中职数学平面向量的概念ppt课件
合集下载
中职数学基础模块下册《平面向量的概念》PPT
与FD 共线的向量:AE、CE
与EF 共线的向量:DB、DC
第十六页,共二十二页。
回顾与总结
一(Yi)、向量的定义
既有大小又有方向的量叫做向量 二、向量的表示 1.几何表示:用有向线段表示 2.用小写字母表示 注意:印刷体与手写的区别
3.用表示向量的有向线段的起点和终点字母表示
第十七页,共二十二页。
(4)平行向量:方向相同或相反的非零向量叫(Jiao) 做平行向量. 规定:零向量与任一向量平行。
No 平行向量也叫共线向量
(5)相等向量:长度相等,方向相同的两个向量。
Image
第十八页,共二十二页。
四、例题
例(Li)1:思考下列问题:
1、下列命题正确的是
(1)共线向量都相等
(2)单位向量都相等
量。
2、向量无法比较大小。
第三页,共二十二页。
复习
既有大小,又
有(You)向线段: 带有方向有的方线向段。
在有向线段的终点处画上箭头表示它的方向。
B(终点)
记作:AB A(起点)
注意字母的顺序是:起点在前,终点在后.
有向线段AB的长度: |AB|
有向线段的三要素:起点、方向、长度.
第四页,共二十二页。
OB、DC、EO、AF 为一组共线向量,
第十五页,共二十二页。
练别写习出:图已中知与D、E、DF分相E 、(等FeEn)的别F 向、是F量D△和A共BC线各的边向的量中。点,分
答:
A
与DE 相等的向量:BF 、FA
与FD 相等的向量:AE
F
E
与EF 相等的向量:DB B
D
C
与DE 共线的向量:BF 、FA
同吗?
中职向量课件ppt
向量是具有大小和方向的量,通常用矢量箭头表示。在二维空间中,一个向量可以表示为起点和终点的有序对, 例如$overrightarrow{AB}$表示从点A到点B的向量。在三维空间中,一个向量可以表示为起点、方向和大小的 有序三元组,例如$overrightarrow{OP}(x, y, z)$表示从点O指向点P的向量。
向量的模
总结词
向量的模是指向量的长度或大小,表示为 $|overrightarrow{v}|$。向量的模可以通过勾股定理计算得 出。
详细描述
向量的模是指向量的长度或大小,通常用 $|overrightarrow{v}|$ 表示。向量的模可以通过勾股定理 计算得出,即 $|overrightarrow{v}| = sqrt{x^2 + y^2}$(在二维空间中)或 $|overrightarrow{v}| = sqrt{x^2 + y^2 + z^2}$(在三维空间中)。其中,$x, y, z$ 是向量的坐标分量。
中职向量课件
目录
CONTENTS
• 向量基本概念 • 向量的线性运算 • 向量的数量积 • 向量的向量积 • 向量的混合积
01 向量基本概念
向量的定义与表示
总结词
向量的定义是指具有大小和方向的量,表示为矢量箭头。在二维空间中,向量可以用有序对表示,而在三维空间 中,向量可以用有序三元组表示。
详细描述
向量数乘运算
要点一
总结词
数乘运算是指将一个标量与一个向量相乘,结果仍为一个 向量。
要点二
详细描述
数乘运算是指将一个标量与一个向量相乘,其结果是一个 新的向量。标量可以是正数、负数或零。当标量为正数时 ,结果向量与原向量方向相同;当标量为负数时,结果向 量与原向量方向相反;当标量为零时,结果向量为零向量 。数乘运算在向量分析中具有重要意义,可以用于改变向 量的长度和方向。
向量的模
总结词
向量的模是指向量的长度或大小,表示为 $|overrightarrow{v}|$。向量的模可以通过勾股定理计算得 出。
详细描述
向量的模是指向量的长度或大小,通常用 $|overrightarrow{v}|$ 表示。向量的模可以通过勾股定理 计算得出,即 $|overrightarrow{v}| = sqrt{x^2 + y^2}$(在二维空间中)或 $|overrightarrow{v}| = sqrt{x^2 + y^2 + z^2}$(在三维空间中)。其中,$x, y, z$ 是向量的坐标分量。
中职向量课件
目录
CONTENTS
• 向量基本概念 • 向量的线性运算 • 向量的数量积 • 向量的向量积 • 向量的混合积
01 向量基本概念
向量的定义与表示
总结词
向量的定义是指具有大小和方向的量,表示为矢量箭头。在二维空间中,向量可以用有序对表示,而在三维空间 中,向量可以用有序三元组表示。
详细描述
向量数乘运算
要点一
总结词
数乘运算是指将一个标量与一个向量相乘,结果仍为一个 向量。
要点二
详细描述
数乘运算是指将一个标量与一个向量相乘,其结果是一个 新的向量。标量可以是正数、负数或零。当标量为正数时 ,结果向量与原向量方向相同;当标量为负数时,结果向 量与原向量方向相反;当标量为零时,结果向量为零向量 。数乘运算在向量分析中具有重要意义,可以用于改变向 量的长度和方向。
中职数学平面向量的概念ppt课件
中职数学平面向量的概念ppt 课件
目录
• 平面向量基本概念 • 平面向量运算规则 • 平面向量坐标表示法 • 平面向量数量积概念及性质 • 平面向量应用举例 • 总结回顾与拓展延伸
01
平面向量基本概念
向量定义及表示方法
01
向量的定义
向量是既有大小又有方向的量 ,通常用有向线段表示。
02
向量的表示方法
向量可以用小写字母或大写字 母加箭头表示,如$vec{a}$或 $overset{longrightarrow}{AB
}$。
03
向量的模
向量的大小称为向量的模,记 作$|vec{a}|$,模长是一个非负
实数。
向量模长与方向角
03
向量的模长
方向角
向量的模长等于有向线段的长度,可以通 过勾股定理或三角函数计算。
与零向量的数量积
任何向量与零向量的数 量积都是0。
夹角余弦值计算
夹角余弦公式
两向量的夹角余弦值可以通过它们的 数量积和模长来计算,即 cosθ=(a·b)/(|a||b|)。
夹角范围
夹角θ的取值范围为[0,π],当θ=0时 ,两向量同向;当θ=π时,两向量反 向。
垂直条件判断
两向量垂直的充要条件是它们 的数量积为0,即a·b=0。
结合律
三个或三个以上的向量进行加法或乘法运算时,改变它们 的结合方式,结果不变。
分配律
一个实数与两个向量的和相乘等于该实数分别与这两个向 量相乘后再相加;两个实数的和与一个向量相乘等于这两 个实数分别与这个向量相乘后再相加。
03
平面向量坐标表示法
直角坐标系中向量表示方法
确定坐标原点O和x、y轴
在平面上选取一点作为坐标原点,并通过该点作两条互相垂直的数轴,分别称为 x轴和y轴。
目录
• 平面向量基本概念 • 平面向量运算规则 • 平面向量坐标表示法 • 平面向量数量积概念及性质 • 平面向量应用举例 • 总结回顾与拓展延伸
01
平面向量基本概念
向量定义及表示方法
01
向量的定义
向量是既有大小又有方向的量 ,通常用有向线段表示。
02
向量的表示方法
向量可以用小写字母或大写字 母加箭头表示,如$vec{a}$或 $overset{longrightarrow}{AB
}$。
03
向量的模
向量的大小称为向量的模,记 作$|vec{a}|$,模长是一个非负
实数。
向量模长与方向角
03
向量的模长
方向角
向量的模长等于有向线段的长度,可以通 过勾股定理或三角函数计算。
与零向量的数量积
任何向量与零向量的数 量积都是0。
夹角余弦值计算
夹角余弦公式
两向量的夹角余弦值可以通过它们的 数量积和模长来计算,即 cosθ=(a·b)/(|a||b|)。
夹角范围
夹角θ的取值范围为[0,π],当θ=0时 ,两向量同向;当θ=π时,两向量反 向。
垂直条件判断
两向量垂直的充要条件是它们 的数量积为0,即a·b=0。
结合律
三个或三个以上的向量进行加法或乘法运算时,改变它们 的结合方式,结果不变。
分配律
一个实数与两个向量的和相乘等于该实数分别与这两个向 量相乘后再相加;两个实数的和与一个向量相乘等于这两 个实数分别与这个向量相乘后再相加。
03
平面向量坐标表示法
直角坐标系中向量表示方法
确定坐标原点O和x、y轴
在平面上选取一点作为坐标原点,并通过该点作两条互相垂直的数轴,分别称为 x轴和y轴。
6.1 平面向量的概念 课件(共21张PPT)
规定: 0 和任意向量平行.
(2)相等向量—长度相等且方向相同的向量,记作 a=b .
(3)共线向量—就是平行向量.
二、探究本质 得出新知
问题12:平行向量所在直线是否一定平行?共线向量所在直线 是否一定共线?
提示:不一定
总结:向量可以自由平移.
三、举例应用 掌握定义
例1.一辆汽车从点出发向西行驶了100千米到达B点,然后又 改变方向向西偏北 50 走了200千米到达C点,最后又改变方向, 向东行驶了100千米到达点D. (1)作出向量 AB, BC,CD ; (2)求 AD .
其中正确的有( A )
A.2个
B.3个
C.4个
D.5个
解:①正确;
②由 a = b 得 a 与 b的模相等,但不确定方向,故②错误;
③错误; ④所有单位向量的模都相等,都为1,但方向不确定,故④不 正确;⑤正确.故选A.
四、学生练习 加深理解
3.如图,D, E, F 分别是 ABC 的边 AB, BC,CA的中点,在以 A, B,C, D, E, F 为起点和终点的向量中.
(1)找出与向量 EF 相等的向量; (2)找出与向量 DF 共线的向量.
四、学生练习 加深理解
解:(1)因为 E, F分别为 BC,CA 的中点,所以 EF//BA ,
且
EF
1 2
BA
.又因为
D
是BA
的中点,所以
EF
BD
DA,所以
与 EF 向量相等的向量为BD, DA .
(2)因为 D, F 分别为 BA, AC 的中点,
第六章 平面向量及其应用
6.1 平面向量的概念
一、创设情境 引入新课
问题1:道路标识牌上的箭头和数字指的是什么? 问题2:老鼠由点A向东北方向逃窜,猫快速由点B向正东
(2)相等向量—长度相等且方向相同的向量,记作 a=b .
(3)共线向量—就是平行向量.
二、探究本质 得出新知
问题12:平行向量所在直线是否一定平行?共线向量所在直线 是否一定共线?
提示:不一定
总结:向量可以自由平移.
三、举例应用 掌握定义
例1.一辆汽车从点出发向西行驶了100千米到达B点,然后又 改变方向向西偏北 50 走了200千米到达C点,最后又改变方向, 向东行驶了100千米到达点D. (1)作出向量 AB, BC,CD ; (2)求 AD .
其中正确的有( A )
A.2个
B.3个
C.4个
D.5个
解:①正确;
②由 a = b 得 a 与 b的模相等,但不确定方向,故②错误;
③错误; ④所有单位向量的模都相等,都为1,但方向不确定,故④不 正确;⑤正确.故选A.
四、学生练习 加深理解
3.如图,D, E, F 分别是 ABC 的边 AB, BC,CA的中点,在以 A, B,C, D, E, F 为起点和终点的向量中.
(1)找出与向量 EF 相等的向量; (2)找出与向量 DF 共线的向量.
四、学生练习 加深理解
解:(1)因为 E, F分别为 BC,CA 的中点,所以 EF//BA ,
且
EF
1 2
BA
.又因为
D
是BA
的中点,所以
EF
BD
DA,所以
与 EF 向量相等的向量为BD, DA .
(2)因为 D, F 分别为 BA, AC 的中点,
第六章 平面向量及其应用
6.1 平面向量的概念
一、创设情境 引入新课
问题1:道路标识牌上的箭头和数字指的是什么? 问题2:老鼠由点A向东北方向逃窜,猫快速由点B向正东
中职数学 下册 课件-第七章 平面向量
第七章 平面向量
7.1平面向量的概念及线性运算 7.1.1向量的概念 7.1.2平面向量的加法 7.1.3平面向量的减法 7.1.4平面向量的数乘运算
7.2平面向量的坐标表示 7.2.1平面向量的坐标 7.2.2向量线性运算的坐标表示 7.2.3共线向量的坐标表示
7.3平面向量的内积 7.2.1平面向量的内积 7.2.2内积的坐标表示
a
b
B
a
b
A a+b
C
一般地,设向量a与向量b不共线,在平面上任取一点A
依次作 AB a,BC b,则向量AC 叫做向量a与向量b的和,
距离、位移、身高、力、质量、时间、速度、面积、温度.
数量
向量
距离、身高、 质量、时间、 面积、温度
位移、力、 速度
【新知识】向量的表示
用有向线段表示(规定了起点、方向、长度的 线段)
a 始点
终点
始点
终点
A
B
a 用字母表示 AB, 或
始点
终点
1【.向(模新量)表知的示大识:小】(模向| A)量B: | 的向或有量| a关A|B概或念a 的大小
向量是不能比较大小的,但
向量的模是可以进行大小比较的.
a
| a || b | √
b
a b
×
2.两个基本向量:
零向量: 模 为零的 向量(方向不确定). 表示: 0, | 0 | 0
单位向量: 模为1个单位长度的向量.
巩固知识 典型例题
例1 一架飞机从A处向正南方向飞行200km, 另一架飞机从A处朝北偏东45°方向飞行200km, 两架飞机的位移相同吗?分别用有向线段表示两架 飞机的位移.
7.1平面向量的概念及线性运算 7.1.1向量的概念 7.1.2平面向量的加法 7.1.3平面向量的减法 7.1.4平面向量的数乘运算
7.1平面向量的概念及线性运算 7.1.1向量的概念 7.1.2平面向量的加法 7.1.3平面向量的减法 7.1.4平面向量的数乘运算
7.2平面向量的坐标表示 7.2.1平面向量的坐标 7.2.2向量线性运算的坐标表示 7.2.3共线向量的坐标表示
7.3平面向量的内积 7.2.1平面向量的内积 7.2.2内积的坐标表示
a
b
B
a
b
A a+b
C
一般地,设向量a与向量b不共线,在平面上任取一点A
依次作 AB a,BC b,则向量AC 叫做向量a与向量b的和,
距离、位移、身高、力、质量、时间、速度、面积、温度.
数量
向量
距离、身高、 质量、时间、 面积、温度
位移、力、 速度
【新知识】向量的表示
用有向线段表示(规定了起点、方向、长度的 线段)
a 始点
终点
始点
终点
A
B
a 用字母表示 AB, 或
始点
终点
1【.向(模新量)表知的示大识:小】(模向| A)量B: | 的向或有量| a关A|B概或念a 的大小
向量是不能比较大小的,但
向量的模是可以进行大小比较的.
a
| a || b | √
b
a b
×
2.两个基本向量:
零向量: 模 为零的 向量(方向不确定). 表示: 0, | 0 | 0
单位向量: 模为1个单位长度的向量.
巩固知识 典型例题
例1 一架飞机从A处向正南方向飞行200km, 另一架飞机从A处朝北偏东45°方向飞行200km, 两架飞机的位移相同吗?分别用有向线段表示两架 飞机的位移.
7.1平面向量的概念及线性运算 7.1.1向量的概念 7.1.2平面向量的加法 7.1.3平面向量的减法 7.1.4平面向量的数乘运算
中职教育-数学(基础模块)下册课件:第七章 平面向量.ppt
,E→.F
→
FG
(3)相等向量为
→
AB
C→D ,D→E
→
GH
.
(4)互为负向量的向量为
→
BC
D→E ,B→C
→
GH
.
7.2 平面向量的线性运算
7.2.1 平面向量的加法
如右图所示,一人从A点出发,走到B点,又从B点
走到C点,则他的最终位移
→
AC
可以看作是位移
→
AB
与
B→C 的和.
如右图所示,已知向量a与b,
解 位移是向量,它包括大小和方向 两个要素.本题中,虽然这两个向量的 模相等,但它们的方向不同,所以,两 辆汽车的位移不相同.如图所示为用有 向线段表示两辆汽车的位移.
方向相同或相反的两个非零向量称为平行向量.向量a与b平行记作 a ∥b . 如图所示,向量 a ,b ,c平行,任意作一条与向量a所在直线平行的直线l,
如右
图所示,
设有两个
非零向量
a
,b
,
作
→
OA
a
,O→B
b
,则
AOB θ(0°剟θ 180°) 称为向量 a ,b 的夹角.
显然,当 θ 0°时,a 与 b 同向;当 θ 180°时,a 与 b 反向;当 θ 90° 时,a 与 b 垂直,记作 a b .
我们将 a b cosθ 称为向量 a ,b 的内积(或数量积),记作 a gb ,
7.1
• 平面向量的概念
7.2
• 平面向量的线性运算
7.3
• 平面向量的坐标表示
7.4
• 平面向量的内积
7.1 平面向量的概念
标量是指只有大小、没有方向的量,如长度、质量、温度、面积等; 向量是指既有大小、又有方向的量,如速度、位移、力等.
中职教育数学《向量的概念》课件
解:OA CB DO
OB DC EO
OC AB ED FO
练习∶上题中 11
(1)与向量 OA长度相等的向量有多少个?
(2)是否存在与向量
OA
长度相等,
方向相反的向量?
FE
(3)与向量OA 共线的向量有哪些?
单击动画演示 CB DO FE
课堂 小结
向量
向量的定义 向量的表示
字母表示 几何表示
B
a
AB
三、与向量有关的基本概念
1、向量的大小(长度)叫向量的模: 向量 AB 的模
表示: | AB | 模可以比较大小
2、零向量与单位向量
零向量: 长度为零的向量(方向任意).
表示:0或 0, | 0 | 0 a a
3、单位向量: 长度为1个单位长度的向量.
P26例1
3、向量之间的关系
(1)平行向量:方向相同或相反的非零向量.
注意:数量与向量的区别:
1.数量只有大小,是一个代数量,可 以比较大小.
2.向量有方向、大小,双重属性,而 方向是不能比较大小的,因此向量 不能比较大小. 向量不能比较大小.
问题:温度是不是向量? 重量呢?身高?海拔?速度?
向量的表示
a
1.几何法:用有向线段表示
A
2.字母法:用小写字母表示
3.用表示向量的有向线段的起点 和终点字母表示
等.
表示平面上的六个平行四边形,问图中
哪些向量分别与向量 AB、AD、AE 相等?
那些向量与它们互为相反向量?
A
B
D
C
E
F
H
G
例1.判断下列命题真假或给出问题的答案:
(1)平行向量的方向一定相同. × (2)不相等的向量一定不平行. ×
中职数学基础模块下册《平面向量的概念》课件
向量的投影可以看作是向量在某个方 向上的分量,通过计算向量的数量积 可以得到向量的投影。
速度和加速度的计算
在运动学中,速度和加速度可以表示 为位置向量的时间导数,通过计算向 量的数量积可以得到速度和加速度的 大小。
THANKS
感谢观看
数量积的几何意义
01
数量积表示向量a与向量b的长度 和它们之间的夹角的余弦值的乘 积。
02
当两向量同向时,数量积为两向 量长度之积;当两向量反向时, 数量积为两向量长度之差的绝对 值。
数量积的应用举例
力的合成与分解
向量的投影
在物理中,力可以视为向量,力的合 成与分解可以通过计算向量的数量积 来实现。
详细描述
向量模是表示向量长度的概念, 记作|a|。向量模具有非负性、齐 次性、三角形不等式等性质。
向量模的计算方法
总结词
掌握向量模的计算方法是实际应用中必不可少的技能。
详细描述
向量模的计算公式为|a| = 根号(x^2 + y^2),其中x和y分别是向量在x轴和y轴上的分量。此外,还有 向量模的运算性质,如|a+b|≤|a|+|b||a-b|≤|a|+|b||a-b|≥||a|-|b||等,这些性质在实际问题中具有广泛 的应用。
平面向量数乘的定义与性质
总结词
数乘是标量与向量的乘积,结果仍为 向量,满足分配律。
详细描述
数乘是实数与向量的乘积,其实质是 标量与向量的乘积。数乘的结果仍为 向量,且满足分配律,即 m(a+b)=ma+mb。
平面向量加法与数乘的几何意义
总结词
平面向量加法的几何意义是将两个向量首尾相接, 按平行四边形法则或三角形法则确定的合成向量; 数乘的几何意义是改变向量的模长和方向。
6.1平面向量的概念课件共34张PPT
探究点二 相等向量与共线向量
如图,O是正六边形DEF的中心,分别写出图中与向量
→ OA
,
O→B,O→C相等的向量,与向量A→D共线的向量.
解析: 与O→A相等的向量有C→B,D→O,E→F; 与O→B相等的向量有F→A,E→O,D→C; 与O→C相等的向量有A→B,F→O,E→D. 与向量A→D共线的向量有9个:D→A,E→F,F→E,A→O,O→A,O→D,D→O,B→C, → CB.
探究点三 向量的表示及应用 在蔚蓝的大海上,有一艘巡逻艇在执行巡逻任务.它首先从A点出
发向西航行了200 km到达B点,然后改变航行方向,向西偏北50°航行了 400 km到达C点,最后又改变航行方向,向东航行了200 km到达D点.此时, 它完成了此片海域的巡逻任务.
(1)作出A→B,B→C,C→D; (2)求|A→D|.
[对点训练] 在等腰梯形ABCD中,AB∥CD,对角线AC与BD相交于点O,EF是过点O 且平行于AB的线段,在所标的方向向量中: (1)写出与A→B共线的向量; (2)写出与E→F方向相同的向量; (3)写出与O→B,O→D的模相等的向量; (4)写出与E→O相等的向量.
解析: 在等腰梯形ABCD中,AB∥CD∥EF,AD=BC. (1)题干图中与A→B共线的向量有D→C,E→O,O→F,E→F. (2)题干图中与E→F方向相同的向量有A→B,D→C,E→O,O→F. (3)题干图中与O→B的模相等的向量为A→O,与O→D的模相等的向量为O→C. (4)题干图中与E→O相等的向量为O→F.
→ 2.已知D为平行四边形ABPC两条对角线的交点,则|P→D|的值为( )
|AD|
A.12
B.13
C.1
D.2
中职数学基础模块下册《平面向量的概念》公开课课件
01
02
03
平行四边形的性质
通过平面向量的线性组合 ,可以证明平行四边形的 对边相等、对角线互相平 分等性质。
三角形的重心
利用平面向量,可以求出 三角形的重心坐标,进而 求出其他几何量。
空间几何
平面向量可以扩展到三维 空间,用于描述空间几何 图形的位置和方向。
平面向量在物理中的应用
力的合成与分解
在物理中,力是矢量,可以用平 面向量来表示和运算。通过力的 合成与分解,可以求解物体的运
向量的正交分解
将一个向量分解为两个相互垂直的向量的线性组合。
向量的坐标表示
将一个向量用一组有序实数对(x,y)表示,这组实数对称为该向量的坐标。
05
平面向量的解题技巧与方法
运用向量性质简化问题
01
向量具有方向性
利用向量的方向性,可以解决一些与向量方向相关的问题,如向量旋转
、向量投影等。
02
向量模的非负性
中职数学基础模块下册《平 面向量的概念》公开课课件
汇报人: 202X-12-22
目 录
• 平面向量的基本概念 • 平面向量的运算 • 平面向量的应用 • 平面向量的性质与定理 • 平面向量的解题技巧与方法 • 平面向量与其他数学知识的联系与区别
01
平面向量的基本概念
平面向量的定义与表示
向量的定义
数乘向量
数乘向量的定义
数乘向量是指将一个实数与一个向量相乘,得到一个新的向量。其实质是将向量 的每个分量都乘以该实数。
数乘向量的运算规则
数乘向量的运算规则是线性运算的分配律,即对于任意实数k和任意向量a,有 ka=k(a1,a2,...,an)=(k*a1,k*a2,...,k*an)。
高教版中职数学(基础模块)下册7.1《平面向量的概念及线性运算》ppt课件1
【例2】:如图,设O是正六边形的中心,分别写 出图中与向量 、 相等的向量, OA 、 OC 负向 OB OC B A 量。
C
O
F
D
E
解:
B
A
OA CB DO
OB DC EO
O
C F
OC AB ED FO
D E
OC BA DE OF
下面几个命题:
(1)若a = b, b = c,则a = c。
两个向量a、 b,其差a − b仍然是一
个向量,其起点是减向量b的终点,
B b O a
A
终点是被减向量a的终点.
a
b
b
O
a (b)
a
b
a b
向量减法法则
a
a
ab
b b
B
A
O
a
ba
A
b
B
作法:在平面内任取一 点O, 作OA a, OB b, 则BA a b.
• 要点:1.平移到同一起点;2.指向被减向量.
向量加法法则总结与拓展
• 向量加法的三角形法则: – 1.将向量平移使得它们首尾相连 – 2.和向量即是第一个向量的首指向第二个向量的尾 • 向量加法的平行四边形法则: – 1.将向量平移到同一起点 – 2.和向量即以它们作为邻边平行四边形的共起点的 对角线 • 三角形法则推广为多边形法则:
多个向量相加, 如:AB BC CD DE EF AF ,
任一组平行向量都可移到同一条直线上,平行向量也叫
共线向量 规定:零向量与任一向量平行
记作:
0 // a
3. 向量的负向量:长度相等且方向相反的向量。
人教版中职数学拓展模块一:3.1平面向量的概念课件(共19张PPT)
,有向线段的方向表示向量的方向.用有向线段表示向量
,使向量有了直观形象.
在初中,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
活动 2
调动思维,探究新知
向量 的大小称为向量 AB 的长度(或称 模),
记作 | |.长度为 0 的向量称为零向量,记作0.零向
量的方向是不确定的.长度为 1 的向量称为单位向量.
在初中,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
活动 2
调动思维,探究新知
我们把长度相等且方向相同的向量称为相等向量.向
量 和 为相等向量,记作 =.例如,图3-4所示的平行
四边形 ABCD 中, = .
在初中,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
活动 2
调动思维,探究新知
读一读
最先使用有向线段表示向量的是英国著名科学家牛
顿.
在初中,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
活动 2
调动思维,探究新知
如果两个非零向量的方向相同或者相反,则称这两个
活动 2
调动思维,探究新知
通常,在线段 AB 的两个端点中,规定一个顺序,假
设 A 为始点, B 为终点,我们就说线段 AB 具有方向,
具有方向的线段称为有向线段.
在初中,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
活动 2
调动思维,探究新知
通常在有向线段的终点处画上箭头表示它的方向.以
A 为始点、B 为终点的有向线段记作 ,如图3-3所示
中职数学基础模块下册《平面向量的概念》课件
叉积的性质
叉积具有分配律、差积公式、对称性、反对 称性等基本性质。
叉积的计算
向量积的计算公式为 |→AB×→AC|=|→AB|·|→AC|·sin∠BAC,其 中向量最终结果垂直于这两个向量所在的平 面。
应用举例
向量的叉积可以用于计算向量面积、判断线 段间的相对位置关系、求解平面的法向量等 多个方面。
归一化向量
归一化向量是指将向量长度 变为1,仍然保持同样的方向。 其计算方法为将向量除以它 的模。
第五部分:向量的数量积
1
数量积的定义
向量的数量积也称内积,是两个向量
数量积的计算
2
的数量乘积与它们夹角的余弦值之积。 可用向量坐标或向量的模、夹角余弦
|→AB·→AC|= |→AB|·|→AC|·co s∠BAC
学生体验
我们将通过有趣的例题和 动手实践,让每个学生真 正体验到向量运算的乐趣。
第二部分:平面向量的定义
1
点的坐标表示
点P在平面直角坐标系上的坐标表示
向量的定义
2
为(x, y),其中x,y分别是P在x轴和y轴 上的投影。
向量是具有大小和方向的量,可以表
示为有向线段。向量AB通常分:课堂练习
实战演练
课后作业
教师点拨
通过精心设计的例题和练习题, 让学生巩固和加深对向量的认 识和掌握。
作业包含基础练习和挑战练习, 涵盖向量的知识点和应用场景, 以巩固学生所学知识。
在教学过程中及时对学生提出 的问题进行解答和点拨,还会 针对不同情况和问题,给予个 性化的建议和指导。
平面向量的线性运算
向量的线性运算包括数量乘法 和数量加法,并满足分配律、 结合律、交换律等基本性质。
第四部分:向量的模及方向
叉积具有分配律、差积公式、对称性、反对 称性等基本性质。
叉积的计算
向量积的计算公式为 |→AB×→AC|=|→AB|·|→AC|·sin∠BAC,其 中向量最终结果垂直于这两个向量所在的平 面。
应用举例
向量的叉积可以用于计算向量面积、判断线 段间的相对位置关系、求解平面的法向量等 多个方面。
归一化向量
归一化向量是指将向量长度 变为1,仍然保持同样的方向。 其计算方法为将向量除以它 的模。
第五部分:向量的数量积
1
数量积的定义
向量的数量积也称内积,是两个向量
数量积的计算
2
的数量乘积与它们夹角的余弦值之积。 可用向量坐标或向量的模、夹角余弦
|→AB·→AC|= |→AB|·|→AC|·co s∠BAC
学生体验
我们将通过有趣的例题和 动手实践,让每个学生真 正体验到向量运算的乐趣。
第二部分:平面向量的定义
1
点的坐标表示
点P在平面直角坐标系上的坐标表示
向量的定义
2
为(x, y),其中x,y分别是P在x轴和y轴 上的投影。
向量是具有大小和方向的量,可以表
示为有向线段。向量AB通常分:课堂练习
实战演练
课后作业
教师点拨
通过精心设计的例题和练习题, 让学生巩固和加深对向量的认 识和掌握。
作业包含基础练习和挑战练习, 涵盖向量的知识点和应用场景, 以巩固学生所学知识。
在教学过程中及时对学生提出 的问题进行解答和点拨,还会 针对不同情况和问题,给予个 性化的建议和指导。
平面向量的线性运算
向量的线性运算包括数量乘法 和数量加法,并满足分配律、 结合律、交换律等基本性质。
第四部分:向量的模及方向
中职数学基础模块下册《平面向量的概念》ppt课件
变式一:与向量OA长度相等的向量 有多少个? 11个
变式二:是否存在与向量OA长度相等,方向 相反的向量? 存在,为 FE
变式三:与向量OA长度相等的共线向量有哪些? CB、DO、FE
1.下面几个命题: (1)若a = b,b = c,则a = c。
(2)若|a|=0,则a = 0
(3)若|a|=|b|,则a = b (4)两个向量a、b相等的充要条件是
01
2.1向量的基本概念
单击此处添加正文,文字是您思想的提炼,为了演示发 布的良好效果,请言简意赅地阐述您的观点。
01.
唉, 哪儿去了?
单击此处添加正文
02.
嘻嘻!大笨猫!
单击此处添加正文
03.
A
单击此处添加正文
04.
B
单击此处添加正文
一、向量的定义
既有大小,又有方向的量叫做向量。
二 、向量的表示方法
方向走了 米到10达C2点,到达C点后又改变方向向西走了10
米到达D点(1)作出向量AB,BC,CD;(2) 求AD的模
D C
1m
北
西
A
B东
南
小结:
向量
定义
几何表示法:有向线段
பைடு நூலகம்表示
符号表示法:
a ,b
AB
长度(模)
向量的有关概念
特殊向量
向量间 的关系
零向量 单位向量 平行(共线)
相等
作业:课本86页 习题2.1第2题,第3题
3.向量间的关系
(1)平行向量:方向相同或相反的非零向量叫做平行向量。
a
如:
b
c
平行向量又叫做共线向量 记作 a ∥b ∥c
变式二:是否存在与向量OA长度相等,方向 相反的向量? 存在,为 FE
变式三:与向量OA长度相等的共线向量有哪些? CB、DO、FE
1.下面几个命题: (1)若a = b,b = c,则a = c。
(2)若|a|=0,则a = 0
(3)若|a|=|b|,则a = b (4)两个向量a、b相等的充要条件是
01
2.1向量的基本概念
单击此处添加正文,文字是您思想的提炼,为了演示发 布的良好效果,请言简意赅地阐述您的观点。
01.
唉, 哪儿去了?
单击此处添加正文
02.
嘻嘻!大笨猫!
单击此处添加正文
03.
A
单击此处添加正文
04.
B
单击此处添加正文
一、向量的定义
既有大小,又有方向的量叫做向量。
二 、向量的表示方法
方向走了 米到10达C2点,到达C点后又改变方向向西走了10
米到达D点(1)作出向量AB,BC,CD;(2) 求AD的模
D C
1m
北
西
A
B东
南
小结:
向量
定义
几何表示法:有向线段
பைடு நூலகம்表示
符号表示法:
a ,b
AB
长度(模)
向量的有关概念
特殊向量
向量间 的关系
零向量 单位向量 平行(共线)
相等
作业:课本86页 习题2.1第2题,第3题
3.向量间的关系
(1)平行向量:方向相同或相反的非零向量叫做平行向量。
a
如:
b
c
平行向量又叫做共线向量 记作 a ∥b ∥c
2024版中职数学基础模块下册平面向量的概念课件
中职数学基础模块下册平面向 量的概念课件
2024/1/30
1
2024/1/30
CONTENTS
• 平面向量基本概念 • 平面向量运算 • 平面向量坐标表示法 • 平面向量数量积与投影 • 平面向量应用举例
2
2024/1/30
01
平面向量基本概念
3
向量定义及表示方法
2024/1/30
向量的定义
向量是既有大小又有方向的量,常 用带箭头的线段表示,线段的长度 表示向量的大小,箭头的指向表示 向量的方向。
18
数量积定义及性质
数量积定义
性质1
两个向量的数量积是一个标量,其大小等于 这两个向量的模与它们夹角的余弦的乘积, 方向由夹角决定。
交换律,即a·b=b·a。
性质2
分配律,即(a+b)·c=a·c+b·c。
性质3
与零向量的数量积,a·0=0。
2024/1/30
19
投影概念及计算方法
2024/1/30
坐标运算
若向量a=(x,y),则λa=(λx,λy)。
2024/1/30
11
向量运算性质总结
交换律
向量加法满足交换律,即 a+b=b+a。
零元
存在零向量0,使得对于任 意向量a,都有a+0=a。
数乘结合律
对于任意实数λ、μ和向量 a,都有(λμ)a=λ(μa)。
结合律
向量加法满足结合律,即 (a+b)+c=a+(b+c)。
这两个向量的和。
2024/1/30
三角形法则
将两个向量平移至同一起 点,首尾相接,从第一个 向量起点指向第二个向量 终点的向量即为这两个向
2024/1/30
1
2024/1/30
CONTENTS
• 平面向量基本概念 • 平面向量运算 • 平面向量坐标表示法 • 平面向量数量积与投影 • 平面向量应用举例
2
2024/1/30
01
平面向量基本概念
3
向量定义及表示方法
2024/1/30
向量的定义
向量是既有大小又有方向的量,常 用带箭头的线段表示,线段的长度 表示向量的大小,箭头的指向表示 向量的方向。
18
数量积定义及性质
数量积定义
性质1
两个向量的数量积是一个标量,其大小等于 这两个向量的模与它们夹角的余弦的乘积, 方向由夹角决定。
交换律,即a·b=b·a。
性质2
分配律,即(a+b)·c=a·c+b·c。
性质3
与零向量的数量积,a·0=0。
2024/1/30
19
投影概念及计算方法
2024/1/30
坐标运算
若向量a=(x,y),则λa=(λx,λy)。
2024/1/30
11
向量运算性质总结
交换律
向量加法满足交换律,即 a+b=b+a。
零元
存在零向量0,使得对于任 意向量a,都有a+0=a。
数乘结合律
对于任意实数λ、μ和向量 a,都有(λμ)a=λ(μa)。
结合律
向量加法满足结合律,即 (a+b)+c=a+(b+c)。
这两个向量的和。
2024/1/30
三角形法则
将两个向量平移至同一起 点,首尾相接,从第一个 向量起点指向第二个向量 终点的向量即为这两个向
平面向量的概念PPT课件
04
平面向量数量积概念及性 质
数量积定义及几何意义
数量积定义
两个向量的数量积是一个标量,等于它们模长的乘积与它们夹 角余弦的乘积。
几何意义
数量积反映了两个向量的相对位置和角度关系,正值表示同向, 负值表示反向,零表示垂直。
数量积性质及运算规律
性质
满足交换律、分配律、结合律,与标量乘法相容等。
运算规律
向量坐标与点坐标关系
向量坐标
向量坐标是由起点指向终点的有 向线段,在直角坐标系中可以用
两个坐标值表示。
点坐标
点坐标是直角坐标系中点的位置表 示,同样可以用两个坐标值表示。
关系
向量坐标与点坐标密切相关,向量 的起点和终点坐标可以决定向量的 坐标,而点的坐标可以用来表示向 量的起点或终点。
向量运算坐标表示法
坐标法求解向量问题
求解向量坐标
通过已知点的坐标和向量的关系,可以 求解向量的坐标。
求解向量模长
通过向量的坐标可以计算向量的模长, 进而求解与模长相关的问题。
求解向量夹角
通过向量的坐标可以计算向量的夹角, 进而求解与夹角相关的问题。
求解向量运算结果
通过向量的坐标表示法可以求解向量的 加法、减法和数乘运算结果。
向量运算满足基本定律
加法结合律
(a + b) + c = a + (b + c)
数乘结合律
(kl)a = k(la)
加法交换律
a+b=b+a
数乘分配律
k(a + b) = ka + kb
向量共线定理,使得b = λa
03
平面向量坐标表示法
直角坐标系中向量表示方法
6.1平面向量的概念课件共45张PPT
即时训练1-1:判断下列命题是否正确,若不正确,请简述理由.
(2)单位向量都相等;
解:(2)不正确,单位向量的模均相等且为1,但方向并不确定.
即时训练 1-1:判断下列命题是否正确,若不正确,请简述理由.
→
→
(3)四边形 ABCD 是平行四边形当且仅当=;
(4)一个向量方向不确定当且仅当模为 0;
有紧紧抓住概念的核心才能顺利解决与向量概念有关的问题.
即时训练 1-1:判断下列命题是否正确,若不正确,请简述理由.
→
→
(1)向量与是共线向量,则 A,B,C,D 四点必在同一直线上;
解:(1)不正确,共线向量即平行向量,只要求方向相同或相反即可,并不
→
→
要求两个向量,在同一直线上.
(3)两个特殊向量:
①零向量与非零向量:
长度为0的向量叫做零向量.印刷时用加粗的阿拉伯数字零表示,即0;书写
→
时,可写为.长度不为 0 的向量称为非零向量.
②单位向量:长度等于1个单位长度的向量,叫做单位向量.
2.向量间的关系
(1)平行向量(共线向量):方向相同或相反的非零向量叫做平行向量,向量
图所示的向量中,
→
→
(1)分别找出与, 相等的向量;
→
→
→
→
解:(1)=,=.
[例 2] O 是正方形 ABCD 对角线的交点,四边形 OAED,OCFB 都是正方形,在如
图所示的向量中,
→
(2)找出与共线的向量;
→
→
→
→
解:(2)与共线的向量有,,.
[例 2] O 是正方形 ABCD 对角线的交点,四边形 OAED,OCFB 都是正方形,在如
中职数学71平面向量的概念及线性运算ppt课件
模为1的向量叫做单位向量.
B a A
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
巩固知识 典型例题
例1 一架飞机从A处向正南方向飞行200km,另一架飞机从A处 朝北偏东45°方向飞行200km, 两架飞机的位移相同吗?分别用有向 线段表示两架飞机的位移.
1A D ; 2O A .
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
动脑思考 探索新知
与数的运算相类似,可以将向量a与向量b的负向量的和定义 为向量a与向量b的差.即
a − b = a+(−b).
线段的长度表示向量的大小.
如右图所示,有向线段的起点叫做向量的起点,有向线
段的终点叫做向量的终点.以A为起点,B为终点 的向量记作 A B,
也可以使用小写英文字母,印
B a
刷用黑体表示,记作a;手写时应在字母上面 A
加箭头,记作 a .
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
N
B
E
M
TK A
L
Z
CD
FK
Q
P
G
图7−4
方向相同或 相反的两个非零 向量叫做互相平 行的向量.
向量a与向量 b平行记作a//b.
规定:零向 量与任何一个向 量平行.
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
B a A
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
巩固知识 典型例题
例1 一架飞机从A处向正南方向飞行200km,另一架飞机从A处 朝北偏东45°方向飞行200km, 两架飞机的位移相同吗?分别用有向 线段表示两架飞机的位移.
1A D ; 2O A .
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
动脑思考 探索新知
与数的运算相类似,可以将向量a与向量b的负向量的和定义 为向量a与向量b的差.即
a − b = a+(−b).
线段的长度表示向量的大小.
如右图所示,有向线段的起点叫做向量的起点,有向线
段的终点叫做向量的终点.以A为起点,B为终点 的向量记作 A B,
也可以使用小写英文字母,印
B a
刷用黑体表示,记作a;手写时应在字母上面 A
加箭头,记作 a .
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
N
B
E
M
TK A
L
Z
CD
FK
Q
P
G
图7−4
方向相同或 相反的两个非零 向量叫做互相平 行的向量.
向量a与向量 b平行记作a//b.
规定:零向 量与任何一个向 量平行.
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
距离、位移、身高、力、质量、时间、速度、面积、温度.
数量
向量
距离、身高、 质量、时间、 面积、温度
位移、力、 速度
6
F
力
F
三要素:大小,方向,作用点
7
S
质点做机械运动,从初位置 到末位置的有向线段叫做位移。
8
速度:物 体运动的 位移与所 用的时间 的比值
V
9
二.向量的表示
用有向线段表示(规定了起点、方向、长度的 线段)
A F
E
20
如下图,与AB有几个?与AB长度相等的 有几个?
B
相等的有 7个
长度相等
A
的有9个
21
练习3:
1、下列命题正确的是 (
)
(A)共线向量都相等
(B)单位向量都相等
(C)平行向量不一定是共线向量
(D)零向量与任一向量平行
22
2.下列说法正确的是 ( ) A) 方向相同或相反的向量是平行向量. B) 零向量是0 . C)长度相等的向量叫做相等向量. D) 共线向量是在一条直线上的向量.
(4)若a = b,b = c, 则a = c; ur r ur r ur ur
(5)若a //c,b //c, 则a //b
18
例2:如图,设O是正六边形ABCDEF的中心,分别
写出图中与向量OA 、OB 、OC 相等的向
u量uur 与OA相等的向量有
B
A
uuuur uuur
DO, CB.
uuuv
a
b
a
负向量(相反向量) b
与非零向量的模相等,且方向相反的向 量叫做向量的负向量,记作: a .
a
a
15
相等向量:长度相等且方向相同的向量叫
做相等向量。
注意:1°零向量与零向量相等。
2°任意两个相等的非零向量,都可以
用一条有向线段来表示,并且与有向线段的起点
无关。
a
b
ab
负向量(相反向量)
与非零向量的模相等,且方向相反 a
模相等且方向相同
(7)共线向量一定在同一直线上. ×
17
练习1:判断下列各命题是否正确? ur ur ur uur
(1)a = b ,则a = b; (2)若两个向量相等,则它们的起点相同,终点相同; uuur uuur
(3)若AB = CD, 则四边形ABCD是平行四边形; ur ur ur r ur r
O
与OB相等的向量有 C
F
uuur uuur EO, DC.
uuur
与OC相等的向量有 D
E
uuur uuur
FA, ED.
19
练习2:如图
问题:(1) OA 与 FE
B
相等吗?
(2) OB 与 AF
相等吗?
O
(3) 与 OA 长度相等 C
的向量有几个? 12
(4) 与 OA 共线的
向量有哪几个? uuuv uuuv uuDuv 有CB, FE, DO.
东
A b
a
b A
a
A
A
100km.
a
a
C
D
13
3.向量的关系:
a
平行向量: 表示为:
方向相同或相反的非零向量. a // b // c
b
零向量与任一向量平行. L
c
共线向量: 任一组平行向量都可平移到同一直线上.
即平行向量也叫做共线向量.
14
相等向量
长度相等且方向相同的向量.表示为:
的向量叫做向量的负向量,
记作: a
a
16
例1.判断下列命题真假或给出问题的答案:
(1)平行向量的方向一定相同. × (2)不相等的向量一定不平行. ×
(3)与零向量相等的向量是什么向量? 零向量 (4)存在与任何向量都平行的向量吗? 零向量 (5)若两个向量在同一直线上,则这两个向量一定是 什么向量? 平行向量(共线向量) (6)两个非零向量相等的条件是什么?
单位向量: 模为1个单位长度的向量.
12
巩固知识 典型例题
例1 一架飞机从A处向正南方向飞行200km,另一架飞机从A处 朝北偏东45°方向飞行200km, 两架飞机的位移相同吗?分别用有向 线段表示两架飞机的位移.两架飞机位移的有向线段表示分别为图中 的有向线段 a 与 b. 下列各图中哪个表示正确?
3.已知a、b是任意两个向量,下列条件: ①a=b; ②|a|=|b|; ③a与b的方向相反; ④a=0或b=0; ⑤ a与b都是单位向量.
其中是向量a与b平行的有_____.
23
课堂小结:
1、向量定义:既有大小又有方向的量。
AB
A
B
2.向量的长度:向量的大小就是向量的长
度
| AB |
(或称为模)。记作
始点
终点
始点
a 终点
A
B
a 用字母表示 AB, 或
始点
终点
10
三. 向量的有关概念
1.向量的大小(模): (模)表示: | AB |
向或量| aA|B
或 a 的大小
向量是不能比较大小的,但 向量的模是可以进行大小比较的.
a
|
a||
b|
√
b
a
b
×
11
2.两个基本向量:
零向量: 模为零的 向量(方向不确定). 表示: 0, | 0 | 0
嘻嘻!大笨猫!
C
你位移错了!
A
B
找准方向+看到差距+努力=成功
唉, 哪儿去了?
D
3
如图所示,用100N的力,按照不同的方向拉一辆车,效果一样吗?
4
只有大小,没有方向的量叫做数量(标量) 例如质量、时间、温度、面积、密度等. 既有大小,又有方向的量叫做向量(矢量),
如力、速度、位移等.
5
请说出下列一些量那些是数量那些是向量?
3.零向量:长度为0的向量叫做零向量,记 作 0 (手写体)。
24
25
动脑思考 探索新知
在数学与物理学中,有两种量.只有大小,没有方向的量 做数量(标量) ,例如质量、时间、温度、面积、密度等. 既有大小,又有方向的量叫做向量(矢量), 如力、速度、位移等.
向量的大小叫做向量的模.向量a,
uuur AB
的模依次记作
a
,uAuBur
.
模为零的向量叫做零向量.记作0, 零向量的方向是不确定的.
模为1的向量叫做单位向量.
B a A
26
巩固知识 典型例题
说出下图中各向量的模,并指出其中的单位向量 (小方格边长为1).
N
B
E
M
K A
H
L
Z
CD
FK
Q
P
G
图7−4
27
动脑思考 探索新知
下图中,哪些向量是共线向量?
平面向量的概念及表示
1
小组探究
猫与老鼠哪个重?
一只猫的重量是1.5千克,一只老鼠的重量是 0.2公斤,谁更重?
猫能捉住老鼠吗?
• 老鼠由A向东北方向以每秒6米的速度逃窜, 而猫由A向正南方向每秒10米的速度追. • 问猫能否抓到老鼠?
速度是既有大小又有方向的量
2
猫能捉住老鼠吗?
•老鼠由A向东北方向以6m/s 的速度逃窜,而猫由B向东南 方向10m/s的速度追. 问猫能 否抓到老鼠?
由于任意一 组平行向量都 可以平移到同 一条直线上, 因此相互平行 的向量又叫做 共线向量.