【精品】烟道气监测

合集下载

烟尘烟气连续自动监测系统运行管理

烟尘烟气连续自动监测系统运行管理

Critical Orifice Coarse Filter Cal Gas Line
Vacuum Reference Line Diluted Sample Out
②烟道外稀释探头
4. 采样管线
稀释系统的采样管线由四根聚四氟乙烯管 组成,其中两根分别用于往采样探头输送
校准气和稀释空气,一根用于往各种分析
接稀释采样器。
1.6.4 化学发光法NOx监测仪器
• 化学发光是由于化学反应产生的光能发射。氮氧 化物等化合物吸收化学能后,被激发到激发态, 在由激发态返回至基态时,以光量子的形式释放 能量。测量化学发光强度对物质进行分析测定的 方法称为化学发光法。由若干方法可以对NOx进 行化学发光测定,最广泛使用的是臭氧的发光反 应。
• 在化学发光分析仪(图1—19)中,用UV光照
Байду номын сангаас
射石英管中的氧气产生O3。提供的O3超过
反应需要O3以确保NO完全转换成NO2和稀 释测量气体,使存在于样品气体中的其他 吸收发射的化学发光辐射的分子,例如: O2、N2、CO2的熄灭作用减至最小。因为
光电倍增管信号正比于NO分子数,而不是
NO浓度,所以必须小心地控制样品的流量。
1.6 气态污染物连续监测的分析 仪器
• 一般说来,一台分析仪器包含整个系统的 控制/显示单元、测量单元(光学部件单 元)、信号处理单元等。
1.6.1 非分散红外分析仪 NDIR
1. 简单非分散红外 Simple Non Dispersive Infrared 2. Luft检测器或串联型气动式检测器 3. Photoacostic光声检测器
• 受激发的电子快速的损失能量通过以下四种方法 之一返回到基态: • • • • ①分离,吸收高能光子能够引起电子完全脱离

烟气在线监测安装位置要求HJ75-2007

烟气在线监测安装位置要求HJ75-2007

中华人民共和国环境保护行业标准(HJ/T 75-2007)中对烟气在线检测设备安装位置要求:固定污染源CEMS应安装在能准确可靠地连续监测固定污染源烟气排放状况的有代表性的位置上1.一般要求1.1位于固定污染源排放控制设备的下游;1.2不受环境光线和电磁辐射的影响;1.3烟道振动幅度尽可能小;1.4安装位置应避免烟气中水滴和水雾的干扰;1.5安装位置不漏风;1.6安装烟气CEMS的工作区域必须提供永久性的电源,以保障烟气CEMS的正常运行;1.7采样或监测平台易于人员到达,有足够的空间,便于日常维护和比对监测。

当采样平台设置在离地面高度≥5米的位置时,应有通往平台的Z字梯/旋梯/升降梯;2 具体要求2.1应优先选择在垂直管段和烟道负压区域。

2.2 测定位置应避开烟道弯头和断面急剧变化的部位。

对于颗粒物CEMS,应设置在距弯头、阀门、变径管下游方向不小于4倍烟道直径,以及距上述部件上游方向不小于2倍烟道直径处;对于气态污染物CEMS,应设置在距弯头、阀门、变径管下游方向不小于2倍烟道直径,以及距上述部件上游方向不小于0.5倍烟道直径处。

对矩形烟道,其当量直径D=2AB/(A+B),式中A、B为边长。

当安装位置不能满足上述要求时,应尽可能选择在气流稳定的断面,但安装位置前直管段的长度必须大于安装位置后直管段的长度。

在烟气CEMS监测断面下游应预留参比方法采样孔,采样孔数目及采样平台等按GB/T16157 « 固定污染源排气中颗粒物测定与气态污染物采样方法»要求确定,以供参比方法测试使用。

在互不影响测量的前提下,应尽可能靠近。

2.3 为了便于颗粒物和流速参比方法的校验和比对监测,烟气CEMS不宜安装在烟道内烟气流速小于5m/s的位置。

2.4每台固定污染源排放设备应安装一套烟气CEMS。

2.5 若一个固定污染源排气先通过多个烟道后进入该固定污染源的总排气管时,应尽可能将烟气CEMS安装在该固定污染源的总排气管上,但要便于用参比方法校验颗粒物CEMS和烟气流速CMS。

烟气在线监测系统技术方案

烟气在线监测系统技术方案

1、总述根据XX公司锅炉房的运行情况,产品型号、参数及本我公司类似工程的经验,本投标方案选用本公司代理的“XHCEMS-40A型烟气排放连续自动监测系统”该系统由河北先河环保科技股份有限公司生产,生产企业是国家经贸委重大技术装备项目。

本系统于2003年5月取得了河北省质量技术监督局颁发的计量器具制造许可证。

XHCEMS-40A型烟气排放连续自动监测系统采用国际通用的直接测量技术-—激光透射法监测烟尘;烟气监测采用稀释采样技术,用干净的零空气将烟气进行稀释,然后导入监测仪中进行分析,其中SO2监测采用紫外荧光法,NOx监测采用化学发光法,测量准确、实时性好,可准确测得烟道排放物的浓度。

并可通过监测烟气温度、流量和含氧量,计算出污染物的排放总量。

本系统可广泛的应用于电力、供热、冶金、建材、垃圾焚烧等行业,实现烟气排放中烟尘、SO2、NOx、O2、烟气流量、温度、压力等参数的在线测量.“XHCEMS—40A 烟气排放连续自动监测系统”能够自动运行,具有数据自动传输、远程自动、手动控制、诊断、现场手动控制和故障自动显示,并具有良好的抗干扰能力;关键的零部件从国外进口,保证产品的准确性和可靠性;该系统采用中文界面,菜单显示,操作方便,维护简单易行.“XHCEMS-40A 烟气排放连续自动监测系统”于2003年12月~2004年4月通过了国家环保局环境监测仪器质检中心的性能测试,并取得了中国环境保护产业协会颁发的“环保产品认定证书"。

产品的技术指标满足HT/J76—2001《固定污染源烟气排放连续自动监测系统技术要求及检测方法》和HJ/T75-2001《火电厂烟气连续监测系统技术规范》的要求.2、总体要求(1)本系统的技术指标满足HJ/T75-2001《火电厂烟气连续监测系统技术规范》、HT/J76—2001《固定污染源烟气排放连续自动监测系统技术要求及检测方法》的要求。

(2)所有仪器均具有良好的抗干扰能力。

烟气监测系统(CEMS介绍)

烟气监测系统(CEMS介绍)

标定时间可以在控制柜前面板上设置
流量计和针形阀(流量控制在 0.2-1.5 l/min)
单元控制器(控制反吹单元)和采样切换控制器(一拖二系统控制采样切换) 机柜的防护等级:室内机柜;工作温度:5-35 C
s
Process Analytics, A&D, Siemens Ltd, China
CEMS(Continuous Emissions Monitoring System)
仪表风压力:4-7 kg 反吹形式:脉冲方式; 一次反吹时间:2分钟(可调);
电源接口:PG13.5 气源接口:1/4"
s
Process Analytics, A&D, Siemens Ltd, China
CEMS(Continuous Emissions Monitoring System)
采样探头
管线接口: 4 mm 采样管线外径:约 50mm
控制温度为 140-160 C(PTFE)
管线安装时,要尽量避免死弯和 U 形弯(不小于500mm)
s
Process Analytics, A&D, Siemens Ltd, China
CEMS(Continuous Emissions Monitoring System)
EXTRACTIVE -- 从烟囱上取样,将样气伴热后,送至地面便于操作的控
制系统柜。

DILUTION
-- 从烟囱上取样,用高纯度的稀释气将样气按一定比例稀 释后,送至地面便于操作的控制系统柜。

注:将样气伴热或者稀释的目的,都是为了防止样气在传输过程中,出 现水汽冷凝,造成采样管线堵塞,影响测量结果。
采样探头长度:1500mm(采样点距烟道内壁不小于 1m 或者 1/3 的

《烟道气的测量》课件

《烟道气的测量》课件

3
烟气排放浓度的计算
根据测量数据和排放源的特点,计算烟 气中污染物的浓度。
烟气处理设备的设计
根据测量结果和排放标准,设计合适的 烟气处理设备。
烟道气测量的应用
工业环保监测
用于监测工业生产过程中烟 气排放对环境的影响。
燃煤电厂烟气排放监测
对燃煤电厂的烟道气进行实 时监测,确保排放符合标准。
环境污染源监测
用于测量烟道气中烟尘颗粒的浓度。
多波长烟度计
通过多波长光的吸收特性,测量烟气中不同粒径范 围的颗粒物浓度。
热解吸分析仪
用于分析和测量烟道气中的挥发性有机物。
激光测量仪
利用激光技术对烟道气中的污染物进行非接触式测 量。
烟道气测量结果的处理
1
烟气污染物的排放量计算
2
结合烟气浓度和烟气流量,计算单位时
间内的污染物排放量。
对潜在的环境污染源进行烟 道气测量,及时掌握污染情 况。
总结
1有效的环境保护 措施。
2 烟道气测量技术的发展趋势
随着技术的进步,烟道气测量将更加精确和 高效。
烟道气的测量
烟道气的测量是环境保护中至关重要的一项工作。本课件将介绍烟道气的概 述、测量方法、测量设备、结果处理和应用。
烟道气的概述
烟道气与环境保护
了解烟道气对环境的影响, 是保护环境的第一步。
烟道气的组成
分析烟道气的组成和污染物 排放量,有助于评估环境风 险。
烟道气的测量意义
准确测量烟道气是环境保护 和工业排放控制的基础。
烟道气测量的方法
1 平衡法
通过测量进出烟道气流量和污染物浓度的差 异进行测量。
2 光谱法
利用光的吸收和散射原理检测烟道气中的污 染物。

烟气流量及含尘浓度的测定

烟气流量及含尘浓度的测定

实验一烟气流量及含尘浓度的测定一、实验意义和目的大气污染的主要来源是工业污染源排出的废气,其中烟道气造成的危害极为严重。

因此,烟道气(简称烟气)的测试是大气污染源监测的主要内容之一。

测定烟气的流量和含尘浓度对于评价烟气排放的环境影响、检验除尘装置的功效有重要意义。

通过本实验应达到以下目的:(1)掌握烟气测试的原则和各种测量仪器的使用方法;(2)了解烟气状态(温度、压力、含湿量等参数)的测量方法和烟气流速、流量等参数的计算方法;(3)掌根烟气含尘浓度的测定方法。

二、实验原理(一)采样位置的选择正确地选择采样位置和确定采样点的数目对采集有代表性的并符合测定要求的样品是非常重要的。

采样位置应取气流平稳的管段.原则上避免弯头部分和断面形状急剧变化的部分,与其距离至少是烟道直径的1.5倍,同时要求烟道中气流速度在5m/s化以上。

而采样孔和采样点的位置主要根据烟道的大小及断面的形状而定。

下面说明不同形状烟道采样点的布置。

1.圆形烟道采样点分布见图1-1(a)。

将烟道的断面划分为适当数目的等面积同心圆环,各采样点均在等面积的中心线上,所分的等面积圆环数由烟道的直径大小而定。

2.矩形烟道将烟道断面分为等面积的矩形小块.各块中心即采样点,见图1-1(b)。

不同面积矩形烟道等面积分块数见表1-1。

3.拱形烟道分别按圆形烟道和矩形烟道采样点布置原则,见图1-1(c)。

图1-1 烟道采样点分布图(a)圆形烟道;(b)矩形烟道;(c)拱形烟道(二)烟气状态参数的测定烟气状态参数包括压力、温度、相对湿度和密度。

1.压力测量烟气压力的仪器为s形毕托管和倾斜压力计。

s形毕托管适用于含尘浓度较大的烟道中。

毕托管是由两根不锈钢管组成,测端做成方向相反的两个相互平行的开口,如图1-2所示,测定时将毕托管与倾斜压力汁用橡皮管连好.一个开口面向气流,测得全压;另一个背向气流,测得静压;两者之差便是动压,由于背向气流的开口上吸力影响,所得静压与实际值有一定误差,因而事先要加以校正。

烟道监测项目指南

烟道监测项目指南

烟道检测项目指南对于不同的现场,选择合适的设备是十分重要的,让我们先来了解下烟尘环境下的检测项目:本系列产品类目主要涉及到的监测项目主要分为以下几个方面:烟尘采样、检测;烟气采样、检测;烟尘烟气综合测试;烟尘湿度在线监测;气体流速检测;皮托管压力风速测量等。

本分类主要涉及自产设备,如需采购进口设备,我公司可提供:英国凯恩、德国德图、德国MRU三大品牌。

确认我们所需要监测的项目后,我们来具体了解下各自设备的特点,以便帮助您选购产品:一、烟尘采样、检测:如果您采样或检测的是烟尘项目,那么在本系列产品中您可以从JCY-MS100和JCY-80E两个产品中选择。

烟尘采样:JCY-80E为便携式烟尘采样设备,即可随处移动,随时采样。

设备可以通过采样枪采集烟道内烟尘质量,根据国标方法计算出烟尘浓度,该设备同时可以测量含湿量、流速、动压、静压、烟温等,另外可选配油烟采样枪或沥青烟来采集油烟、沥青烟;烟尘检测:有固定式在线监测设备与便携式烟尘测试仪两种:JCY-MS100为固定式在线监测设备,即通过法兰安装将仪器固定在烟道上,实时检测,在屏幕上直接显示测量浓度,也可通过信号输出显示所测烟尘浓度。

本产品为单参数检测,即单一检测烟道中粉尘浓度;如需便携式烟尘测试仪,可根据现场情况选配合适的设备(需确认现场环境后选型)。

二、烟气采样、检测:如果您想要检测的是烟气成分中不同气体的浓度,首先您先确认是要直读式设备还是采样式设备。

烟气采样:检测工作结束后得到的是一份样本,最终详细数据还需要通过其他的程序来完成,常用方法为气相色谱法等。

目前有JCY-1或JCY-2烟气采样器可供选择,本类产品不受气体种类限制,需配置相应的溶液吸收液。

JCY-1单路烟气采样器:有一个通道进行烟气采样工作。

JCY-2双路烟气采样器:有两个通道进行烟气采样工作,两个通道独立控制,即可单一使用也可两个通道同时使用。

烟气检测:检测工作结束后得到的就是最终测量结果,测量结果可以直接在仪器屏幕上显示。

烟气在线监测系统技术要求

烟气在线监测系统技术要求

烟气在线监测系统技术要求1、总则1.1本技术协议适用于污染源烟气在线监测系统,提出了该系统的功能设计、结构、性能、安装、调试和售后服务等方面的技术要求。

1.2本技术协议提出的是烟气在线监测系统的技术要求,并对技术细节作出规定,乙方提供符合本技术协议的优质产品,该产品满足相关工业标准的要求。

2、工程概况2.1在污染源总排放口及脱硫塔入口的#1、#2炉烟道上安装烟气在线监测装置。

根据污染物排放总量控制的要求,烟气在线监测系统安装于企业污染源的烟气处理装置入口及总排放口,对主要污染因子实施现场监测,具有数据分析、统计、管理、监测项目超标报警等功能,并建立各自的污染物排放记录数据库,可长期保存监测数据。

监测项目为:烟尘、二氧化硫(SO2)、氮氧化物(NOx)、温度、压力、烟气流速(流量)和含氧量。

2.2在线监测装置所需配套的板房和空调设备。

2.3设备概况2.3.1设备名称:污染源烟气在线监测系统(简称CEMS)。

2.3.2测量方法:2.3.2.1 SO2、NOx监测:直接抽取红外法、非分散红外线吸收法光透过式。

2.3.2.2 烟尘监测:激光透射法。

2.3.2.3 含氧量:磁风法。

2.3.3 安装位置:烟囱24米高处、脱硫塔#1炉及#2炉入口烟道上。

2.3.4 监测污染物种类:烟尘、SO2、NOx、O2含量。

2.3.5 监测烟气排放参数组成:烟气温度、流速、压力。

2.3.6 输出单位:国际标准单位制单位。

3、技术要求3.1设计依据乙方遵循的主要现行标准及相关法规、文件:3.1.1《火电厂烟气排放连续监测技术方案》(HJ/T75-2001)3.1.2《固定污染源排放烟气连续监测系统技术要求及检测方法》(HJ/T76-2001)3.1.3国家环境保护总局《空气和废气监测分析方法》(第四版);3.1.4《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T16157-1996)3.1.5《烟气采样器技术条件》(HJ/T47-1999)3.1.6《烟尘采样器技术条件》(HJ/T48-1999)3.1.7所有电气设备应按国家有关标准进行设计、制造、安装、调试。

烟气监测知识

烟气监测知识

烟气监测中的部分概念辨析SSH 刘黔12/30/2008今年接触CEMS 比较多,特将部分概念的东西提出来,与大家探讨,希望不明之处互相可以交流一下。

1. DAS 软件中的速度场常数K v岛津CEMS 系统中的烟气流速采用的是皮托管法,根据动压测定流速原理可知,气体的流速与其动压的平方根成正比,即ρPK F p Δ××=20 (1)式中:为气体流速,m/s ;ΔP 为气体动压,Pa ;0F ρ 为烟气密度,㎏/m³; 为皮托管系数。

p K 在通常污染源烟气条件下,式(1)可简化为:()t P K F P +×Δ××=273076.00 (2) 式中:为烟气温度,℃。

t 根据式(2),如测出某点的烟气动压与烟气温度,便可计算出该点的烟气流速。

设:采用多点手工方法测定的监测截面的烟气平均流速为1F ,采用在线自动连续监测系统(CEMS )测定的监测截面某一点的烟气流速为,则2F 21212121273273t t P P K K F F P P ++×ΔΔ×= (3) 式中:1p Δ为监测截面平均动压的平方根;2Δp 为监测截面某一点动压的平方根。

由于两种测定方法的测定位置接近,可认为二者所处位置的烟气温度相同,即,则21t t =2121P P K F F ΔΔ′= (4)式中:21P P K K K =′为皮托管系数之比。

若两种方法的皮托管系数近似相等,则1=′K (一般S 型皮托管系数为0.84),则:2121P P F F ΔΔ=,这样,两种测定方法的流速之比即可转换为相应的动压的平方根之比。

经分析,在ΔP2的测定点不变的条件下,于任一时刻,21P P ΔΔ应为一近似定值。

这样,即可用监测系统测定的某一时刻固定点烟气流速去确定整个监测截面的烟气平均流速。

在这里,将Kv =21P P ΔΔ定义为速度场常数,指在相同时间区间,烟道或管道全截面烟气平均流速与截面内某一固定点的烟气流速之比值。

烟气流速监测方法对比

烟气流速监测方法对比
烟气流速监测方法对比
目前国内对流速的测量均为成熟技术,下面就流速的两种主要监测方法进行介绍与对比:
热式气体质量流量监测法
皮托管监测法
测量原理
热式质量流量计由一个温度传感器以及控制装置组成。陶瓷半导体温度传感器具有随着周围温度的变化而变化的特性。当流体的流速发生变化时,引起周围温度发生变化,传感器的阻抗将随着变化。利用这种特性测量流体的流速和流量。
缺 点
介质的温度变化剧烈对其测量精度影响较大。
1.对90°弯头的结构尺寸有出差压也较小;
4.粉尘对其影响较大。
运行效果

较好
运行成本


2.维护与运行成本低,烟道直径增大购置成本增加不多;
3.采用插入式安装结构,拆装检修方便;
4.信号直接由非电量变换成电量,便于信号处理;
5.在小流量、介质的雷诺数很低的情况下有较好的测量精度;
6.粉尘对其测量精度影响小。
采用插入式安装方式,结构简单,内无任何附加节流件、插入件和可动部件,不易堵塞、无压力损失,因此适合于大管径、低流速、低静压、多粉尘与腐蚀较强的场合。
在烟道中流动的气体,具有两种压力的作用,即静压和动压。静压是单位体积气体所具有的势能,亦即气体在各个方向上作用于管壁的压力。动压是单位体积气体所具有的动能。由于排气流速与其动压平方根成正比,采用皮托管监测烟道内的动压和静压,根据所测得的动压、静压以及温度可以计算出所测点的流速。
优 点
1.其性能稳定,数据准确可靠;

废气监测技术

废气监测技术

六.废气监测的内容
1 .有害物质的排放浓度( mg/Nm3 )。 2.有害物质的排放量(kg/h)。 3害物质的测定是一项十分繁重 的工作,测定前应深入现场对被测试的 生产设备、净化装置的特性,排放有害 物质的性质和烟道位置,尺寸等进行了 解,并根据现场情况确定测孔位置,落 实工作平台、开孔和电源等准备工作。 根据测定目的,确定测试方案和所需的 仪器,并对所用仪器的性能进行检查, 预先排除仪器故障。
一、废气监测的目的
( 1 )确定固定污染源排放废气中各种污 染物的排放浓度和单位时间排放量。 ( 2 )评价现有净化装置的性能、效率及 使用情况。 (3)检查现行排放标准的执行情况。 ( 4 )验证关于污染物排放量的各种估算 方法。 (5)为空气质量管理和评价提供依据。
二. 废气监测争取达到的目标和要求
GB5468-91 锅炉烟尘测定方法
1.主题内容与适用范围 本标准规定了锅炉出口原始烟尘浓度、 锅炉烟尘排放浓度、烟气黑度及有关 参数的测试方法。 本标准适用于GB13271有关参数的测 试。
2.测定的基本要求
(1)新设计、研制的锅炉在按GB10180标准进行热 工试验的同时,测定锅炉出口原始烟尘浓度 和锅炉烟尘排放浓度。 (2)新锅炉安装后,锅炉出口原始烟尘浓度和烟尘 排放浓度的验收测试,应在设计出力下进行。 (3)在用锅炉烟尘排放浓度的测试,必须在锅炉设 计出力70%以上的情况下进行,并按锅炉运行 三年内和锅炉运行三年以上两种情况,将不 同出力下实测的烟尘排放浓度乘以表1中所列 出力影响系数K,作为该锅炉额定出力情况下 的烟尘排放浓度,对于手烧炉应在不低于两 个加煤周期的时间内测定。
③对符合 1.1 采样位置①要求的烟道, 可只选预期浓度变化最大的一条直径线 上的测点。 ④对直径小于 0.3m 、流速分布比较均 匀、对称并符合采样位置①要求的小烟 道,可取烟道中心作为测点。 ⑤不同直径的圆形烟道的等面积环数、 测量直径数见表 1-2-1 ,原则上测点不 超过20个。

烟气在线监测系统方案

烟气在线监测系统方案

烟气在线监测系统监测方案目录1概述 (3)1.1公司介绍 (3)1.2CEMS介绍 (4)1.3CEMS现状及发展趋势 (4)2系统介绍 (5)2.1设计依据 (5)2.2系统组成 (5)2.3系统功能 (7)2.4系统优势 (8)2.5设备技术规范 (11)3系统各部分介绍 (14)3.1烟气参数子系统 (14)3.1.1温度、压力、流速测量 (14)3.1.2湿度测量(可选) (16)3.1.3氧含量——氧化锆法 (17)3.2颗粒物监测子系统 (18)3.3气态污染物监测子系统 (20)3.3.1采样单元 (20)3.3.2预处理单元 (22)3.3.3分析单元(红外分析仪) (27)3.4数据采集和处理系统 (30)3.5校准子系统 (35)3.6反吹子系统 (35)4工作接口 (36)5售后服务及质保 (37)6工程实施方案 (38)6.1监测站房的设计和要求 (39)6.2采样口位置的选取 (41)6.2.1采样口选取的一般要求 (41)6.2.2采样口选择的具体要求 (42)6.2.3采样口位置的确定 (43)6.3平台、扶梯、桥架 (44)6.3.1平台设计 (44)6.3.2扶梯 (48)6.3.3电缆桥架 (48)6.4设备安装方案 (49)6.4.1烟囱(或烟道)法兰开孔、法兰固定 (49)6.4.2仪表箱固定 (50)6.4.3平台上设备的安装 (51)6.4.4气源 (56)6.4.5电源 (56)6.4.6通信线缆 (57)6.4.7防雷接地 (57)1概述1.1公司介绍力合科技(湖南)股份有限公司是一家专注于在线监测设备(水、气)研发、制造、系统集成以及运营维护的专业厂商,是国家政策大力扶持的自主创新企业。公司创建于1997年,自成立以来就树立自主研发的理念,现已形成了由分析化学、光电子技术、精密机械、计算机软件和自动控制技术等多学科组成的高科技研发平台,拥有一支强大的由博士、硕士和多名中高级专业技术人员组成的研发团队,我公司参与了2008年国家重大水专项“水环境监测现代装备研发与技术突破”、“水质在线监测数据有效性判别条件研究”、“2009年度国家高新技术研究发展计划(863计划)”、“重点污染源现场监测技术与仪器研制项目”等研究开发任务,并参与国家行业标准的编制和编制建设部的《城镇排水自动监测系统技术要求》(CJ/T 252-2007)标准。为了能为客户提供一流的服务,公司率先实施在线监测系统运营维护理念,并获得国家环境保护总局颁发的第一批《环境污染治理设施运营资质证书》,设计开发并不断完善环境在线监测平台系统,细致周到的考虑和实现用户的各种需求。公司已通过ISO中国质量管理协会“ISO9001:2000”质量管理体系认证、“ISO140001”环境质量管理体系认证及“职业健康安全管理体系”认证,已形成标准化、系统化运营服务体系,具备专业化运营的服务能力。公司经过十余年的发展已建立了覆盖全国市场的销售与服务网络,在全国范围内设有多个大区级办事处,下辖二十余个服务网点,全部网络化、系统化控制,可以迅速为用户提供全面、快捷的专业化服务。其自营的机制、完善的网络、独特的理念,将星级服务和超值服务贯穿于产品的售前、售中、售后全过程。放眼未来,力合将始终以满足顾客的需求为最高目标,保持真诚、踏实、勤恳、执着的创业精神,以发展具有自主知识产权的高新技术,产业报国为己任。1.2CEMS介绍烟气排放连续监测系统(Continuous Emission Monitoring System)简称CEMS。随着环保事业的发展,CEMS的技术日趋成熟和规范。力合科技(湖南)股份有限公司根据国家环保部对烟气排放连续监测系统的技术要求及有关标准,我们运用了先进的烟气成分分析技术、自动控制技术以及计算机数据处理和网络通讯技术,同时结合十多年生产环保监测仪器和的多年水气运营的丰富经验,集成了一套烟气排放连续监测系统。湖南力合CEMS采用国际先进的红外分析仪与烟尘、温度、压力、流量、湿度及相关的辅助设备,结合多年的行业经验,设计了一套功能齐全完善的CEMS。这套系统很集中的体现了我公司CEMS系统集成的优势,更加符合实际用户所需。1.3CEMS现状及发展趋势目前国内烟气CEMS大多采用“大件系统集成”,即主要分析部件采用进口设备,这样对测量的准确性提供了保证,但国内的大气污染物排放标准与设备厂商所在国或地区相差较大,多数排放企业没有对被测得污染物成分充分地净化处理,在高尘、高湿、流场不稳等客观恶劣监测环境下,使得没有改进的采样探头和分析仪器不太适合这样的监测场所。烟气CEMS的实施需要对每个监测场所实行严格的现场勘查,熟悉被测试对象,单独的进行合理设计与配置、选材和施工,而不是用统一规格的产品让每一个现场去适应它。另外烟气CEMS的运行是连续的,国内的市场环境造成销售价格偏低和维护的备品备件跟不上,售后服务自然纸上谈兵。随着国家“十二五”规划中节能减排的政策出台,以及行业内大气污染物排放标准的改版升级,特别是2007年后,湿法脱硫技术的广泛应用,导致许多颗粒物浓度低于150mg/m3,因而颗粒物CEMS将主要以适合测量低浓度的散射法为主。同时气态污染物CEMS将向全谱分析和线状光谱技术方向发展,测量范围则逐渐向低浓度发展,追求更高的准确度和精密度。对于固定污染源废气自动连续监测系统而言,另外一个重要的组成部分是数据采集与传输系统。该系统将重点发展数据加标技术,过程监控技术以及物联网技术。2系统介绍2.1设计依据HJ/T76-2007《固定污染源排放烟气连续监测系统技术要求及监测方法》HJ/T75-2007《火电厂烟气排放连续监测技术规范》GB/T16157-1996《固体污染源排气中颗粒物测定与气态污染物采样方法》国家环境保护总局《空气和废气监测分析方法》(第四版)GB16297-1996大气污染物综合排放标准GB13223-2007 火电厂大气污染物排放标准HJ/T 212-2005 污染源在线自动监控(监测)系统数据传输标准ZBY120-83 工业自动化仪表工作条件GB50093—2002 自动化仪表工程施工及验收规范SDJ9-87 电测量仪表装置设计技术规程NEMA-ICS6 工业控制设备及系统的外壳GB 50054-1995 低压配电设计规范GB50057-1994 建筑物防雷设计规范2.2系统组成力合CEMS主要由烟气参数测量子系统、颗粒物CEMS、气态污染物CEMS、数据采集与传输等单元集成而成,形成一个集数据采集、处理、显示、通讯、远程监控的一体化系统。如下图:CEMS示意2.3系统功能该CEMS系统具有以下特点:1)直接分析原样,尽可能地保持烟气物理和化学特性,样气具有代表性;2)反吹功能:CEMS的SO2/NOx/O2采样探头、烟尘仪发射端和接受端具有吹扫功能;能对探头外表面和内部进行反吹,减少颗粒物附着。专利设计:螺旋气流吹扫探头内腔,消除探头维护和已经被吸入探头内腔的颗粒物: 3)指示功能:数据采集与传输系统除了可以指示上述提到的自诊断和报警内容,还可以显示分析仪在校正循环中、校正气瓶低压、过量的校正误差等内容。4)CEMS可长期无人值守;5)其它功能:主要分析仪器自诊断、自动控制、自动校准、系统网络化、错误代码指示等功能。6)数据处理系统:我公司自主研发的LFGMS-2010符合国家环保要求以及《火电厂烟气连续监测系统技术规范》的数据采集、控制和处理系统。详细情况参见数据采集、传输系统介绍。7)CEMS具有高可靠性、安全性、可维修性和可扩展性。监测设备满足两套烟气成分采样探头系统的运行要求,同时设计方案预留了一定的接口和容量。CEMS可与电厂、电力局、环保局的局域网,可以远程通讯。8)配置的软件与系统的硬件资源相适应,除系统软件、应用软件外,还配置了在线故障诊断和杀毒软件等。9)CEMS设计的分析仪器和监测仪表包含了为日常维护人员检修提供的电信号接口,极大地方便了技术人员检修。10)取样探头及过滤器可以自动反吹扫和远程控制反吹扫,防止堵塞;分析系统具有自动和远程标气校核功能;分析仪器、采样器、加热器、伴热管加热器具有故障自动报警功能。1)智能化:自动调零,量程超限报警,湿度报警,采样头温度异常报警、冷凝器温度异常报警、加热温度异常报警,低流速报警,主维护报警。11)仪器和系统日志功能,记录系统的各运行状态参数,为系统数据的准确性和可靠性作为溯源的基础。12)大屏幕触摸屏工业控制计算机,页面形象,操作简单。13)采用电加热控温干法直接取样方式,辅助环节少,可靠性高,能真实反映烟气成分含量。14)系统具有自动标气测试功能,可以自动完成系统校核功能(远程校准或者半自动校准),减少维护工作量。15)采用工控机和PLC控制,自动化程度高,可采集系统的详细状态信息,可作为数据有效性审核的最有利资源。16)具有完善的维护提醒功能17)具备两套数据库,一套原始存储原始的气站数据,另一套存储按照国家相关数据修正规范修正的数据。2.4系统优势优势一:ABB红外吸收气体分析仪适应湿法脱硫高湿度低浓度的测量。优势二:螺旋气流吹扫采样探头内腔,消除探头维护和已经被吸入探头内腔的大颗粒物。优势三:实现采样管线温度实时监测并传输到监控平台,可实现取样管线低温报警,有利远程判断故障。优势四:自动标气功能及远程标气测试。优势五:数据标识:校准、维护、故障等状态下数据加标,含每条数据记录关键点的温度,具有故障日志记录,出现故障后便于很快找到问题所在。优势六:样气管路增加流量调节阀,流量可自动调节。通过485通讯远程设定和调节通过该阀的气量,并输出4-20MA的电流信号,并可通过平台远程查看和调节,保证采样流量保持在1L/min。优势七:样气从冷凝器出来后,增加带湿度传感器的过滤器,用于湿度到达设定值时报警,并起到二级过滤样气的作用。带湿度传感器可以通过检测后段的湿度从而起到保护仪表的作用。力合系统与其他系统比较表:2.5设备技术规范3系统各部分介绍3.1烟气参数子系统3.1.1温度、压力、流速测量由于皮托管测流速有耐高温的特点,而且带有自动清洗功能的皮托管克服了传统的皮托管在潮湿多尘的烟气中易堵塞的缺点,因此我公司采用皮托管(压差法)测流速。基本原理在管道中流动的气体同时受到静压和动压作用,静压是单位体积气体所具有的势能,它表现为气体在各个方向上作用于管壁的压力;动压是单位体积气体所具有的动能,是使气体流动的压力。由于动压仅作用于气体流动的方向,所以动压值为正值,而气体流速与气体动压的平方根成正比。故根据测得的动压计算气体的流速。产品特点:特殊S型防毒防腐皮托管m/s流速、压力、温度测量输出电子阻尼与信号保持功能可选液晶显示操作单元,用以直接调整流速场系数、反吹间隔时间等参数技术指标:探杆特殊耐磨防腐材质,长度1.6m(标准,可选) 壳体防护等级IP65安装方式DN65法兰连接安装附件对装法兰盘、法兰盘密封垫等外形尺寸210W*255H*1950Lmm(标准)设备颜色蓝色重量20kg3.1.2湿度测量(可选)采用的是湖南力合的水分仪来进行烟气湿度的测量。采样方法: 直接抽取法分析方法:阻容法产品特点:稳定精准的阻容法测量原理,便携方便的就地安装设计防腐功能的探杆长度可选,Vol%体积百分比测量输出自主研发阻容原理传感器取得国家发明专利安装方便,测量稳定、精准符合国家环境保护行业标准HJ/T76-2007规定要求技术参数制造厂家湖南力合设备型号LHSD-01测量范围0-40Vol%(可选) 环境要求湿度:0-100% R.H.测点温度:≤180℃烟尘浓度:≤500mg/m3(干基,标态,6%O2)测量精度±2% 响应时间(90%) 15s工作原理阻容法输出信号(4~20)mA功耗MAX 250W 供电220VAC/50Hz壳体防护等级IP65 探杆长度SS316L,1400mm(标准) 探杆防腐防腐护套可选安装方式DN65法兰连接安装附件对装法兰盘、法兰盘密封垫等3.1.3氧含量——氧化锆法氧化锆法氧含量测试仪主要由氧化锆检测器、氧化锆转换器组成。氧化锆氧浓度检测器一般为直插式结构,氧含量传感器安装在检测器头部。氧含量传感器中使用的氧化锆是一种固体介质,是在纯氧化锆中掺入氧化钇或氧化钙,与高温下烧结成的稳定氧化锆。在600℃以上的高温条件下,它是氧离子的良好导体,一般做成管状。下为氧化锆法氧含量原理图:技术参数:氧含量生产厂家湖南力合规格型号LHGA-2010分析方法氧化锆法采样方法直接抽取测量测量范围0~5%,0~15%,0~25%,0~100% 可选,定货时最终确定响应时间≤200s零点漂移≤±2.5%F.S.量程漂移≤±2.5%F.S.线性误差≤±5%功耗100W信号输出(4~20)mA3.2颗粒物监测子系统烟尘分析仪(LH-DUST)1.基本原理LH-DUST采用背散射原理,主机结构示意如图所示。主机包括激光光源及功率控制单元、光电传感与小信号预处理单元、散射光接收单元、显示与输入单元、输出驱动单元、主控单元。激光器发出的650nm束以一个微小的角度射入排放源,激光束与烟尘粒子作用产生散射光,背向散射光通过接受系统进入传感器转变成电信号进行处理。电路部分实现光电转换、激光束的调制、信号放大、解调、光源的功率控制、V/I转换功能。整个系统的构成包括主机及校准系统、吹扫系统、连接附件及防雨箱。由于现场要求的不同,在很多场合下只需要主机,所以主机及防雨箱再加空气过滤器为普通的标准配置构成。系统原理图2.产品特点LH-DUST采用激光背散射原理,分辨率高,可适用于低浓度排放的监测要求,也可适用与高浓度排放的监测;结构上采用单端安装,无需光路对中,不怕烟道的机械振动及烟气温度不均造成的折射率不均引起的光束摆动;仪器设计过程最大限度地降低现场安装的复杂度,仪器及防雨系统的安装仅电器连接需要一支螺丝刀,20分钟内即可完成安装,安装维护极其简单,最大限度地减少由于现场安装调试带来的诸多问题;采用标准4-20mA工业标准电流输出,连接方便;仪器整体功耗非常小,大约5W左右;校准器就地放置,避免混淆及丢失;非点测量,具有较大的取样区,可适用各种直径烟囱的使用。技术指标。制造厂家湖南力合规格型号LH-DUST测量范围MIN 0-200mg/m3 MAX 0-10g/m3环境要求温度:-40℃~65℃3.3气态污染物监测子系统3.3.1采样单元由于烟气中含有大量的粉尘和腐蚀性气体,会导致探头被烟气中的颗粒物堵塞,特别是烟气湿度高时,水蒸气可能冷凝,与颗粒物结合在一起形成块状物,更易使探头堵塞。为此,本系统采样探头整体采用316不锈钢设计,防腐性能高;为减少堵塞,采样探头内置2μm陶瓷过滤器对样气进行烟尘过滤,防止灰尘进入分析系统内部;采样器内部的加热装置可以保证样气采样器保温腔体的温度在130-180℃之间(工厂出厂设置在150℃),防止样气从高温烟道取出后温度降低而导致测量组份丢失;加装反吹控制装置,定期对采样探管和样气采样器的过滤器进行反吹,防止烟尘堵塞样气采样器探管及过滤器导致烟气采样气路堵塞。反吹间隔时间和吹扫时间可以通过PLC设置。反吹气体为干燥、无油、无水的压缩空气或氮气。采样探头伴有正反双道气体反吹,从两个方向来的仪用空气不断吹洗采样头,保证采样头的烟尘颗粒等被完全吹洗干净。此为我公司专利产品。烟气采样器通过连接法兰、密封圈可靠地连接在烟道的采样点上,前端可连接一根采样探管,样气通过采样探管汇集到样气采样器的加热过滤器腔体内,经过烟尘过滤后通过气体采样加热采样线进入分析系统机柜。烟气采样器进气口是G3/4螺纹的标准接口,可连接各种采样探管。产品特点:1) 采样器采用电加热,加热速度快。2) 采样器温度控制由内置RTD进行,温度调节范围为:100~250℃。3) 采样器在加热绝缘腔中由过滤装置,大于2μm的固体颗粒被陶瓷微过滤器除去。4)采样器具有自动双向空气反吹清洗功能,保证吹洗质量可靠。结构组成:气态污染物分析仪表分析的样气是通过安装在烟道的样气采样器进行抽取至样品与处理单元的。样气采样器由采样探管、加热型过滤器、采样器加热控制器、反吹控制装置等部分组成。技术规范制造厂家湖南力合规格型号LHCY-01采样温度600℃ Max采样压力0.4~3BarMax环境温度-20℃~80℃3.3.2预处理单元为保证样气进入分析单元时具有原样气的组分代表性,最大限度的减少组分的损失等,需要对样气进行预处理。因样气温度很高,部分气态组分会随着温度的降低凝结,所以需保证其温度与原样气一致,并去除烟尘和水分,避免其对分析单元的影响。预处理单元主要由过滤单元、伴热管线、冷凝器、蠕动泵、转子流量计等构成。下面分别介绍下这些部件:3.3.2.1过滤单元本系统分三级过滤:第一级:采样探头粗过滤。采样探头内置2μm陶瓷过滤器对样气进行烟尘过滤,防止大颗粒物进入分析系统内部。第二级:样气经过二级冷凝后经过一个过滤器,将小颗粒物、灰尘等过滤;另当水分到达设定值时报警,起到过滤水分的(同时保护气室)作用。第三级:样气进入气室前,采用滤纸进行细过滤,对直径较小的颗粒物进行过滤,防止颗粒物等进入气室影响测试结果。3.3.2.2伴热管线及温控器伴热管线:在直接抽取式的热湿系统和后处理系统中,由于有些监测气体易溶于水。所以应加热输送的气体,加热温度应等于或高于烟气中介质冷凝的温度,所以应该选用采样伴热管,把进入探头的样气送至样气处理系统或分析仪,并且确保从探头至除湿系统整个管路是加热采样管。本系统选用的采样加热管线具有以下优点:1)进口加热丝串联法均衡加热2)保温效果极佳3)加热线管径可选4)加热温度控制方式可选温控器:为了控制加热管线的温度在一定的范围内,需采用温控器。温控器还有低温报警功能,当伴热管线温度低于130℃时,将报警。技术参数:制造厂家湖南力合规格型号LHJRP-013.3.2.3冷凝器气体冷凝器是专门针对气体分析预处理系统设计的。本产品产用无氟压缩机制冷,二级冷凝管冷凝,入口样气露点最高为80℃,出口样气露点最高5℃。以保证有效去除样气中的水分和避免样气中的气体组分损失最小。技术参数冷凝器外型尺寸Upper Gas Connector Condensate connection3.3.2.4 蠕动泵蠕动泵是设计用于连续操作的自动抽吸设备,专门用于分析设备中的冷凝液的回收,蠕动泵可确保采样冷却器、集液盘等部件的正常工作,同步发动机和齿轮可以阻住回流的冷凝液,0.3l/h 的泵吸量可保证安全的出去冷凝液。主要包括三个部分:同步电动机、止流齿轮、泵头。两个低速运转的PVDF 软管通过滑轮与NOVOPRENE 软管连接可确保长期具有良好的机械和化学稳定性,利用特殊设计的软管装置非常方便更换甭管,卡套式接头方便连接器官,配备德国原装进口甭管确保使用寿命和耐腐蚀性。技术参数:规格型号HP-220-5-03-T3转速5转/min流量0.3NL/h供电电源220V AC连接部位材质PVDF进出气接口形式PVDF,OD6mm卡套3.3.2.5转子流量计转子流量计用于显示和调节气体流量的大小。其体积小,可调节流量的针阀,方便调节,安装在小型精密气体分析系统中。基座采用防腐PVDF材质和“O”密封圈,确保流量计的气密性和防腐性能PVDF材质OD6/4mm卡套接口,方便气路连接特殊工艺玻璃管:耐腐蚀、可视程度高技术参数:测量范围:10-100NL/h、25-250NL/h、50-500NL/h、基座材质:PVDF 防腐材质进出气接口:PVDF OD6mm卡套式接头安装方式:面板式安装尺寸:H89mm*W15mm*D48mm带调节针阀3.3.3分析单元(红外分析仪)基本原理(SO2、NO)本方案中红外分析仪可同时连续监测SO2、NOx、O2等多种气体,过程工艺包括以下几个环节:直接抽取式电加热采样探头伴热式采样管线以及反吹管线样气预处理系统样气控制系统反吹气源和校准气源(含校准气路) 红外分析仪电加热式直接抽取探头抽取烟气,经过除尘、加热(120-180︒C)、保温(大于130︒C)等环节,样气被引导到预处理系统(主要是去除颗粒物、HO/腐蚀性2气体等),再由样气控制系统对来自监测烟囱的烟气进行切换,并分配到红外分析仪中进行分析。结构上采用单端安装,无需光路对中,不怕烟道的机械振动及烟气温度不均造成的折射率不均引起的光束摆动;安装维护极其简单,最大限度地减少由于现场安装调试带来的诸多问题;校准器就地放置,避免混淆及丢失;非点测量,具有较大的取样区,可适用各种直径烟囱的使用。在红外区7.3μm(7300nm)附近的红外吸收采用红外陶瓷单光源,利用SO2的浓度;利用NO对5.3μm附近的红外吸收量量的变化,连续测定烟气中SO2的变化,连续测定烟气中NO的浓度。NO通过还原转换器转换成NO再测量。利2用氧气在催化剂作用下转换成电流信号,该信号强弱与浓度成线性关系。高品质的制造工艺和设计工艺保证系统精确测量。红外分析仪由调制单元(光源、切光片、切光马达)、气室(滤波气室、标气室)、标定池、检测器、加热器、压力传感器、流量传感器、温度传感器等组成。气室采用氟化钙材质,其材质具有以下优点:气室不分光、不发生反射,温度特性好,在一定温度内有一定的膨胀系数。化学性能稳定,跟绝大多数物质都不反应。机械强度好。3.3.3.3独特设计专利设计结构:采用一点标定技术,可用空气进行分析仪器零点、量程标定,并保证一年之内零点、量程偏差小于±2% F.S.,区别于其它同类产品必须用专门的零气校零和量程气标定量程,大大降低了系统运行成本。独特的测量方式:消除了CO,CO及水汽等成分对测量的干扰,干扰总和2小于0.5%,检出下限为0.1% F.S.。采样线为一根完整的线包,包括了采样通道、校准通道、反吹通道以及内部伴热线,使用外套管保护,构成一个整体。外套管能消除外界温度变化对测量的影响,该特点尤其适用于我国北方冬夏季节温差变化很大的场合应用。伴热温度可以自我调节,同时内嵌有温度探头(PT100)检测伴热温度是否正常,该温度信号传输到DAS中作为诊断内容。校准通道满足两倍于正常运行气压无泄露的要求。并在伴热管线上安装有温度报警器,当管线温度低于130℃时向软件及平台报警。独立的反吹管设计:降低安装检修难度,提高反吹质量。根据多年运行经验,该系统正常工况下常年不需要反吹。若发生堵塞,则自动启动反吹系统。预留将来监测其它烟道功能,仅需要额外增加采样探头和合适长度的采样管线,无需增加气体分析仪器。3.4数据采集和处理系统数据采集和处理系统的配置主要包括工控机,显示器, CEMS监控软件,数模输出模块。系统功能:数据采集采用PLC,包括模拟信号采集和状态信号收集。在工控机内,根据温度、压力和流速等参数,将烟气浓度换算成标态,并计算出各烟气污染物的总排放量,生成符合客户要求的报表;所提供的数据处理系统硬件能存储不低于10年(取决于硬盘容量)的监测小时平均值、监测参数数据,并能检索、打印和在屏幕上显示出来;数据的存储和检索功能;所提供的数据处理系统硬件能存储不低于10年的监测小时平均值、监测参数数据;能检索任意时间点的监测数据和任意时间段的报表,并打印和在屏幕上显示出来;数据输出设备功能;图形、表格、曲线等方式显示各参数和设备运行状态;能定时或人工请求制表并打印;具有多级安全认证功能(设置密码进入);具有排污超标报警和事故报警信号功能;数据远程联网功能;多种通讯方法的选用使系统运行更为方便、灵活;系统中可和环保局实现远程联网监测;现场数据实时传送,兼容各种传输方式,可实现多级联网,支持环保部门。

HJ∕T_75-2001_火电厂烟气排放连续监测技术规范

HJ∕T_75-2001_火电厂烟气排放连续监测技术规范

火电厂烟气排放连续监测技术规范1范围本标准适用于以固体、液体、气体化石为燃料的火电厂固定式烟气排放连续监测系统。

2规范性引用文件下列文件中的条款通过HJ/T75-2001的引用而成为本标准的条款。

凡是注日期的引用文件,其随后所有的修改(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新的版本。

凡是未注日期的引用文件.其最新的版本适用于本际准。

GB13223 火电厂大气污染物排放标准GB/T16157 固定污染源排气中颗粒物测定与气态污染物采样方法HJ/T47-1999烟气采样器技术条件HJ/T48-1999烟尘采样器技术条件HJ/T56 固定污染源排气中二氧化硫的测定碘量法HJ/T57 固定污染源排气中二氧化硫的测定定电位电解法HJ/T42 固定污染源排气中氮氧化物的测定紫外分光光度法HJ/T43 固定污染源排气中氮氧化物的测定盐酸萘乙二胺分光光度法《空气与废气监测分析方法》(国家环保局编写,中国环境科学出版社,1990年版)3术语和定义3.1烟气排放连续监测continuous emissions monitoring烟气排放连续监测是指对火电厂排放烟气进行连续地、实时地跟踪测定:当火电厂烟气排放连续监测系统配置多个测定探头时,每个探头在每小时的测定时间不得低于15min,其测定结果即为该小时的监测结果平均值;烟气排放连续监测系统的监测时间不得小于火电厂运行时间(不包括火电厂启动和停运)的80%。

3.2响应时间response time显示达到稳定值90%时所需要的时间。

3.3现场连续监测in-situ continuous monitoring由直接安装在烟囱或烟道(包括旁路)上的监测系统对烟气进行实时测量(不需要抽取烟气在烟囱或烟道外进行分析)。

3.4抽取式连续监测extractive continuous monitoring通过采样系统抽取部分样气并送入分析单元,对烟气成份进行实时测量。

烟道气监测

烟道气监测

采样点的位置和数目
采样点的位置和数目设置,主要取决于 烟道的走向、形状、截面积大小等,国 家标准GB/T16157—1996《固定污染源 排气中颗粒物的测定与气态污染物采样 方法》规定了固定污染源中颗粒物的采 样、测定、计算方法和固定污染源中气 态污染物的采样方法。
相关定义
颗粒物:颗粒物是指燃料燃烧、合成、分解以 及各种物料在机械处理中所产生的悬浮于排放 气体中的固体和液体颗粒状物质;
气态污染物:气态污染物是指以气体状态分散 在排放气体中的各种污染物;
标准状态下的干排气:标准状态下的干排气是 指在温度为273K、压力为101300 Pa条件下不 含水分的排气。
采样位置
采样位置应优先选择在垂直管段,应避开烟道弯 头和断面急剧变化的部位。采样位置应设置在距 弯头、阀门、变径管下游方向不小于6倍直径, 和距上述部件上游方向不小于3倍直径处。对于 矩形横截面,可用当量直径确定采样位置。当量 直径根据下式计算:
燃煤,a=1.4 ;燃油,a=1.2;燃气,a=3.5
相关标准及限值
1.GB/T 16157—1996
《固定污染源排气中颗粒物测定与气态污染物采样方法》
2. GB3095—2012 《环境空气质量标准》
环境质量 功能区分类
一类区:自然保护区、风景名胜区和其它需 要特殊保护的地区。
二类区:城镇规划中确定的居住区、商业交 通居民混合区、文化区、一般工业区和农村 地区。
表1-1 圆形烟道分环及测点数的确定
烟道直径(m) 等面积环数 测量直径数
<0.3 0.3~0.6 0.6~1.0 1.0~2.0 2.0~4.0
>4.0
1~2 2~3 3~4 4~5
5
1~2 1~2 1~2 1~2 1~2

环境空气和废气布点与烟尘烟气采样监测技术要求规范作业指导书word精品

环境空气和废气布点与烟尘烟气采样监测技术要求规范作业指导书word精品

环境空气和废气布点与烟尘烟气采样监测技术规范作业指导书(依据标准: GB/T5468-1991 、GB/T16157-1996)一、点检烟气分析仪1、适用范围:本规定适用于现场监测前烟道气分析仪的点检工作。

2、点检项目与基准:2.1电源能否接通;2.2面板按键接触是否良好;2.3抽气泵是否正常;2.4水收集器及采样探针中是否有冷凝水;2.5粉尘过滤器是否清洁;2.6仪器充电电池的电量是否充足;2.7整个抽气系统的气密性是否良好。

3、点检记录:点检的时间、内容与结果应有完整详细的记录。

4、问题与纠正:点检人员对点检中发现的问题应及时解决,有不能解决的问题应立即向采样负责人报告。

二、点检烟尘采样仪1、适用范围:本规定适用于现场监测前烟尘采样仪的点检工作。

2、点检项目与基准:2.1电源能否接通;2.2面板按键接触是否良好;2.3抽气泵是否正常;2.4皮托管及采样嘴是否完好;2.5干燥器中硅胶是否失效;2.6洗气瓶中双氧水是否混浊;2.7打印机是否正常;2.8 整个采样系统的气密性是否良好。

3、点检记录:点检的时间、内容与结果应有完整详细的记录。

4、问题与纠正:点检人员对点检中发现的问题应及时解决,有不能解决的问题应立即向采样负责人报告。

三、样品交接(滤筒、样品瓶)1、适用范围:本规定适用于现场监测结束后采样人员与实验室内分析人员的样品交接。

2、操作步骤:2.1 采样人员在现场监测结束回到实验室后应立即与样品分析人员进行样品交接。

2.2 在样品交接后,采样人员与分析人员应共同、完整、正确地填写样品交接单上各栏内容。

2.3 采样人员与分析人员必须在样品交接单上签字。

3、注意事项:样品交接单应随测试报告归档。

四、样品分析(滤筒、重量法)1、适用范围:本方法适用固定污染源排气中颗粒物采样前后滤筒的称重。

2、一般事项:依照“固定污染源排气中颗粒物测定与气态污染物采样方法”的有关规定。

3、器具与材料:3.1 器具(1)分析天平精度0.1mg(2)烘箱0 —300C3.2 材料:圆筒状玻璃纤维滤筒,28 x 70mm4、操作步骤:4.1 用铅笔将滤筒编号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
烟道内同一断面上各点的气流速度和烟尘浓 度分布通常是不均匀的,因此,要获取具有 代表性的样品,必须按照一定原则进行多点 采样。采样点的位置和数目主要根据烟道断 面的形状、尺寸大小和流速分布情况确定。
圆形烟道
矩(方)形烟道
烟道气监测
圆形烟道
图1-1 圆形断面采样点示意图
烟道气监测
表1-1 圆形烟道分环及测点数的确定
烟道气监测
固定污染源监测的内容:
排放废气中有害物质的浓度(mg/m3) 有害物质的排放量(kg/h) 废气排放量(m3/h)
以下内容以烟道气的监测为例说明固定污染源 废气的测定
烟道气监测
基本概念
烟道气监测内容
烟道气
烟尘:浓度、排放量
烟气组分:(氮、氧、二氧化碳、氮 氧化物、硫氧化物、硫化氢等)浓度 、排放量
烟道气监测
采样位置
采样位置应优先选择在垂直管段,应避开烟道弯 头和断面急剧变化的部位。采样位置应设置在距 弯头、阀门、变径管下游方向不小于6倍直径, 和距上述部件上游方向不小于3倍直径处。对于 矩形横截面,可用当量直径确定采样位置。当量 直径根据下式计算:
De
2AB A B
烟道气监测
采样断面上采样点的确定
烟道气监测
烟气中的含湿量按下式计算:
烟气中水 分 蒸 含 烟 气 烟 量 气 的 气 水 体 标 总 标 蒸 积 准 体 准 气 百 状 积 状 的 态 态 体 下 下 积
X wP bv 0 .00 P a T 0 cP sT 6 bP 7 a P b
烟道气监测
烟道气中污染物的测定
烟尘浓度的测定
烟道直径(m) 等面积环数 测量直径数
<0.3 0.3~0.6 0.6~1.0 1.0~2.0 2.0~4.0
>4.0
1~2 2~3 3~4 4~5
5
1~2 1~2 1~2 1~2 1~2
测点数
1 2~8 4~12 6~16 8~20 10~20
烟道气监测
表1-2 测点距烟道内壁距离(以烟道直径D计)
测点号
1 2
1 0.146 0.854
3
2 0.067 0.250 0.750
环数 3
0.044 0.146 0.296
4 0.033 0.105 0.194
5 0.026 0.082 0.146
4
0.933 0.704 0.323 0.226
5
0.854 0.677 0.342
6
0.956 0.806 0.658
测定原理:抽取一定体积的含尘烟气,使之通过一个已知质 量滤尘装置,烟气中的烟尘被阻留在滤尘装置的滤料上,称 量滤尘装置的质量,根据滤尘装置采样前后的质量差,求出 单位体积烟气中的含尘量。
烟道气监测
温度 测量仪器
玻璃水银温度计:适用于直径小、温度 不高的烟道;
热电偶温度计:适用于直径大、温度高 的烟道;
根据需测温度的高低,选用不同材料的热电偶。 测量800℃以下的烟气用镍铬-康铜热电偶;测量 1300℃以下烟气用镍铬-镍铝热电偶;测量1600℃ 以下的烟气用铂-铂铑热电偶。
烟道气监测
废气现场监测技术
烟道气监测
固定污染源监测
流动污染源
污染源
固定污染源
烟道、烟囱、排气筒等排放场所。 它们排放的气体中既包括固态的烟尘和 粉末,也包含气态和气溶胶态的多种有 害物质。
烟道气监测
固定污染源监测的目的:
监督性监测,即定期检查固定污染源排放废气 中的有害物质含量是否符合国家规定的大气污 染物排放标准的要求; 研究性监测,对污染源排放污染物的种类、排 放量、排放规律进行监测,有利于查清空气污 染的主要来源,探讨空气污染发展的趋势,制 订污染控制措施,改善环境空气质量。
压力
烟气压力
静压(Ps):单位体积气体所具有的势能; 多为负
动压(Pv):单位体积气体所具有的动能; 恒为正
全压(Pt):气体在管道中流动具有的总能量, 为动压和静压之和。 可能为正,可能为负
烟道气监测
测压装置
皮托管:标准皮托管,S形皮托管 压力计:U形压力计,斜臂式微压计
图1-4 静压及动压的测定装置
烟气流量的计算
Qs=3600v s ·F
烟道气监测
含湿量的测定
烟气含湿量一般以烟气中水蒸气的体积百分含量表示。 重量法
测量方法 冷凝法
干湿球温度计法
干湿球温度计是由两支完全相同的温度计组成,其中一支温度计的球 (温包)用一浸入水的棉织物包住,使它经常处于润湿状态,称为湿 球温度计;另一支为干球温度计。当烟气以一定的流速通过干湿球温 度计时,由于湿球表面水分的蒸发,使湿球温度计读数下降,产生干 湿球温度差。根据干湿球温度计读数及有关压力计算烟气含湿量。
废气:排放量
烟道气监测
采样点的位置和数目
采样点的位置和数目设置,主要取决于 烟道的走向、形状、截面积大小等,国 家标准GB/T16157—1996《固定污染源 排气中颗粒物的测定与气态污染物采样 方法》规定了固定污染源中颗粒物的采 样、测定、计算方法和固定污染源中气 态污染物的采样方法。
烟道气监测
4~6
1.0~4.0 4.0~9.0
>9.0
<0.67 <0.75 ≤1.0
6~9 9~16 ≤20
烟道气监测
基本参数
烟气的体积、温度和压力是烟气的基本 状态常数,也是计算烟气流速、烟尘及 有害物质浓度的依据。其中,烟气体积 由采样流量和采样时间的乘积求得,而 采样流量由采样点烟道断面积乘以烟气 流速得到,流速又由烟气压力和温度计 算求出。
7
0.895 0.774
8
0.967 0.854
9
烟道气监测
0.918
矩(方)形烟道
图1-2 矩(方)断面采样点示意图
烟道气监测
表1-3 矩(方)形烟道的分块和测点数
烟道断面积(m2) <0.1
等面积小块长边长 度(m)
<0.32
测点总数 1
0.1~0.5
<0.35
1~4
0.
颗粒物:颗粒物是指燃料燃烧、合成、分解以 及各种物料在机械处理中所产生的悬浮于排放 气体中的固体和液体颗粒状物质; 气态污染物:气态污染物是指以气体状态分散 在排放气体中的各种污染物; 标准状态下的干排气:标准状态下的干排气是 指在温度为273K、压力为101300 Pa条件下不 含水分的排气。
烟道气监测
流速和流量的计算
压力单位用mmH2O柱表示时
各测点烟气流速的计算
Vs
2gHd
2gHd
RTs P
压力单位用Pa表示时
V s 0 .0K 7p6 27 ts3 P d
压力单位用mmHg表示时
V s0 .2K 4 p 27 ts3 H d
烟道气监测
烟道断面烟气平均流速的计算
vs
v1v2vn n
相关文档
最新文档