《平行四边形的判定1》教案

合集下载

平行四边形.的判定1

平行四边形.的判定1
情感态度与价值观
通过平行四边形判别条件的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情。
教学重点
探索并掌握平行四边形的判别条件:两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
教学难点
经历平行四边形判别条件的探索过程,发展学生的合情推理意识、主动探索的习惯,逐步掌握说理的基本方法。
学生完成解题过程
学生做练习
学生动手操作
学生自己完成,找一同学板演并讲解
让学生感受得到推理的过程
让学生应用所学判定解题
锻炼学生自己解决问题的能力
(四)、目标检测:
(五)布置作业。
1、填一填:如图,四边形ABCD中,
(1)若AB∥CD,补充条件______,
使四边形ABCD为平行四边形。
(2)若AB=CD,补充条件________,使四边形ABCD为平行四边形。
《平行四边形的判定1》教学案
学校:河头店中心中学七年级下设计者:张艳华时间:
课题
平行四边形的判定1
课型
新授课
第1课时
教学目标
知识与技能
1、探索平行四边形的判别条件
2.掌握应用判别方法对一些平行四边形的判别进行说理。
过程与方法
经历平行四边行判别条件的探索过程,在有关活动中发展学生的合情推理意识,使学生逐步掌握说理基本方法。
练习:课本P36页,3
探究二:取两条长度不等的细绳,让两条绳子的中点重合并固定在桌面上,分别拉紧绳子的端点,并用笔和直尺阵出绳子四个端点的连线,观察得到的图形是什么图形?请你说出这种方法的道理。与同伴交流。
运用探究一的研究方法进一步探索平行四边形的判别条件

数学:3.1.3平行四边形的判定教案1(湘教版八年级下)

数学:3.1.3平行四边形的判定教案1(湘教版八年级下)

3.1.3 平行四边形的判定(1)知识与技能:掌握平行四边形的判定定理,会利用对角线的关系和一组对边的关系判定一个四边形是不是平行四边形.过程与方法:通过画图探索平行四边形的判别方法,通过对平行四边形判定方法的说理过程。

情感态度与价值观:培养学生的分析能力以及逻辑推理能力. 重点:利用对角线的关系和一组对边的关系判定平行四边形. 难点:平行四边形判定方法的应用.教学过程一 创设情景,导入新课1 复习:什么是平行四边形? 平行四边形有哪些性质?⎧⎪⎨⎪⎩边:对边平行且相等平行四边形角:对角相等对角线:互相平分 2 平行四边形有那么多的性质,那么反过来,对边相等或对角相等或对角线互相平分的四边形是否是平行四边形?这节课我们来学习 -----3.3.1 平行四边形的判定.(板书课题)二 合作交流,探究新知1 利用对角线的关系判定平行四边形. 动脑筋:平行四边形的对角线互相平分,从这一性质受到启发,你能画出一个平行四边形吗?作图:过点O 画两条线段AC ,BD ,使得OA =OC ,OB =OD .连结AB ,BC ,CD ,DA ,则四边形ABCD 是平行四边形,如图已知:OA=OC,OB=OD,则四边形ABCD 是不是平行四边形?为什么?解:∵OA=OC,OB=OD,(已知) ∠AOD=∠BOC (对顶角相等) ,∴△AOD ≌△BOC (边角边)∴∠OAD=∠OCB,(全等三角形对应角相等)∴AD ∥BC (内错角相等,两直线平行).同理:AB ∥DC ∴四边形ABCD 是平行四边形.(两组对边分别平行的四边形是平行四边形).你能把上面的结论用语言表示吗?平行四边形的判定方法1 :对角线互相平分的四边形是平行四边形. 即:如果OA=OC,OB=OD ,那么四边形ABCD 是平行四边形.则四边形ABCD 就是要画的四边形.2 利用一组对边的关系判定平行四边形OD CBAAD CB(1)提出问题:从平移把直线变成与它平行的直线受到启发,你能不能从一条线段AB 出发,画出一个平行四边形吗?试试看. (2)请学生介绍方法:画法:把线段AB 平移至某一个位置,得到线段DC ,分别连结AD ,BC ,则四边形ABCD 是平行四边形,如图..(3)这样画出的的四边形是一定是平行四边形吗?这个问题就是:已知四边形ABCD 中,AD=BC,AD ∥BC, 那么四边形ABCD 为什么是平行四边形?(交流讨论) ∵AD ∥BC (已知)∴∠1=∠2(两直线平行,内错角相等) ∵AC=CA(公共边) ∴△ADC ≌△CBA(边角边)∴∠3=∠4(全等三角形对应角相等) ∴AB ∥CD (内错角相等,两直线平行)∴四边形ABCD 是平行四边形(有两组对边分别平行的四边形是平行四边形)你能用一句话把上面的结论描述出来吗?平行四边形的判定方法2:一组对边平行且相等的四边形是平行四边形. 即:若AD=BC,AD ∥BC ,则 四边形ABCD 是平行四边形. 3、平行四边形的判定方法我们学了几种?定义法:两组对边分别平行的四边形是平行四边形。

人教版数学八年级下册18.1.2平行四边形的判定(第一课时)优秀教学案例

人教版数学八年级下册18.1.2平行四边形的判定(第一课时)优秀教学案例
五、教学过程
1.导入新课:通过复习四边形的性质,引导学生进入对新知识的学习。
2.自主学习:让学生自主探究平行四边形的判定方法,培养学生独立解决问题的能力。
3.合作交流:分组讨论,让学生在合作中思考,共同解决问题。
4.展示分享:各小组展示解题过程,分享学习心得。
5.总结提升:教师引导学生总结本节课所学知识,巩固平行四边形的判定方法。
二、教学目标
(一)知识与技能
1.让学生掌握平行四边形的判定方法,能运用平行四边形的性质解决实际问题。
2.培养学生空间想象能力、逻辑思维和解决问题的能力,提高其运用数学知识解决实际问题的能力。
3.通过平行四边形的判定方法的学习,使学生能灵活运用多边形的性质,进一步理解多边形之间的关系。
(二)过程与方法
3.鼓励学生分享自己的解题思路,培养其表达能力和沟通技巧。如:在小组合作过程中,让学生分享自己的解题思路,互相学习,共同进步。
(四)反思与评价
1.教师应关注学生的学习过程,及时发现并引导学生反思自己的学习方法,提高其自主学习能力。如:在教学过程中,教师应时刻关注学生的学习情况,针对学生的困惑,引导其进行反思,找到解决问题的方法。
1.采用自主学习、合作交流的教学模式,让学生在探究中思考,培养其独立解决问题的能力。
2.运用多媒体教学手段,展示平行四边形的判定过程,帮助学生直观地理解平行四边形的性质。
3.设计富有启发性的教学活动,引导学生动手操作、观察分析,提高其观察、分析和动手操作能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣,激发其探究精神,使其体验到数学的乐趣。
6.课后作业:布置具有针对性的课后作业,巩固所学知识。
六、教学反思
本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学质量。同时,关注学生在学习过程中存在的问题,及时给予指导和帮助,使学生能够更好地掌握平行四边形的判定方法。

新人教版八年下《19.1平行四边形-判定》word教案3篇

新人教版八年下《19.1平行四边形-判定》word教案3篇

19.1.2 平行四边形的判定(一)教学目知识与技能1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题过程与方法经历平行四边形判定条件的探索过程,发展学生的合情推理意识和表述能力. 情感态度与价值观培养学生合情推理能力,经及严谨的书写表达,体会几何思维的真正内涵.重点理解和掌握平行四边形的判定定理.难点几何推理方法的应用.教学过程备注教学设计与师生互动第一步:创景引入:老师提问:1、平行四边形定义是什么?如何表示?2、平行四边形性质是什么?如何概括?演示图片:选择各种四边形图片展示.提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?请学生通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?总结:平行四边形判定1 两组对边分别相等的四边形是平行四边形.平行四边形判定2 对角线互相平分的四边形是平行四边形.第二步:应用举例:例1(教材P96例3)已知:如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明.(证明过程参看教材)问;你还有其它的证明方法吗?比较一下,哪种证明方法简单.例2(补充)已知:如图,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1) ∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2) △ABC的顶点分别是△B′C′A′各边的中点.证明:(1) ∵A′B′∥BA,C′B′∥BC,∴四边形ABCB′是平行四边形.∴∠ABC=∠B′(平行四边形的对角相等).同理∠CAB=∠A′,∠BCA=∠C′.(2) 由(1)证得四边形ABCB′是平行四边形.同理,四边形ABA′C 是平行四边形.∴AB=B′C,AB=A′C(平行四边形的对边相等).∴B′C=A′C.同理B′A=C′A,A′B=C′B.∴△ABC的顶点A、B、C分别是△B′C′A′的边B′C′、C′A′、A′B′的中点.例3(补充)小明用手中六个全等的正三角形做拼图游戏时,拼成一个六边形.你能在图中找出所有的平行四边形吗?并说说你的理由.解:有6个平行四边形,分别是ABOF,ABCO,BCDO,CDEO,DEFO,EFAO.理由是:因为正△ABO≌正△AOF,所以AB=BO,OF=FA.根据“两组对边分别相等的四边形是平行四边形”,可知四边形ABCD是平行四边形.其它五个同理.第三步:随堂练习1.如图,在四边形ABCD中,AC、BD相交于点O,(1)若AD=8cm,AB=4cm,那么当BC=___ _cm,CD=___ _cm时,四边形ABCD为平行四边形;(2)若AC=10cm,BD=8cm,那么当AO=__ _cm,DO=__ _cm时,四边形ABCD为平行四边形.2.已知:如图,ABCD中,点E、F分别在CD、AB上,DF∥BE,EF交BD于点O.求证:EO=OF.3.灵活运用课本P89例题,如图:由火柴棒拼出的一列图形,第n个图形由(n+1)个等边三角形拼成,通过观察,分析发现:①第4个图形中平行四边形的个数为___ __.(6个)②第8个图形中平行四边形的个数为___ __.(20个)第四步:课后练习:1、在四边形ABCD中,AC交BD 于点O,若AO=1/2AC,B O=1/2BD,则四边形ABCD是平行四边形.()2、在四边形ABCD中,AC交BD 于点O,若OC= 且,则四边形ABCD是平行四边形.3、下列条件中,能够判断一个四边形是平行四边形的是()(A)一组对角相等;(B)对角线相等;(c)一组对角相等;(D)对角线相等;3、下列条件中能判断四边形是平行四边形的是().A、对角线互相垂直B、对角线相等C对角线互相垂直且相等D 对角线互相平分4、已知,如图,平行四边形ABCD的AC和BD相交于O点,经过O点的直线交BC和AD于E、F,求证:四边形BEDF是平行四边形.(用两种方法)5、已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F.求证:四边形AECF是平行四边形.6、已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BM∥DN,且BM=DN .7.已知:如图,△ABC,BD平分∠ABC,DE∥BC,EF∥BC,求证:BE=CF课后小结与反思:19.1.2 平行四边形的判定(三)教学目标知识与技能1.理解三角形中位线的概念,掌握它的性质2.能较熟练地应用三角形中位线性质进行有关的证明和计算过程与方法经历探索、猜想、证明的过程,进一步发展推理论证的能力.感悟几何学的推理方法.情感态度与价值观培养学生合情推理意识,形成几何思维分析思路,体会几何学在日常生活中的应用价值.重点掌握和运用三角形中位线的性质.难点三角形中位线性质的证明(辅助线的添加方法)教学过程备注教学设计与师生互动第一步:课堂引入1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?2.你能说说平行四边形性质与判定的用途吗?(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.)实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)图中有几个平行四边形?你是如何判断的?第二步: 引入新课例(教材P98例4) 如图,点D 、E 、分别为△ABC边AB 、AC 的中点,求证:DE ∥BC 且DE=21BC . 分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.方法1:如图(1),延长DE 到F ,使EF=DE ,连接CF ,由△ADE ≌△CFE ,可得AD ∥FC ,且AD=FC ,因此有BD ∥FC ,BD=FC ,所以四边形BCFD 是平行四边形.所以DF ∥BC ,DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC . (也可以过点C 作CF ∥AB 交DE 的延长线于F 点,证明方法与上面大体相同)方法2:如图(2),延长DE 到F ,使EF=DE ,连接CF 、CD 和AF ,又AE=EC ,所以四边形ADCF 是平行四边形.所以AD ∥FC ,且AD=FC .因为AD=BD ,所以BD ∥FC ,且BD=FC .所以四边形ADCF 是平行四边形.所以DF ∥BC ,且DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC . 三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线【思考】:(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?(2)三角形的中位线与第三边有怎样的关系?(答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线. (2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半.〖拓展〗利用这一定理,你能证明出在设情境中分割出来的四个小三角形全等吗?(让学生口述理由)第三步:应用举例例1已知:如图(1),在四边形ABCD 中,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA 的中点.求证:四边形EFGH 是平行四边形.分析:因为已知点E 、F 、G 、H 分别是线段的中点,可以设法应用三角形中位线性质找到四边形EFGH 的边之间的关系.由于四边形的对角线可以把四边形分成两个三角形,所以添加辅助线,连接AC 或BD ,构造“三角形中位线”的基本图形后,此题便可得证.证明:连结AC (图(2)),△DAG 中,∵ AH=HD ,CG=GD ,∴ H G ∥AC ,HG=21AC (三角形中位线性质).同理EF ∥AC ,EF=21AC . ∴ HG ∥EF ,且HG=EF .∴ 四边形EFGH 是平行四边形.此题可得结论:顺次连结四边形四条边的中点,所得的四边形是平行四边形.第四步:课堂练习1.如图,A 、B 两点被池塘隔开,在AB 外选一点C ,连结AC 和BC ,并分别找出AC 和BC 的中点M 、N ,如果测得MN=20 m ,那么A 、B 两点的距离是 m ,理由是 .2.已知:三角形的各边分别为8cm 、10cm 和12cm ,求连结各边中点所成三角形的周长.3.如图,△ABC 中,D 、E 、F 分别是AB 、AC 、BC 的中点,(1)若EF=5cm ,则AB= cm ;若BC=9cm ,则DE= cm ;(2)中线AF 与DE 中位线有什么特殊的关系?证明你的猜想.第五步:课后巩固1.(填空)一个三角形的周长是135cm ,过三角形各顶点作对边的平行线,则这三条平行线所组成的三角形的周长是cm.2.(填空)已知:△ABC中,点D、E、F分别是△A BC三边的中点,如果△DEF的周长是12cm,那么△ABC的周长是cm.3.已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.课后小结与反思:19.1.2 平行四边形的判定(二)教学目标知识与技能1.掌握用一组对边平行且相等来判定平行四边形的方法2.会综合运用平行四边形的四种判定方法和性质来证明问题3、使学生熟练掌握平行四边形判定的五种方法,并通过定理,习题的证明提高学生的逻辑思维能力;进一步掌握平行四边形性质与判定之间的区别与联系.过程与方法通过平行四边形的性质与判定的应用,启迪学生的思维,提高分析问题的能力.情感态度与价值观培养学生合情推理能力,经及严谨的书写表达,体会几何思维的真正内涵.重点平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法.难点几何推理方法的应用.平行四边形的判定定理与性质定理的综合应用.教学过程备注教学设计与师生互动第一步:课堂引入1.平行四边形的性质;2.平行四边形的判定方法;3.【探究】取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?结论:一组对边平行且相等的四边形是平行四边形.第二步:应用举例:例1(补充)已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.分析:证明BE=DF,可以证明两个三角形全等,也可以证明四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单.证明:∵四边形ABCD是平行四边形,∴AD∥CB,AD=CD.∵ E 、F 分别是AD 、BC 的中点, ∴ DE ∥BF ,且DE=21AD ,BF=21BC . ∴DE=BF . ∴ 四边形BEDF 是平行四边形(一组对边平行且相等的四边形平行四边形).∴ BE=DF .此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路.例2(补充)已知:如图,ABCD 中,E 、F 分别是AC 上两点,且BE ⊥AC 于E ,DF ⊥AC 于F .求证:四边形BEDF 是平行四边形.分析:因为BE ⊥AC 于E ,DF ⊥AC 于F ,所以BE ∥DF .需再证明BE=DF ,这需要证明△ABE 与△CDF 全等,由角角边即可.证明:∵ 四边形ABCD 是平行四边形,∴ AB=CD ,且AB ∥CD .∴ ∠BAE=∠DCF .∵ BE ⊥AC 于E ,DF ⊥AC 于F ,∴ BE ∥DF ,且∠BEA=∠DFC=90°.∴ △ABE ≌△CDF (AAS ).∴ BE=DF .∴ 四边形BEDF 是平行四边形(一组对边平行且相等的四边形平行四边形).例3、 已知:如图3,E 、F 是平行四边形ABCD 对角线AC 上两点,且AE =CF.求证:四边形BFDE 是平行四边形.B A OC D EF图3分析:已知平行四边形可用平行四边形的性质,求证平行四边形要想判定定理,由于E 、F 在对角线上,显然用对角线互相平分来判定.证明:连结BD 交AC 于O.是平行四边形四边形即平行四边形ABCD OFEO CF OC AE AO CFAE ODOB ,OC OA ABCD ∴=-=-∴===∴(对角线互相平分的四边形是平行四边形)这道题,还可以利用CFB AED ,DFC ABE ∆≅∆∆≅∆用对边相等或平行来判定平行四边形,相比之下使用对角线较简便.例4、 已知:如图DBC ADB BF DE ,AC BF ,AC DE ∠=∠=⊥⊥。

数学人教版八年级下册§18.1.2 平行四边形的判定(第一课时)教案

数学人教版八年级下册§18.1.2 平行四边形的判定(第一课时)教案
重点是让学生熟练掌握判定定理内容和判定方法。
问题2:要求学生作业本上写出来。再口答。
教师多媒体出示图形和内容,学生在回顾问题1的基础上,写出几何语言。
自主达标题,学生当堂考试,评出成绩。
借助图形来理解,总结.
各抒己见,不拘泥于形式,师生互相补充,使语言表达的更准确完美,同时教师引导学生通过对平行四边形的判定的探索。
让学生体会到知识的获取过程,以及由性质引发出来的结论来。
学生自主练习
教师多媒体出示平行四边形性质定理的三个逆命题:(即平行四边形的判定定理),学生用几何语言写出定理。
要求学生口答,引导学生逐步会用几何语言书写规范的推理的过程。
(1)你有什么收获?
掌握了哪些平行四边形的判定方法?
(2)积累了哪些解题经验,在数学思想方法上有哪些收获?
如何用判定定理证明四边形是否为平行四边形?
1.边的关系:
(1)证明两组对边分别平行
(2)证明两组对边分别相等
2.角的关系:证明两组对角分别相等.
3.对角线的关系:证明两条对角线互相平分.(多媒体出示图形)

学目Leabharlann 标1、知识与技能:(1)在探索平行四边形的判别条件中,理解并掌握用边、角、对角线来判定平行四边形的方法.
(2)会综合运用平行四边形的判定方法和性质来解决问题.
2、过程与方法:经历平行四边形判定条件的探索过程,发展学生合情推理意识和表述能力。
3、情感态度与价值观:培养学生合情推理能力,经过严谨的规范书写表达,体会几何证明的逻辑关系,养成严谨的推理证明习惯。
2.根据下列条件,不能判定一个四边形为平行四边形的是( )
(A)两组对边分别相等
(B)两条对角线互相平分
(C)两条对角线相等

数学教案-平行四边形的判定

数学教案-平行四边形的判定

数学教案-平行四边形的判定数学教案-平行四边形的判定(精选3篇)数学教案-平行四边形的判定篇1教学建议1.重点平行四边形的判定定理重点分析平行四边形的判定方法涉及平行四边形元素的各方面,同时它又与平行四边形的性质联系,判定一个四边形是否为平行四边形是利用平行四边形性质解决其他问题的基础,所以平行四边形的判定定理是本节的重点.2.难点灵活运用判定定理证明平行四边形难点分析平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.3.关于平行四边形判定的教法建议本节研究平行四边形的判定方法,重点是四个判定定理,这也是本章的重点之一.1.教科书首先指出,用定义可以判定平行四边形.然后从平行四边形的性质定理的逆命题出发,来探索平行四边形的判定定理.因此在开始的教学引入中,要充分调动学生的情感因素,尽可能利用形式多样的多媒体课件,激发学生兴趣,使学生能很快参与进来.2.素质教育的主旨是发挥学生的主体因素,让学生自主获取知识.本章重点中前三个判定定理的顺序与它的性质定理相对应,因此在讲授新课时,建议采用实验式教学模式或探索式教学模式:在证明每个判定定理时,由学生自己去判断命题成立与否,并根据过去所学知识去验证自己的结论,比较各种方法的优劣,这样使每个学生都积极参与到教学中,自己去实验,去探索,去思考,去发现,在动手动脑中得到的结论会更深刻――同时也要注意保护学生的参与积极性.3.平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.因此在例题讲解时,建议采用启发式教学模式,根据题目中具体条件结合图形引导学生根据分析法解题程序从条件或结论出发,由学生自己去思考,去分析,充分发挥学生的主体作用,对学生灵活掌握熟练应用各种判定定理会有帮助.教学设计示例1[教学目标] 通过本节课教学,使学生训练掌握平行四边形的各条判定定理,并能灵活地运用平行四边形的性质定理和判定定理及以前学过的知识进行有关证明,培养学生的逻辑思维能力。

平行四边形的判定1教学设计

平行四边形的判定1教学设计

平行四边形的判定1教学设计教学设计:平行四边形的判定教学目标:1.知识与技能:学生能够掌握平行四边形的定义和性质,并能准确判定一个四边形是否为平行四边形。

2.过程与方法:通过解决实际问题,引导学生进行发现和探究,培养学生的思维能力和解决问题的能力。

3.情感态度与价值观:通过小组合作学习,培养学生的合作意识和团队精神,培养学生对数学的兴趣和热爱。

教学准备:1.教师准备:准备多个平行四边形的实物或图片,准备白板、彩色粉笔和课件。

2.学生准备:准备纸和笔,携带直尺和量角器。

教学过程:Step 1 引入(10分钟)1.利用图片或实物,展示一个平行四边形给学生观察,引导学生描述其特点。

2.教师提问:你们觉得四边形是什么样的图形?对于平行四边形有什么认识?3.学生回答后,教师进行点拨,引导学生正确理解平行四边形的定义和性质。

Step 2 探究(15分钟)1.将学生分组,每个小组选择一个小组长,其他组员分别编号为1、2、32.每组分发一张纸和一支笔,告诉学生小组长的任务是记录并总结组员的观察、发现和探究结果。

3.通过给出不同的四边形,学生观察其特点,通过小组内的讨论和合作,对平行四边形的性质进行探究,总结出判定平行四边形的关键特征。

Step 3 总结(10分钟)1.学生小组长汇报总结出的关键特征,教师记录在白板上。

2.教师引导学生对总结的特征进行讨论,通过演示和解释,确保学生正确理解平行四边形的判定方法。

Step 4 巩固(25分钟)1.教师出示多个四边形的图片,要求学生判断是否为平行四边形,并用所学的判定方法进行解释。

2.学生通过小组合作,互相检查答案,并用直尺和量角器进行实际测量,确保判断的准确性。

Step 5 拓展(15分钟)1.教师出示一些实际生活中的问题,让学生运用所学的判定方法解决问题。

例如:一个人既是医生又是规划师,他接到了设计一个长方形草坪的任务。

他希望它既能满足足球比赛的需要,又能满足篮球比赛的需要。

第1课时平行四边形的判定(教案)

第1课时平行四边形的判定(教案)

平行四边形的判定第1课时平行四边形的判定【知识与技能】掌握平行四边形的判定方法1,2,3,能用它们来证明一个四边形是否是平行四边形.【过程与方法】在观察、实验、猜想、验证、推理、交流等活动过程中,让学生感受数学思考过程的条理性及解决问题策略的多样性,发展学生的动手操作能力,推理能力及数学应用意识.【情感态度】在操作活动和观察、分析过程中发展学生的主动探索、质疑和独立思考的习惯,发展学生的实践能力和创新意识.【教学重点】平行四边形的判定方法1,2,3.【教学难点】平行四边形判定方法的探寻过程.一、情境导入,初步认识问题(1)平行四边形的定义是怎样的?(2)平行四边形有哪些重要性质?(3)反过来,如果一个四边形的对边平行、对边相等、对角相等或对角线互相平分,这个四边形能是平行四边形吗?【教学说明】教师展示问题(1)、(2),让学生对前面所学的知识进行系统回顾,并展示问题(3),引入新课.二、思考探究,获取新知观察思考如图(1),将两长两短的四根木条用小钉绞合在一起,做成一个四边形,使等长的木条成为对边.转动这个四边形,使它形状改变,在图形的变化过程中,这个四边形一直是平行四边形吗?如图(2),将两根细木条AC、BD 的中点用小钉绞合在一起,用橡皮筋连接木条的端点,做成一个四边形ABCD,转动两根木条,则图中的四边形ABCD一直是平行四边形吗?【教学说明】教师展示事先制作好的实物模型,让学生观察思考,在感性上认识具有两组对边分别相等或对角线互相平分的四边形是平行四边形,然后提出请学生尝试着证明这些结论.教师巡视,引导学生通过连接对角线,先证明三角形全等,从而得到两对边平行,来论证两组对边分别相等的四边形是平行四边形,同样地可论证对角线互相平分的四边形是平行四边形.探究求证:两组对角分别相等的四边形是平行四边形.°容易得到四组同旁内角互补,从而可利用平行四边形定义来证明更方便些.【教学说明】本例的解答过程由学生自己完成,教师巡视指导;关注学生的解题格式和论证思路.平行四边形的判定定理两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.三、典例精析,掌握新知例如图,四边形ABCD是平行四边形,点E,F是对角线AC上两点,且AE=CF.求证:四边形BFDE是平行四边形.【分析】若连BD交AC于O,由ABCD的性质易知OB=OD,OA=OC,又AE=CF,从而OE=OF,故四边形BEDF是平行四边形(对角线互相平分的四边形是平行四边形).事实上,还可以分别证明△ADE≌△CBF,△ABE≌△CDF,得DE=BF,BE=DF,也能证明四边形DEBF是平行四边形;也可以证明∠BEF=∠DFE,∠DEF=∠BFE,得BE∥DF,DE∥BF,利用平行四边形定义证明四边形BEDF是平行四边形.同样也可以通过三角形全等,推出两组对角相等,进而得出四边形BEDF是平行四边形.【教学说明】在教师与学生一道分析后,证明过程由学生自己独立完成,同时可选取四名同学上黑板按四种不同方法给出证明过程,一方面加深学生对平行四边形判定方法的理解,另外通过一题多解也能开拓学生思维,增强分析问题、解决问题的能力.也可将全班同学分成四个小组分别用四种不同方法来试试,教师巡视,对有困难同学应及时予以指导.四、运用新知,深化理解1.已知,四边形ABCD中,∠A=∠C=55°,则当∠B= 时,四边形是平行四边形.2.如图,已知四边形ABCD中,∠1=∠2,∠3=∠∥DF.求证:四边形ABCD是平行四边形.第2题图第3题图3.已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,BO=DO.求证:四边形ABCD是平行四边形.【教学说明】由学生独立完成,然后相互交流,进一步掌握用“两组对边分别相等”,“两组对角分别相等”,“对角线互相平分”的方法判定四边形是平行四边形,教师巡视指导.°.2.证明:∵BE∥DF,∴∠3=∠EBF,又∠3=∠4,∴∠4=∠EBF,∴DE∥BF,∴四边形BEDF是平行四边形.∴DE=BF,BE=DF.在△ABE和△CDF中,∠1=∠2,DF=BE,∠3=∠4,∴△ABE≌△CDF.∴AB=CD,AE=CF.∴AE+DE=CF+BF,即AD=BC,∴四边形ABCD是平行四边形.3.证明:∵AB∥CD,∴∠ABO=∠CDO,在△ABO和△CDO中,∵∠ABO=∠CDO,BO=DO,∠AOB=∠COD,∴△ABO≌△CDO,∴AO=CO,又∵BO=DO, ∴四边形ABCD是平行四边形.五、师生互动,课堂小结谈谈这节课学习的体会和收获,学生相互交流,各抒己见,最后教师进行总结归纳.1.布置作业:从教材“”中选取.2.完成练习册中本课时练习.本课时是有关于平行四边形的前三种判定方法,教师教学时应采用师生共同探究的方法来得出结论.另外,教师最好要求学生将每种判定的数学语言和符号语言都按格式书写出来,这样有利于学生数学习惯的培养.。

18.1平行四边形的判定(教案)

18.1平行四边形的判定(教案)
3.增强学生的几何直观:让学生在解决实际问题时,能够运用所学知识进行直观判断,提高解决问题的能力,并培养几何直观素养。
三、教学难点与重点
1.教学重点
(1)掌握平行四边形的定义及基本性质,理解其对边平行且相等的特点;
举例:强调平行四边形两组对边分别平行且相等,对角线互相平分等核心性质。
(2)熟练运用平行四边形的判定方法,包括:两组对边分别平行、一组对边平行且相等、两组对边分别相等、对角线互相平分;
3.重点难点解析:在讲授过程中,我会特别强调平行四边形的判定方法和性质这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行四边形判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示平行四边形的基本性质和判定方法。
在学生小组讨论环节,虽然同学们积极参与,但部分学生的观点较为片面。我应该在讨论过程中,适时提出一些挑战性的问题,引导学生从不同角度思考问题,提高他们的逻辑思维和分析问题的能力。
最后,总结回顾环节,我发现部分学生对平行四边形判定的理解仍不够深入。在今后的教学中,我需要更加关注学生的掌握情况,通过设计不同难度的练习题,帮助他们巩固知识点,提高解题能力。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行四边形的基本概念、判定方法和应用。同时,我们也通过实践活动和小组讨论加深了对平行四边形判定知识的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

《平行四边形的判定(1)》教案精品 2022年数学

《平行四边形的判定(1)》教案精品 2022年数学

18.1.2平行四边形的判定第1课时平行四边形的判定(1)1.掌握平行四边形的判定定理;(重点)2.综合运用平行四边形的性质与判定解决问题.(难点)一、情境导入我们已经知道,如果一个四边形是平行四边形,那么它就是一个中心对称图形,具有如下的一些性质:1.两组对边分别平行且相等;2.两组对角分别相等;3.两条对角线互相平分.那么,怎样判定一个四边形是否是平行四边形呢?当然,我们可以根据平行四边形的原始定义:两组对边分别平行的四边形是平行四边形加以判定.那么是否存在其他的判定方法?二、合作探究探究点一:两组对边分别相等的四边形是平行四边形如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.试说明四边形DAEF是平行四边形.解析:根据题意,利用全等可证明AD =FE,DF=AE,从而可判断四边形DAEF 为平行四边形.解:∵△ABD和△FBC都是等边三角形,∴∠DBF+∠FBA=∠ABC+∠ABF=60°,∴∠DBF=∠ABC.又∵BD=BA,BF =BC,∴△ABC≌△DBF(SAS),∴AC=DF =AE.同理可证△ABC≌△EFC,∴AB=EF =AD,∴四边形DAEF是平行四边形(两组对边分别相等的四边形是平行四边形).方法总结:利用“两组对边分别相等的四边形是平行四边形〞时,证明边相等,可通过证明三角形全等解决.探究点二:两组对角分别相等的四边形是平行四边形如图,在四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.(1)求∠D的度数;(2)求证:四边形ABCD是平行四边形.解析:(1)可根据三角形的内角和为180°得出∠D的大小;(2)根据“两组对角分别相等的四边形是平行四边形〞进行证明.(1)解:∵∠D+∠2+∠1=180°,∴∠D =180°-∠2-∠1=180°-40°-85°=55°;(2)证明:∵AB∥DC,∴∠2=∠CAB =40°,∠DCB+∠B=180°,∴∠DAB=∠1+∠CAB=125°,∠DCB=180°-∠B=125°,∴∠DAB=∠DCB.又∵∠D=∠B=55°,∴四边形ABCD是平行四边形.方法总结:根据两组对角分别相等判断四边形是平行四边形,是解题的常用思路. 探究点三:对角线相互平分的四边形是平行四边形如图,AB 、CD 相交于点O ,AC ∥DB ,AO =BO ,E 、F 分别是OC 、OD 的中点.求证:(1)△AOC ≌△BOD ;(2)四边形AFBE 是平行四边形.解析:(1)利用条件和全等三角形的判定方法即可证明△AOC ≌△BOD ;(2)此题AO=BO ,要证四边形AFBE 是平行四边形,根据全等三角形,只需证OE =OF 即可.证明:(1)∵AC ∥BD ,∴∠C =∠D .在△AOC 和△BOD 中,∵⎩⎪⎨⎪⎧∠C =∠D ,∠COA =∠DOB ,AO =BO ,∴△AOC ≌△BOD (AAS);(2)∵△AOC ≌△BOD ,∴CO =DO .∵E 、F 分别是OC 、OD 的中点,∴OF =12OD ,OE =12OC ,∴EO =FO .又∵AO =BO ,∴四边形AFBE 是平行四边形.方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,防止混用判定方法.探究点四:平行四边形的判定定理(1)的应用【类型一】 利用平行四边形的判定定理(1)证明线段或角相等如图,在平行四边形ABCD 中,AC 交BD 于点O ,点E ,点F 分别是OA ,OC 的中点,请判断线段DE ,BF 的位置关系和数量关系,并说明你的结论.解析:根据平行四边形的性质“对角线互相平分〞得出OA =OC ,OB =OD .利用中点的意义得出OE =OF ,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形〞判定四边形BFDE 是平行四边形,从而得出DE =BF ,DE ∥BF .解:DE =BF ,DE ∥BF .∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .∵E ,F 分别是OA ,OC 的中点,∴OE =OF ,∴四边形BFDE 是平行四边形,∴DE =BF ,DE ∥BF .方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.【类型二】 平行四边形的判定定理(1)的综合运用如图,四边形ABCD 是平行四边形,BE ⊥AC 于点E ,DF ⊥AC 于点F .(1)求证:△ABE ≌△CDF ;(2)连接BF 、DE ,试判断四边形BFDE 是什么样的四边形?写出你的结论并予以证明.解析:(1)根据“AAS 〞可证出△ABE ≌△CDF ;(2)首先根据△ABE ≌△CDF 得出AE =FC ,BE =DF .再利用得出△ADE ≌△CBF ,进而得出DE =BF ,即可得出四边形BFDE 是平行四边形. (1)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠BAC =∠DCA .∵BE ⊥AC 于E ,DF ⊥AC 于F ,∴∠AEB =∠DFC =90°.在△ABE 和△CDF中,⎩⎪⎨⎪⎧∠DFC =∠BEA ,∠FCD =∠EAB ,AB =CD ,∴△ABE ≌△CDF (AAS);(2)解:四边形BFDE 是平行四边形.理由如下:∵△ABE ≌△CDF ,∴AE =FC ,BE =DF .∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥CB ,∴∠DAC =∠BCA .在△ADE 和△CBF 中,⎩⎪⎨⎪⎧AD =BC ,∠DAE =∠BCF ,AE =FC ,∴△ADE ≌△CBF (SAS),∴DE =BF ,∴四边形BFDE 是平行四边形.方法总结:熟练运用平行四边形的性质,可证明三角形全等,证明边相等,再利用两组对边分别相等可判定四边形是平行四边形.三、板书设计1.平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线相互平分的四边形是平行四边形.2.平行四边形的判定定理(1)的应用在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的根底上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要.在证明命题的过程中,学生自然将判定方法进行比照和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.第3课时 多项式1.理解多项式的概念;(重点)2.能准确迅速地确定一个多项式的项数和次数;3.能正确区分单项式和多项式.(重点)一、情境导入 列代数式:(1)长方形的长与宽分别为a 、b ,那么长方形的周长是________;(2)图中阴影局部的面积为________;(3)某班有男生x 人,女生21人,那么这个班的学生一共有________人.观察我们所列出的代数式,是我们所学过的单项式吗?假设不是,它又是什么代数式?二、合作探究探究点一:多项式的相关概念【类型一】 单项式、多项式与整式的识别指出以下各式中哪些是单项式?哪些是多项式?哪些是整式?x 2+y 2,-x ,a +b 3,10,6xy +1,1x ,17m 2n ,2x 2-x -5,2x 2+x,a 7.解析:根据整式、单项式、多项式的概念和区别来进行判断.解:2x 2+x ,1x的分母中含有字母,既不是单项式,也不是多项式,更不是整式.单项式有:-x ,10,17m 2n ,a 7;多项式有:x 2+y 2,a +b3,6xy +1,2x2-x -5;整式有:x 2+y 2,-x ,a +b3,10,6xy+1,17m 2n ,2x 2-x -5,a 7.方法总结:(1)分母中含有字母(π除外)的式子不是整式;(2)单项式和多项式都是整式;(3)单项式不含加、减运算,多项式必含加、减运算.【类型二】 确定多项式的项数和次数写出以下各多项式的项数和次数,并指出是几次几项式.(1)23x 2-3x +5; (2)a +b +c -d ;(3)-a 2+a 2b +2a 2b 2.解析:根据多项式的项数是多项式中单项式的个数,多项式的次数是多项式中次数最高的单项式的次数,可得答案.解:(1)23x 2-3x +5的项数为3,次数为2,二次三项式;(2)a +b +c -d 的项数为4,次数为1,一次四项式;(3)-a 2+a 2b +2a 2b 2的项数为3,次数为4,四次三项式.方法总结:(1)多项式的项一定包括它的符号;(2)多项式的次数是多项式里次数最高项的次数,而不是各项次数的和;(3)几次项是指多项式中次数是几的项. 【类型三】 根据多项式的概念求字母的取值-5x m +104x m -4x m y 2是关于x 、y的六次多项式,求m 的值,并写出该多项式.解析:根据多项式中次数最高的项的次数叫做多项式的次数可得m +2=6,解得m =4,进而可得此多项式.解:由题意得m +2=6,解得m =4,此多项式是-5x 4+104x 4-4x 4y 2. 方法总结:此题考查了多项式,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.【类型四】 与多项式有关的探究性问题假设关于x 的多项式-5x 3-mx2+(n -1)x -1不含二次项和一次项,求m 、n 的值.解析:多项式不含二次项和一次项,那么二次项和一次项系数为0.解:∵关于x 的多项式-5x 3-mx 2+(n -1)x -1不含二次项和一次项,∴m =0,n -1=0,那么m =0,n =1.方法总结:多项式不含哪一项,那么哪一项的系数为0.探究点二:多项式的应用如图,某居民小区有一块宽为2a 米,长为b米的长方形空地,为了美化环境,准备在此空地的四个顶点处各修建一个半径为a米的扇形花台,在花台内种花,其余种草.如果建造花台及种花费用每平方米为100元,种草费用每平方米为50元.那么美化这块空地共需多少元?解析:四个角围成一个半径为a米的圆,阴影局部面积是长方形面积减去一个圆面积.解:花台面积和为πa2平方米,草地面积为(2ab-πa2)平方米.所以需资金为[100πa2+50(2ab-πa2)]元.方法总结:用式子表示实际问题的数量关系时,首先要分清语言表达中关键词的含义,理清它们之间的数量关系和运算顺序.三、板书设计多项式:几个单项式的和叫做多项式.多项式的项:多项式中的每个单项式叫做多项式的项.常数项:不含字母的项叫做常数项.多项式的次数:多项式里次数最高项的次数叫做多项式的次数.整式:单项式与多项式统称整式.这节课的教学内容并不难,如果采用讲授的方式,很快90%以上的学生都可以理解、掌握.虽然单纯地从学生接受知识的角度,讲授法应该效果更好,但同时学生的自主学习的习惯和能力也不知不觉地被忽略了.事实证明,学生没有养成一个良好的自主学习的习惯,不会自己阅读、分析题意,他们今后的学习会受到很大的制约.。

平行四边形的判定(1)教学设计第一四版

平行四边形的判定(1)教学设计第一四版

平行四边形的判定(一)教 学 设 计一、教学目标:1、 使学生掌握平行四边形的判定方法,并学会其简单的应用。

2、 通过对判定方法的探求,引导学生学习观察、类比、猜测等推理方法,培养学生主动探索问题的能力。

3、 通过教证明、教猜想,使学生领会数学的严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动精神。

二、教学重点:平行四边形的判定定理。

三、教学难点:探索、寻求判定定理。

教学过程:一、复习(出示投影)二、创设问题情景一装璜店要招聘店员,老板出了这样一道考题:“一顾客要一张平行四边形的玻璃,你利用三角板、刻度尺、量角器等工具度量哪些数据可说明这张玻璃符合顾客要求。

”你能为招聘人员设计一方案?三、探究定理 1、若∠A=∠C ,∠B=∠D ,则四边形ABCD 是平行四边形;2、若AB=CD ,BC=AD ,则四边形ABCD 是平行四边形;3、若AB ∥CD ,则四边形ABCD 是平行四边形;4、若AC ,BD 交于O ,OA=OC ,OB=OD ,则四边形ABCD 是平行四边形。

这些方案对不对?能不能用它们来判定平行四边形?让学生讨论这些问题。

如果能判定,要求给予证明;如果不能判定,请举出反例。

(学生分组讨论,每组5~6人) 请四位同学将讨论结果以及证题思路口述出来,并允许其他同学补充或纠正错误。

通过师生讨论,上述四个猜想都正确。

书上把它们叫做判定定理。

请把书翻开,把这四个定理的表述条理化,要根据题目条件从中灵活选用方法来解题。

平行四边形的对边平行平行四边形的对边相等 平行四边形的性质 边 角 平行四边形的对角相等平行四边形的邻角互补 平行四边形的对角线互相平分B AC D边两组对边分别平行 两组对边分别相等四、定理的应用(精讲例题)例:已知:E 、F 是平行四边形ABCD 对角线AC 上的两点,并且AE=CF 。

求证:四边形BFDE 是平行四边形让学生展开讨论,口述要点,共得此例的五种证法,其中“添加对角线构造使用判定定理3的条件”的讲明方法最为简捷。

平行四边形的判定(一)

平行四边形的判定(一)

平行四边形的判定(一)一、教学目的和要求使学生掌握平行四边形的判定定理,并理解性质与判定的区别与联系。

二、教学重点和难点重点:平行四边形的判定定理;难点:掌握平行四边形的性质和判定的区别及熟练应用。

三、教学过程(一)复习、引入 提问:1. 什么叫平行四边形?平行四边形有什么性质?(学生口答,教师板书)⎪⎪⎪⎩⎪⎪⎪⎨⎧⇒对角线互相平分邻角互补两组对角分别相等两组对边分别相等两组对边分别平行平行四边形2. 将以上的性质定理,分别用命题形式叙述出来。

(如果……那么……)根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?(二)新课(板书课题)定理1:两组对边分别相等的四边形是平行四边形。

已知:四边形ABCD 中,AB =CD ,AD =BC 求证:四边ABCD 是平行四边形。

分析:证明:连结BD 在中和CDB ABD ∆∆么?)是平行四边形。

(为什四边形ABCD CB//AD ,CD //AB ,,CDB ABD DB BD ,CB AD ,CD AB ∴∴∠=∠∴∠=∠∠=∠∠=∠∴∆≅∆∴===43214321定理2:一组对边平行且相等的四边形是平行四边形。

已知:四边形ABCD 中,CD AB 平行且等于求证:四边形ABCD 是平行四边形。

定定理1证明。

例1 已知:如图3连结BE 、DF求证:21∠=∠分析:ABCD 的性质可得DE//BF ,又AD =BC ,E 、F 为中点则有DE =BF ,根据“一组对边平行且相等的四边形是平行四边形”的判定定理,可得四边形EBFD 是平行四边形。

证明由学生完成。

提问:此题还有什么方法,证明四边形BEDF 是平行四边形。

学生会想到证明CDF ABE ∆≅∆,得到BE =DF ,利用两组对边相等证明四边形是平行四边形。

但应指出第二种方法较第一种方法繁,也就是说要找出较简捷的证法,准确地使用判定定理,就要先分析图形的性质,及所具备的条件;比如证四边形BFDE 是平行四边形,已知ED//BF 了,所以再考虑第二个条件就应该是:ED =BF ,或BE//DF ;显然证明ED =BF ,比证明BE//DF 要方便。

鲁教版数学八年级上册5.2《平行四边形的判定》教学设计1

鲁教版数学八年级上册5.2《平行四边形的判定》教学设计1

鲁教版数学八年级上册5.2《平行四边形的判定》教学设计1一. 教材分析《平行四边形的判定》是鲁教版数学八年级上册第五章第二节的内容,本节课主要让学生掌握平行四边形的判定方法,理解平行四边形的性质,并能够运用这些性质解决实际问题。

教材通过引入平行四边形的定义和性质,引导学生探究平行四边形的判定方法,培养学生的逻辑思维能力和空间想象能力。

二. 学情分析学生在学习本节课之前,已经掌握了三角形、四边形的性质和判定方法,具备一定的基础知识。

但学生对平行四边形的理解和应用能力还有待提高,因此,在教学过程中,需要注重引导学生从实际问题中抽象出平行四边形的性质,并通过实践活动提高学生的操作能力和解决问题的能力。

三. 教学目标1.知识与技能:使学生掌握平行四边形的判定方法,理解平行四边形的性质,并能运用这些性质解决实际问题。

2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的逻辑思维能力和空间想象能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和克服困难的勇气。

四. 教学重难点1.重点:平行四边形的判定方法。

2.难点:平行四边形性质的应用。

五. 教学方法1.情境教学法:通过生活实例引入平行四边形的概念,激发学生的学习兴趣。

2.问题驱动法:引导学生提出问题,并自主探究、解决问题。

3.合作学习法:学生进行小组讨论,培养学生的团队合作意识。

4.实践操作法:让学生动手操作,提高学生的操作能力和解决问题的能力。

六. 教学准备1.教具:多媒体课件、黑板、粉笔。

2.学具:每人一份平行四边形的模型、卡片。

七. 教学过程1.导入(5分钟)利用多媒体课件展示生活中常见的平行四边形实例,如电梯、窗户等,引导学生关注平行四边形的特点,激发学生的学习兴趣。

2.呈现(10分钟)呈现平行四边形的定义和性质,引导学生观察、思考,并总结出平行四边形的判定方法。

3.操练(10分钟)分组进行实践活动,每组发放一份平行四边形的模型和卡片,让学生通过实际操作,验证平行四边形的判定方法。

平行四边形的判定(1

平行四边形的判定(1

“6.2平行四边形的判定(1)”教学设计设计者:海德学校王倩老师一、教材分析平行四边形判定是北师大版八年级下册教材的第六章第二节内容,这部分内容既对平行四边形的定义和性质加以回顾,又对前面学过的全等三角形进行延伸. 同时还为后续学习特殊平行四边形奠定基础,在教学上起着“承上启下”的作用,目的是培养学生简单的推理能力和图形迁移能力.本节内容是平行四边形判定的第一课时,主要探究与边有关的判定方法.二、学情分析对于平行四边形,学生小学阶段就接触过,对其有直观的感知和认识,进入初中阶段,八年级下半学期,学生已经学习了全等三角形、平行线等一些基本几何图形的定义,性质和判定,初步经历了猜想、证明等研究过程,获得了一定的探索图形性质和判定的活动经验,学生的抽象思维能力、逻辑推理能力已经慢慢形成,所以对于平行四边形的研究可以考虑采用类比的方式进行教学设计,同时,在学习过程中,激发学生的探究欲望和合作交流能力.三、教学目标1.经历平行四边形判别条件的探索过程,发展学生的合情推理意识;2.探索并证明平行四边形的判定定理,培养学生的逻辑思维能力和推理论证能力;3.掌握平行四边形的判定条件,体会归纳、类比、化归的数学思想.四、教学重点难点重点:探究平行四边形的判定定理的过程需要经过对逆命题的猜想、图形验证、逻辑证明三个过程,判定定理的探究过程是本节课的重点.难点:学习完平行四边形的判定后,根据题目给出的条件,如何灵活准确的选择性质定理和判定定理,是本节的难点.五、教学过程(一)复习回顾,引出课题1.平行四边形的定义是什么?2.平行四边形还有哪些性质?3.研究几何图形的一般思路?设计意图:学生已经学习过关于平行四边形的定义和性质,通过小问题引发学生思考,引出课题.(二)互逆入手,提出猜想问题1:怎样判定一个四边形是否是平行四边形呢?当然,我们可以根据平行四边形的原始定义:两组对边分别平行的四边形是平行四边形加以判定.那么是否存在其他的判定方法呢?由研究几何图形的一般思路,写出性质的逆命题,以上逆命题是否正确呢?给出猜想,并加以证明.设计意图:类比以前研究过的全等三角形、平行线、直角三角形等图形的判定方法,写出性质的逆命题,给出猜想,并加以证明,本环节注重让学生体会类比的数学思想,发展学生的合情推理能力,为下节课的学习作出铺垫.(三)互逆入手,提出猜想猜想1:两组对边分别相等的四边形是平行四边形.已知:如图,四边形ABCD中,AB=CD,AD=CB.求证:四边形ABCD是平行四边形.证明:如图,连结BD.在△ABD和△CDB中,∵ AB=CD,AD=CB,BD=DB,∴ △ABD≌△CDB,∴ ∠1=∠2,∠3=∠4,∴ AB∥CD , AD∥CB,∴ 四边形ABCD是平行四边形.【总结】平行四边形定理1:两组对边分别相等的四边形是平行四边形.符号语言:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形.问题2:从边的角度,如果弱化条件,只有一组对边满足什么条件,可以构成平行四边形呢?猜想2:两组对边分别相等的四边形是平行四边形.已知:如图,四边形ABCD中,AB=DC,AB∥CD.求证:四边形ABCD是平行四边形.证明:如图(2),连接AC.∵AB∥CD,∴∠1=∠2.又∵AB=CD,AC=CA,∴△ABC≌△CDA.∴BC=DA.∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).【总结】平行四边形定理2:一组对边平行且相等的四边形是平行四边形.符号语言:∵AB=DC,AB∥CD,∴四边形ABCD是平行四边形.问题3:从边的角度,我们现在学了多少种平行四边形的判定方法?判定方法1(定义法):两组对边分别平行的四边形是平行四边形.判定方法2:两组对边分别相等的四边形是平行四边形.判定方法3:一组对边平行且相等的四边形是平行四边形.问题4:在研究平行四边形的时候,仍然采用了怎样的研究思路?问题5:在探究和证明过程中,体现了哪些数学思想?设计意图:让学生经历猜想证明的过程,发展学生演绎推理能力.本环节注重学生的自主合作交流能力,体会归纳、化归的数学思想. (四)运用判定,解决问题【例题1】如图,在平行四边形ABCD 中,点E ,F 分别在BC ,AD 的中点,求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴AD =BC ,AB =DC ,∠B =∠D . ∵点E ,F 分别在BC ,AD 的中点,∴AF =DF =21AD ,CE =BE = 21BC .∴AF =CE , BE =DF .∴△ABE ≌△CDF (SAS )∴AE =CF . 问题6:请同学们思考,还有其它方法吗?证明:∵四边形ABCD 是平行四边形, ∴AD =BC ,AD ∥BC .∴AF =21AD ,CE = 21BC .∴AF =CE ,AF ∥CE .∴四边形AECF 是平行四边形.变式:在上题中,如果将“点E ,F 分别在BC ,AD 的中点”改为“点E ,F 分别在BC ,AD 上,且BE =DF ”,结论是否仍然成立?请说明理由.【例题2】已知:如图,在四边形ABCD 中,AB ∥CD ,E ,F 为对角线AC 上两点,且AE =CF ,DF ∥BE .求证:四边形ABCD 为平行四边形. 证明:∵AB ∥CD ,∴∠DCA =∠BAC∵DF ∥BE ,∴∠DFA =∠BEC . ∴∠AEB =∠DFC ∵ AE =CF ,∴△AEB ≌△CFD (ASA )∴AB =CD ∵AB ∥CD ,∴四边形ABCD 为平行四边形.设计意图:在例题中,让学生学会分析条件,运用平行四边形判定定理,进行相关证明,体会一题多变,一题多解的数学学习方法.DBF E(五)巩固练习,拓展提升【练习1】如图,在平行四边形ABCD 中,已知AE 、CF 分别是∠DAB 、∠BCD 的角平分线,试证明四边形AFCE 是平行四边形.证明:∵在平行四边形ABCD 中,AE 、CF 分别是∠DAB 、 ∠BCD 的角平分线∴∠B =∠D ,AB =CD , AD ∥BC∠BAE =∠DCF=21∠DAB =21∠BCD .∴△ABE ≌△CDF (ASA ). ∴BE =DF . ∴AF =CE .∵AF ∥CE ,∴四边形AFCE 是平行四边形【练习2】如图,已知△ABC 是等边三角形,E 为AC 上一点,连接BE .将△BEC 旋转,使点C 落在BC 上的点D 处,点B 落在BC 上方的点F 处,连接AF .求证:四边形ABDF 是平行四边形.证明:∵△ABC 是等边三角形, ∴AB =BC ,∠ABC =∠ACB =60°. ∵△FCD 由△BEC 旋转得到, ∴CD =EC ,FD =BC∴FD =AB , △CDE 是等边三角形. ∴∠EDC =60°,∴∠EDC =∠ABC . ∴FD ∥AB ∴四边形ABDF 是平行四边形.设计意图:学生通过自主探索,获得新知,本环节加以应用,巩固新知,题目设计层层递进,发展学生的逻辑思维能力. (六)总结升华DFABCE设计意图:引导学生归纳本节课的知识要点和运用的数学思想方法,使学生慢慢养成总结知识的学习习惯.(七)自主作业完成《平行四边形判定(1)》配套练习.必做:基础题(1-7题).选做:拓展题(8题).设计意图:让学生课后对本节内容进行巩固练习,作业设计采用分层方法,满足各层次学生需求。

平行四边形的判定(一)教案

平行四边形的判定(一)教案

平行四边形的判定(一)教案罗田县严家坳中学朱格新教案背景1、面向学生:八年级学科:数学2、课时:13、课前准备:(1)教师准备:制作多媒体课件;(2)学生准备:每个学习小组准备一个钉子,4根木条:两根20cm的,两根10cm的。

教材地位和作用本节课是平行四边形的判定的第一课时,其探究的主要内容是“两组对边分别相等的四边形是平行四边形”,以及“对角线互相平行的四边形是平行四边形”这两种判定方法。

它是在学习了三角形的相关知识、平行四边形的定义、性质的基础上进行学习的,是平行线和全等三角形知识的应用和延伸,对以后矩形、菱形、正方形、梯形等其它特殊四边形的判定学习奠定基础,起着承前启后的作用。

对于加强学生逻辑推理能力和思维的严密性有积极意义。

是学生运用化归思想、数学建模思想的良好素材,培养了学生的创新思维和探索精神。

教学目标(一)知识技能目标1、经历并了解平行四边形判别方法的探索过程,使学生逐步掌握说理的基本方法。

2、探索并掌握平行四边形的判别方法,能根据判别方法进行有关的应用。

(二)方法过程目标1、通过实验、观察、猜想、验证、推理、交流等探究活动,进一步培养学生的动手能力、合情推理能力。

2、在运用平行四边形的判定方法解决问题的过程中,体验教学活动充满着探索性和挑战性,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力。

(三)情感态度价值观目标经过自主探索与合作交流,敢于发表自己的观点,养成一种勇于探索、勇于质疑的精神及严密的数学逻辑推理论证的科学态度;体验数学活动来源于生活又服务于生活,提高学生的学习兴趣。

教学重点、难点1、教学重点:平行四边形判定方法的探究、运用以及平行四边形的性质和判定的综合运用。

2、教学难点:通过动手操作、画图,猜测出平行四边形的判定方法,并给予严密的推理论证,以及平行四边形的性质和判定的综合运用;领悟“实验操作——合理的猜测——严密的推理论证——得出数学结论——运用数学结论”的数学探究方法。

平行四边形的判定(一)

平行四边形的判定(一)

人教版八年级数学下册平行四边形定的判定(一)教案设计单位:湖北省咸安区马桥中学主讲人:刘于候一、新课引入有一块平行四边形的玻璃块,小明不小心碰碎了一部分,聪明的他很快将原来的平行四边形玻璃块复原,你知道他用的是什么方法吗?二、学习目标1、掌握平行四边形的4种判定方法2、培养学生用类比、联想及数形结合的思维方法来研究问题三、温故知新1、平行四边形的性质(1)、边:两组对边分别平行且相等(2)、角:两组对角分别相等:邻角互补(3)、对角线:对角线相互平分知识点一平行四边形的判定定理2、平行四边形性质的逆命题:(1)两组对边分别平行的四边形是平行四边形(2)两组对边分别相等的四边形是___平行四边形______;(3)两组对角_相等______的四边形是_平行四边形________;(4)对角线____相互平分____的四边形是_____平行四边形____猜想:这些逆命题成立吗?可否成为平行四边形的判别方法?3、根据平行四边形的定义证明以上命题(2):两组对边分别相等的四边形是平行四边形。

已知:如图,在四边形ABCD中,AB=_DC__,AD=__BC_。

求证:四边形ABCD是__平行四边形_______想一想:以上命题(3)怎么证明?命题(3):两组对角分别相等的四边形是平行四边形。

已知:如图,四边形ABCD,∠A=_∠C___,∠B=∠_D___,求证:四边形ABCD是平行四边形___平行四边形___4、利用三角形全等,根据平行四边形的定义来证明以上命题(4):对角线相互平分的四边形是平行四边形。

已知:如图,在四边形ABCD中,AC、BD相交于点O,且OA=OC____,OB=_OD___。

求证:四边形ABCD是_平行四边形_________。

四、知识应用知识点二平行四边形的判定定理的应用例3 如图,口ABCD的对角线AC、BD且AE=CF。

求证:四边形BFDE练一练 如图,口ABCD 的对角线AC 、BD 相交于点O ,E 、F 分别是OA ,OC 的中点。

平行四边形的判定(1)教学设计

平行四边形的判定(1)教学设计

,


教 学 流 程设 计
,
( 一 ) 回顾 旧 知 导 人新课
信 息整 合促思维 发展 一方 面 教 师 通过 QQ 群发 布任务 分 〔
: :

教 师 提 出问题
性 质?
2
.
:
1
.
什 么 样 的 四 边形 是平行 四 边形 ? 它有 哪些

给学 生
在学 生动手制作 平行 四 边形之 后 大胆猜 想平行 四 边形的
分 析 教学 目标 教学 流 程 设 计 教学特 色 等 环 节






:

,
=
教材 内容
、 。
: 求证 四 边形
BF D E
是平行 四 边形
, , 、
平 行 四 边形 是 在学 生 掌 握 了平行线 三 角 形 以 及 平行 四 边形
的性 质等平 面几 何 知 识 的基 础 上 讲 授 的
, 、

口 答 的形 式 完 成
,
变式 练 习 采
在 内 的大 多 数 几 何 概念 及 定 理 经 逐 步形 成


抽 象 思维 能力 逻 辑 推 理 能 力 已
、 ,

实物 投 影 电 子 白板展 示 交 流 )


让 学 生 在教 师 的引导下 自主 合作探究判定 方 法 把

( 四 ) 课 堂 小 结 反思收 获 师 问学 生 学 完 本节 课 有 什 么 收 获 ? 学 生独 立 思 考 自我 反思
,
.
过点
, 、
0
,
且与 A B 交 于
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平行四边形的判定1》教案
一、教学目的
1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.
2.会综合运用平行四边形的判定方法和性质来解决问题.
3.培养用类比、逆向联想及运动的思维方法来研究问题.
二、重点、难点
1.重点:平行四边形的判定方法及应用.
2.难点:平行四边形的判定定理与性质定理的灵活应用.
三、例题的意图分析
本节课安排了3个例题,例1是是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质
来解决问题.例3是一道拼图题,教学时,可以让学生动起来,
边拼图边说明道理,即可以提高学生的动手能力和学生的思维
能力,又可以提高学生的学习兴趣.如让学生再用四个不等边
三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由.
四、课堂引入
1.欣赏图片、提出问题.
展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?
2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?
让学生利用手中的学具——硬纸板条通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:
(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?
(2)你怎样验证你搭建的四边形一定是平行四边形?
(3)你能说出你的做法及其道理吗?
(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?
(5)你还能找出其他方法吗?
从探究中得到:
平行四边形判定方法1两组对边分别相等的四边形是平行四边形.
平行四边形判定方法2对角线互相平分的四边形是平行四边形.
五、例习题分析
例1已知:如图ABCD的对角线AC、BD交于点O,E、F
是AC上的两点,并且AE=CF.
求证:四边形BFDE是平行四边形.
分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明.
(证明过程参看教材)
问;你还有其它的证明方法吗?比较一下,哪种证明方法简单.
例2(补充) 已知:如图,A′B′∥BA,B′C′∥CB,
C′A′∥AC.
求证:(1) ∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠
C′;
(2) △ABC的顶点分别是△B′C′A′各边的中点.
证明:(1) ∵A′B′∥BA,C′B′∥BC,
∴四边形ABCB′是平行四边形.
∴∠ABC=∠B′(平行四边形的对角相等).
同理∠CAB=∠A′,∠BCA=∠C′.
(2) 由(1)证得四边形ABCB′是平行四边形.同理,四边形ABA′C是平行四边形.
∴AB=B′C,AB=A′C(平行四边形的对边相等).
∴B′C=A′C.
同理B′A=C′A,A′B=C′B.
∴△ABC的顶点A、B、C分别是△B′C′A′的边B′C′、
C′A′、A′B′的中点.
例3(补充)小明用手中六个全等的正三角形做拼图游戏时,拼
成一个六边形.你能在图中找出所有的平行四边形吗?并说说你的
理由.
解:有6个平行四边形,分别是ABOF,ABCO,BCDO,CDEO,DEFO,
EF AO.
理由是:因为正△ABO≌正△AOF,所以AB=BO,OF=F A.根据“两组对边分别相等的四边形是平行四边形”,可知四边形ABCD是平行四边形.其它五个同理.。

相关文档
最新文档