中职数学:数列的基本知识ppt课件
2024版中职数学教学课件第6章数列
中职数学教学课件第6章数列目录•数列基本概念与性质•等差数列深入探究•等比数列深入探究•数列求和技巧与方法•数列极限初步认识•章节复习与总结PART01数列基本概念与性质数列定义及表示方法数列定义按照一定顺序排列的一列数。
数列表示方法通常用带下标的字母表示,如$a_n$,其中$n$为正整数,表示数列的第$n$项。
等差数列性质任意两项之差为常数。
等差数列的通项公式:$a_n=a_1+(n-1)d$,其中$d$为公差。
中项性质:若$m+n=p+q$,则$a_m+a_n=a_p+a_q$。
等差数列定义:从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
等比数列定义:从第二项起,每一项与它的前一项的比等于同一个常数的一种数列。
等比数列性质任意两项之比为常数。
中项性质:若$m+n=p+q$,则$a_ma_n=a_pa_q$。
等比数列的通项公式:$a_n=a_1 times q^{(n-1)}$,其中$q$为公比。
数列通项公式与求和公式数列通项公式表示数列第$n$项与$n$之间关系的公式,如等差数列和等比数列的通项公式。
数列求和公式用于计算数列前$n$项和的公式。
对于等差数列,求和公式为$S_n=frac{n}{2}(a_1+a_n)$;对于等比数列,当公比$q neq1$时,求和公式为$S_n=a_1 times frac{q^n-1}{q-1}$。
PART02等差数列深入探究03等差中项的求法已知等差数列的两项,可以通过它们的算术平均数求出等差中项。
01等差中项的定义在等差数列中,任意两项的算术平均数等于它们的等差中项。
02等差中项与等差数列的关系等差中项是等差数列的重要性质之一,通过等差中项可以判断一个数列是否为等差数列,也可以求出等差数列的公差。
等差中项与等差数列关系1 2 3等差数列前n项和是指等差数列前n项的和。
等差数列前n项和的定义通过倒序相加法或错位相减法等方法,可以推导出等差数列前n项和的公式。
中职教育-数学(基础模块)下册 第六章 数列.ppt
可表示为 Sn a1 (a1 d ) (a①1 2d ) [a1 (n 1)d ],
Sn an (an d ) (②an 2d ) [an (n 1)d ].
…
…
将①②两式相加可得
…
2Sn (a1 an ) (a1 an ) (a1 an ) n个
.
于是
a2
a1q
16 3
3 2
8.
➢例题解析
例2 求等比数列11,3.3,0.99,…的第4项和第5 项.
… …
观察
所以,数列的一般形式可以写成
a1 ,a2 ,a3 , ,an ,
简记为{an}.其中,反映各项在数列中位置的数字0,1,2,3,…,n
分别称为对应各项的项数.
项数有限的数列称为有穷数列;项数无限的数列称为无穷数列.上 面的例子中,数列②④为有穷数列,数列①③为无穷数列.
➢6.1.2 数列的通项公
59 3n 1, n 20.
因此,该数列的第20项为59.
➢例题解析
例3 在等差数列{an}中,公差d=5, a9=38,求首项a1。
解:
因d=5,故设等差数列的通项公式为
an a1 5(n 1) .
因a9=38,故
38 a1 5 (9 1) . a1 2 .
➢例题解析
例4 某市出租车的计价标准为1.2元 /km,起步价为10元,即最初的4 km (不含4 km)计价10元.如果某人在该 市坐出租车去14 km处的地方,需要支 付 解多:少车费?
观察上面的数列,可以发现,从第2项开始,数列中每 一项与其前一项的比都等于2.
一般地,如果一个数列从第2项起,每一项与其前一项 的比都等于同一常数,那么,这个数列称为等比数列,这 个常数称为等比数列的公比,用字母q 表示.
中职数学数列课件
中职数学数列课件一、引言数列是数学中一个重要的概念,它是按照一定顺序排列的一列数。
数列可以用于描述自然界和现实生活中的许多现象,例如人口增长、物理运动等。
因此,掌握数列的知识对于中职学生来说具有重要的意义。
二、数列的基本概念1.数列的定义:数列是由一系列按照一定顺序排列的数构成的集合。
数列中的每个数称为数列的项,通常用字母表示,如a1,a2,a3等。
2.数列的表示方法:数列可以用列举法、通项公式法、递推公式法等方式表示。
列举法是将数列的前几项直接写出来,如1,2,3,4,5;通项公式法是通过一个公式来表示数列的任意一项,如an=n^2;递推公式法是通过前一项或前几项来递推下一项,如an=an-1+2。
3.数列的项数:数列的项数可以是有限的,也可以是无限的。
有限数列的项数是有限的,如1,2,3,4,5;无限数列的项数是无限的,如1,2,3,4,5,三、等差数列1.等差数列的定义:如果一个数列从第二项起,每一项与它前一项的差都等于同一个常数,那么这个数列称为等差数列。
这个常数称为等差数列的公差。
2.等差数列的表示方法:等差数列可以用通项公式an=a1+(n-1)d表示,其中a1是首项,d是公差,n是项数。
任意两项之间的差是公差d。
数列中的任意一项都可以表示为首项和项数的函数。
数列的前n项和可以表示为Sn=n(a1+an)/2。
四、等比数列1.等比数列的定义:如果一个数列从第二项起,每一项与它前一项的比都等于同一个常数,那么这个数列称为等比数列。
这个常数称为等比数列的公比。
2.等比数列的表示方法:等比数列可以用通项公式an=a1r^(n-1)表示,其中a1是首项,r是公比,n是项数。
任意两项之间的比是公比r。
数列中的任意一项都可以表示为首项和项数的函数。
数列的前n项和可以表示为Sn=a1(1r^n)/(1r)。
五、数列的应用数列在现实生活中有着广泛的应用,例如在金融领域中的复利计算、在物理学中的运动学问题、在生物学中的人口增长问题等。
中职数学数列的基本知识ppt课件
中职数学数列的基本知识ppt课件目录•数列基本概念与性质•数列求和与通项公式•数列递推关系与性质•数列极限与收敛性判断•数列在实际问题中应用举例PART01数列基本概念与性质数列定义数列表示方法数列的项通常用带下标的字母来表示数列,如{an}。
数列中的每一个数都叫做数列的项。
0302 01数列定义及表示方法按照一定顺序排列的一列数。
等差数列性质任意两项之差为常数。
从第一项开始,依次成等差数列的若干个数的和等于项数乘以中间项。
中间项等于首尾两项和的一半。
等差数列定义:从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
等比数列定义:从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列。
等比数列性质任意两项之比为常数。
中间项的平方等于首尾两项的乘积。
从第一项开始,依次成等比数列的若干个数的积等于首项乘以末项再乘以公比的次幂。
算术数列几何数列调和数列混合数列常见数列类型及特点01020304每一项与前一项的差为常数,如1, 3, 5, 7,...每一项与前一项的比为常数,如2, 4, 8, 16,...每一项的倒数成等差数列,如1, 1/2, 1/3, 1/4,...不具有明显规律的数列,需要通过其他方法进行分析和处理。
PART02数列求和与通项公式等差数列求和公式推导通过倒序相加法或错位相减法推导等差数列求和公式。
等差数列求和公式应用利用等差数列求和公式解决与等差数列相关的问题,如计算前n项和、求某一项的值等。
等比数列求和公式推导通过错位相减法或等比数列的性质推导等比数列求和公式。
等比数列求和公式应用利用等比数列求和公式解决与等比数列相关的问题,如计算前n 项和、求某一项的值等。
通过观察数列的前几项,找出数列的通项公式。
观察法根据已知的递推关系式,逐步推导出数列的通项公式。
递推法通过设定未知数,建立方程组,求解得到数列的通项公式。
待定系数法通项公式求解方法典型例题解析已知等差数列的前n项和为Sn,且S10=100,S20=300,求S30。
中职数学数列的基本知识课件
目录
• 数列基本概念与性质 • 数列求和与通项公式 • 数列在生活中的应用 • 数列极限初步认识 • 数列在职业领域中的应用 • 总结回顾与拓展延伸
01 数列基本概念与性质
数列定义及表示方法
数列定义
按照一定顺序排列的一列数。
数列表示方法
通常用带下标的字母表示,如$a_n$,其中$n$为自然数,表示数列的第$n$项 。
易错难点剖析及注意事项
等差数列与等比数列的判定
在判断一个数列是否为等差或等比数列时,需要注意公差或公比 是否恒定,以及首项是否符合定义。
公式应用中的细节问题
在使用等差数列和等比数列的通项公式和求和公式时,需要注意公 式中各项的对应关系,以及是否满足公式的使用条件。
极限概念的理解
在理解数列极限的概念时,需要注意极限的严格定义,以及极限的 唯一性、保号性等性质。
等比数列及其性质
等比数列定义:从第二项起,每一项与它的前一项的比值等 于同一个常数的一种数列。 等比数列性质
任意两项之比为常数。
中项性质:在等比数列中,如果$m+n=p+q$,则$a_m times a_n = a_p times a_q$。 等比中项:如果在$a$与$b$中间插入一个数$G$,使$a$, $G$,$b$成等比数列,那么$G$叫做$a$与$b$的等比中项 。
解答1
根据等差数列的性质和已知条件,可以列出方程组求解 得到公差d=2,进而得到通项公式an=2n-1和前n项和公 式Sn=n^2。
例题2
已知等比数列{bn}的前n项和为Tn,且b1=2,T3=26 ,求bn和Tn。
解答2
根据等比数列的性质和已知条件,可以列出方程组求解 得到公比q=3,进而得到通项公式bn=2*3^(n-1)和前 n项和公式Tn=(3^n-1)/2。
中职高考数学复习《数列》课件全文
(2)若数列{ }满足 = + ,求{ }的前n项和
( )
高
考
真
题
(2019年真题)
5.若数列{ }的前7项和为70,则 1 + 7 等于
A.5
B.10
C.15
( )
D.20
30(本小题9分)某城市2018年底人口总数为50万,绿化面积为35万平方米,假定今后每年人口
数
列
职 教 高 考 一 轮 复 习
目录
|数列定义
等差与等比数列
|高考真题
数 列 定 义
有限数列
一、数列的定义:
按项的个数分类
四、数列的递推公式
+2 = +1 +
无限数列
二、数列的分类
递增数列
五、数列的递推公式
递减数列
项的大小关系排列
常数列
摆动数列
三、数列的通项公式
=f(n)
高
考
真
题
(2020年真题)
5.在等比数列{ }中,则 1 = 1,2 = −2,则9 等于
A.256
B.-256
C.512
( )
D.-512
27.(本小题8分)某男子擅长走路9天走了1260里,其中第1天,第4天,第7天所走
的路程之和为390里。若从第2天起每天比前一天多走的路程数相同,该男子第5天
14
A. 3
B.2
C. 4
D.8
27.(本小题8分)已知数列{ }的前n项和 = 22 − 3,求:
(1)第二项2
(2)通项公式
( )
高
考
真
中职数学课件7.1数列的概念
两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上 研究数学问题.他们在沙滩上用小石子摆成三角形来表示数,再 按照点或小石子能排列的形状对数进行分类,如图所示.你能找 出下列点数的规律么?
7.1 数列的概念
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
例3 设数列an 的通项公式是an=3n+1,问13是否为该数列的项? 若是,它数列的是第几项?
分别为
a1=
1 1+1
=
1 2
,a2
=
1 2+1
=
1 3
,a3
=
1 3+1
=
1 4
,a4
=
1 4+1
=
1 5
,a5
=
1 5+1
=
1 6
;
(2)在通项公式中依次取n=1,2,3,4,5,得到数列的前5项,
分别为
a1=(-1)1+1=(-1)2 =1 , a2 =(-1)2+1=(-1)3 =-1 , a3 =(-1)3+1=(-1)4 =1 , a4 =(-1)4+1=(-1)5 =-1 , a5 =(-1)5+1=(-1)6 =1.
6.9%,6.7%, 6.0% ,2.2 % ,8.1 % ; (3)
像(1)(2)(3)这样按照一定次序排成的一列数称为数列. 数列中的每一个数为这个数列的项.
7.1 数列的概念
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
数列的一般形式为a1,a2,a3,…,an,…,简记作an . 其中, a1称为数列的首项, an称为数列的第n项,n称为项数.
例如,某种细菌每经过时间t分裂一次,每次分裂都是1个细菌分裂
中职数列复习最新ppt课件
2 4 2(n 1)
b b n n 12 22 4 2n1 4, 数 . 列 b n是 等 比 数 列
【题型1】等差(比)数列的基本运算
练习:等差数列{an}中,已知a 1=
1 3
方案2:若在2001年初向银行贷款50 万先购房,银行贷款的
年利率为4.425%,按复利计算,要求从贷款开始到 2010年要分10
年还清,每年年底等额归还且每年1次,他每年至少要还多少钱
呢?
.
例2解: ⑴按复利计算存10年本息和(即从银行里取到钱)为:
3×(11.98%)10 +3×(11.98%)9 +…+3×(11.98%)1
但常数列不一定是等比数列, 只有非零的常数列才是等比数列
.
正确理解等比数列的定义需掌握 以下几点:
1.等比数列的项an、公比q均不能为0
2.q>0时,数列的各项与首项同号 3.q<0时,数列的各项符号正负相间 4.q=1时,数列是常数列:a,a,a,
a,…(a≠0)但常数列不一定是等比 数列,只有非零的常数列才是等比数 列
.
【题型5】数列的应用
例某人,公元2000年参加工作,打算购一套 50万元商品房,
请你帮他解决下列问题:
方案 1:从 2001 年开始每年年初到银行存入 3万元,银行的
年利率为1.98%,且保持不变,按复利计算(即上年利息要计入下
年的本金生息),在2010 年年底,可以从银行里取到多少钱?
若想在 2010 年年底能够存足 50万,他每年年初至少要存多少钱?
3(11.98%)[1(11.98%)10 =
中职数学《数列的概念》ppt课件
例2 写出下面数列的一个通项公式,使它
(2) 1,2,4,8,…,263
(3)1,
1 ,
1 ,
1
……
248
(4) 15,5,16,16,28,32,51
无穷数列 有穷数列 无穷数列 有穷数列
(5) 1,-1,1,-1,1,-1,…
无穷数列
问题5:观察数列的每一项, 你发 现数列的项an与其序号n有什么 样的对应关系?这一关系用一个 式子如何表示?
如果数列 an 的第n项 an 与序号 n 之间的
关系可以用一个公式来表示,那么这个公式 就叫做这个数列的通项公式.
问题6:数列中,项与序号的对应关系可以看
成函数吗? 如果是函数,定义域,函数解析
式分别是什么?
数列的实质:定义域为正整数集 N( 或其有限子集
{1,2,…n})的函数当自变量从小到大依次取值时
(1) 2, 4, 6, 8, ……
第一项记为 a 1 =2 数列的项 _数__列__中__的__每__一__个__数__ 第二项记为 a 2 =4 数列的首项 _数__列__的__第__一__项__ 第三项记为 a 3 =6
… …
三.数列的分类按: 项的个数分 有穷数列
无穷数列
(1) 2,4,6,8,…
... ...
2
•
1• o1 234
n n=64 a64=263
数列1, 2, 4, 8, 16, …,263 数列7, 6, 5, 4, 3, 2
中职数学:数列的基本知识课件
等比数列的通项公式
总结词
等比数列的通项公式是用来表示数列中每一项的数学表达式。
详细描述
等比数列的通项公式是 a_n=a_1×q^(n-1),其中 a_n 是第 n 项的值,a_1 是第一项的值,q 是公比 ,n 是项数。
等比数列的求和公式
总结词
等比数列的求和公式是用来计算数列 中所有项的和的数学表达式。
多个不同的极限值。
收敛数列具有有界性,即存在一 个正数M,使得数列的项都满足
$|x_n| leq M$。
收敛数列具有保序性,即如果 $x_n leq y_n$,且$lim x_n = lim y_n$,则可以推出$x_n geq
y_n$。
收敛数列的应用
在数学分析中,收敛数列是研究函数极限、连续性、可微性等概念的基础。
04
CATALOGUE
数列的极限与收敛
数列的极限定义
极限是数列的一种特性,表示 数列从某一项开始,无限接近 于一个常数。
极限的定义包括两种形式:数 列的极限和子数列的极限。
数列的极限定义是数学分析中 的基本概念之一,是研究数列 的单调性、有界性以及数列求 和等问题的关键。
收敛数列的性质
收敛数列具有唯一性,即收敛数 列只能收敛到一个点,不会出现
数列与实际问题的综合应用
总结词
数列在解决实际问题中具有广泛的应用,如人口增长、 银行利率、股票价格等都可以用数列进行描述和预测。
详细描述
数列作为一种数学工具,在解决实际问题中具有广泛的 应用。例如,人口增长可以用等差数列或等比数列进行 描述和预测;银行利率和股票价格可以用等比数列进行 计算和分析。通过建立数学模型,可以将这些实际问题 转化为数列问题,从而为决策提供科学的依据。
中职数学数列复习课课件
洛必达法则
对于某些复杂的分式数列 ,可以通过求导的方式简 化计算过程,得到极限值 。
极限性质在数列中应用
有界性
存在某个正数M,使得数列的绝对值 始终小于等于M。
极限的四则运算法则
对于两个收敛的数列,它们的和、差 、积、商(分母不为0)的极限等于 各自极限的和、差、积、商。
保号性
若数列的极限大于0,则存在某一项 开始,数列的所有后续项都大于0; 反之亦然。
备考策略
在掌握基础知识的同时,加强数列与其他知识点的联系和综合运用能力。多做真题和模 拟题,提高解题速度和准确性。
针对不同层次学生个性化辅导建议
基础薄弱学生
重点复习数列的基本概念和性质 ,掌握等差、等比数列的通项公 式和求和公式。通过大量练习提
高熟练度。
中等水平学生
在巩固基础知识的同时,加强数 列在实际问题中的应用能力。尝 试解决一些综合性较强的题目, 提高分析问题和解决问题的能力
例题2
已知等比数列${ a_n }$中,$a_3=4$, $a_6=32$,求$a_9$。
解答
根据等差数列前$n$项和公式 $S_n=frac{n}{2}[2a_1+(n-1)d]$,代入 $a_1=1$,$d=2$,$n=10$,得 $S_{10}=frac{10}{2}[2times1+(101)times2]=100$。
等差数列性质及应用举例
性质
等差数列具有许多重要的性质,如任 意两项的和等于首尾两项的和、任意 一项的值等于其前后两项的平均值等 。这些性质在解题过程中具有重要的 应用价值。
应用举例
等差数列在实际生活中有着广泛的应 用,如计算储蓄存款的利息、求解某 些物理问题等。通过具体的应用举例 ,可以帮助学生更好地理解和掌握等 差数列的知识。
《数列复习课中职》课件
02
等差数列知识点梳理
等差数列定义及通项公式
等差数列定义
一个数列,从第二项起,每一项与 它的前一项的差等于同一个常数, 这个数列就叫做等差数列。
等差数列通项公式
an=a1+(n-1)d,其中an为第n项, a1为首项,d为公差,n为项数。
等差中项与等差数列关系
等差中项定义
在三个数中,如果第一个数与第三个数的和等于第二个数的两倍,那么这三个数就 构成等差数列,其中第二个数叫做等差中项。
案例分析
举例说明分期付款问题的求解 过程,帮助学生理解并掌握解
题方法。
储蓄问题建模与求解
储蓄问题描述
阐述储蓄问题的基本概念,如本 金、利率、存款期限等。
数学模型建立
通过等比数列求和公式,建立储 蓄问题的数学模型。
求解方法与步骤
介绍如何利用数学模型求解储蓄 问题,包括计算到期本金与利息 总额、每期存入金额等。
等差中项与等差数列关系
如果三个数a、G、b依次组成等差数列,则G叫做的等差中项,且2G=a+b(等差中 项的二倍等于前项与后项之和)。
等差数列求Leabharlann 公式及应用等差数列求和公式
Sn=n/2*(a1+an),其中Sn为前n项和,a1为首项,an为第n项,n为项数。
等差数列求和公式的应用
利用等差数列求和公式可以方便地求出等差数列的前n项和,进而解决一些实际问题,如计算存款利息、计算工 程总量等。
典型例题解析与思路拓展
典型例题解析
通过解析典型例题,帮助学生掌握等差数列的通项公式、求和公式以及等差中项的应用。
思路拓展
在解析典型例题的基础上,引导学生拓展思路,探索更多的解题方法和技巧,提高学生的思维能力和创新 能力。例如,可以通过构造新数列、利用数学归纳法等方法来求解一些复杂的等差数列问题。
中职数学数列PPT课件
解答
根据等差数列的求和公式$S_n = na_1 + frac{n(n1)}{2}d$,代入$n = 10$,$a_1 = 1$,$d = 2$, 得到$S_{10} = 10 times 1 + frac{10 times 9}{2} times 2 = 100$。
解答
根据等差数列的性质一,有$a_3 + a_8 = a_1 + a_{10} = 2a_6$,代入已知条件$a_3 + a_8 = 10$, 得到$2a_6 = 10$,解得$a_6 = 5$。
3
等差数列与等比数列的通项公式 an=a1+(n-1)d(等差数列),an=a1*q^(n-1) (等比数列)。
其他类型数列简介
递推数列
由递推公式确定的数列,如斐波那契 数列。
复合数列
由两种或两种以上类型数列组合而成 的数列。
周期数列
具有周期性规律的数列,如三角函数 值数列。
数列在实际问题中应用
等差数列性质探讨
性质一
等差数列中任意两项之和等于它们前后两项之和,即$a_i + a_j = a_{i+1} + a_{ j-1}$($i,j$为正整数,且$i neq j$)。
性质二
等差数列中任意一项的值都等于其前后两项值的平均数,即$a_i = frac{a_{i-1} + a_{i+1}}{2}$($i$为正整数,且$i neq 1, n$)。
查找等问题。
数列在生物学中的应用,如利 用数列的模型描述生物种群的
增长、衰减等问题。
THANKS
感谢观看
实际问题中的数列模型
01
将实际问题抽象为数列模型,如人口增长模型、贷款还款模型
中职数学数列的基本知识ppt课件
如果两个数列的极限存在 且相等,那么这两个数列 之间的任意数列的极限也 存在且等于这两个数列的 极限。
如果数列单调增加(或减 少)且有上(下)界,那 么该数列的极限存在。
利用无穷小与无穷大的性 质求解数列的极限,如无 穷小与有界函数的乘积仍 为无穷小等。
THANKS
感谢观看
递推数列周期性判断
周期性的定义
递推数列中,如果存在某个正整 数p,使得数列中任意一项与它 前面第p项相等,则称该数列具 有周期性,p为该数列的周期。
周期性判断方法
通过观察、分析数列中各项之间 的变化规律,找出可能存在的周 期p,再验证数列中任意一项是
否与它前面第p项相等。
周期性应用
利用数列的周期性,可以简化数 列的求解过程,如求数列中某项
数列表示方法
数列可以用通项公式或递推公式表示,其中通项公式表示数列中任意一项与项 数n的关系,而递推公式表示数列中相邻项之间的关系。
数列分类及特点
有穷数列和无穷数列
根据项数是否有限,数列可分为有穷 数列和无穷数列。有穷数列项数有限, 无穷数列项数无限。
单调数列和摆动数列
根据数列的增减性,数列可分为单调 数列和摆动数列。单调数列单调递增 或递减,摆动数列则不具备单调性。
性质
等比数列中,任意两项的比值相等,且等于公比;等比数列的 每一项都不为零;等比数列的公比可以是正数、负数或零(除 数列首项外)。
等比数列通项公式推导
公式形式
an=a1×qn-1,其中an表示第n项, a1表示首项,q表示公比,n表示 项数。
推导过程
根据等比数列的定义,可以得到 an/a(n-1)=q,通过递推关系,可 以得到an=a1×q×q×...×q(n-1个 q)=a1×qn-1。
数列的概念(中职数学)ppt课件
等差数列的求和公式
公式
Sn=n/2*[2a1+(n-1)d],其中Sn为前n项和,a1为首项,d为 公差,n为项数。
应用
通过求和公式可以快速求出等差数列前n项的和,解决与等差 数列和相关的问题。
03
等比数列
等比数列的定义与性质
定义
等比数列是指从第二项起,每一项与它 的前一项的比值等于同一个常数的一种 数列。
数列的极限与收敛性
数列极限的定义与性质
数列极限的定义
对于数列{an},如果存在 常数A,对于任意给定的 正数ε(不论它多么小) ,总存在正整数N,使得 当n>N时,不等式|anA|<ε都成立,那么称常数 A是数列{an}的极限。
唯一性
如果数列{an}收敛,那么 它的极限唯一。
有界性
如果数列{an}收敛,那么 数列{an}一定有界。
等比数列的求和公式
求和公式
Sₙ=a₁(1-q^n)/(1-q)(q≠1),其中Sₙ是前n项和,a₁是首项,q是公比,n是项数。
推导过程
根据等比数列的通项公式,可以得到Sₙ=a₁+a₁×q+a₁×q²+...+a₁×q^(n-1),通过错位相减法可以得到求和公式 。当q=1时,Sₙ=n×a₁。
04
极限的加法运算法则
lim(an+bn)=lim an+lim bn。
极限的减法运算法则
lim(an-bn)=lim an-lim bn。
极限的乘法运算法则
lim(an×bn)=lim an×lim bn。
极限的除法运算法则
lim(an/bn)=lim an/lim bn( bn的极限不等于0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) an n3
(2) an 5 (1)n1
18
是相同的数列吗?
(不是)
问:1、2、1、2 … 是数列吗? (是) 注意: ⑴ 数列的数是按一定顺序排列的。
⑵ 数列中的数可以重复.特殊的如数列 2、 2、 2、 2 … 称为常数列.
6
⒉ 数列的项:数列中的每一个数叫做数列
的项. 其中第1个数叫做第1项(或首项),
第2个数叫做第2项,…,第n 个数叫做第n项.
(3)( 12 )、22 、32 、42 、 52 、( 62 )、72
(4) 1、1、2 、3、5、8、 ( 13 )、21、 ( 34 )
其中数列 (1) (3)是有穷数列, (2) (4) 是无穷数列.
8
4. 数列的一般形式:
a1 、a2 、a3 an
或简记为an 其中an是数列的第 n项. (n N ).an叫数列{a n}通项或一般项。
(3)( 12 )、22 、32 、42 、 52 、( 62 )、72
(4) 1、1、2 、3、5、8、( 13 )、21、( 34 )
归纳它们有何共同特点?
3
总结规律:上述例子共同特点: 1.均是一列数;2.有一定次序。
4
1.数列的定义:按一定的顺序排成 的一列数叫做数列.
5
问:数列 1、 2、 3、4、 5与数列5、 4、 3、 2、1
数列的基本知识
1
5
青蛙 只数
1
2
3
4
5
n
嘴的 张数
1
2
3
4
5
n
眼睛 只数
2
46
8 10 2n
腿的 条数
4
8
12 16 20 4n
2
寻找规律,在空格内填数字:
1 1、1 、1 、 1 、1 、1 、 1 、1
23 4 56 7 8
(2) 2、4 、( 6 )、8、10、( 12 )、14
an ≠ an
表示数列
数列的第n项
9
5、数列的通项公式:
一个数列的第n项an ,如果能够用 关于项数n的一个式子来表示.那 么这个式子叫做这个数列的 通项公式。可以用花括号将 这个式子括起来, 表示对应的无穷数列。
10
例1
已知数列的通项公式an
(1)n 2n 1
,求
(1)数列的前3项.
(2) 数列的第18项.
a3
(1)3 23
1 6
a6
(1)6 26
1 12
2n (2)n
(2) a1 21 3 1 a2 22 3 1 a3 23 3 5 因此数列的前3项为1、1、 5 . a6 26 3 61
12
例2 求下列数列的一个通项公式:
(1) 2 、4 、8 、16 变式:1、3、7 、15
分析:(1) 项数n 1
2
3
4
项an 1
4
ห้องสมุดไป่ตู้
9 16
项an 12
22
32 42
解:(1) 它的一个通项公式是 an n2
(2) 它的一个通项公式是
an
(1)n 2n
15
今天我们一起收获了哪些知识?
数列的相关概念 基本题型一 基本题型二
定义
项、项数 分类
一般形式 通项公式
已知数列的通 对于简单的数
项公式,用代 列,根据前几
分析:数列的前3项包括a1、a2、a3这3项. 区别于数列的第3项a3
11
练习1 根据下面数列an的通项公式,写出它的前3项,
并求出各数列的第6 项.
(1)
an
(1)n 2n
(2) an 2n 3
解:(1)
a1
(1)1 21
1 2
a2
(1)2 22
1 4
因此数列的前 3项为 1 、1 、 1 . 24 6
项an
(1)1 1 (11)
(1)2 (1)3 (1)4 2 (2 1) 3 (3 1) 4 (4 1)
解:它的一个通项公式
是
an
(1)n n(n 1)
an
(1)n1 n(n 1)
14
练习2 求下列数列的一个通项公式:
(1) 1、4 、9 、16
(2) 1 、1 、 1 、1 2 4 8 16
因此它的一个通项公式是 an 2n 1
13
例2 求下列数列的一个通项公式:
(1) 2 、4 、8 、16
1 、 1 、 1 、 1
(2) 1 、 1 、 1 、 1 1 2 23 3 4 45
1 2 23 3 4 45
分析:(2) 项数n 1
2
3
4
项an
1 1 2
1 1 23 34
1 45
(2) 1 、 1 、 1 、 1 1 2 23 3 4 45
分析:(1) 项数n 1 2 3 4
项an 2 4 8 16
项an 21 22 23 24
解:所给数列的前4项为 21、22、23、24,因此
它的一个通项公式是an 2n 解:所给数列的前 4项为 21 1、22 1、23 1、24 1,
入法求出数列 项观察归纳出
中的任意一项。 数列的一个通
如例1
项公式。如例2
16
作业
1.下述实例是否构成数列? 1)我们班全体同学的身高。 2)我们班全体同学的姓名按学号的次序排
成 的一 列。 3)我们班全体同学的出生的年份按学号的
次序排成的一列数。
17
作业
2.数列:2,3,5,8与数列:8,5,3,2; 是否 为同一数列
其中各项在在数列中的位置的数字1,2,…
称为项数.
第3 项
例如数列1、2 、22 、23 264
第1项
第 65 项
7
3.数列的分类: 只有有限项的数列叫做有穷数列; 有无限项的数列叫做无穷数列.
1 1、1 、1 、 1 、1 、1 、 1 、1
23
4 56
78
(2) 2 、4 、( 6 )、8、10、( 12 )、14