示,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=BC=2, AD=CD=√7,PA=√3,∠ABC=120°,G为线段PC上的点,O为AC,BD交点.(1)证明:BD⊥平面APC;(2)若G满足PC⊥平面BGD,求PG的值.GC(1)证明:由AB=BC,AD=CD,得BD垂直平分线段AC.所以O为AC的中点,BD⊥AC.因为PA⊥平面ABCD,BD⊂平面ABCD,所以PA⊥BD.因为AC∩PA=A,AC⊂平面APC,PA⊂平面APC,所以BD⊥平面APC.(2)解:连接OG,如图所示.因为PC⊥平面BGD,OG⊂平面BGD,所以PC⊥OG.在△ABC中,由余弦定理,得AC=√22+22-2×2×2×cos120°=2√3.在Rt△PAC中,得PC=√AC2+PA2=√12+3=√所以由△GOC∽△APC可得GC=AC·OCPC =2√155.从而PG=3√155,所以PGGC=32.要点训练六空间角的求解方法1.找异面直线所成角的三种方法(1)利用图中已有的平行线平移.(2)利用特殊点(线段的端点或中点)作平行线平移.(3)补形平移.2.线面角求斜线与平面所成的角关键是找到斜线在平面内的射影,即确定过斜线上一点向平面所作垂线的垂足.通常是解由斜线段、垂线段、斜线在平面内的射影所组成的直角三角形.3.求二面角的两种常用方法(1)定义法:在二面角的棱上找一个特殊点,在两个半平面内分别过该点作垂直于棱的射线.(2)垂面法:过棱上一点作棱的垂直平面,该平面与二面角的两个半平面产生交线,这两条交线所成的角,即为二面角的平面角.1.如图所示,在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°, AB≠AC,D,E分别是BC,AB的中点,AC>AD,设PC与DE所成的角为α,PD与平面ABC所成的角为β,二面角P-BC-A的平面角为γ,则α,β,γ的大小关系是α<β<γ.解析:因为D,E分别是BC,AB的中点,所以DE∥AC,所以PC与DE所成的角为∠PCA,即α.因为PA⊥平面ABC,所以PD与平面ABC所成的角为∠PDA,即β.如图所示,过点A作AH⊥BC,垂足为H,连接PH,易证BC⊥平面PAH,所以∠PHA是二面角P-BC-A的平面角,即γ.因为AB≠AC,所以AD>AH.因为AC >AD,所以AC >AD >AH,所以PAAC <PAAD<PAAH,所以tan α<tan β<tan γ,所以α<β<γ.2.如图所示,AB是☉O的一条直径,PA垂直于☉O所在的平面,C 是圆周上不同于A, B的一动点.(1)证明:△P BC是直角三角形;(2)若PA=AB=2,且当直线PC与平面ABC所成角的正切值为√2时,求直线AB与平面PBC所成角的正弦值.(1)证明:因为AB是☉O的一条直径, C是圆周上不同于A,B的一动点,所以BC⊥AC.因为PA⊥平面ABC,所以BC⊥PA.因为PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,所以BC⊥平面PAC,所以BC⊥PC,所以△BPC是直角三角形.(2)解:如图所示,过点A作AH⊥PC于点H,连接BH.因为BC⊥平面PAC,所以BC⊥AH.因为PC∩BC=C,PC⊂平面PBC,BC⊂平面PBC,所以AH⊥平面PBC,所以∠ABH是直线AB与平面PBC所成的角.因为PA⊥平面ABC,所以∠PCA即是PC与平面ABC所成的角.因为tan∠PCA=PAAC=√2,PA=2, 所以AC=√2.在Rt△PAC中,AH=√PA2+AC2=23√3,在Rt△ABH中,sin∠ABH=23√32=√33,即AB与平面PBC所成角的正弦值为√33.要点训练七转化思想转化思想是指在解决数学问题时,一个数学对象在一定条件下转化为另一种数学对象的思想.它包括从未知到已知的转化,从一般到特殊的转化等,折叠问题中体现了转化思想.解决折叠问题的关键在于认真分析折叠前后元素的位置变化情况,看看哪些元素的位置变了,哪些元素的位置没有变,基本思路是利用“不变求变”,一般步骤如下:(1)平面→空间:根据平面图形折出满足条件的空间图形,想象出空间图形,完成平面图形与空间图形在认识上的转化.(2)空间→平面:为解决空间图形问题,要回到平面上来,重点分析元素的变与不变.1.如图所示,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.若将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列结论正确的是()A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC解析:因为在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°, ∠BAD=90°,所以BD⊥CD.因为平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,所以CD⊥平面ABD,所以CD⊥AB.因为AD⊥AB,AD∩CD=D,AD⊂平面ADC,CD⊂平面ADC,故AB⊥平面ADC.因为AB⊂平面ABC,所以平面ABC⊥平面ADC.答案:D2.如图所示,在矩形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点.现将△AFD沿AF折起,使平面ABD⊥平面ABC.在平面ABD内过点D作DK⊥AB,垂足为K.设AK=t,则t的取值范围是(1,1).2→解析:如图所示,过点K作KM⊥AF于M点,连接DM,易得DM⊥AF,与折前的图形对比,可知在折前的图形中D,M,K三点共线,且DK⊥AF, 于是△DAK∽△FDA,所以AKAD =ADDF.所以t1=1DF.所以t=1DF.因为DF∈(1,2),所以t∈( 12,1).3.如图①所示,在等腰梯形CDEF中,DE=CD=√2,EF=2+√2,将它沿着两条高AD,CB折叠成四棱锥E-ABCD(E,F两点重合),如图②所示.①②(1)求证:BE⊥DE;(2)设M为线段AB的中点,试在线段CE上确定一点N,使得MN∥平面DAE.(1)证明:因为AD⊥EF,所以AD⊥AE,AD⊥AB.因为AB∩AE=A,AB⊂平面ABE,AE⊂平面ABE,所以AD⊥平面ABE,所以AD⊥BE.由题图①和题中所给条件知,AE=BE=1,AB=CD=√2,所以AE2+BE2=AB2,即AE⊥BE.因为AE∩AD=A,AE⊂平面ADE,AD⊂平面ADE,所以BE⊥平面ADE,所以BE⊥DE.(2)解:如图所示,取EC的中点G,BE的中点P,连接PM,PG,MG, 则MP∥AE,GP∥CB∥DA,所以MP∥平面DAE,GP∥平面DAE.因为MP∩GP=P,所以平面MPG∥平面DAE.因为MG⊂平面MPG,所以MG∥平面DAE,即存在点N与G重合满足条件,使得MN∥平面DAE.。
七年级数学上册第4章 几何图形初步思维导图
图形的初步认识立体图形的展开与折叠
几何体的展开
正方体的表面展开图
棱柱的表面展开图
圆柱的表面展开图
圆锥的表面展开图
折叠将平面展开图折叠成立体图形
常见的平面图形
直线两点确定一条直线
射线
线段
性质两点之间线段最短
中点
比较长短
度量法
叠合法
角
概念及表示方法
角的大小比较
度量法
1°=60'
1'=60''
叠合法
角的平分线
余角和补角
余角α与β互余:∠α+∠β=90°
补角α与β互补:∠α+∠β=180°
方向角和方位角
常见的立体图形
棱柱
圆柱上下底面是圆,侧面是曲面
棱柱
棱柱的所有侧棱长都相等
棱柱的上、下底面的形状相同
n棱柱有(n+2)个面、2n个顶点、3n条棱
锥体
圆锥底面是圆,侧面是曲面
棱锥底面是多边形,侧面是三角形
球由一个曲面围成
图形的构成元素
点点动成线
线线动成面
面面动成体
面与面相交得到线,
线与线相交得到点
立体图形的视图
主视图从正面看反映几何体的长和高
左视图从左面看反映几何体的宽和高
俯视图从上面看反映几何体的长和宽
视图到立体图形
七巧板的组成5块等腰直角三角形(2小形三角形、1块中形三角形和2块大形三角形)、
1块正方形和1块平行四边形
七年级数学上册 第四章 几何图形初步。
丰富的图形世界思维导图
七年级数学——丰富的图形世界·思维导图导语:我们要学会用数学的眼光看世界,在“图形世界”里,我们见到许多熟悉的基本图形,感受到图形的平移、翻折、旋转等变化,也发现“图形世界”是由基本图形构成的。
本章从生活中常见的立体图形入手,使学生在丰富的现实情境中,在展开与折叠等数学活动过程中,认识常见几何体及点、线、面的一些性质;再通过展开与折叠、切截,从不同方向看等活动,在平面图形与几何体的转换中发展学生的空间观念。
思维导图如下:一、立体图形的表面展开图:几何体的表面展开图在中考中主要涉及两个方面的内容:一是考查几何体的侧面展开图,以圆锥和圆柱等几何体为主,二是考查几何体的表面展开图,以柱体为主要考查对象;其中难点为利用正方体的表面展开图,找对应面。
例题1解析:利用空间想象或通过动手操作,将展开图还原成立体图形,看能否构成正方体。
A,B,D选项的展开图都能折叠成一个正方体,C选项的展开图中含有“凹”的图形,不能折叠成一个正方体。
故选C。
二、截一个几何体:当用一个平面去截一个几何体时:首先要明确该截面是个平面图形,然后看截面与几何体哪些面相交;其次通过确定交线的条数来判断截面的边数,最后判断该平面图形的形状。
判断立体图形截面的形状是这类问题的重点和难点。
例题2解析:(1)截面与底面平行,可以得到圆形截面;(2)截面沿圆柱的高线切割,可得到长方形截面;(3)截面与底面平行,可以得到三角形截面.综上所述,截面的形状分别是圆形、长方形、三角形.三、从不同方向看物体:从不同方向看物体,主要指的是从正面、左面、上面看到的图形,最为常见的是由小正方体组成的图形从不同方向看到的图形,或根据从三个方向看到的图形判断小正方体的个数。
例题3。
初中数学《基本的几何图形》单元教学设计以及思维导图
专题一
我们的身边的图形世界
所需课时
1课时
专题学习目标
1.经历从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩。
2.认识立方体、长方体、圆柱、圆锥、棱柱、球等几何体,能用自己的语言描述它们的几何特征。
3.会对简单几何进行正确的分类。
专题问题设计
1.面对丰富多彩的图形世界,我们从哪些方面入手研究呢?
所需教学环境和教学资源
各种正方体展开动画flash;
11种展开图展示及分类归纳.
学习活动设计
认识点、线、面,了解有关点、线及某些基本图形的一些简单性质。
通过展开、折叠、制作等活动制作和设计图案是本节的重点。
充分发挥学生的主体地位,给学生参与教学留下充分的空间,引导学生积极参与,主动探究和合作交流,从而完成本节课的学习。
评价要点
1.知道线段、直线、射线的有关概念、性质和表示方法,以及有关文字、图形和符号语言的表述;
2.能对理解几何概念、图形性质及其文字语言和符号语言的表述;
3.加强对符号语言的学习,以及认图、画图的学习。
专题四
线段的比较与作法
所需课时
1课时
专题学习目标
1.了解“两点之间的所有连线中,线段最短”的性质。
评价要点
1.能初步判断一个图形是不是立方体的展开图;
2.会利用展开图制作立方体模型;
专题三
线段、射线和直线
所需课时
1课时
专题学习目标
1.加深和拓展一、二学段所学线段、射线和直线的内容,能辨别线段、射线,说明它们的区别和联系。
2.能按要求画出直线、射线和线段,并能用字母正确表示这些图形,感受符号在描述图形中的重要作用。
人教版七年级数学第四章《几何图形初步》知识点汇总
第四章《几何图形初步》知识点汇总01、几何图形①几何图形的定义:我们把实物中抽象出来的各种图形叫做几何图形。
②几何图形分为图形和图形。
③平面图形:图形所表示的各个部分都在内的图形,如直线、三角形等。
④立体图形:图形所表示的各个部分同一平面内的图形,如圆柱体。
02、常见的立体图形①柱体:A棱柱: B 圆柱②椎体:A棱锥 B圆锥球体等03、立体图形的三视图:从不同方向观察几何体,从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做______、______、_______),这样就可以把立体图形转化为平面图形。
①会观察小正方体堆积图形画出三视图②会根据三视图知道堆积的小正方体的个数04、立体图形的展开图①圆柱的平面展开图是。
②圆锥的平面展开图是。
③n棱柱的侧面展开图是 n个形,n棱柱有个底面,都是,n棱柱的平面展开图是。
④n 棱锥的侧面展开图是 n个形,n棱锥有个底面,是,n棱锥的平面展开图是。
⑤正方体的展开图共分四类:①掌握在正方体展开图中找相对面的方法②会根据展开图中的图案判断是哪个图形的展开图05、点、线、面、体几何图形的组成:由___、___、___组成。
_____是构成图形的基本元素点动成_____、____动成____、____动成____。
06、直线:①点与直线的位置关系:第一种关系:点在直线____,或者说直线______点;第二种关系:点在直线____,或者说直线_________点。
②直线公理:经过两点有且只有一条直线(简称:______________);07、直线与直线的位置关系①同一平面内,两条直线的位置关系分为:_____与_____②当两条不同的直线________时,我们就称这两条直线相交,这个_______叫做它们的_____。
08、射线:①表示方法:端点字母必须写在前②判断两条射线是同一条射线的方法:_________________09、线段①基本性质:___________________②两点之间的距离__________________③线段的中点10、比较线段大小的方法:_______法和______法11会作图:作一条线段等于已知线段知道延长(反向延长)射线和线段的作图语言12、角:①由一点引出两条射线形成的图形叫做角。
几何形体的联想和思维导图PPT课件
我还知道夜间的田野怎么样沉 静,花草树木怎么样酣睡;
总之,夜间的一切,我-----比人类知道的都清楚呢!
提出问题:
• 这个守望者是由哪些 形状组合而成?
• 为什么背景是黑色的 ,它起到什么样的作 用?
• 如果让你来用这个石 膏人造型,你会设计 什么样的情节?
•When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick
•感谢聆听
•不足之处请大家批评指导
•Please Criticize And Guide The Shortcomings
•演讲人:XXXXXX 时 间:XX年XX月XX日
•把具体的形象 概括为单纯的 几何形体,再 用抽象的几何 形体去认识具 体对象,以此 掌握形体变化 的基本规律。
石膏几何体与生活物品的组合
几何形体的创意素描
第二环节 联想推动练习
联想练习
1. 圆球——苹果——苹果树;
2. 圆柱——毛笔——正在奋 力写字、汗流浃背的毛笔;
3. 方形——立方体——带有 窗户眼睛的卡通小房子— —在空中坐落着,打开门 就可以闻到花的清香;
我们常见的几何形体
•
夸 张
变 形
装 饰
•
装 饰
• •
卡拟 通人
第一环节 研究几何形体及其组合
从上面这组静物图片中,你能分析出每个物体是由什 么几何形体概括而成的?
•人物 •树林 •房舍 •水洼 •朝阳
俄罗斯马列维奇的《雨后乡间之晨》
• 法国画家塞尚指出:“一切物体的 形态,无论构造多么复杂,都可以 概括为几种几何形体,即球体、圆 柱、圆锥和立方体的结构形式。”
七年级数学第四章 几何图形初步知识点
第四章 几何图形初步立体图形与平面图形 分都在同一个平面内,它们是平面图形。
3.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.正方体的展开图:11种4.立体图形的三视图:①主视图:从正面看;②左视图:从左面看;③俯视图:从上面看。
(会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型) 1.长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也.. 定一条直线. 2.相交、交点:当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。
如图:O 点为直线AD 和直线CB 的交点,也是直线AD 和直线CB 的公共点。
3.直线、射线、线段的表示方法(1) 直线:用一个小写字母表示,如:直线l ,或用两个大些字母(直线上的)表示,如直线AB (A 、B 两点是直线上的点).(2) 射线:直线的一部分,用一个小写字母表示,如:射线l ,或用两个大些字母表示,如:射线OA (O 、A 两点是射线上的点,用两个字母表示时,端点的字母放在前边).(3) 线段:直线的一部分,用一个小写字母表示,如线段a ;用两个表示端点的字母表示,如:线段AB (或线段BA ).5.中点:点M 把线段AB 分成相等的两条线段AM 和MB ,点M 叫做线段AB 的中点。
三等分点、四等分点……6.关于线段的基本事实:两点之间的所有连线中,线段最短.简单说成:两点之间,线段最短。
如图:A 、B 两点之间的五条连线中,第三条连线(线段)最短。
7.比较两条线段长短的方法有两种:度量比较法、重合比较法.8.距离:连接两点间的线段的长度,叫做这两点间的距离。
(平面上任意两点间的距离指的是连接这两点的线段的长度,强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形。
线段的长度才是两点的距离)。
如图:A 、B 两点之间的距离就是线段AB 的长度。
初中数学八年级上册思维导图
初中数学八年级上册思维导图一、数的开方1. 平方根:如果一个正数x的平方等于a,那么x是a的平方根,记作x=√a。
正数a的平方根有两个,它们互为相反数,分别记作+√a 和√a。
0的平方根是0,负数没有平方根。
2. 立方根:如果一个数x的立方等于a,那么x是a的立方根,记作x=³√a。
每个实数都有唯一的立方根。
3. 开方运算:开方运算是求一个数的平方根或立方根的运算。
对于正数a,开方运算可以表示为√a或³√a。
二、实数1. 实数的概念:实数包括有理数和无理数。
有理数是可以表示为两个整数比的数,无理数是不能表示为两个整数比的数。
2. 实数的分类:实数可以分为正实数、负实数和0。
正实数是大于0的实数,负实数是小于0的实数,0既不是正实数也不是负实数。
3. 实数的运算:实数可以进行加法、减法、乘法和除法运算。
在运算过程中,需要遵循实数的运算规律,如交换律、结合律和分配律。
三、勾股定理1. 勾股定理的内容:勾股定理指出,在一个直角三角形中,直角边的平方和等于斜边的平方。
即a²+b²=c²,其中a、b是直角边,c是斜边。
2. 勾股定理的应用:勾股定理可以用来解决直角三角形中的边长问题,也可以用来解决一些与直角三角形相关的实际问题。
3. 勾股定理的证明:勾股定理的证明有多种方法,其中一种常见的证明方法是使用几何图形的面积关系。
四、一次函数1. 一次函数的概念:一次函数是指函数的图像是一条直线,其一般形式为y=kx+b,其中k是斜率,b是截距。
2. 一次函数的性质:一次函数的图像是一条直线,斜率k表示直线的倾斜程度,截距b表示直线与y轴的交点。
3. 一次函数的应用:一次函数可以用来描述一些线性关系,如物体的速度与时间的关系、正比例关系等。
五、不等式1. 不等式的概念:不等式是表示两个数之间大小关系的数学表达式,如a>b、a<b、a≥b、a≤b等。
2. 不等式的性质:不等式可以进行加减、乘除运算,但在乘除运算中需要注意符号的变化。
第二章 图形的创意思维
和富有创意的图形,往往能给观者全新的视觉与创意 构思等思维上的享受。创意构思具有如下的特点:
1、新视角
创新的魅力在于同样的事物不同的看法,从新的角度
展示就的事物,于司空见惯的缝隙中发现新的空间, 创意必须与众不同,独具卓识。
2、联动性
联动是将事物与事物之间互为关联或看似不关联的因
素并置起来,展开联想的翅膀,使视知觉与创造性思 维跨越语言的阻碍,让思绪飞翔在更广阔烂漫的艺术 空间里。
图形发散创意
文字发散思维导图
4、跳跃性
从思维的进程来说,跳跃性表现为省略思维步骤,加
大思维前进的步伐,思维的跨度大,具有明显的跳跃 性,从而创造出新奇的作品。(参加课本31页,关于 蘑菇的形的联想。)
第二节 图形创意思维训练
一、点线面是绘画、设计的基本元素
二、图形的联想思维训练
学习要点及目标?培养对图形的创意思维?了解并掌握图形的创意表现特点?掌握图形基本元素的语言传递第二章图形的创意思维?第一节创意思维?第二节图形创意思维训练?第三节想象与联想的翅膀第一节创意思维?创意思维是指营造意境创造意念
学习要点及目标
培养对图形的创意思维
了解并掌握图形的创意表现特点 掌握图形基本元素的语言传递
联想-图形创意的基础
客观事物之间是通过各种方式相互联系的,
这种联系正是联想的桥梁。通过这座桥梁, 可以找出表面毫无关系,甚至相隔遥远的事 物之间内在的关联性。一般来说,联想可以 分为接近联想、类似联想、对比联想、因果 联想等。就图形创意而言,通过联想,可以 开拓创意思维,打开创意思维的通道,使五 行的思想朝着有型的图像转化,并创造出新 的形象。
(一)具象素材
1、实体形象
2、影像 3、民间工艺作品形象
小学数学几何图形概念、公式大全-思维导图
上次和孩子一起做了小学数学几何图形的思维导图,今天把这个导图彻底完善了下,把所有的计算公式都加进去了,整个导图画下来,等于把这些几何图形知识全部复习了一遍,同时找到不同几何图形之间的关联,加深了孩子的记忆。
里面还有些图形孩子目前还没学到,我在填充的时候,着重给孩子讲解了公式的由来,实在讲不出来的,就直接写上公式了,等于给孩子预习,也方便孩子以后的复习。
下面直接上图。
一、基本图形在认识线和角的基础上,主要回顾了计量单位以及换算。
线段的长度单位:千米:km、米:m、分米:dm、厘米:cm、毫米:mm换算:1千米=1000米、1米=10分米、1分米=10厘米、1厘米=10毫米、1米=100厘米、1米=1000毫米角的计量单位:(°)二、平面图形平面图形在认识三角形、四边形、圆的基础上,主要是回顾计量单位、周长、面积计算公式,还有些图形对应的性质。
面积的计量单位:1、周长:围成一个图形的所有边长的总和就是这个图形的周长周长的计量单位和换算和线段一样2、面积:物体的表面或围成的平面图形的大小,叫做它们的面积面积的计量单位:平方千米、公顷、平方米、平方分米、平方厘米单位换算:1平方千米=100公顷、1公顷=10000平方米、1平方米=100平方分米、1平方分米=100平方厘米长方形:周长:长方形周长=(长+宽)× 2面积:长方形面积=长×宽正方形:正方形周长= 边长× 4正方形面积= 边长×边长长方形和正方形的周长和面积公式,孩子都记得比较熟悉,所以直接列出来。
平行四边形:平行四边形的周长是四条边相加,但对边相等,所以只要是两条边相加×2就可以了。
面积:平行四边形的面积是通过剪切和平移,转化成一个长方形来计算,最后演变结果是:平行四边形面积=底×高。
即:S=ah梯形:周长比较好计算,四边相加即可。
梯形的面积演变过程,因为两个一样的梯形可以拼成一个平行四边形,所以梯形的面积就是:梯形面积=(上底+下底)×高÷2。
几何形体的联想和思维导图
二、这些几何形体的组合运用了哪些技法?
三、运用这些几何形体还能组合出不同的形状吗?
几何形体的联想
作业要求:
1、运用今天所学的联想技 法,完成一幅具有创意的作品 。
2、要求画面构图饱满,有 创意,恰当运用点、线、面和 色彩装饰画面。
几何形体的联想
评价点:
1、是否能从画面或实物中分析出基本形体。 2、是否能从几何形体联想创意出新的形象并 用绘画的形式表现出来。 3、通过学习。是否对物体的结构有新的理解和 认识。
几何形体的联想
联想探究
圆柱和圆锥,他们组合在一起,会让你联想到什么? 是通过什么方法实现的?
拼接
几何形体的联想
穿插 变形
几何形体的联想
切割
变形
几何形体的联想
叠加
几几何何形形体体的的联联想想
请欣赏范画 ,画中用到了 哪些联想的技 法?
我们来试试 吧。
几何形体Байду номын сангаас联想
图一
图二
图三
图四
图五
一、作品运用了哪些几何形体?
总之,夜间的一切,我-----比人类知道的都清楚呢!
几何形体的联想
几何形体联想的 第 二 课 时
陈黎 万源市职业高级中学
法国画家塞尚指出:“一切物体 的形态,无论构造多么复杂,都可以 概括为几种几何形体,即球体、圆柱 、圆锥和立方体的结构形式。”
把具体的形 象概括为单纯的 几何形体,再用 抽象的几何形体 去认识具体对象, 以此掌握形体变 化的基本规律。
几何形体的联想
课堂小结: 同学们回顾今天所学的内容,
最大的收获是什么? 几何形体的创意可以用哪几种
方法来表现?
几何形体的联想
几何图形认知
几何图形认知几何图形是我们日常生活中经常遇到的一种视觉表达方式。
无论是画画、建筑设计还是地图绘制,几何图形都扮演着重要的角色。
因此,对几何图形的认知和理解不仅仅在学术层面上有重要意义,也能帮助我们更好地理解和应用几何知识。
本文将介绍几何图形的认知过程,并结合具体例子加以说明。
1. 几何图形的形状分类几何图形可以分为点、线、面和体四大类。
点是几何图形的基本单位,没有长度、宽度和高度。
一般用大写字母表示,如A、B、C。
线是由无数个点构成的路径,没有宽度和厚度。
它有长度但没有宽度,用小写字母表示,如AB、CD。
面是由线构成的二维图形,有长度和宽度但没有高度。
它用大写字母表示,如三角形ABC、矩形DEFG。
体是由面构成的三维图形,具有长度、宽度和高度。
它用大写字母表示,如立方体PQRSTU。
2. 几何图形的性质认知每个几何图形都有其独特的性质和特点。
通过认知几何图形的性质,我们可以更好地理解和运用它们。
例如,对于三角形,我们需要认知其三边之和等于180度,三条边的关系能决定其形状(等边三角形、等腰三角形等)。
再比如,对于圆形,我们需要认知其半径、直径、周长和面积的计算公式,并理解其满足对称性和切线垂直性等重要性质。
3. 通过几何图形进行空间思维几何图形是空间思维的具体表达。
通过几何图形,我们可以更好地理解和描述物体的形状和空间关系。
例如,在建筑设计中,我们可以根据建筑地块的形状和周围环境,合理布置建筑物的平面图和立体结构。
再比如,在地理学中,利用地图上的几何图形,我们可以更好地认知和分析地球的地形、河流的走向以及国家和城市之间的空间距离等。
4. 几何图形在生活中的应用几何图形的应用无处不在,它们已经渗透到我们生活的方方面面。
在日常购物中,几何图形的形状和比例可以影响产品的外观和质感,从而影响我们的购买决策。
在道路交通中,交通标志和道路标线都采用了不同形状的几何图形,帮助驾驶员理解和遵守交通规则。
在艺术创作中,几何图形的对称性、比例和线条构成都可以用来传达艺术家的思想和情感。
七年级立体几何知识点总结
一、全部知识点导图图形的初步认识1、点,线,面点,线,面:①图形是由点,线,面构成的。
②面与面相交得线,线与线相交得点。
③点动成线,线动成面,面动成体。
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状一样,侧面的形状都是长方体。
②N棱柱就是底面图形有N条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
例:用一个平面截一个几何体,得出的截面是圆,那么,这个几何体可能是.〔写出两种〕2、空间几何体的三视图正视图:光线从几何体的前面向后面正投影,得到的投影图。
侧视图:光线从几何体的左边向右边正投影,得到的投影图。
俯视图:光线从几何体的上面向右边正投影,得到的投影图。
★画三视图的原那么:正俯长相等、正侧高一样、俯侧宽一样注:球的三视图都是圆;长方体的三视图都是矩形例:如以下图的几何体的左视图是〔〕A.B.C.D.用五个小正方体搭成如图的几何体,请画出它的三视图.一、长方体1、特征:6个面都是长方形〔有时有两个相对的面是正方形〕。
⏹相对的面互相平行且面积相等,12条棱相对的4条棱〔互相平行〕长度相等。
⏹有8个顶点。
⏹相交于一个顶点的三条棱的长度分别叫做长、宽、高。
⏹两个面相交的边叫做棱。
⏹三条棱相交的点叫做顶点。
⏹把长方体放在桌面上,最多只能看到三个面。
⏹长方体或者正方体6个面的总面积,叫做它的外表积。
2、计算公式<1>S=2(ab+ah+bh)<2>V=sh<3>V=abh二、正方体1、特征⏹六个面都是正方形;⏹六个面的面积相等;⏹12条棱,棱长都相等;⏹有8个顶点;⏹正方体可以看作特殊的长方体;如图,该平面展开图按虚线折叠成正方体后,相对面上两个数之和为8,那么x+y=.2 计算公式<1>S=6a²<2>v=a³三、圆柱1、圆柱的认识⏹圆柱的上下两个面叫做底面。
七年级数学上册 第四章 《几何图形初步》知识讲解
《几何图形初步》全章知识讲解【学习目标】1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观; 2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法; 3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形. 【知识网络】【要点梳理】要点一、多姿多彩的图形 1. 几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果. 2.立体图形与平面图形的相互转化 (1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会立体图形:棱柱、棱锥、圆柱、圆锥、球等. ⎧⎨⎩平面图形:三角形、四边形、圆等.几何图形⎧⎨⎩得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来. 要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践. (2)从不同方向看:主(正)视图---------从正面看 几何体的三视图 (左、右)视图-----从左(右)边看 俯视图---------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图. ②能根据三视图描述基本几何体或实物原型. (3)几何体的构成元素及关系几何体是由点、线 、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1. 直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB=a,如下图:4.线段的比较与运算 (1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC ,或AC=a+b ;AD=AB-BD 。
高中数学立体几何知识点框架图
高中数学立体几何知识点框架图篇一:高考立体几何知识点总结(详细)高考立体几何知识点总结一、空间几何体(一)空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。
围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
其中,这条直线称为旋转体的轴。
(二)几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2 棱柱的分类图1-1 棱柱底面是四边形底面是平行四边形侧棱垂直于底面棱柱底面是矩形四棱柱底面是正方形平行六面体棱长都相等直平行六面体长方体正四棱柱正方体性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等;Ⅱ、两底面是全等多边形且互相平行;Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式S直棱柱侧?ch(c是底周长,h是高)S直棱柱表面= c·h+ 2S底V棱柱= S底·h2 、棱锥的结构特征2.1 棱锥的定义(1)棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。
2.2 正棱锥的结构特征Ⅰ、平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、正棱锥的各侧棱相等,各侧面是全等的等腰三角形;正棱锥侧面积:S正棱椎?1ch'(c为底周长,h'为斜高)2OP体积:V棱椎?1Sh(S为底面积,h为高)3C正四面体:对于棱长为a正四面体的问题可将它补成一个边长为2a(正方体的边长)22a的正方体问题。
《几何图形初步》知识点总汇
1⎧⎨⎩⎧⎨⎩《几何图形初步》知识点总汇复习重点 理解本章的知识结构、数学思想方法,掌握定理和公理.一、知识结构框图二、具体知识点梳理(一)几何图形(是多姿多彩的)立体图形:棱柱、棱锥、圆柱、圆锥、球等. 1、几何图形 平面图形:三角形、四边形、圆等.主(正)视图---------从正面看;2、几何体的三视图 侧(左、右)视图-----从左(右)边看;俯视图---------------从上面看.(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平面图形不一样的.(2)了解直棱柱、圆柱、圆锥的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念经过两点有一条直线,并且只有一条直线. 简称:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点叫做线段的中点.图形:符号:若点M是线段AB的中点,则AM=BM=12AB,AB=2AM=2BM.6、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离:连接两点的线段长度叫做这两点的距离.8、点与直线的位置关系(1)点在直线上;(2)点在直线外.(三)角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):∠1 ;∠α;∠B;∠ABC.3、角的度量单位及换算4、角的分类:锐角、直角、钝角、平角、周角.5、角的比较方法(1)度量法(2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法,可以作出任意给定的角.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.图形:符号:9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:同(等)角的余角相等.同(等)角的补角相等.10、方向角(1)正方向;(2)北(南)偏东(西)方向;(3)东(西)北(南)方向.2。
初中上学期第四单元数学思维导图
初中上学期第四单元数学思维导图图片4、1几何图形1、几何图形:从形形色色的物体外形中得到的图形叫做几何图形。
2、立体图形:这些几何图形的各部分不都在同一个平面内。
3、平面图形:这些几何图形的各部分都在同一个平面内。
立体图形中一些部分是平面图形。
5、三视图:从左面看,从正面看,从上面看6、展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。
这样的平面图形称为相应立体图形的展开图。
7、⑴几何体简称体;包围着体的是面;面面相交形成线;线线相交形成点;⑵点无大小,线、面有曲直;⑶几何图形都是由点、线、面、体组成的;⑷点动成线,线动成面,面动成体;⑸点:是组成几何图形的基本元素。
4、2直线、射线、线段1、直线公理:经过两点有一条直线,并且只有一条直线。
即:两点确定一条直线。
2、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。
3、把一条线段分成相等的两条线段的点,叫做这条线段的中点。
4、线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
5、连接两点间的线段的长度,叫做这两点的距离。
6、直线的表示方法:如图的直线可记作直线AB或记作直线m。
(1)用几何语言描述右面的图形,我们可以说:点P在直线AB外,点A、B都在直线AB上。
(2)如图,点O既在直线m上,又在直线n上,我们称直线m、n相交,交点为O。
7、在直线上取点O,把直线分成两个部分,去掉一边的一个部分,保留点0和另一部分就得到一条射线,如图就是一条射线,记作射线OM或记作射线a。
注意:射线有一个端点,向一方无限延伸。
8、在直线上取两个点A、B,把直线分成三个部分,去掉两边的部分,保留点A、B和中间的一部分就得到一条线段。
如图就是一条线段,记作线段AB或记作线段a。
注意:线段有两个端点。
4、3角1、角的定义:有公共端点的两条射线组成的图形叫角。
这个公共端点是角的顶点,两条射线为角的两边。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
守望
总之,夜间的一切,我-----比人类知道的都清楚呢!
提出问题: • 这个守望者是由哪些 形状组合而成? • 为什么背景是黑色的 ,它起到什么样的作 用? • 如果让你来用这个石 膏人造型,你会设计 什么样的情节?
我们常见的几何形体
• 夸 张 变 形 装 饰
• 装 饰
•
卡 拟 通 人
•
第一环节
石膏几何体与生活物品的组合
几何形体的创意素描
第二环节
联想练习
1. 圆球——苹果——苹果树; 2. 圆柱——毛笔——正在奋 力写字、汗流浃背的毛笔; 3. 方形——立方体——带有 窗户眼睛的卡通小房子— —在空中坐落着,打开门 就可以闻到花的清香; 4. 圆锥体——圆锥体、圆柱 体和圆球体组合成有情节 的故事场景。
研究几何形体及其组合
从上面这组静物图片中,你能分析出每个物体是由什 么几何形体概括而成的?
•人物 •树林
•房舍
•水洼 •朝阳
俄罗斯马列维奇的《雨后乡间之晨》
• 法国画家塞尚指出:“一切物体的 形态,无论构造多么复杂,都可以 概括为几种几何形体,即球体、圆 柱、圆锥和立方体的结构形式。”
•把具体的形象 概括为单纯的 几何形体,再 用抽象的几何 形体去认识具 体对象,以此 掌握形体变化 的基本规律。
第三环节
蔬菜水果创意设计作品欣赏
第四环节 学生作品欣赏
一切物体、圆柱、圆锥和立方体的结构形式。” -----塞尚 -
联 几何 形体的
想
授课人 王芳 学校 七中
散 文 诗 欣 赏
我是一个麦田守望者,不分昼 夜的站在这片美丽的田地里。 最爱那满天星斗的夜晚; 我知道露水怎么样凝在草叶上 ,露水的味道怎么样香甜; 我知道星星怎么样眨眼睛,月 亮怎么样笑; 我知道小虫们怎么样你找我, 我找你的玩捉迷藏,蝴蝶们怎 么样恋爱; 我还知道夜间的田野怎么样沉 静,花草树木怎么样酣睡;
联想推动练习
教 师 范 画
----圆 球 体 的 联 想
• 黑 白 图 案 的 装 饰 花 纹
• 拟 人 化 的 表 现
• 有 趣 的 情 节
几 何 形 体 的 组 合 创 意
• 夸 张 变 形 卡 通 拟 人 的 表 现
练习作业
•运用联想推动练习中的1、2、3、4任选其一 来绘制一个简单的故事场景初稿,可用不同 种类的绘画工具。 •讲述设计思路,选学生上台讲解设计理念及 绘画创作方法。