武汉理工大学_理论力学_期末考试试题及答案
理论力学试卷武汉理工大学
考试试题纸(A 卷)课程名称理论力学班级备注:学生不得在试题纸上答题(含填空题、选择题等客观题)一、图示结构由折杆AB 和EC 组成,各杆自重不计,A 、E 处为铰链,B 、C 为链杆约束。
已知:P=8kN ,q =1kN/m ,M =2 kN.m ,L=1m 。
求:支座A 、B 、C 的约束反力。
(15分)二、重量为G 的物块C 放置在与水平面成30°的斜面上,重量为P=2G 的均质杆AB 的B 端搭在物块C 上(不计物块C 的几何尺寸),A 端为固定铰支座,杆与物块C 间摩擦不计。
物块C 与斜面间的摩擦因素为f=)36(1 。
若在物块C 上作用一平行斜面力F,当物块C平衡时,试求力F 的最小值。
(15分)三、平行四边形机构中,各机构均在同一平面内运动,曲柄O 1A 的转动方程为θ1=πt/18rad,动点M 沿圆弧的运动规律为s=BM 弧长=πt 2 cm, B 为起点。
已知:O 1A=18cm,AB=36cm,R=18cm 。
求t=3s 时,点M 的绝对速度和绝对加速度.(15分)。
四、曲柄滑块机构中,曲柄AB=L ,连杆BC=3L ,在某瞬时,90=∠ABC , 60=∠BAC ,滑块的速度为V ,加速度为 a 。
求:在该瞬时,曲柄AB 的角速度与角加速度。
(15分)五、如图机构所示,已知:沿地面作纯滚动的均质轮A 质量为1.5m ,半径为R ,其上作用有一常力偶矩M=2mgR ;均质轮C 质量为m ,半径为r ;重物B 质量为m ;动滑轮D 的质量、绳的质量及轴承处的摩擦不计。
与轮A 相连的绳段与水平面平行。
试求:1)重物B 上升的加速度;2)EH 段绳索张力。
(15分)六、AB 杆长为L ,重为P ,用两根等长的绳子挂于O 点,设绳与杆间的夹角为θ=450,求:当突然剪断绳OB 时,AB 杆的角加速度和绳子OA 的张力。
(12分)七、五根长度相同的柱形匀质连杆,各重W ,与固定边AB 形成正六边形,如图所示,设在水平连杆EF 的中点施加力F ,以维持平衡,试用虚位移原理求力F 的大小。
大学期末考试理论力学试卷(含答案详解)
一、选择题(每题2分,共20分)1.若平面力系对一点A 的主矩等于零,则此力系( )。
A .不可能合成为一个力 B .不可能合成为一个力偶C .一定平衡D .可能合成为一个力偶,也可能平衡2.刚体在四个力的作用下处于平衡,若其中三个力的作用线汇交于一点,则第四个力的作用线( )。
A .一定通过汇交点B .不一定通过汇交点C .一定不通过汇交点3.将平面力系向平面内任意两点简化,所得主矢相等,主矩也相等,且主矩不为零,则该力系简化的最后结果为( )。
A .一个力 B .一个力偶 C .平衡4.图1中,已知P =60kN ,F =20kN静摩擦系数f s =0.5,动摩擦系数f d =0.4,则物体所受 摩擦力的大小为( )。
A .25kN B .20kN C .17.3kN5.一点做曲线运动,开始时的速度s m v /100=,恒定切向加速度2/4s m a =τ,则2s 末该点的速度大小为( )。
A .2m/sB .18m/sC .12m/sD .无法确定6.圆轮绕某固定轴O 转动,某瞬时轮缘上一点的速度v 和加速度a 如图2所示,试问哪些情况下是不可能的?( ) A .(a )、(b )运动是不可能的 B .(a )、(c )运动是不可能的 C .(b )、(c )运动是不可能的 D .均不可能7.如图3所示平行四边形机构,在图示瞬时,杆O 1A以角速度ω转动,滑块M 相对AB 杆运动,若取M 动点,动系固联在AB 上,则该瞬时动点M 的牵连速度与杆AB 间的夹角为( )。
A .00 B .300 C .600图28.平面机构如图4所示,选小环M 为动点,动系固联 在曲柄OCD 杆上,则动点M 的科氏加速度的方向( )。
A .垂直于CD B .垂直于AB C .垂直于OM D .垂直于纸面9.如图5所示,两物块A 、B ,质量分别为A m 和B m 初始静止。
如A 沿斜面下滑的相对速度为r v ,设B 向左运动的速度为v ,根据动量守恒定律理有(A .v m v mB r A =θcos B.v m v m B r A=C.v m v v m B r A =+)cos (θD. v m v v m B r A =-)cos (θ10.已知刚体质心C 到相互平行的z '、z 轴之间的距离分别为a 、b ,刚体的质量为m ,对z 轴的转动惯量为z J ,则'z J 的计算公式为( )。
理论力学-理论力学期末考试(答案题解)
理论力学课程期末考试(答案题解)
一、1、(1) 研究全系统,由 M O (F ) 0 计算;(2)三种方法:平面运动刚
体运动微分方程;(3)静力学平衡方程和虚位移原理。
2、两个自由度,理想约束,完整约束,定常约束
二、解: 研究 BD 杆,受力如图所示。
F F ' M B 0 F1 l FDx 2l 0
mvC2
力所作的功为 W
M
2
由动能定理有
2
M
11 12
mvC2
解得 vC
6M 11m
C
1 R
6M 11m
BC
1 2R
6M 11m
以 C 为基点,分析 B 点加速度,加速度合成图如图所示。
aBt
a
n B
aC
aBt C
aBnC
向 aBt 方向投影,有
3 2
R
FC
R
3 2
mR 2
C
3mR 2
解得
M 10mR 2
S
所以 O1A
M 10mR 2
C
2
M 5mR 2
BC 0
OB
M 10mR 2
分析圆盘,建立相对质心 C 的动量矩定理,有
FE
R
mR 2 2
C
5、 解:分析 BC 杆,瞬心为 B。
解得
FCx '2l FBE '
2 2
l
0
大学理论力学期末考试题库及答案
大学理论力学期末考试题库及答案1. 题目:简述牛顿三定律的内容。
答案:牛顿第一定律(惯性定律)指出,物体在没有受到外力作用时,将保持静止或匀速直线运动状态;牛顿第二定律(加速度定律)表明,物体的加速度与作用在物体上的合外力成正比,与物体质量成反比,方向与合外力方向相同;牛顿第三定律(作用与反作用定律)说明,对于任何两个相互作用的物体,它们之间的力是大小相等、方向相反的。
2. 题目:什么是角动量守恒定律?答案:角动量守恒定律是指在没有外力矩作用的情况下,一个系统的总角动量保持不变。
3. 题目:请解释达朗贝尔原理。
答案:达朗贝尔原理是将动力学问题转化为静力学问题的一种方法。
它基于牛顿第二定律,通过引入惯性力,将动力学方程转化为平衡方程。
4. 题目:什么是虚功原理?答案:虚功原理是分析力学中的一个基本原理,它指出,一个保守系统中,如果系统从一个平衡位置发生微小的虚位移,那么系统内所有力对这些虚位移所做的虚功之和为零。
5. 题目:简述拉格朗日方程的一般形式。
答案:拉格朗日方程的一般形式为:\( \frac{d}{dt}(\frac{\partial L}{\partial \dot{q}_i}) -\frac{\partial L}{\partial q_i} = Q_i \),其中 \( L \) 是拉格朗日量,\( q_i \) 是广义坐标,\( \dot{q}_i \) 是广义速度,\( Q_i \) 是广义力。
6. 题目:请解释什么是哈密顿原理。
答案:哈密顿原理,也称为最小作用量原理,它指出在所有可能的路径中,实际发生的过程是使作用量取极小值的路径。
作用量是拉格朗日量 \( L \) 对时间的积分。
7. 题目:什么是刚体的转动惯量?答案:刚体的转动惯量是衡量刚体对旋转运动的抵抗程度的物理量,它与刚体的质量分布和旋转轴的位置有关。
8. 题目:请解释什么是势能。
答案:势能是物体由于其位置或状态而具有的能量形式,它与物体的位形有关,通常与保守力相关。
理论力学复习题(武汉理工大学)
p y - 0 y = ∑I (e ) y
( pz - p0 z = ∑I ze )
(2)质点系的动量守恒定理
若 ∑Fi 若 ∑Fi
(e ) (e )
= 0, 则 p = p0 = 恒矢量 = 0, 则 p = p0 = 恒矢量
4
(3)质心运动定理
dvC (e ) ∑ i m = F dt
maC = ∑ i F
应用时,前一式取其投影式。
e maCy Fy e J C M C ( F ) maCx Fx
e
n e maC Fn e J C M C ( F ) ma Ft
t C
7
e
四 动能定理 (1)质点系的动能定理 (2)功率方程 (3)机械能守恒定律
mg
a
B
mg
14
(1): M 0
P
2 FEH m( 4a 3g ) 0
K
C E 1 2mR 2 FEH 2 R 3maR 3mgR 0 2 FEH m( 4a g ) 0 (2): M 0 A H D 1 2mR 2 2 FEHR m( g 2a ) R 0 2 2 FCy B 1 R a FCx 2mR 2 C 2 1 1 得: a g aA 2a g 2mg FEH 6 12 2a A FEH 2ma F 4 FEH mg mg 1 2mR 3 2 D P 2ma 2mg ma a B mg 15
M IO M IZ J z
(1) (2)
0
FIR
M IO
简化为一主失
FIR maC
惯性力系简化为一主矩 则
理论力学考试题及答案
理论力学考试题及答案**理论力学考试题及答案**一、单项选择题(每题2分,共20分)1. 质点系中,内力的矢量和为零,这是基于()。
A. 牛顿第三定律B. 牛顿第二定律C. 牛顿第一定律D. 动量守恒定律答案:D2. 质心的位置由()决定。
A. 质点的质量B. 质点的位置C. 质点的加速度D. 质点的速度答案:B3. 刚体的转动惯量是关于()的量。
A. 质量B. 距离C. 力D. 速度答案:B4. 角动量守恒的条件是()。
A. 外力矩为零B. 外力为零C. 内力矩为零D. 内力为零答案:A5. 两质点组成的系统,若两质点质量相等,它们之间的万有引力为F,则系统的质心位置位于()。
A. 两质点连线的中点B. 质量较大的质点处C. 质量较小的质点处D. 无法确定答案:A6. 刚体绕固定轴的转动惯量I与()有关。
A. 质量分布B. 轴的位置C. 轴的方向D. 以上都是答案:D7. 刚体的平行轴定理表明,刚体绕任意轴的转动惯量等于绕通过质心的平行轴的转动惯量加上()。
A. 刚体的质量B. 刚体的转动惯量C. 刚体质量与两轴间距离的平方的乘积D. 刚体质量与两轴间距离的乘积答案:C8. 刚体的平面运动可以分解为()。
A. 任意两个不同的平面运动的叠加B. 平移和旋转的叠加C. 两个垂直平面内的旋转D. 任意两个不同的旋转的叠加答案:B9. 刚体的瞬时转轴是()。
A. 刚体上所有点速度相同的直线B. 刚体上所有点加速度相同的直线C. 刚体上所有点角速度相同的直线D. 刚体上所有点线速度为零的直线答案:D10. 刚体的定轴转动中,角速度的大小和方向()。
A. 与参考系的选择有关B. 与参考系的选择无关C. 与参考系的选择有关,但大小无关D. 与参考系的选择无关,但方向有关答案:B二、填空题(每题2分,共20分)1. 牛顿第二定律的数学表达式为:\( F = ma \),其中F表示力,m表示质量,a表示________。
理论力学__期末考试试题(题库_带答案)
理论⼒学__期末考试试题(题库_带答案)理论⼒学期末考试试题1-1、⾃重为P=100kN 的T 字形钢架ABD,置于铅垂⾯内,载荷如图所⽰。
其中转矩M=20kN.m ,拉⼒F=400kN,分布⼒q=20kN/m,长度l=1m 。
试求固定端A 的约束⼒。
解:取T 型刚架为受⼒对象,画受⼒图.1-2 如图所⽰,飞机机翼上安装⼀台发动机,作⽤在机翼OA 上的⽓动⼒按梯形分布:1q =60kN/m ,2q =40kN/m ,机翼重1p =45kN ,发动机重2p =20kN ,发动机螺旋桨的反作⽤⼒偶矩M=18kN.m 。
求机翼处于平衡状态时,机翼根部固定端O 所受的⼒。
解:1-3图⽰构件由直⾓弯杆EBD以及直杆AB组成,不计各杆⾃重,已知q=10kN/m,F=50kN,M=6kN.m,各尺⼨如图。
求固定端A处及⽀座C的约束⼒。
1-4 已知:如图所⽰结构,a, M=Fa, 12F F F ==, 求:A ,D 处约束⼒.解:1-5、平⾯桁架受⼒如图所⽰。
ABC 为等边三⾓形,且AD=DB 。
求杆CD 的内⼒。
1-6、如图所⽰的平⾯桁架,A 端采⽤铰链约束,B 端采⽤滚动⽀座约束,各杆件长度为1m 。
在节点E 和G 上分别作⽤载荷E F =10kN ,G F =7 kN 。
试计算杆1、2和3的内⼒。
解:2-1 图⽰空间⼒系由6根桁架构成。
在节点A上作⽤⼒F,此⼒在矩形ABDC平⾯内,且与铅直线成45o⾓。
ΔEAK=ΔFBM。
等腰三⾓形EAK,FBM和NDB在顶点A,B和D处均为直⾓,⼜EC=CK=FD=DM。
若F=10kN,求各杆的内⼒。
2-2 杆系由铰链连接,位于正⽅形的边和对⾓线上,如图所⽰。
在节点D沿对⾓线LD⽅向F。
在节点C沿CH边铅直向下作⽤⼒F。
如铰链B,L和H是固定的,杆重不计,作⽤⼒D求各杆的内⼒。
2-3 重为1P =980 N ,半径为r =100mm 的滚⼦A 与重为2P =490 N 的板B 由通过定滑轮C 的柔绳相连。
《理论力学》期末考试试题及答案
理论力学部分第一章静力学基础一、是非题(每题3分,30分)1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
()2.在理论力学中只研究力的外效应。
()3.两端用光滑铰链连接的构件是二力构件。
()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。
()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
()9. 力偶只能使刚体发生转动,不能使刚体移动。
()10.固定铰链的约束反力是一个力和一个力偶。
()二、选择题(每题4分,24分)1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。
则其合力可以表示为。
①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。
①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。
③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。
3.三力平衡定理是。
①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。
4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。
①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。
5.在下述原理、法则、定理中,只适用于刚体的有。
①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。
6.关于约束的说法正确的是 。
① 柔体约束,沿柔体轴线背离物体。
② 光滑接触面约束,约束反力沿接触面公法线,指向物体。
理论力学试卷 武汉理工大学解析
考试试题纸(A 卷)课程名称理论力学班级题号 一 二 三 四 五 六 七 八 九 十 总分 题分备注:学生不得在试题纸上答题(含填空题、选择题等客观题)一、图示结构由折杆AB 和EC 组成,各杆自重不计,A 、E 处为铰链,B 、C 为链杆约束。
已知:P=8kN ,q =1kN/m ,M =2 kN.m ,L=1m 。
求:支座A 、B 、C 的约束反力。
(15分)二、重量为G 的物块C 放置在与水平面成30°的斜面上,重量为P=2G 的均质杆AB 的B 端搭在物块C 上(不计物块C 的几何尺寸),A 端为固定铰支座,杆与物块C 间摩擦不计。
物块C 与斜面间的摩擦因素为f=)36(1 。
若在物块C 上作用一平行斜面力F ,当物块C 平衡时,试求力F 的最小值。
(15分)三、平行四边形机构中,各机构均在同一平面内运动,曲柄O 1A 的转动方程为θ1=πt/18rad,动点M 沿圆弧的运动规律为s=BM 弧长=πt 2 cm, B 为起点。
已知:O 1A=18cm,AB=36cm,R=18cm 。
求t=3s 时,点M 的绝对速度和绝对加速度.(15分)。
ACB F30°30°0101四、曲柄滑块机构中,曲柄AB=L ,连杆BC=3L ,在某瞬时,90=∠ABC , 60=∠BAC ,滑块的速度为V ,加速度为 a 。
求:在该瞬时,曲柄AB 的角速度与角加速度。
(15分)五、如图机构所示,已知:沿地面作纯滚动的均质轮A 质量为1.5m ,半径为R ,其上作用有一常力偶矩M=2mgR ;均质轮C 质量为m ,半径为r ;重物B 质量为m ;动滑轮D 的质量、绳的质量及轴承处的摩擦不计。
与轮A 相连的绳段与水平面平行。
试求:1)重物B 上升的加速度;2)EH 段绳索张力。
(15分)六、AB 杆长为L ,重为P ,用两根等长的绳子挂于O 点,设绳与杆间的夹角为θ=450,求:当突然剪断绳OB 时,AB 杆的角加速度和绳子OA 的张力。
《理论力学》期末考试试卷附答案
《理论力学》期末考试试卷附答案一、填空题(每小题 5 分,共 35 分)1、如图1.1所示结构,已知力F ,AC =BC =AD =a ,则CD 杆所受的力F CD =( ),A 点约束反力F Ax =( )。
2、如图1.2 所示结构,,不计各构件自重,已知力偶矩M ,AC=CE=a ,A B ∥CD 。
则B 处的约束反力F B =( );CD 杆所受的力F CD =( )。
1.1 1.23、如图1.3所示,已知杆OA L ,以匀角速度ω绕O 轴转动,如以滑块A 为动点,动系建立在BC 杆上,当BO 铅垂、BC 杆处于水平位置时,滑块A 的相对速度v r =( );科氏加速度a C =( )。
4、平面机构在图1.4位置时, AB 杆水平而OA 杆铅直,轮B 在水平面上作纯滚动,已知速度v B ,OA 杆、AB 杆、轮B 的质量均为m 。
则杆AB 的动能T AB =( ),轮B 的动能T B =( )。
1.3 1.45、如图1.5所示均质杆AB 长为L ,质量为m,其A 端用铰链支承,B 端用细绳悬挂。
当B 端细绳突然剪断瞬时, 杆AB 的角加速度 =( ),当杆AB 转到与水平线成300角时,AB 杆的角速度的平方ω2=( )。
6、图1.6所示机构中,当曲柄OA 铅直向上时,BC 杆也铅直向上,且点B 和点O 在同一水平线上;已知OA=0.3m,BC=1m ,AB=1.2m,当曲柄OA 具有角速度ω=10rad/s 时,则AB 杆的角速度ωAB =( )rad/s,BC 杆的角速度ωBC =( )rad/s 。
AB1.57、图1.7所示结构由平板1、平板2及CD 杆、EF 杆在C 、D 、E 、F 处铰接而成,在力偶M 的作用下,在图上画出固定铰支座A 、B 的约束反力F A 、F B 的作用线方位和箭头指向为()(要求保留作图过程)。
1.7二、单项选择题(每小题 5 分,共35 分)1、如图2.1所示,四本相同的书,每本重均为P ,设书与书间的摩擦因数为0.1,书与手间的摩擦因数为0.25,欲将四本书一起抱起,则两侧手应加的压力至少大于( )。
理论力学期末考试和答案
理论力学期末考试和答案一、选择题(每题2分,共20分)1. 质点系的动量守恒定律成立的条件是()。
A. 质点系所受合外力为零B. 质点系所受合外力不为零C. 质点系所受合外力为任意值D. 质点系所受合外力不为零,但合外力矩为零答案:A2. 质心的位置坐标可以通过()计算得到。
A. 质点系中所有质点的位置坐标B. 质点系中所有质点的质量C. 质点系中所有质点的位置坐标和质量D. 质点系中所有质点的动量答案:C3. 刚体绕定轴转动的转动惯量I与刚体的质量M和形状有关,与()无关。
A. 刚体的质量分布B. 刚体的形状C. 刚体绕定轴的转动半径D. 刚体绕定轴的转动速度答案:D4. 刚体平面运动中,角速度与线速度的关系是()。
A. 线速度与角速度成正比B. 线速度与角速度成反比C. 线速度与角速度无关D. 线速度与角速度成正比,且与转动半径成正比答案:D5. 刚体绕定轴转动的动能公式为()。
A. E_k = 1/2 * I * ω^2B. E_k = 1/2 * M * v^2C. E_k = 1/2 * M * ω^2D. E_k = 1/2 * I * v^2答案:A6. 两个质点m1和m2组成的系统,它们之间的万有引力为F,当它们相距为r时,系统的引力势能为()。
A. U = -G * m1 * m2 / rB. U = G * m1 * m2 / rC. U = -G * m1 * m2 * rD. U = G * m1 * m2 * r答案:A7. 质点系的动能守恒定律成立的条件是()。
A. 质点系所受合外力为零B. 质点系所受合外力不为零C. 质点系所受合外力为任意值D. 质点系所受合外力不为零,但合外力矩为零答案:A8. 刚体绕定轴转动的角动量守恒定律成立的条件是()。
A. 刚体所受合外力矩为零B. 刚体所受合外力不为零C. 刚体所受合外力为任意值D. 刚体所受合外力矩不为零答案:A9. 刚体的平行轴定理表明,刚体绕任意轴的转动惯量I与绕通过质心的平行轴的转动惯量I_c之间的关系是()。
武汉理工大学 《理论力学》试卷全集 AB及答案
考试试题纸(A卷)课程名称理论力学班级备注:学生不得在试题纸上答题(含填空题、选择题等客观题)一、图示构架,由AB、OD、AD杆组成,各杆自重不计。
已知:Q=1000N,通过滑轮H与AD的中点E连接,且AC=BC=OC=CD=1m,A、C、D为光滑铰链,求:支座O和铰链C的反力。
(15分)二、物块A和B的重量均为100 N, 用图示压杆将B压紧在水平桌面上阻止其滑动。
已知物块B与桌面间的摩擦系数为f = 0.5,不计压杆与物块B间的摩檫。
求铅垂力P至少为多大才能防止B沿桌面滑动。
(15分)三、半圆形凸轮半径为R。
若已知凸轮的平动速度为v,加速度为a,杆AB被凸轮推起,求杆AB的平动速度和加速度。
设此时凸轮的中心O和A点的连线与水平线的夹角为60º。
(15分)四、曲柄连杆机构如图,已知:OA=r, OA以匀角速度ω转动。
试求:∠AOB=90º,∠OBA=30º时,滑块B的速度和杆AB的角加速度αAB 。
(15分)五、均质圆盘A和均质圆盘O质量均为m,半径均为R,斜面倾角为θ,圆盘A在斜面上作纯滚动,盘O上作用有力偶矩为M的力偶。
(1)求盘心A沿斜面由静止上升距离s时的速度;(2)盘O的角加速度α(3)绳的拉力(表示为角加速度α函数)(15分)六、均质圆柱体重为P,半径为R,无滑动地沿倾斜平板由静止自O点开始滚动。
平板对水平线的倾角为θ,试求OA=S时平板在O点的约束反力和圆柱体与板间的摩擦力。
板的重力略去不计。
(15分)七、四铰链杆组成如图示的菱形ABCD,B、C、D三点受力如图示。
不计杆重,试用虚位移原理求平衡时θ应等于多少? (10分)考试试题纸(B卷)课程名称理论力学班级备注:学生不得在试题纸上答题(含填空题、选择题等客观题)一、图示结构中,各杆自重不计,D、E处为铰链,B、C为链杆约束,A为固定端。
已知:q=1kN/m,M=2 kN.m,L=2m.求:支座A、B的约束反力。
本科理论力学期末考试卷及答案3套
……………………………………总………………………………………蓝………………………………………………`议t ……………………………………(器如`关芒器,蓝衔)恁茫一二邸;E 峚诚信应考,考试作弊将带来严重后果!本科生期末测试1《理论力学I 》2020-2021(1)注意事项: 1. 开考前请将密封线内各项信息填写清楚;2. 所有答案请直接答在试卷上;3 考试形式:(闭)卷;4. 本试卷共(六)大题,满分100分,考试时间120分钟。
这斯题号四五六总分得分、题号答案判断题(正确打”守,错误打"x"'将答案填在下表中,每小题1分,共10分)I : I : I \I : I : I : I : I : I : I 10✓....l 2345.6.□宜驴.. 789.力在两个坐标轴上的投影与力沿这两个坐标轴方向进行分解得到的分力的意义是相同的。
力偶无合力的意思是说力偶的合力为零。
质点系惯性力系的主矢与简化中心的选择有关,而惯性力系的主矩与简化中心的选择无关。
平面力系向某点简化之主矢为零,主矩不为零。
则此力系可合成为一个合力偶,且此力系向任一点简化之主矩与简化中心的位置无关。
某瞬时刚体上各点的速度矢量都相等而各点的加速度矢量不相等,因此该刚体不是作平动。
两齿轮咄合传动时,传动比等千主动轮与从动轮的转速比,若主动轮转速增大,则传动比也随之增大。
若刚体内各点均作圆周运动,则此刚体的运动必是定轴转动。
不管质点做什么样的运动,也不管质点系内各质点的速度为何,只要知道质点系的质量,质点系质心的速度,即可求得质点系的动晕。
质点系的内力不能改变质点系的动量与动量矩。
10. 刚体受到一群力作用,不论各力作用点如何,此刚体质心的加速度都一样。
芯#1二单项选择题(8小题,每题2分,共16分,将答案填在下表中。
)I:: I�I : I: I : I /I86 I87 I :I勹1.二力平衡条件的使用范围是()A刚体B刚体系统C变形体 D.任何物体或物体系统2.不经计算,可直接判定出图示析架中零力杆的根数为()A. 3B. 5 FC 6 D.93.某一瞬时,作平面运动的平面图形内任意两点的加速度在此两点连线上投影相等,则可以断定该瞬时平面图形的()A.角速度m=OB.角加速度a=0C.OJ a同时为0D m a均不为04.图示平行四连杆机构O,AB02AB C为-刚性三角形板,则C点的切向加速度为:()A.a, =A01·a CB.a,=AC a .ch Ct)C.a,=C01·a1矿111111° D.a r =B C-aB 。
《理论力学》——期末考试答案
《理论力学》——期末考试答案一、单选题1.力对点之矩决定于( )。
A.力的大小B.力臂的长短C.力的大小和力臂的长短D.无法确定正确答案:C2.动点相对于动坐标系的运动称为( )的运动。
A.牵连运动B.相对运动C.绝对运动D.圆周运动正确答案:B3.动点的牵连速度是指该瞬时牵连点的速度,它相对的坐标系是( )。
A.动坐标系B.不必确定的C.静坐标系D.静系或动系都可以正确答案:C4.在质点系动能定理中,应注意外力或内力做的功之和不等于合外力或( )做的功。
A.重力B.浮力C.合内力D.牵引力正确答案:C5.将平面力系向平面内任意两点进行简化,所得主矢量和主矩都相等,且主矩不为零,则该力系简化的最后结果为( )。
A.合力偶B.合力C.平衡力系D.无法进一步合成正确答案:A6.超静定结构的超静定次数等于结构中( )。
A.约束的数目B.多余约束的数目C.结点数D.杆件数正确答案:B7.静不定系统中,多余约束力达到3个,则该系统静不定次数为( )A.3次B.6次C.1次D.不能确定正确答案:A8.关于平面力偶系、平面汇交力系、平面一般力系,最多能够得到的相互独立的平衡方程的个数依次是( )。
A.2、1、3B.2、2、3C.1、2、2D.1、2、3正确答案:D9.平面任意力系向一点简化,应用的是( )。
A.力的平移定理B.力的平衡方程C.杠杆原理D.投影原理正确答案:A10.对于平面力系,一个平衡方程可解( )未知量。
A.1个B.2个C.3个D.不一定正确答案:A11.一平面力系由两组平面平行力系组成(这两组平面平行力系之间互不平行),若力系向某A点简化结果为一合力,下述说法正确的是( )。
A.这两组平面平行力系必然都各自向A点简化为一合力B.这两组平面平行力系可能都各自简化为一力偶C.可能一组平面平行力系向A点简化得到一个力和一个力偶,而另一组平面平行力系向A点简化得到一合力D.可能这两组平面平行力系都各自向A点简化得到一个力和一个力偶正确答案:D12.在任何情况下,在几何可变体系上增加一个二元体后构成的体系是几何( )体系。
大学理论力学期末考试题库及答案
大学理论力学期末考试题库及答案一、单项选择题(每题2分,共20分)1. 牛顿第一定律描述的是:A. 物体在没有外力作用下的运动状态B. 物体在受到平衡力作用下的运动状态C. 物体在受到非平衡力作用下的运动状态D. 物体在受到任何力作用下的运动状态答案:A2. 动量守恒定律适用于:A. 只有当系统所受合外力为零时B. 只有当系统所受合外力不为零时C. 任何情况下D. 只有当系统所受合外力为零时,以及系统内部力远大于外部力时答案:A3. 角动量守恒的条件是:A. 系统不受外力矩作用B. 系统受外力矩作用C. 系统受外力矩作用,但外力矩为零D. 系统不受外力作用答案:A4. 刚体定轴转动的转动惯量I与物体的质量m和半径r的关系是:A. I = kr^2B. I = krC. I = 2mrD. I = mr^2答案:A5. 简谐运动的周期与振幅无关,与:A. 质量有关B. 弹簧劲度系数有关C. 质量与弹簧劲度系数都有关D. 质量与弹簧劲度系数都无关答案:B6. 两质点组成的系统,若质点间距离不变,则系统的质心:A. 位置不变B. 速度不变C. 加速度不变D. 位置、速度、加速度均不变答案:A7. 某物体沿直线运动,其位移随时间的变化关系为s = 3t^2 + 4t + 5,该物体在t = 2s时的速度为:A. 10 m/sB. 14 m/sC. 16 m/sD. 20 m/s答案:C8. 一物体做匀加速直线运动,初速度为2 m/s,加速度为3 m/s^2,则物体在第3秒内的位移为:A. 9 mB. 12 mC. 15 mD. 18 m答案:B9. 两物体A和B,质量分别为m和2m,它们通过一轻质弹簧相连,置于光滑水平面上。
若对A施加一水平向右的力F,系统从静止开始运动,则A和B的加速度之比为:A. 1:2B. 1:1C. 2:1D. 3:1答案:A10. 一物体从静止开始自由下落,下落时间为t,则物体下落过程中的平均速度为:A. gt/2B. gtC. 2gtD. 3gt/2答案:A二、填空题(每题2分,共20分)11. 牛顿第二定律的数学表达式为:________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1-1、自重为P=100kN 的T 字形钢架ABD,置于铅垂面内,载荷如图所示。
其中转矩M=20kN 、m,拉力F=400kN,分布力q=20kN/m,长度l=1m 。
试求固定端A 的约束力。
1-2 如图所示,飞机机翼上安装一台发动机,作用在机翼OA 上的气动力按梯形分布:1q =60kN/m,2q =40kN/m,机翼重1p =45kN,发动机重2p =20kN,发动机螺旋桨的反作用力偶矩M=18kN 、m 。
求机翼处于平衡状态时,机翼根部固定端O 所受的力。
1-3图示构件由直角弯杆EBD 以及直杆AB 组成,不计各杆自重,已知q=10kN/m,F=50kN,M=6kN 、m,各尺寸如图。
求固定端A 处及支座C 的约束力。
1-4 已知:如图所示结构,a, M=Fa, 12F F F ==, 求:A,D 处约束力、解:1-5、平面桁架受力如图所示。
ABC 为等边三角形,且AD=DB 。
求杆CD 的内力。
1-6、如图所示的平面桁架,A 端采用铰链约束,B 端采用滚动支座约束,各杆件长度为1m 。
在节点E 与G 上分别作用载荷E F =10kN,G F =7 kN 。
试计算杆1、2与3的内力。
解:2-1 图示空间力系由6根桁架构成。
在节点A上作用力F,此力在矩形ABDC平面内,且与铅直线成45º角。
ΔEAK=ΔFBM。
等腰三角形EAK,FBM与NDB在顶点A,B与D处均为直角,又EC=CK=FD=DM。
若F=10kN,求各杆的内力。
2-2 杆系由铰链连接,位于正方形的边与对角线上,如图所示。
在节点D沿对角线LD方向作F。
在节点C沿CH边铅直向下作用力F。
如铰链B,L与H就是固定的,杆重不计,求用力D各杆的内力。
2-3 重为1P =980 N,半径为r =100mm 的滚子A 与重为2P =490 N 的板B 由通过定滑轮C 的柔绳相连。
已知板与斜面的静滑动摩擦因数s f =0、1。
滚子A 与板B 间的滚阻系数为δ=0、5mm,斜面倾角α=30º,柔绳与斜面平行,柔绳与滑轮自重不计,铰链C 为光滑的。
求拉动板B 且平行于斜面的力F 的大小。
2-4 两个均质杆AB 与BC 分别重1P 与2P ,其端点A与C用球铰固定在水平面,另一端B由球铰链相连接,靠在光滑的铅直墙上,墙面与AC 平行,如图所示。
如AB 与水平线的交角为45º,∠BAC=90º,求A 与C 的支座约束力以及墙上点B所受的压力。
3-1 已知:如图所示平面机构中,曲柄OA=r ,以匀角速度0ω转动。
套筒A 沿BC 杆滑动。
BC=DE ,且BD=CE=l 。
求图示位置时,杆BD 的角速度ω与角加速度α。
解:3-2 图示铰链四边形机构中,A O 1=B O 2=100mm,又21O O =AB ,杆A O 1以等角速度ω=2rad/s 绕轴1O 转动。
杆AB 上有一套筒C,此套筒与杆CD 相铰接。
机构的各部件都在同一铅直面内。
求当Φ=60º时杆CD 的速度与加速度。
(15分)4-1 已知:如图所示凸轮机构中,凸轮以匀角速度ω绕水平O 轴转动,带动直杆AB 沿铅直线上、下运动,且O ,A ,B 共线。
凸轮上与点A 接触的点为'A ,图示瞬时凸轮轮缘线上点'A 的曲率半径为A ρ,点'A 的法线与OA 夹角为θ,OA=l 。
求该瞬时AB 的速度及加速度。
(15分)解:4-2 已知:如图所示,在外啮合行星齿轮机构中,系杆以匀角速度1ω绕1o 转动。
大齿轮固定,行星轮半径为r,在大轮上只滚不滑。
设A 与B 就是行星轮缘 上的两点,点A 在1o o 的延长线上,而点B 在垂直于1o o 的半径上。
求:点A 与B 的加速度。
4-3 已知:( 科氏加速度)如图所示平面机构,AB长为l,滑块A可沿摇杆OC的长槽滑动。
摇v=沿水平导轨滑动。
图示瞬时OC铅杆OC以匀角速度ω绕轴O转动,滑块B以匀速ωl直,AB与水平线OB夹角为30º。
求:此瞬时AB杆的角速度及角加速度。
( 20分)5-1 如图所示均质圆盘,质量为m、半径为R, 沿地面纯滚动,角加速为ω。
求圆盘对图中A,C 与P三点的动量矩。
5-2( 动量矩定理)已知:如图所示均质圆环半径为r,质量为m,其上焊接刚杆OA,杆长为r,质量也为m。
用手扶住圆环使其在OA水平位置静止。
设圆环与地面间为纯滚动。
求:放手瞬时,圆环的角加速度,地面的摩擦力及法向约束力。
(15)5-3 11-23 ( 动量矩定理)均质圆柱体的质量为m,半径为r,放在倾角为60º的斜面上,一细绳绕在圆柱体上,其一端固定在A点,此绳与A点相连部分与斜面平行,如图所示。
如圆柱体与斜面间的东摩擦因数为f=1/3,求圆柱体的加速度。
(15)5-4 11-28 ( 动量矩定理)均质圆柱体A与B的质量均为m,半径均为r, 一细绳缠在绕固定轴O转动的圆柱A上,绳的另一端绕在圆柱B上,直线绳段铅垂,如图所示。
不计摩擦。
求:(1)圆柱体B下落时质心的加速度;(2)若在圆柱体A上作用一逆时针转向力偶矩M,试问在什么条件下圆柱体B的质心加速度将向上。
( 15分 )解:6-1 已知:轮O 的半径为R1 ,质量为m1 ,质量分布在轮缘上; 均质轮C的半径为R2 , 质量为m2 ,与斜面纯滚动, 初始静止。
斜面倾角为θ,轮O受到常力偶M 驱动。
求:轮心C 走过路程s 时的速度与加速度。
( 15分 )6-2 已知均质杆OB=AB=l, 质量均为m,在铅垂面内运动,AB杆上作用一不变的力偶矩M, 系统初始静止,不计摩擦。
求当端点A 运动到与端点O重合时的速度。
( 15分 )解:6-3 已知:重物m, 以v匀速下降,钢索刚度系数为k。
求轮D突然卡住时,钢索的最大张力、( 15分 )6-4 已知均质杆AB的质量m=4kg,长l=600mm,均匀圆盘B的质量为6kg,半径为r=600mm, 作纯滚动。
弹簧刚度为k=2N/mm,不计套筒A及弹簧的质量。
连杆在与水平面成30º角时无初速释放。
求(1)当AB杆达水平位置而接触弹簧时,圆盘与连杆的角速度;(2)弹簧的最大压。
( 15分 )缩量max理论力学 期末考试试题1-1、自重为P=100kN 的T 字形钢架ABD,置于铅垂面内,载荷如图所示。
其中转矩M=20kN 、m,拉力F=400kN,分布力q=20kN/m,长度l=1m 。
试求固定端A 的约束力。
解:取T 型刚架为受力对象,画受力图、1-2 如图所示,飞机机翼上安装一台发动机,作用在机翼OA 上的气动力按梯形分布:1q =60kN/m,2q =40kN/m,机翼重1p =45kN,发动机重2p =20kN,发动机螺旋桨的反作用力偶矩M=18kN 、m 。
求机翼处于平衡状态时,机翼根部固定端O 所受的力。
解:1-3图示构件由直角弯杆EBD以及直杆AB组成,不计各杆自重,已知q=10kN/m,F=50kN,M=6kN、m,各尺寸如图。
求固定端A处及支座C的约束力。
1-4 已知:如图所示结构,a, M=Fa, 12F F F ==, 求:A,D 处约束力、解:1-5、平面桁架受力如图所示。
ABC 为等边三角形,且AD=DB 。
求杆CD 的内力。
1-6、如图所示的平面桁架,A 端采用铰链约束,B 端采用滚动支座约束,各杆件长度为1m 。
在节点E 与G 上分别作用载荷E F =10kN,G F =7 kN 。
试计算杆1、2与3的内力。
解:2-1 图示空间力系由6根桁架构成。
在节点A上作用力F,此力在矩形ABDC平面内,且与铅直线成45º角。
ΔEAK=ΔFBM。
等腰三角形EAK,FBM与NDB在顶点A,B与D处均为直角,又EC=CK=FD=DM。
若F=10kN,求各杆的内力。
2-2 杆系由铰链连接,位于正方形的边与对角线上,如图所示。
在节点D沿对角线LD方向作F。
在节点C沿CH边铅直向下作用力F。
如铰链B,L与H就是固定的,杆重不计,求用力D各杆的内力。
2-3 重为1P =980 N,半径为r =100mm 的滚子A 与重为2P =490 N 的板B 由通过定滑轮C 的柔绳相连。
已知板与斜面的静滑动摩擦因数s f =0、1。
滚子A 与板B 间的滚阻系数为δ=0、5mm,斜面倾角α=30º,柔绳与斜面平行,柔绳与滑轮自重不计,铰链C 为光滑的。
求拉动板B 且平行于斜面的力F 的大小。
2-4 两个均质杆AB 与BC 分别重1P 与2P ,其端点A与C用球铰固定在水平面,另一端B由球铰链相连接,靠在光滑的铅直墙上,墙面与AC 平行,如图所示。
如AB 与水平线的交角为45º,∠BAC=90º,求A 与C 的支座约束力以及墙上点B所受的压力。
ω转动。
套筒A沿BC杆滑动。
BC=DE, 3-1 已知:如图所示平面机构中,曲柄OA=r,以匀角速度且BD=CE=l。
求图示位置时,杆BD的角速度ω与角加速度α。
解:3-2 图示铰链四边形机构中,A O 1=B O 2=100mm,又21O O =AB ,杆A O 1以等角速度=2rad/s 绕轴1O 转动。
杆AB 上有一套筒C,此套筒与杆CD 相铰接。
机构的各部件都在同一铅直面内。
求当Φ=60º时杆CD 的速度与加速度。
(15分)4-1 已知:如图所示凸轮机构中,凸轮以匀角速度ω绕水平O轴转动,带动直杆AB沿铅直线上、下运动,且O,A,B共线。
凸轮上与点A接触的点为'A,图示瞬时凸轮轮缘线上点'A的曲 ,点'A的法线与OA夹角为θ,OA=l。
求该瞬时AB的速度及加速度。
率半径为A(15分)解:4-2 已知:如图所示,在外啮合行星齿轮机构中,系杆以匀角速度1 绕1o 转动。
大齿轮固定,行星轮半径为r,在大轮上只滚不滑。
设A 与B 就是行星轮缘 上的两点,点A 在1o o 的延长线上,而点B 在垂直于1o o 的半径上。
求:点A 与B 的加速度。
解:4-3 已知:( 科氏加速度)如图所示平面机构,AB长为l,滑块A可沿摇杆OC的长槽滑动。
摇v=沿水平导轨滑动。
图示瞬时OC铅杆OC以匀角速度ω绕轴O转动,滑块B以匀速ωl直,AB与水平线OB夹角为30º。
求:此瞬时AB杆的角速度及角加速度。
( 20分)5-1 如图所示均质圆盘,质量为m、半径为R, 沿地面纯滚动,角加速为ω。
求圆盘对图中A,C 与P三点的动量矩。
5-2( 动量矩定理)已知:如图所示均质圆环半径为r,质量为m,其上焊接刚杆OA,杆长为r,质量也为m。
用手扶住圆环使其在OA水平位置静止。
设圆环与地面间为纯滚动。
求:放手瞬时,圆环的角加速度,地面的摩擦力及法向约束力。