数值分析练习题加答案(二)
数值分析试题与答案

一、单项选择题(每小题3分,共15分)1. 和分别作为π(de)近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y (de)拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x =B .()00l x =0,()111l x =C .()00l x =1,()111l x = D .()00l x =1,()111l x =4. 设求方程()0f x =(de)根(de)牛顿法收敛,则它具有( )敛速.A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到(de)第3个方程( ).A .232x x -+=B .232 1.5 3.5x x -+=C .2323x x -+=D .230.5 1.5x x -=-二、填空题(每小题3分,共15分)1. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .2. 一阶均差()01,f x x =3. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C = 4. 因为方程()420x f x x =-+=在区间[]1,2上满足 ,所以()0f x =在区间内有根.5. 取步长0.1h =,用欧拉法解初值问题()211y y yx y ⎧'=+⎪⎨⎪=⎩(de)计算公式 .0,1,2分 人三、计算题(每题15分,共60分)1. 已知函数211y x =+(de)一组数据:求分段线性插值函数,并计算()1.5f (de)近似值.1. 解 []0,1x ∈,()1010.510.50110x x L x x --=⨯+⨯=---[]1,2x ∈,()210.50.20.30.81221x x L x x --=⨯+⨯=-+--所以分段线性插值函数为()[][]10.50,10.80.31,2x x L x x x ⎧-∈⎪=⎨-∈⎪⎩ ()1.50.80.3 1.50.35L =-⨯=2. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式;(2) 对于初始值()()00,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X (保留小数点后五位数字).1.解 原方程组同解变形为1232133120.10.20.720.10.20.830.20.20.84x x x x x x x x x =++⎧⎪=-+⎨⎪=++⎩雅可比迭代公式为()()()()()()()()()1123121313120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m =高斯-塞德尔迭代法公式()()()()()()()()()1123112131113120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩ (0,1...)m =用雅可比迭代公式得()()10.72000,0.83000,0.84000X =用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =3. 用牛顿法求方程3310x x --=在[]1,2之间(de)近似根(1)请指出为什么初值应取2 (2)请用牛顿法求出近似根,精确到. 3. 解()331f x x x =--,()130f =-<,()210f =>()233f x x '=-,()12f x x ''=,()2240f =>,故取2x =作初始值4. 写出梯形公式和辛卜生公式,并用来分别计算积分111dxx+⎰.四、证明题(本题10分)确定下列求积公式中(de)待定系数,并证明确定后(de)求积公式具有3次代数精确度()()()()1010hhf x dx A f h A f A f h --=-++⎰证明:求积公式中含有三个待定系数,即101,,A A A -,将()21,,f x x x =分别代入求一、 填空(共20分,每题2分)1. 设2.3149541...x *=,取5位有效数字,则所得(de)近似值x= .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商 ()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X .4.求方程 21.250x x --= (de)近似根,用迭代公式 1.25x x =+,取初始值 01x =, 那么 1______x =。
数值分析期末考试和答案

数值分析期末考试和答案一、单项选择题(每题2分,共20分)1. 在数值分析中,下列哪个方法用于求解线性方程组?A. 插值法B. 迭代法C. 直接法D. 拟合法答案:C2. 以下哪个数值方法是用于求解非线性方程的?A. 高斯消元法B. 牛顿迭代法C. 线性插值法D. 拉格朗日插值法答案:B3. 在数值积分中,梯形法则的误差与下列哪个因素无关?A. 被积函数的二阶导数B. 积分区间的长度C. 积分区间的划分数量D. 被积函数的一阶导数答案:D4. 以下哪个数值方法是用于求解常微分方程的?A. 欧拉方法B. 牛顿迭代法C. 拉格朗日插值法D. 高斯消元法答案:A5. 在数值分析中,下列哪个方法用于求解特征值问题?A. 高斯消元法B. 幂迭代法C. 牛顿迭代法D. 梯形法则答案:B6. 以下哪个数值方法是用于求解线性最小二乘问题的?A. 高斯消元法B. 梯形法则C. 正交分解法D. 牛顿迭代法答案:C7. 在数值分析中,下列哪个方法用于求解非线性方程组?A. 高斯消元法B. 牛顿迭代法C. 线性插值法D. 欧拉方法答案:B8. 在数值分析中,下列哪个方法用于求解偏微分方程?A. 有限差分法B. 牛顿迭代法C. 线性插值法D. 梯形法则答案:A9. 在数值分析中,下列哪个方法用于求解优化问题?A. 高斯消元法B. 梯形法则C. 牛顿迭代法D. 单纯形法答案:D10. 在数值分析中,下列哪个方法用于求解插值问题?A. 高斯消元法B. 梯形法则C. 牛顿迭代法D. 拉格朗日插值法答案:D二、填空题(每题2分,共20分)1. 在数值分析中,求解线性方程组的直接法包括______消元法和______消元法。
答案:高斯;LU2. 牛顿迭代法的收敛速度是______阶的。
答案:二3. 梯形法则的误差与被积函数的______阶导数有关。
答案:二4. 欧拉方法是一种求解______阶常微分方程的数值方法。
答案:一5. 幂迭代法是求解______特征值问题的数值方法。
数值分析课后习题答案

0 1
0 10 1 1 0 0 0 1
0 0 12 1 1 2 0 0 0
1 2
0 0 0 1 1 0
1 2
1 2
1 2
1
0 0 0 1 0
1 2
1 2
0
1 2
1 2
0
0
0
341 1 1
2-5.对矩阵A进行LDLT分解和GGT分解,并求解方程组
Ax=b,其中
16 4 8
1
A 4 5 4 , b 2
8 4 22
3
解
16 A 4
4 5
84
44 11
2-3(1).对矩阵A进行LU分解,并求解方程组Ax=b,其中
2 1 1 A1 3 2
4 ,b6
1 2 2
5
解
2 A 1
1 3
1 2
2 11
22
1
5 2
1
3 21来自,所以 A12
1
2 1 1
5 3
2-2(1).用列主元Gauss消元法解方程组
3 2 6x1 4 10 7 0x2 7 5 1 5x3 6
解
3 2 6 4 10 7 0 7 10 7 0 7
r1r2
消元
10 7 0 7 3 2 6 4 0 0.1 6 6.1
r=0.5101-n/3.162…<0.5101-n/3<0.01% 因此只需n=5.即取101/2=3.1623
数值分析习题含答案

x1 )
f (x0)
(x
x 0 )( x x0 x1
x1 )
f ' ( x0 )
(x ( x1
x0)
2 2
x0 )
f ( x1 )
R ( x)
其中 R(x) 由以下计算得到: 构造辅助函数:
(t ) f (t ) N 2 (t ) (t (x x0 ) (t x0 ) ( x
2 2
x1 ) x1 )
f [ 2 ,2 ] =-2089 ,
0 1 2 7
0 1 7
f (x)
M ,
x
[ a , b ] ,证明:在任意相邻两节点间
R1 ( x )
1 8
Mh
2
。
x xi x xi M
1
f ( ) R1 i ( x ) 2 M 8 h 2,
h ,
2
x
8 ,n
[ xi , xi
1
]
R1 ( x )
max R1 i ( x )
1 2
s
2
[( x
xi
1
))( x
x
i
1 2
)( x
x i )]
e
4
h
3
[ s( s
1)( s
1)] 24
3 9
e h
4
3
10
6
3!
8
h
1 . 317
则用二次插值的步长应:
h
0 .6585
10
2
2-6 对区间 [a,b] 作步长为 h 的剖分,且 做线性插值,其误差限为 证明:区间上的误差限: 误差限: 2-7 设 f ( x ) 解: 自变量 1 2
数值分析第二章答案

1.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。
解:0120121200102021101201220211,1,2,()0,()3,()4;()()1()(1)(2)()()2()()1()(1)(2)()()6()()1()(1)(1)()()3x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------==-+-- 则二次拉格朗日插值多项式为220()()k k k L x y l x ==∑0223()4()14(1)(2)(1)(1)23537623l x l x x x x x x x =-+=---+-+=+- 5设[]2(),f x Ca b ∈且()()0,f a f b ==求证: 21m ax ()()m ax ().8a x b a x bf x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为10101010()()()x x x x L x f x f x x x x x --=+-- =()()x bx af a f b a b x a --=+--1()()0()0f a f b L x ==∴= 又 插值余项为1011()()()()()()2R x f x L x f x x x x x ''=-=--011()()()()2f x f x x x x x ''∴=--[]012012102()()1()()21()41()4x x x x x x x x x x b a --⎧⎫≤-+-⎨⎬⎩⎭=-=- 又 ∴21m ax ()()m ax ().8a x b a x bf x b a f x ≤≤≤≤''≤- 16.求一个次数不高于4次的多项式P (x ),使它满足(0)(0)0,(1)(1)0,(2)0P P P P P ''=====解:利用埃米尔特插值可得到次数不高于4的多项式0101010,10,10,1x x y y m m ======11300201001012()()()()(12)()(12)(1)j j j j j j H x y x m x x x x xx x x x x x x αβα===+--=---=+-∑∑210110102()(12)()(32)x x x x x x x x x x x α--=---=-2021()(1)()(1)x x x x x xββ=-=-22323()(32)(1)2H x x x x x x x ∴=-+-=-+设22301()()()()P x H x A x x x x =+--其中,A 为待定常数3222(2)1()2(1)P P x x x Ax x =∴=-++-14A ∴= 从而221()(3)4P x x x =-19.求4()f x x =在[,]a b 上分段埃尔米特插值,并估计误差。
数值分析复习题参考答案

x1 )
h
2
x 0 x x1 6
4
所以, R x
h 10
2
8
解得, h 0 . 000383
4. 习题(第二章) 7
5. 习题(第二章) 9
6. 习题(第二章) 11
7. 习题(第二章) 13
8. 习题(第二章) 14
9. 习题(第二章) 20
10. 习题(第四章) 1
2
, k 0 ,1, 2 2 3 2a 3x
3
此时, ( x )
2x a 3x
, '( x) 2a
所以, ' ( 3 a )
2 3
3(
3
a)
3
0 1, 所以该迭代公式收敛。
21. 习题(第七章) 13
本题没有给出精度要求, 但x3与x2之间的差为 已经很小了,足以满足 精度。
[ f ( x n , y n ) f ( x n 1 , y n 1 )]
( 3 ) 基于 Taylor 展开法:
y ( x n 1 ) y ( x n h ) y ( x n ) y ' ( x n ) h
h
2
2
y ''( xn )
取 y ( x n 1 ) y ( x n ) y ' ( x n ) h ,即 y n 1 y n hf ( x n , y n )
k 个点的值
求解隐式:先用欧拉公 求解多步法:单步法开
式求得一个初步的近似 表头,然后预报
修正 校正 修正。
( 其实只要给出公式会用
就行!! )
数值分析第二章答案

∑
n
i=1
ln x i = 0
θ
∧
= −
n
∑ ∑
n
n
i=1
ln x i n
θ
= =
解之得:
i=1
ln x i
(2)母体 X 的期望
E (x) =
∫
+∞ −∞
xf ( x ) d x =
∫
1 0
θ xθ dx =
θ θ +1
而样本均值为:
1 n X = ∑ xi n i =1 令E ( x) = X 得 θ =
x e 2σ 1 n
d x = 2 x ) =
∫
+ ∞ 0
x 2σ
e
−
x σ
d x = − x e ) = 1 ⋅ nσ n
−
x σ
+ ∞
+
0
∫
+ ∞ 0
e
−
x σ
d x =
E (σ ) = E (
∑
n
i=1
i
1 n
∑
n
E ( x
i=1
i
= σ
所以
σ=
∧
1 n ∑ xi σ n i=1 为 的无偏估计量。
∧
X 1− X
5.。解:其似然函数为:
L (σ ) = ∏
i =1
n
1 ⋅e 2σ
−
xi σ
=
1 ⋅e (2σ ) n 1 σ
n i =1
−
1 σ
∑ xi
i =1
n
ln L (σ ) = − n ln(2σ ) − 得: σ =
∧
数值分析第二次作业答案

练习1 已知410=x,211=x,432=x。
(1)推导以这3点作求积节点在[0,1]上的插值求积公式;(2)指明该求积公式所具有的代数精度; (3)用所求的公式计算dxx ⎰12解:按题设原式是插值型的,故有32434121414321100=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=⎰dx x x A同样,容易计算出3202==A A ,于是有求积公式⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛≈⎰433221314132)(1f f f dx x f由于原式含有3个节点,按定理1它至少有2阶精度。
考虑到其对称性,可以猜到它可能有3阶精度。
事实上,对于3)(x x f =原式左右两端相等。
此外,容易验证原式对4)(x x f =不准确,故所构造的求积公式确实有3阶精度。
(3)31]43221412[31222102=⎪⎭⎫⎝⎛⨯+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⨯⨯≈⎰dx x31432141214341101-=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=⎰dx x x A2. 取7个等距节点(包括区间端点)分别用复化梯形公式和复化辛甫生公式求积分2lnxdx的近似值(取6位小数)解:(1)复化梯形公式])(2)()([2)(11∑⎰-=++=≈n k k ban x f b f a f h T dx x f385139.0])(2)2()1([1211616=++=∴∑-=k k x f f f T(2)复化辛甫生公式])(2)(4)()([6)(11021∑∑⎰-=-=++++=≈n k k n k k n bax f xf b f a f h S dx x f ∴ ])(2)(4)2()1([3161212213∑∑==++++⨯=k k k k x f xf f f S≈0.386 287而 38629436.0ln21=⎰xdx3. 用梯形格式求解初值问题⎩⎨⎧=≤<++-='2)1(6.,y x x y y )1(1 1 ,(取步长h =0.2,小数点后至少保留6位) 解:梯形格式为)],(),([2111+++++=n n n n n n y x f y x f h y y ,于是⇒++-+++-+=+++ 1 1 ,)]()[(2111n n n n n n x y x y h y y),(222112 +++++-=++n n n n x x hh y hh y,2,1,0=n取步长h =0.2,由初值20=y 计算得147709.2)6.1(069422.2)4.1(018182.2)2.1(321=≈=≈=≈y y y y y y4. 对初值问题⎩⎨⎧=>=+'1)0(00y x y y , 试证明用欧拉预-校格式所求得的近似解为,2,1,022, )-(1=+=n hh y nn (其中h 为步长)证明: ,2,1,0)],(),([2),(1111 =⎪⎩⎪⎨⎧++=+=++++n y x f y x f hy y y x hf y y n n n n n n n n n n 将y y x f -=) ( ,代入,于是有⎪⎩⎪⎨⎧--+=-=+++)(2)1(111n n n n n n y y hy y y h y 整理后,有)-(1n n y hh y 221+=+反复递推得 )-(101212y hh y n n +++=由1)0(0==y y ,故得,2,1,022, )-(1=+=n hh y nn。
数值分析答案第二章参数估计习题

f(x)= () { > − ex λ ) λ 0λ ( x解: λe , x ≥ 0
第二章 参数估计 1.设母体X具有负指数分布,它的分布密度 −λ x 为 λe , x ≥ 0 f(x)= 0, x < 0 其中 λ > 0 。试用矩法求的估计量。 解:x e(λ ) f(x)=
0
1
θ −1
dx =
θ θ +1
X 估计EX
X ∴θ = 1− X
1 e 5.设母体X的密度为 f ( x) = 2σ
−
x
σ
, −∞ < x < ∞
试求 σ 的最大似然估计;并问所得估计量是 否的无偏估计. ∑x x n 解: n 1 −σ 1 n − σ
i
L = ∏ f ( xi ) = ∏
i =1 i =1
ln L = n ln θ + (θ − 1)∑ ln xi
i
0, 其他 n
i =1
( θ >0 )
n i =1
d ln L n ^= − n = + ∑ ln xi = 0,∴θ θ i dθ ∑ ln xi
i
2矩法估计
EX =
用
X 用估计EX
+∞
−∞
∫ x ⋅ f ( x)dx = ∫ x ⋅θ ⋅ x
2
给定置信概率1−α 即
P ( x − uα
2
σ/ n
,有 uα ,使
2
P{ u ≤ uα } = 1 − α
高等数值分析第二章答案

第二章习题参考答案1.解: 由于20Ax b−≥,极小化2b Ax −与极小化22Ax b −是等价的。
令22()(,)(,)2(,)x Ax b Ax Ax b b Ax b ϕ=−=+−,对于任意的n R y x ∈,和实数α,)()(),()()(,*222*2****x Ay a x Ay Ay a x ay x b Ax x ϕϕϕϕ≥+=+=+=则有满足若这表示处达到极小值。
在*)(x x ϕ反之,若必有处达到极小,则对任意在nR y x ay x ∈+*)(ϕ0),(2),(2),(20)(**0*=−=+−=+=Ay b Ax Ay Ay a Ay b Ax daay x d a 即ϕ故有 b Ax =*成立。
以上证明了求解,22b Ax b Ax −=等价于极小化即。
等价于极小化2b Ax b Ax −= 推导最速下降法过程如下:),/(),(0),(),(,0),,2)(222)()(11k T k T k T k k T k T k T k k T k k k T k k kT k T k T T x x k r AA r AA r AA r a r AA r AA a r AA r r aA x da dx a r aA x x r A Ax b A Ax A b A x grad x x k==+−=++==−=−=−++=最终得到得出(由取得极小值。
使求出取的负梯度方向,且下降最快的方向是该点在ϕϕϕ给出的算法如下:1))(000Ax b A r A R x T T n −=∈,计算给定; 2)L ,2,1,0=k 对于)转到否则数。
为一事先给定的停机常则停止;其中若2),/(),(10,11kT k k k k T k k k k k k k k k r A p Ax b r r A a x x Ap Ap p p a k k r =−=+==+=>≤−−εε2.证明 1) 正定性由对称正定矩阵的性质,(),0x Ax ≥(当且仅当x =0时取等号),所以 ()12,0Axx Ax =≥(当且仅当x =0时取等号)2) 齐次性()()()121122,(),,AA xx A x x Ax x Ax x αααααα⎡⎤====⎣⎦3)o1方法(一)A 是对称正定矩阵,得到(,())0x y A x y λλ++≥,把它展开如下2(,)(,)(,)(,)0y Ay x Ay y Ax x Ax λλλ+++≥考虑到(,)(,)(,)x Ay Ax y y Ax ==,把上式看成关于λ的一元二次方程,则式子等价于24(,)4(,)(,)0x Ay x Ax y Ay ∆=−≤因此1/21/2(,)(,)(,)x Ay x Ax y Ay ≤所以1/21/221/21/2((,)(,))(,)(,)2(,)(,)(,)(,)2(,)(,)(,)(,)(,)((),())x Ax y Ay x Ax y Ay x Ax y Ay x Ax y Ay x Ay x Ax y Ay x Ay y Ax x y A x y +=++≥++=+++=++两边开平方即可得到AA A x yx y +≤+因此,1/2(,)A x Ax x =是一种向量范数。
数值分析参考答案(第二章)doc资料

证明:
(1)
得证。
+
得证。
14. 求 及 。
解:
若
则
15.证明两点三次埃尔米特插值余项是
解:
若 ,且插值多项式满足条件
插值余项为
由插值条件可知
且
可写成
其中 是关于 的待定函数,
现把 看成 上的一个固定点,作函数
根据余项性质,有
由罗尔定理可知,存在 和 ,使
即 在 上有四个互异零点。
根据罗尔定理, 在 的两个零点间至少有一个零点,
数值分析参考答案(第二章)
第二章插值法
1.当 时, ,求 的二次插值多项式。
解:
则二次拉格朗日插值多项式为
2.给出 的数值表
X
0.4
0.5
0.6
0.7
0.8
lnx
-0.916291
-0.693147
-0.510826
-0.356675
-0.223144
用线性插值及二次插值计算 的近似值。
解:由表格知,
若采用线性插值法计算 即 ,
则
若采用二次插值法计算 时,
3.给全 的函数表,步长 若函数表具有5位有效数字,研究用线性插值求 近似值时的总误差界。
解:求解 近似值时,误差可以分为两个部分,一方面,x是近似值,具有5位有效数字,在此后的计算过程中产生一定的误差传播;另一方面,利用插值法求函数 的近似值时,采用的线性插值法插值余项不为0,也会有一定的误差。因此,总误差界的计算应综合以上两方面的因素。
解:函数 的 展式为
其中
又 是次数为 的多项式
为 阶多项式
为 阶多项式
依此过程递推,得 是 次多项式
数值分析课后部分习题答案

习题一(P.14)1. 下列各近似值均有4个有效数字,300.2,521.13,001428.0***===z y x ,试指出它们的绝对误差和相对误差限.解 *20.001428=0.142810x -=⨯有4个有效数,即4n =,2m =- 由有效数字与绝对误差的关系得绝对误差限为611101022m n --⨯=⨯, 由有效数字与相对误差的关系得相对误差限为(1)3111101022n a ---⨯=⨯; *213.521=0.1352110y =⨯有4个有效数,即4n =,2m =由有效数字与绝对误差的关系得绝对误差限为211101022m n --⨯=⨯, 由有效数字与相对误差的关系得相对误差限为(1)3111101022n a ---⨯=⨯; *12.300=0.230010z =⨯有4个有效数,即4n =,1m =由有效数字与绝对误差的关系得绝对误差限为311101022m n --⨯=⨯, 由有效数字与相对误差的关系得相对误差限为(1)3111101024n a ---⨯=⨯.2.下列各近似值的绝对误差限都是31021-⨯,试指出它们各有几位有效数字.***2.00021,0.032,0.00052x y z ===解 *12.000210.20002110x ==⨯,即1m =由有效数字与绝对误差的关系得 311101022m n --⨯=⨯,即 3m n -=-,所以,2n =;*10.0320.3210y ==⨯,即1m =由有效数字与绝对误差的关系得 311101022m n --⨯=⨯,即 3m n -=-,所以,4n =;*30.000520.5210z -==⨯,即3m =-由有效数字与绝对误差的关系得 311101022m n --⨯=⨯,即 3m n -=-,所以,0n =.4.设有近似数35.2,84.1,41.2***===z y x 且都有3位有效数字,试计算***z y x S +=,问S 有几位有效数字.解 方法一因*1*1*12.41=0.24110, 1.840.18410, 2.350.23510x y z =⨯==⨯==⨯都有3位有效数字,即3n =,1m =,则211|(*)|101022m n e x --≤⨯=⨯,211|(*)|101022m n e y --≤⨯=⨯,211|(*)|101022m n e z --≤⨯=⨯,|(**)||*(*)*(*)|*|(*)|*|(*)|e y z z e y y e z z e y y e z ≈+≤+222112.3510 1.8410 2.0951022---≤⨯⨯+⨯⨯=⨯,221|(***)||(*)(**)|10 2.095102e x y z e x e y z --+≈+≤⨯+⨯1110.259510102--=⨯≤⨯, 又 1***=2.41 1.84 2.350.673410x y z ++⨯=⨯,此时1m =,1m n -=-,从而得2n =.方法一因*1*1*12.41=0.24110, 1.840.18410, 2.350.23510x y z =⨯==⨯==⨯都有3位有效数字,即3n =,1m =,则211|(*)|101022m n e x --≤⨯=⨯,2110(*)2|(*)|=||* 2.41r e x e x x -⨯≤, 211|(*)|101022m n e y --≤⨯=⨯,2110(*)2|(*)|=||* 1.84r e y e y y -⨯≤,211|(*)|101022m n e z --≤⨯=⨯,2110(*)2|(*)|=||* 2.35r e z e z z -⨯≤|(**)||(*)(*)|r r r e y z e y e z ≈+,***|(***)||(*)(**)|******r r rx y z e x y z e x e y z x y z x y z +≈+++2.41 1.84 2.35|(*)||(*)+(*)|2.41 1.84 2.35 2.41 1.84 2.35r rr e x e y e z ⨯≤++⨯+⨯22211110 1.8410 2.35102222.41 1.84 2.35 2.41 1.84 2.35 2.41 1.84 2.35---⨯⨯⨯⨯⨯≤+++⨯+⨯+⨯20.385410-<⨯21102-<⨯,由有效数字与绝对误差的关系得2n =.5.序列{}n y 有递推公式),2,1(,1101 =-=-n y y n n若41.120≈=y (三位有效数字),问计算10y 的误差有多大,这个计算公式稳定吗?解 用0ε表示0y 的误差,由41.120≈=y ,得0=0.0042ε,由递推公式 ),2,1(,1101 =-=-n y y n n ,知计算10y 的误差为810=0.4210ε⨯,因为初始误差在计算的过程中被逐渐的放大,这个计算公式不稳定.习题2 ( P.84)3.证明 0()1nk k l x ==∑,对所有的x其中()k l x 为Lagrange 插值奇函数. 证明 令()1f x =,则()1i f x =, 从而 0()()()()nnn k k k k k L x l x f x l x ====∑∑,又 (1)1()()()0(1)!n n n f R x x n ξω++==+, 可得 ()()1n l x f x ==,从而 0()1nk k l x ==∑.4. 求出在=012x ,,和3处函数2()1f x x =+的插值多项式.解 方法一 因为给出的节点个数为4,而2()1f x x =+从而余项(4)34()()()04!f R x x ξω==,于是 233()()()()=+1L x f x R x f x x =-=(n 次插值多项式对次数小于或等于的多项式精确成立).方法二 因为(0)1(1)2(2)5(3)10f f f f ====,,,, 而 0(1)(2)(3)1()=-(1)(2)(3)(01)(02)(03)6x x x l x x x x ---=------,1(2)(3)1()=(2)(3)(10)(12)(13)2x x x l x x x x --=-----,2(1)(3)1()=-(1)(3)(20)(21)(23)2x x x l x x x x --=-----,3(1)(2)1()=(1)(2)(30)(31)(32)6x x x l x x x x --=-----,从而 30123()()(0)()(1)()(2)()(3)L x l x f l x f l x f l x f =+++2=+1x .5. 设2()[,]f x C a b ∈且()()0f a f b ==,求证21max |()|()max |()|8a x ba xb f x b a f x ≤≤≤≤''≤-.证明 因()()0f a f b ==,则1()0L x =, 从而1()()()()()2!f f x R x x a x b ξ''==--,由极值知识得 21max |()|()max |()|8a x ba xb f x b a f x ≤≤≤≤''≤-6. 证明 (()())()()()(+)f x g x f x g x f x g x h ∆=⋅∆+∆⋅. 证明 由差分的定义(()())(+)()()()f xg x f xh g x h f x g x ∆=+-[(+)()()(+)][()()()()]f x h g x h f x g x h f x g x h f x g x =+-++-()()()(+)f xg x f x g xh =⋅∆+∆⋅或着 (()())(+)()()()f x g x f x h g x h f x g x ∆=+-[(+)()()()][()()()()]f x hg xh f x h g x f x h g x f x g x =+-+++- ()()()()f x h g x f x g x =+⋅∆+∆⋅7. 证明 n 阶差商有下列性质(a ) 如果()()F x cf x =,则0101[,,,][,,,]n n F x x x cf x x x =. (b ) 如果()()()F x f x g x =+,则010101[,,,][,,,][,,,]n n n F x x x f x x x g x x x =+.证明 由差商的定义 (a ) 如果()()F x cf x =,则12011010[,,,]-[,,,][,,,]n n n n F x x x F x x x F x x x x x -=-120110[,,,]-[,,,]n n n cf x x x cf x x x x x -=-120110[,,,]-[,,,]n n n f x x x f x x x c x x -=⋅-01[,,,]n cf x x x =.(b ) 如果()()()F x f x g x =+,则12011010[,,,]-[,,,][,,,]n n n n F x x x F x x x F x x x x x -=-12120110110[[,,,][,,,]]-[[,,,][,,,]]n n n n n f x x x g x x x f x x x g x x x x x --++=-12011120110,,,]-[,,,][,,,][,,,]+n n n n n n f x x x f x x x g x x x g x x x x x x x ---=--[ 0101[,,,][,,,]n n f x x x g x x x =+8. 设74()3431f x x x x =+++,求0172,2,,2]f [,0182,2,,2]f [.解 由P.35定理7的结论(2),得7阶差商0172,2,,2]=3f [ (()f x 的最高次方项的系数),8阶差商0182,2,,2]=0f [ (8阶以上的差商均等与0).9. 求一个次数不超过4次的多项式()P x ,使它满足:(0)(0)0P P '==,(1)(1)1P P '==,(2)1P =.解 方法一 先求满足插值条件(0)0P =,(1)=1P ,(2)1P =的二次插值多项式2()P x 213=22x -+(L-插值基函数或待定系数法), 设()P x 22=()(1)(2)(1)(2)P x Ax x x Bx x x +--+--213=22x x -+2+(1)(2)(1)(2)Ax x x Bx x x --+-- 从而()P x '323=4B +(39)(641)(2)2x A B x A B x A -+-+-++,再由插值条件(0)0P '=,(1)1P '=,得3=,4A -1=,4B 所以 ()P x 213=22x x -+231(1)(2)(1)(2)44x x x x x x ---+--,即 ()P x 41=4x 332x -29+4x . 方法二 设()P x 23401234=a a x a x a x a x ++++,则 ()P x '231234=234a a x a x a x +++由插值条件(0)(0)0P P '==,(1)(1)1P P '==,(2)1P =,得010********0123400++++1+2+3+41+2+4+8+161a a a a a a a a a a a a a a a a =⎧⎪=⎪⎪=⎨⎪=⎪=⎪⎩ 解得 234931=,=-,=424a a a , 从而 ()P x 41=4x 332x -29+4x .方法三 利用埃尔米特插值基函数方法构造. 10. 下述函数()S x 在[1,3]上是3次样条函数吗?3232321,12()=92217,23x x x x S x x x x x ⎧-++≤≤⎨-+-+≤≤⎩解 因为 22362,12()=31822,23x x x S x x x x ⎧-+≤≤'⎨-+-≤≤⎩,66,12()=618,23x x S x x x -≤≤⎧''⎨-+≤≤⎩而 12(2)=1=(2)S S ,12(2)=2=(2)S S '',12(2)=6=(2)S S '''', 又()S x 是三次函数,所以函数()S x 在[1,3]上是3次样条函数.补 设f (x )=x 4,试利用L-余项定理写出以-1,0,1,2为插值节点的三次插值多项式.解 因为 (4)34()()()(+1)(1)(2)4!f R x x x x x x ξω==--,从而 3233()()()22L x f x R x x x x =-=+-习题3 ( P.159)1.设n k k x 0)}({=ϕ为],[b a 上具有权函数0)(≥x ω的正交多项式组且)(x k ϕ为首项系数为1的k 次的多项式,则n k k x 0)}({=ϕ于],[b a 线性无关.解 方法一 因为n k k x 0)}({=ϕ为],[b a 上具有权函数0)(≥x ω的正交多项式组,则其Gram 行列式不等于零,采用反证法:若{}n ϕϕϕ,,,10 于],[b a 线性相关,于是,存在不全为零,,,,10n c c c 使0011()()()0,[,]n n c x c x c x x a b ϕϕϕ+++=∈上式两边与i ϕ作内积得到0011(,)(,)(,)0(0,1,,)i i n i n c c c i n ϕϕϕϕϕϕ+++==,由于{}i c 不全为零,说明以上的齐次方程组有非零解),,,,(10n c c c 故系数矩阵的行列式为零,即{}0,,,10=n G ϕϕϕ 与假设矛盾.方法二 因为n k k x 0)}({=ϕ为],[b a 上具有权函数0)(≥x ω的正交多项式组,则其Gram 行列式不等于零,由( P.95)定理2得n k k x 0)}({=ϕ于],[b a 线性无关.2.选择α,使下述积分取得最小值1221()[],a x x dx α--⎰120()()x b e x dx α-⎰解 1221()[]a x x dx αα-∂-∂⎰1221=[]x x dx αα-∂-∂⎰1221=2[]()x x x dx α--⋅-⎰5112=5x α-4=5α,令 1221[]=0x x dx αα-∂-∂⎰,得=0α. 120()()x b e x dx αα∂-∂⎰120=()xe x dx αα∂-∂⎰1=2()()x e x x dx α-⋅-⎰2=23α- 令120()=0x e x dx αα∂-∂⎰,得=3α.3.设],3,1[,1)(∈=x xx f 试用},1{1x H 求)(x f 一次最佳平方逼近多项式.解 取权函数为()x x ω=(为了计算简便),则32311(1,1)42x xdx ===⎰,33321126(1,)(,1)33x x x x dx ====⎰, 343311(,)204xx x x dx ===⎰,33111((),1)2f x xdx x x=⋅==⎰,3232111((),)42x f x x x dx x =⋅==⎰, 得法方程 0126423264203a a ⎡⎤⎢⎥⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎢⎥⎣⎦,解得011211311a a ⎧=⎪⎪⎨⎪=-⎪⎩, 所以)(x f 的一次最佳平方逼近多项式1123()1111P x x =-. 8.什么常数C 能使得以下表达式最小?∑=-ni x i iCe x f 12))((解 21(())i n x i i f x Ce C =∂-∂∑1=2(())()i i nx x i i f x Ce e =-⋅-∑,令 21(())=0i nx i i f x Ce C =∂-∂∑,得121()(),iinx x i i nx x x i f x e f x e C e e e=-=⋅==∑∑()(,). 14.用最小二乘法求解矛盾方程组2+314921x y x y x y =⎧⎪-=-⎨⎪-=-⎩. 解 方法一 方程组可变形为31+22491122x y x y x y ⎧=⎪⎪-=-⎨⎪⎪-=-⎩,原问题转化成在已知三组离散数据3142211()922tf t ----下求一次最小二乘逼近函数1()P x x yt =+(x 与y 为一次函数的系数,t 为自变量),取1H 基{}1,t ,求解法方程331133321113()()i i i i i i i i i i i x t f x t t t f x y =====⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦∑∑∑∑∑, 即 3-3-93737-32x y ⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,得到矛盾方程组的解为37=-3156=31x y ⎧⎪⎪⎨⎪⎪⎩.方法二 方程组可变形为31+22491122x y x y x y ⎧=⎪⎪-=-⎨⎪⎪-=-⎩,令(,)I x y 2223111=+-+4+9++2222x y x y x y --()()()(,)I x y x ∂∂3111=2+-+24+9+2+2222x y x y x y ⨯⨯-⨯-()()()=6618x y -+,(,)I x y y ∂∂331111=+44+9+222222x y x y x y ⨯--⨯--⨯-()()() 37=3372x y -+- 令 (,)0(,)0I x y xI x y y∂⎧=⎪∂⎪⎨∂⎪=⎪∂⎩, 得 3373372x y x y -=-⎧⎪⎨-+-⎪⎩, 解之得矛盾方程组的解为37315631x y ⎧=-⎪⎪⎨⎪=⎪⎩. 习题47. 对列表函数 124810()0152127x f x求(5)(5).f f ''',解 一阶微商用两点公式(中点公式),得(8)(2)10(5),63f f f -'≈=二阶微商用三点公式(中点公式),首先用插值法求(5)f ,由(4)5,(8)21,f f ==得一次插值函数1()411,L x x =- 从而 1(5)(5)9f L ≈=, 于是, 2(2)2(5)(8)4(5).39f f f f -+''≈=8. 导出数值数分公式)]23()2(3)2(3)23([1)(3)3(h x f h x f h x f h x f h x f ---++-+≈并给出余项级数展开的主部.解 由二阶微商的三点公式(中点公式),得213()[()2()()]2222h h h f x f x f x f x h h ''-≈+--+-,213()[()2()()]2222h h h hf x f x f x f x h ''+≈+-++-从而 (3)()()22()h h f x f x f x h''''+--≈3133=[()3()3()()]2222h h f x h f x f x f x h h +-++--- 将33()()()()2222h h f x h f x f x f x h ++--,,,分别在x 处展开,得2(3)3(4)4(5)55331313()=()()()()()()222!23!21313()()()()+()(1)4!25!2f x h f x f x h f x h f x h f x h f x h O h '''++⋅+⋅+⋅+⋅+⋅2(3)3(4)4(5)5511()=()()()()()()222!23!211()()()()()(2)4!25!2h h h h f x f x f x f x f x h h f x f x O h '''++⋅+⋅+⋅+⋅+⋅+2(3)3(4)4(5)5511()=()()()()()()()222!23!211()()()()()(3)4!25!2h h h h f x f x f x f x f x h h f x f x O h '''-+⋅-+⋅-+⋅-+⋅-+⋅-+2(3)3(4)4(5)55331313()=()()()()()()()222!23!21313()()()()()(4)4!25!2f x h f x f x h f x h f x h f x h f x h O h '''-+⋅-+⋅-+⋅-+⋅-+⋅-+(1)-(2)×3 +(3)×3-(4), 得(5)222131()[()2()()]()()22228h h h f x f x f x f x h f x h O h h ''--+--+-=-+,即余项主部为(5)21()8f x h -习 题 5 (P. 299)3. 设n n R A ⨯∈为对称矩阵,且011≠a ,经高斯消去法一步后,A约化为11120T a a A ⎡⎤⎢⎥⎣⎦,试证明2A 亦是对称矩阵. 证明 设1111()=T ija a A a A α⎛⎫= ⎪⎝⎭,其中 21311=n a a a α⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭,121311=n a a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭,22232123=n n n nn a a a a a a a ⎛⎫⎪⎪ ⎪⎝⎭, 则经高斯消去法一步后,A 约化为111111110TT a a A a a α⎡⎤⎢⎥⎢⎥-⎢⎥⎣⎦, 因而211111T A A a a α=-,若n n R A ⨯∈为对称矩阵,则1A 为对称矩阵,且1=a α,易知211111T A A a a α=-为对称矩阵. 13. 设 ⎥⎦⎤⎢⎣⎡=989999100A (1) 计算2||||,||||A A ∞; (2) 计算∞)(A Cond ,及2)(A Cond .解 (1) 计算||||=199A ∞,⎥⎦⎤⎢⎣⎡=989999100A,其特征值为1,299λ=, 又⎥⎦⎤⎢⎣⎡=989999100A 为对称矩阵,则2=T A A A 的特征值为221,2(99λ=±,因此2||||99A ===+;(2) 1989999100A --⎡⎤=-⎢⎥-⎣⎦,1||||=199A -∞, 所以1()=||||||||=9801Cond A A A -∞∞∞⋅,1989999100A --⎡⎤=-⎢⎥-⎣⎦为对称矩阵,其特征值为1,299λ=-± 则1112()=()T A A A ---的特征值为221,2(99λ=,因此12||||99A -===+所以 1222()=||||||||Cond A A A -⋅2(99=+15. 设,n n n A R x R ⨯∈∈,求证 (1)1x x n x∞∞≤≤;(2) ∞∞≤≤An A An11.证明 (2) 由(1)1x x n x∞∞≤≤,得1AxAx n Ax∞∞≤≤,则11Ax Ax n Ax n xxx∞∞∞∞≤≤,从而 11maxmax max nnnx Rx Rx RAxAx n Ax n xxx∞∞∀∈∀∈∀∈∞∞≤≤,由算子范数的定义max nx RAx Ax∞∞∀∈∞=,111max nx RAx A x∀∈=,得 ∞∞≤≤An A An11.17. 设n n R W ⨯∈为非奇异阵,又设x为n R 上一向量范数,定义WxWx=,求证:Wx是nR 上向量的一种范数(称为向量的W 一范数).证明 ①正定性,因Wx 为一向量,0WxWx =≥,下证=0=0Wxx ⇔,⇒“”若=0Wx 即=0Wx ,由向量范数的正定性得=0Wx ,n n R W ⨯∈为非奇异阵,所以=0x ;⇐“”若=0x ,则=0Wx ,由向量范数的正定性得=0Wx 即=0Wx.②齐次性,任意实数α有=Wx W x Wxααα=,由向量范数的齐次性,得=WWxW x Wx Wx xααααα===;③ 三角不等式,任意实数,n n x R y R ∈∈,有+(+)=+Wx yW x y Wx Wy=,再由向量范数的三角不等式,得+(+)=+WWWx yW x y Wx Wy Wx Wy xy=≤+=+.习 题 6 (P.347)1. 设有方程组(b ) 1231231232211221x x x x x x x x x +-=⎧⎪++=⎨⎪++=⎩,考查用Jacobi迭代法,G-S 迭代法解此方程组的收敛性.。
数值分析课后习题答案

x2 6.6667x2 8.205
再解
1
15 56
x31.785,7得 x35.769
1 25069x4 0.47847x4 1.4872
1 x5 5.3718 x5 5.3718
2-10.证明下列不等式:
(1)x-yx-z+z-y; (2)|x-y|x-y;
证明 (1)x-y=(x-z)+(z-y)x-z+z-y
b.用Gauss消元法
102 x y 1 x y 2
回代得解: y=1, x=0.
102 x Байду номын сангаасy 1
100y 100
再用列主元Gauss消元法
102 x y 1 x y 2
回代得解: y=1, x=1.
x y
y 1
2
2-8.用追赶法求解方程组:
4 1
x1 100
1 4 1
x2 0
3-8.判定求解下列方程组的SOR方法的收敛性.
2 1 0 0 x1 1
1
0 0
2 1 0
1 2 1
0 12
x2 x3 x4
0 00
解 直接可验证系数矩阵A是负定矩阵,所以-A是对称
1-3.为了使101/2的相对误差小于0.01%,试问应取几位 有效数字?
解 因为101/2=3.162…=0.3162…10,若具有n位有效 数字,则其绝对误差限为0.5 101-n ,于是有
r=0.5101-n/3.162…<0.5101-n/3<0.01% 因此只需n=5.即取101/2=3.1623
1 2
0
12 1,
1 2
1 2
0
12
数值分析第二次作业答案answer2

S4 = 0.11157238253891,S8 = 0.11157181325263。 同学们根据自己理解计算 S4 ,S8 都可。 复合梯形公式和复合 Simpson 公式的代码已重复多次,同学们自己整 理。 3. 用 Simpson 公式计算积分 误 差 为 |R(f )| = | − η ∈ (0, 1)。 4. 推导下列三种矩形求积公式: ∫b f (x)dx ∫a b f (x)dx ∫a b a f (x)dx = (b − a)f (a) + = (b − = (b −
14.7 53.63 从而 a = −7.855048,b = 22.25376。 2. 已知实验数据如下: 。 xi 19 25 31 38
44
yi 19.0 32.3 49.0 73.3 97.8 用最小二乘法求形如 y = a + bx2 的经验公式。 答案:两个待定常数,只能两个 φ。 φ0 ,φ1 也必须形如 y = a + bx2 。 可设 φ0 = 1,φ1 = x2 。法方程为: ( 5 5327 )( a b ) = ( 271.4 369321.5 )
第三章 函数逼近 1. 观测物体的直线运动,得出以下数据: 时间 t(s) 0 0.9 1.9 3.0 3.9 5.0 距离 s(m) 0 求运动方程。 ( 10 φ0 = 1,φ1 = t。法方程为: 6 14.7 )( a b ) = ( 280 1078 )
6
1. 用 LU 分解及列主元高斯消去法解线性方程组 8 10 −7 0 1 x1 −3 2.099999 6 2 x 5.900001 2 = 5 5 − 1 5 − 1 x 3 x4 1 2 1 0 2 输出 Ax = b 中系数 A = LU 分解的矩阵 L 及 U ,解向量 x 及 det A;列 主元法的行交换次序,解向量 x 及 det A;比较两种方法所得的结果。 代码: A=[10,-7,0,1;-3,2.099999,6,2;5,-1,5,-1;2,1,0,2]; b=[8,5.900001,5,1]'; x=A\b;x(1) 结果:1.7764e-016 LU分解代码: A=[10,-7,0,1;-3,2.099999,6,2;5,-1,5,-1;2,1,0,2]; b=[8,5.900001,5,1]'; [m,n] = size(A); if m~=n, error('A matrix needs to be square'); end for i=1:n-1 pivot = A(i,i); if abs(pivot)<50*eps, error('zero pivot encountered'); end for k = i+1:n A(k,i) = A(k,i)/pivot; A(k,i+1:n) = A(k,i+1:n) - A(k,i)*A(i,i+1:n); end end 7
数值分析习题(含标准答案)

数值分析习题(含标准答案)
一、选择题(每题5分,共20分)
1. 下列哪个选项不属于数值分析的研究范畴?
A. 数值微分
B. 数值积分
C. 数值逼近
D. 数据库管理
答案:D
2. 在数值分析中,求解线性方程组常用的方法有?
A. 高斯消元法
B. 迭代法
C. 拉格朗日乘数法
D. 上述所有方法
答案:D
3. 下列哪种方法适用于求解非线性方程组?
A. 牛顿法
B. 梯度下降法
C. 高斯消元法
D. 上述所有方法
答案:D
4. 在数值积分中,下列哪种方法具有最高的精度?
A. 梯形法则
B. 辛普森法则
C. 高斯求积法
D. 上述所有方法
答案:C
二、填空题(每题5分,共20分)
1. 数值分析的主要目的是通过有限步骤的运算,对数学问题进行近似求解。
2. 在数值微分中,常用的差分公式有前向差分、后向差分和中心差分。
3. 数值逼近的主要方法包括插值法和逼近法。
4. 在数值积分中,常用的方法有梯形法则、辛普森法则和高斯求积法。
三、解答题(每题10分,共30分)
1. 已知函数 f(x) = e^x,求其在 x = 0.5 处的导数。
答案:f'(0.5) ≈ 1.6487
2. 求解线性方程组 2x + 3y = 5,4x y = 1。
答案:x ≈ 0.625,y ≈ 1.25
3. 已知函数 f(x) = x^3 3x^2 + 4,求其在区间 [0, 2] 上的积分。
答案:f(x) 在区间 [0, 2] 上的积分≈ 3.6667。
数值分析试题及答案

数值分析试题及答案一、选择题(每题3分,共30分)1. 下列关于数值分析的说法,错误的是()。
A. 数值分析是研究数值方法的科学B. 数值分析是研究数值方法的数学理论C. 数值分析是研究数值方法的误差分析D. 数值分析是研究数值方法的数学理论、误差分析及数值方法的实现答案:B2. 在数值分析中,插值法主要用于()。
A. 求解微分方程B. 求解积分方程C. 求解线性方程组D. 通过已知数据点构造一个多项式答案:D3. 线性方程组的解法中,高斯消元法属于()。
A. 直接方法B. 迭代方法C. 矩阵分解方法D. 特征值方法答案:A4. 牛顿法(Newton's method)是一种()。
A. 插值方法B. 拟合方法C. 迭代方法D. 优化方法答案:C5. 在数值分析中,下列哪种方法用于求解非线性方程的根?A. 高斯消元法B. 牛顿法C. 雅可比方法D. 斯托尔-温格尔方法答案:B6. 下列关于误差的说法,正确的是()。
A. 绝对误差总是大于相对误差B. 相对误差总是小于绝对误差C. 误差是不可避免的D. 误差总是可以消除的答案:C7. 在数值分析中,下列哪个概念与数值稳定性无关?A. 条件数B. 截断误差C. 舍入误差D. 插值多项式的阶数答案:D8. 用泰勒级数展开函数f(x)=e^x,下列哪一项是正确的?A. f(x) = 1 + x + x^2/2! + x^3/3! + ...B. f(x) = 1 - x + x^2/2! - x^3/3! + ...C. f(x) = x + x^2/2 + x^3/6 + ...D. f(x) = x - x^2/2 + x^3/6 - ...答案:A9. 插值多项式的次数最多为()。
A. n-1B. nC. n+1D. 2n答案:B10. 下列关于数值积分的说法,错误的是()。
A. 梯形法则是一种数值积分方法B. 辛普森法则是一种数值积分方法C. 龙格法则是数值积分方法中的一种D. 数值积分方法总是精确的答案:D二、填空题(每题3分,共15分)1. 在数值分析中,条件数是衡量问题的______。
数值分析试题及答案

数值分析试题及答案一、单项选择题(每题3分,共30分)1. 线性代数中,矩阵A的逆矩阵记作()。
A. A^TB. A^-1C. A^+D. A*答案:B2. 插值法中,拉格朗日插值多项式的基函数是()。
A. 多项式B. 指数函数C. 正弦函数D. 余弦函数答案:A3. 在数值积分中,梯形规则的误差是()阶的。
A. O(h^2)B. O(h^3)C. O(h)D. O(1/h)答案:A4. 求解线性方程组时,高斯消元法的基本操作不包括()。
A. 行交换B. 行乘以非零常数C. 行加行D. 行除以非零常数答案:D5. 非线性方程f(x)=0的根的迭代法中,收敛的必要条件是()。
A. f'(x)≠0B. f'(x)=0C. |f'(x)|<1D. |f'(x)|>1答案:C6. 利用牛顿法求解非线性方程的根时,需要计算()。
A. 函数值B. 函数值和导数值C. 函数值和二阶导数值D. 函数值、一阶导数值和二阶导数值答案:B7. 矩阵的特征值和特征向量是()问题中的重要概念。
A. 线性方程组B. 特征值问题C. 线性规划D. 非线性方程组答案:B8. 在数值分析中,条件数是衡量矩阵()的量。
A. 稳定性B. 可逆性C. 正交性D. 稀疏性答案:A9. 利用龙格现象说明,高阶插值多项式在区间端点附近可能产生()。
A. 振荡B. 收敛C. 稳定D. 单调答案:A10. 雅可比迭代法和高斯-塞德尔迭代法都是求解线性方程组的()方法。
A. 直接B. 迭代C. 精确D. 近似答案:B二、填空题(每题4分,共20分)11. 线性代数中,矩阵A的行列式记作________。
答案:det(A) 或 |A|12. 插值法中,牛顿插值多项式的基函数是________。
答案:差商13. 在数值积分中,辛普森规则的误差是________阶的。
答案:O(h^4)14. 求解线性方程组时,迭代法的基本思想是从一个初始近似解出发,通过不断________来逼近精确解。
《数值分析》第二章答案

习题21. 分析下列方程各存在几个根,并找出每个根的含根区间:(1) 0cos =+x x ; (2) 0cos 3=-x x ; (3) 0sin =--x e x ; (4) 02=--x e x 。
解:(1) 0cos =+x x (A) x x x f cos )(+= ,0sin1)(≥-='x x f ,),(∞-∞∈x10cos 0)0(=+=f ,01cos 1)1cos(1)1(<+-=-+-=-f ∴ 方程(A) 有唯一根 ]0,1[*-∈x (2) 0cos 3=-x x (B) x x x f c o s 3)(-=,0sin 3)(>+='x x f , ),(∞-∞∈x 时010c o s03)0(<-=-⨯=f ,01cos 31cos 13)1(>-=-⨯=f ∴ 方程(B) 有唯一根 ]1,0[*∈x (3)sin =--xex (C)xex -=sinx x f sin )(1=, xex f -=)(2方程(C)有无穷个正根,无负根 在[22,2πππ+k k ] 内有一根 )(1k x ,且0]2[lim )(1=-∞→πk x k k在[ππππ++k k 2,22]内有一根)(2k x ,且0])12([lim )(2=+-∞→πk x k k (示图如下) 3,2,1,0=k)(2x f x(4)02=--xex(D) xex-=2,)(21x x f = xex f -=)(2方程(D) 有唯一根 ]1,0[*∈x 当 0<x 时 (D)与方程2x ex -=- (E) 同解 当 0<x 时 (E)无根 2. 给定方程 012=--x x ; (1)(2)若在[0 , 2]上用二分法求根,要使精确度达到6位有效数,需二分几次? 解:012=--x x1) 01)(2=--=x x x f 1)1(-=f , 025.0)5.1(<-=f ,1)2(=f]2,5.1[*∈x, 618034.1251*=+=x)(5.1- 1.75(+) 2(+) )(5.1- 1.625(+) 1.75(+) )(5.1-1.5625(+) 1.625(+))(5625.1- )(59375.1-1.625(+)1102103125.02)5625.1625.1(-⨯<=-6.159375.1*≈≈x2位有效近似值为 1.6 2)00==a a , 20==b b)(21k k k b a c +=kk k a b c x 2121*=-≤-+5102121-⨯≤k,51102≥-k60.162ln 10ln 51=≥-k∴ 只要2等分18次3. 为求0353=--x x 的正根,试构造3种简单迭代格式,判断它们是否收敛,且选择一种较快的迭代格式求出具有3位有效数的近似根。
数值分析练习题附答案

目录一、绪论------------------------------------------------------------------------------------- 2-2二、线性方程组直接解法列主元高斯LU LDL T GG T-------------------- 3-6二、线性方程组迭代法----------------------------------------------------------------- 7-10 三、四、非线性方程组数值解法二分法不动点迭代---------------------- 11-13五、非线性方程组数值解法牛顿迭代下山弦截法----------------- 14-15六、插值线性插值抛物线插值------------------------------------------------ 16-18七、插值Hermite插值分段线性插值-----------------------------------------19-22八、拟合------------------------------------------------------------------------------------ 23-24九、数值积分----------------------------------------------------------------------------- 25-29十、常微分方程数值解法梯形欧拉改进----------------------------------- 30-32 十一、常微分方程数值解法龙格库塔------------------------------------------ 33-35绪论1-1 下列各数都是经过四舍五入得到的近似值 ,试分别指出它们的绝对误差限,相对误差限和有效数字的位数.X 1 =5.420, X 2 =0.5420, X 3 =0.00542, X 4 =6000, X 5 =0.6×105注:将近似值改写为标准形式X 1 =(5*10-1+4*10-2+2*10-3+0*10-4)*101 即n=4,m=1 绝对误差限|△X 1|=|X *1-X 1|≤ 12×10m-n =12×10-3 相对误差限|△r X 1|= |X∗1−X1||X∗1|≤|X∗1−X1||X1|= 12×10-3/5.4201-2 为了使101/2 的相对误差小于0.01%, 试问应取几位有效数字?1-3 求方程x 2 -56x+1=0的两个根, 使它们至少具有4位有效数字( √783≈27.982)注:原方程可改写为(x-28)2=783线性方程组解法(直接法)2-1用列主元Gauss消元法解方程组解:回代得解:X1=0 X2=-1 X3=12-2对矩阵A进行LU分解,并求解方程组Ax=b,其中解:(注:详细分解请看课本P25)A=(211132122)→(211(1/2)5/23/2(1/2)3/23/2)→(2111/25/23/21/2(3/5)3/5)即A=L×U=(11/211/23/51)×(2115/23/23/5)先用前代法解L y=P b 其中P为单位阵(原因是A矩阵未进行行变换)即L y=P b 等价为(11/211/23/51)(y1y2y3)=(111)(465)解得 y 1=4 y 2=4 y 3=35再用回代解Ux =y ,得到结果x即Ux =y 等价为(2115/23/23/5)(x 1x 2x 3)=(y 1y 2y 3)=(443/5) 解得 x 1=1 x 2=1 x 3=1即方程组Ax=b 的解为x =(111)2-3 对矩阵A 进行LDL T 分解和GG T 分解,求解方程组Ax=b,其中A=(164845−48−422) , b =(123)解:(注:课本 P 26 P 27 根平方法)设L=(l i j ),D=diag(d i ),对k=1,2,…,n,其中d k =a kk -∑l kj 2k−1j=1d jl ik =(a ik −∑l ij l kj k−1j=1d j )/ d k 即d 1=a 11-∑l 1j 20j=1d j =16-0=16因为 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=a 21/ d 1=416=14 所以d 2=a 22-∑l 2j 21j=1d j =5-(14)2d 1=4同理可得d 3=9 即得 D=(1649)同理l 11=(a 11−∑l ij l 1j 0j=1d j )/ d 1=1616=1=l 22=l 33 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=416=14 l 31=(a 31−∑l 3j l 1j 0j=1d j )/ d 1=816=12 l 32=(a 32−∑l 3j l 2j 1j=1d j )/ d 2=−4−12×14×164=−64=-32即L=(114112−321) L T=(114121−321) 即LDL T分解为A=(114112−321)(1649)(114121−321)解解:A=(164845−48−422)→(41212−32−33)故得GG T分解:A=(4122−33)(4122−33) LDL T分解为A=(114112−321)(1649)(114121−321) 由(114112−321)(y 1y 2y 3)=(123) ,得(y 1y 2y 3)=(0.250.8751.7083)再由(4122−33)(x 1x 2x 3)=(0.250.8751.7083) ,得(x 1x 2x 3)=(−0.54511.29160.5694)2-4 用追赶法求解方程组:解:(4−1−14−1−14−1−14−1−14)→(4−14−1154−415−15615−1556−120956−56209−1780209)由(4−1154−15615−120956−1780209)(y1y2y3y4y5)=(100200),得(y1y2y3y4y5)=(256.66671.785700.4784753.718)再由(1−141−4151−15561−562091)(x1x2x3x4x5)=(256.66671.785700.4784753.718),得(x1x2x3x4x5)=(27.0518.20525.769314.87253.718)线性方程组解法(迭代法)2-1 设线性方程组{4x 1−x 2+2x 3=1−x 1−5x 2+x 3=22x 1+x 2+6x 3=3(1) 写出Jacobi 法和SOR 法的迭代格式(分量形式) (2) 讨论这两种迭代法的收敛性(3) 取初值x (0)=(0,0,0)T ,若用Jacobi 迭代法计算时,预估误差 ||x*-x (10)||∞ (取三位有效数字)解:(1)Jacobi 法和SOR 法的迭代格式分别为Jacobi 法迭代格式SOR(2)因为A 是严格对角占优矩阵,但不是正定矩阵,故Jacobi 法收敛,SOR 法当0<ω≤1时收敛.⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=-+-=+-=+++216131525151412141)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x xx x ⎪⎪⎪⎩⎪⎪⎪⎨⎧-++-=+-+-=+-+-+=++++++)216131()525151()412141()(3)1(2)1(1)(3)1(3)(3)(2)1(1)(2)1(2)(3)(2)(1)(1)1(1k k k k k k k k k k k k k k k x x x x x x x x x x x x x x x ωωω(3)由(1)可见||B ||∞=3/4,且取x (0)=(0,0,0)T ,经计算可得x (1)=(1/4,-2/5,1/2)T ,于是||x (1)-x (0)||∞=1/2,所以有2-2 设方程组为{5x 1+2x 2+x 3=−12−x 1+4x 2+2x 3=202x 1−3x 2+10x 3=3试写出其Jacobi 分量迭代格式以及相应的迭代矩阵,并求解。
数值分析课后第二章习题解答

3
x n +1 = x n −
3 2 xn + 2 xn + 10 x n − 20 2 3 x n + 4 x n + 10
容易验证 f(1) f(2) < 0,故方程在[1,2]区间内至少有一根。取初值 x0=1,计算结果如下 1.4117647 1.3693364 1.3688081 1.3688081 取初值 x0=2,计算结果如下 1.4666666 1.3715120 1.3688102 1.3688081 取初值 x0=1.5,计算结果如下 1.3736263 1.3688148 1.3688081 由此可知,方程在区间[1,2]内有一根,其近似值为 x* ≈1.3688081 注:用 MATLAB 求多项式零点命令 roots([1 2 10 – 20 ])可得该方程的三个根近似值 x1 = -1.6844 + 3.4313i,x2 = -1.6844 - 3.4313i,x3 = 1.3688 3 2 8 已知方程 x – x – 1 = 0 在 x0 = 1.5 附近有根,试判断下列迭代格式的收敛性。 (1) x n +1 = 1 + 1 / x n ; (2) x n +1 = 1 /
6
x1=fi(x0); er=abs(x1-x0); x0=x1;k=k+1; end disp([x0,k]) 4 给出求 x n =
2 + 2 + L + 2 的迭代格式,并证明 lim x n = 2 。
n→∞
解 取初值: x1 =
2 ,迭代格式: x n +1 = 2 + x n
( n =1,2,…… )。
产生的迭代序列化简得1011解方程124用此迭代法求方程根的近似值误差不超过1034用迭代法计算得3564233920335413348333475103成立取方程根的近似值1016利用matlab绘图命令将33475附近不为零故迭代法是一阶收敛
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13、若 ,求 和
解:由均差与导数关系
于是
8、用欧拉方法求
在点 处的近似值。(8分)
解: 等价于
( )(2分)
记 ,取 , .
则由欧拉公式
, 2分
可得 ,
4分
9、已知A= ,求 , , 10分
解: , (4分)
,
得 ,所以 。(6分)
10、、n=3,用复合梯形公式求 的近似值(取四位小数),并求误差估计。(5分)
回代得 。(2分)
5、对线性代数方程组 (10)
设法导出使雅可比(Jacobi)迭代法和高斯-赛德尔(G-S)迭代法均收敛的迭代格式,要求分别写出迭代格式,并说明收敛的理由。
解:
因其变换后为等价方程组,且严格对角占优,故雅可比和高斯-赛德尔迭代法均收敛。(5分)
雅可比迭代格式为:
(2分)
高斯-赛德尔代格式为:
解:
, 时, 3分
至少有两位有效数字。 2分
11、下列方程组Ax=b,
考查用Jacobi法和GS法解此方程组的收敛性.(8分)
解:Jacobi法的迭代矩阵是
即 ,故 ,Jacobi法法收敛、(4分)
GS法的迭代矩阵为
故 ,解此方程组的GS法不收敛。(4分)
12、写出用四阶经典的龙格—库塔方法求解下列初值问题的计算公式:(无需计算)
14、确定下列求积公式中的待定参数,使其代数精确度尽量高,并指明求积公式所具有的代数精确度.
解: 代入公式两端并使其相等,得
解此方程组得 ,于是有
再令 ,得
故求积公式具Leabharlann 3次代数精确度。15、、计算积分 ,若用复合Simpson公式要使误差不超过 ,问区间 要分为多少等分?
解:由Simpson公式余项及 得
(1,0.332353)
2
(99.997059,33.2991174)
99.997059
(1,0.3330009675)
3
(99.9990029,33.29970087)
99.9990029
(1,0.333000329)
4
(99.99900098,33.29970029)
99.99900098
(1,0.333000330)
即 ,取n=6,即区间 分为12等分可使误差不超过
2设方程 的迭代法为
证明对 ,均有 ,其中 为方程的根.(5分)
证明:迭代函数 ,对 有
,
(3分)
6、、取节点 ,求函数 在区间[0,1]上的二次插值多项式 ,并估计误差。(8分)
解:
又 5分
故截断误差 。 3分
7、用幂法求矩阵 按模最大的特征值及相应的特征向量,取 ,精确至7位有效数字。(10)
解:幂法公式为 ,
取x0=(1,1)T,列表如下:
k
yT
mk
xT
1
(102,33.9)
102
1.为了使 的近似值的相对误差限小于0.1%,要取几位有效数字?(5分)
解、解:设 有n位有效数字,由 ,知
令 ,
取 ,
故
3设 ,分别在 上求一元素,使其为 的最佳平方逼近,并比较其结果。(10分)
5分
(4分)
由结果知(1)比(2)好。(比较1分)
4、用列主元素消元法求解方程组 .(10)
解:解:
(8分)