中职数学区间ppt课件
合集下载
中职生数学基础模块上册课件《区间的概念》
气象预报:利用区间分析法预 测天气变化趋势
提出进一步探索的问题
01
区间的概念ห้องสมุดไป่ตู้实际生活中 的应用有哪些?
02
区间的性质和运算法则在 实际问题中有哪些应用?
03
区间的概念与其他数学概 念之间的关系是什么?
04
如何利用区间的概念解决 实际问题?
区间的表示方法
01
区间表示法:使用两个数来表示一个区间,如 [a, b]表示a到b的区间
02
区间的端点:区间的两个端点,如[a, b]中的a 和b
03
区间的包含关系:一个区间可以包含另一个区 间,如[a, b]包含[c, d]
04
区间的并集:两个或多个区间的并集,如[a, b]和[c, d]的并集为[a, d]
区间在几何中的应用:长 度、面积、体积等
区间在实际问题中的应用: 优化问题、不等式问题等
PART 6
总结与拓展
总结区间的基本概念与性质
区间的定义:区间是数轴上
01 的一段连续的点集,表示为
一个闭区间或开区间。
02
区间的性质:区间具有连续 性、有界性、可数性等性质。
04
区间的运算:区间可以进行 并集、交集、补集等运算。
区间的表示方 法:用两个端 点表示,如[a, b]
03
区间的性质: 包含所有介于 两个端点之间 的实数
04
区间的应用: 求解不等式、 函数图像、极 限等数学问题
区间与函数的关系
函数的定义域 和值域都是区
间
区间是函数的 图像
区间是函数的 单调性、周期 性等性质的基
础
区间是函数的 极限、连续性 等性质的基础
05
区间的交集:两个或多个区间的交集,如[a, b]和[c, d]的交集为[max(a, c), min(b, d)]
2024年度-中职教育数学《区间》课件
[a, b]表示闭区间。
11
03
函数在区间上性质研究
12
函数单调性判断方法
定义法
根据函数单调性的定义,通过比 较函数在区间内任意两点的函数
值大小来判断函数的单调性。
导数法
利用导数符号判断函数的单调性 。若在某区间内函数的导数大于 0,则函数在此区间内单调增加 ;若导数小于0,则函数在此区
间内单调减少。
分类
根据区间端点的开闭情况,区间 可分为开区间、闭区间、半开半 闭区间等。
4
区间表示方法
01
02
03
不等式表示法
使用不等式表示变量的取 值范围,例如$a < x < b$表示开区间$(a, b)$。
集合表示法
使用集合论中的区间表示 法,例如${ x | a < x < b }$表示开区间$(a, b)$。
影响。
19
05
典型例题分析与解答技巧分享
20
典型例题选取与展示
例题1
01
求函数$f(x) = x^2 - 4x + 3$在区间$[0, 5]$上的最大值和最小
值。
例题2
02
判断函数$f(x) = frac{1}{x}$在区间$(0, +infty)$上的单调性。
例题3
03
求不等式$2x - 1 < 5$在区间$[2, 4]$上的解集。
图像法
通过观察函数图像来判断函数的奇偶性。若函数图像关于原点对称,则函数为 奇函数;若图像关于y轴对称,则函数为偶函数。
14
函数周期性判断方法
定义法
根据函数周期性的定义,通过比较函数在不同周期点的函数值来判断函数的周期 性。若存在正数T,使得对于定义域内的任意x,都有f(x+T)=f(x),则函数为周期 函数,T为函数的周期。
11
03
函数在区间上性质研究
12
函数单调性判断方法
定义法
根据函数单调性的定义,通过比 较函数在区间内任意两点的函数
值大小来判断函数的单调性。
导数法
利用导数符号判断函数的单调性 。若在某区间内函数的导数大于 0,则函数在此区间内单调增加 ;若导数小于0,则函数在此区
间内单调减少。
分类
根据区间端点的开闭情况,区间 可分为开区间、闭区间、半开半 闭区间等。
4
区间表示方法
01
02
03
不等式表示法
使用不等式表示变量的取 值范围,例如$a < x < b$表示开区间$(a, b)$。
集合表示法
使用集合论中的区间表示 法,例如${ x | a < x < b }$表示开区间$(a, b)$。
影响。
19
05
典型例题分析与解答技巧分享
20
典型例题选取与展示
例题1
01
求函数$f(x) = x^2 - 4x + 3$在区间$[0, 5]$上的最大值和最小
值。
例题2
02
判断函数$f(x) = frac{1}{x}$在区间$(0, +infty)$上的单调性。
例题3
03
求不等式$2x - 1 < 5$在区间$[2, 4]$上的解集。
图像法
通过观察函数图像来判断函数的奇偶性。若函数图像关于原点对称,则函数为 奇函数;若图像关于y轴对称,则函数为偶函数。
14
函数周期性判断方法
定义法
根据函数周期性的定义,通过比较函数在不同周期点的函数值来判断函数的周期 性。若存在正数T,使得对于定义域内的任意x,都有f(x+T)=f(x),则函数为周期 函数,T为函数的周期。
区间的概念ppt课件
7
习
8
例题及训练
例2、用区间表示不等式 3x>2+4x 的解集,并 在数轴上表示出来。
例3、设R为全集,集合A={x -5<x<6}, B={x x≥3,或x≤-3} ,用区间表示A∩B.
9
练习
10
2.区间的概念
1
复习
我们知道: 用描述法表示一个数集时可以用不等式表示
如:{x -3<x<5} 也可以在数轴上表示出来:
x
-3
0
5
也可以用区间表示:(-3,5)
2
区间表示法
①开区间(a,b):表示数集{x a<x<b}
a
b
不包含a、b
②闭区间 [a,b] :表示数集{x a≤x≤b}
a
b
包含a,b
3
区间表示法
③左开右闭区间(a,b] :表示数集{x a<x≤b}
a
b 不包含a
④右开左闭区间 [a,b):表示数集{x a≤x<b}
a
b 不包含b
4
区间表示法
⑤左开右无界区间(a,+∞)表示数集{x x>a}
a
不包含a
⑥左闭右无界区间 [a,+∞)表示数集{x x≥a}
a
包含a
5
区间表示法
⑦左无界右开区间(-∞,a)表示数集合{x x<a}
a
不包含a
⑧左无界右闭区间(-∞,a]表示数集{x x≤a}
a
包含a
实数集R可以用区间(-∞,+∞)表示
6
例题及训练
例1、把下列集合用区间表示出来,指出它是什 么区间。
⑴ {x -3<x<1}
⑵ {x -3≤x≤1}
区间的概念职高PPT课件
闭区间
a
bx
a<x<b
{x| a<x<b} (a,b)
开区间
a
bx
a<x≤b
{x| a<x≤b} (a,b]
左半开区间
a
bx
a≤x<b
{x| a≤x<b} [a,b)
右半开区间
其中 a,b 叫做区间的端点.
第3页/共14页
ห้องสมุดไป่ตู้
例 用区间记法表示下列不等式的解集: (1)9≤x≤10 ; (2) -2<x≤0.4 .
(a,+∞)
ax x<a {x| x < a} (-∞,a)
对于实数集 R,也可用区间(- ∞ ,+∞) 表示 .
第8页/共14页
设a,b为任意实数,且a<b,则各种区间如下
第9页/共14页
用区间记法表示下列不等式的解集,
并在数轴上表示这些区间:
(1)-2≤x≤3; (2) -3<x≤4;
(3)-2≤x<3; (4)-3<x<4;
解:(1)[9,10] ;
(2)(-2,0.4 ] .
例 用集合的性质描述法表示下列区间:
(1)(-4,0);
(2)(-8 ,7].
解:(1){ x | -4<x<0}; (2){ x | -8<x≤7}.
第4页/共14页
例1、已知集合A=(-1,4),B=[0,5],求 A∪B , A∩B
-1
0
(5) x>3;
(6) x≤4.
(7)-2≤x≤3且x≠1; (8)-3<x<4且x≠0
第10页/共14页
例 2 已知集合 A (,2) ,集合 B (,4] ,
求A B,A B.
例3 设全 R , 集 A 集 0 ,为 3 , 合B 集 2 , 合 ,求
a
bx
a<x<b
{x| a<x<b} (a,b)
开区间
a
bx
a<x≤b
{x| a<x≤b} (a,b]
左半开区间
a
bx
a≤x<b
{x| a≤x<b} [a,b)
右半开区间
其中 a,b 叫做区间的端点.
第3页/共14页
ห้องสมุดไป่ตู้
例 用区间记法表示下列不等式的解集: (1)9≤x≤10 ; (2) -2<x≤0.4 .
(a,+∞)
ax x<a {x| x < a} (-∞,a)
对于实数集 R,也可用区间(- ∞ ,+∞) 表示 .
第8页/共14页
设a,b为任意实数,且a<b,则各种区间如下
第9页/共14页
用区间记法表示下列不等式的解集,
并在数轴上表示这些区间:
(1)-2≤x≤3; (2) -3<x≤4;
(3)-2≤x<3; (4)-3<x<4;
解:(1)[9,10] ;
(2)(-2,0.4 ] .
例 用集合的性质描述法表示下列区间:
(1)(-4,0);
(2)(-8 ,7].
解:(1){ x | -4<x<0}; (2){ x | -8<x≤7}.
第4页/共14页
例1、已知集合A=(-1,4),B=[0,5],求 A∪B , A∩B
-1
0
(5) x>3;
(6) x≤4.
(7)-2≤x≤3且x≠1; (8)-3<x<4且x≠0
第10页/共14页
例 2 已知集合 A (,2) ,集合 B (,4] ,
求A B,A B.
例3 设全 R , 集 A 集 0 ,为 3 , 合B 集 2 , 合 ,求
中职数学基础模块上册《区间的概念》ppt课件
作业:
P25习题1.2A组:5,6,7,8.
高一年级
第一章 1.2.1
数学
函数的概念
课题: 区间的概念
问题提出
1.什么叫函数?用什么符号表示函数?
2. 什么是函数的定义域?值域? 3.函数 f ( x) 1 x 的定义域怎样表示?
知识探究(一)
思考1:设a,b是两个实数,且a<b,介于这两个 数之间的实数x用不等式表示有哪几种可能情况?
a x b, a x b, a x b, a x b
思考2:满足上述每个不等式的实数x的集合可看 成一个区间,为了区分,它们分别叫什么名称? 思考3:如果把满足不等式的实数x的集合用符号 [a,b)表示,那么满足其它三个不等式的实数x 的集合可分别用什么符号表示?
上述知识内容总结成下表:
思考2:满足不等式 x a , x a , x a , x a 的实数x的集合也可以看成区间,那么这些集合 如何用区间符号表示?
[a,+∞),(a,+∞), (-∞,a],(-∞,a). 思考3:将实数集R看成一个大区间,怎样用区间 表示实数集R? (-∞,+∞)
思考4:一次函数y=kx+b(k≠0),二次函数
k y=ax2+bx+c(a≠0),反比例函数 y ( k 0) x
的定义域、值域分别是什么?怎样用区间表示?
理论迁移
例1 将下列集合用区间表示出来:
(1){ x | 2 x 1 0}; (2){ x | x 4, 或 1 x 2}
..
例2 已知 f ( x 1) x 2 x ,求函数 f ( x ) 的解析式.
定义 名称 符号 [ a, b ]
《区间的概念》中职数学基础模块上册2.2ppt课件1【语文版】
•
关键是,出错了你就知道上课时应该重点听哪里,注意力自然就能集中了。
•
4、即便上课时不理解也不要放弃
•
有些同学觉得老师讲的听不懂,就干脆不再听讲,按照自己的方法去学习。其实这样做真的很傻,因为不听讲就非常容易和同学们的学习进度脱节,这就会直接导致考试时成绩下降。原因是,老师讲的内容不一定都在教材中体现,有相当一部分重点内容
集合:v | 200 v 350
数轴:位于 200 与 350 之间的一段不包括端点的线段 还有其他简便方法吗?
2.2 区间
动脑思考 探索新知
由数轴上两点间的一切实数所组成的集合叫做区间. 其中,这两个点;4}
(2,4)
右半开区间
集合{x|2≤x<4}
难读到老师的表情。认真听讲不单纯是指听老师说的话,把握老师的表情和语调之类的小细节也是很有必要的。说话比平时更用力,或者表情严肃地强调的那个部分几乎百分之百地会出现在考试中。但是如果坐在后面,那种重要的提示就全都错过了。
•
与此相反,如果坐在前面,首先心情就很不同,自己比别人靠前的感觉让你听课时的态度变得更积极。与老师眼神交会的机会增多,感觉就好像是老师在做一对一个人辅导。
•
低着头,心情就放松了,但那种放松对学习一点好处也没有,之所以会放松,就是因为觉得即便是自己开小差,老师也不知道。如果你往前看,不时地和老师眼神交会一下,注意力必然会集中起来。和老师眼神交汇的那种紧张感会让你注意力集中,并充
实地听完整堂课。
•
3、课前预习
•
课前预习新课内容,找出不理解的地方标记下来。预习后尝试做课后练习题,不要怕出错,因为老师还没有讲,出错也是正常的。
“ ”与“ ”都是符号,而不是一个确切的数.
最新中职数学区间课件幻灯片
数轴表示
a
b
x
a
b
x
在实数集R中,有没有 最大的数和最小的数?
实数集R 用区间表示为( -∞,+∞ ) -∞ 读作: 负无穷大 +∞ 读作: 正无穷大
填 表:
解集表示 区间表示
{x|x≥a} [a,+ ∞)
{x|x > a} (a,+ ∞)
{x|x≤b} {x|x<b}
( -∞,b] (-∞,b)
1、不等式(组)的解集 2、不等式(组)的解集的表示方法
(1)集合描述法 (2)区间:闭区间
开区间 半开半闭区间 实数集R
不自主运动
概述
▪ 不自主运动或称异常运动,为随意肌的某一 部分、一块肌肉或某些肌群出现不自主收缩。 是指患者意识清楚而不能自行控制的骨骼肌 动作。临床上常见的有肌束颤动、肌纤维颤 搐、痉挛、抽搐、肌阵挛、震颤、舞蹈样动 作、手足徐动和扭转痉挛等。一般睡眠时停 止,情绪激动时增强,以往认为是锥体外系 病变所致。
临床表现
5. 舞蹈样运动:是一种无目的,没有预兆的无规 律、不对称、幅度不等的快速的不自主运动。 头面部舞蹈运动表现为皱额、瞬目、咧嘴、 舌不自主伸缩、摇头晃脑等转瞬即逝的怪异 活动。常影响说话,在肢体表现为无一定方 向的大幅度运动,患者常难以维持一定的姿 势。
临床表现
6. 手足徐动症:又称指划运动。以肌强直和手足缓缓 的强直性伸屈性运动为特点,可发生于上肢、下肢、 面部和头颅。通常以上肢远端和面部最明显。患者 的手指常出现不规则的“蠕动样”徐动性运动,掌 指关节过度伸展,诸指扭转,可呈“佛手”样的特 殊姿势。参与徐动性动作的肌肉张力增高。下肢受 累时,行走发生困难,诸趾扭转,拇趾自发性背屈。 患者呈现各种奇形怪状的不自主动作。舌头时而伸 出,时而缩回。头部向左右两侧扭来扭去,有时咽 肌受累而发生吞咽和构音困难。这些不自主动作于 安静时减轻,睡眠时完全停止,精神紧张或随意动 作时加重,但感觉正常,智力可有减退
区间ppt课件
区间端点处理不当
在处理区间端点时,需要注意开闭区间的区别,否则可能导致结 果不准确。
混淆不同类型区间概念
1 2 3
混淆开闭区间 开区间和闭区间在数学上有明确的定义,但解题 者容易混淆二者概念,导致解题错误。
误解区间表示方法 在数学中,区间可以用不同的方式表示,如不等 式、集合等。解题者需要熟悉各种表示方法,避 免误解。
不等式求解与证明
01
02
03
04
区间分析法
将不等式中的变量限制在某个 区间内,通过分析函数在该区
间内的性质来求解不等式。
放缩法
通过适当的放缩,将复杂的不 等式转化为简单的不等式进行
求解。
构造函数法
构造适当的函数,利用函数的 性质来证明不等式。
数学归纳法
对于某些与自然数有关的不等 式,可以利用数学归纳法进行
些变化对函数性质的影响。
谢谢聆听
利用图像求解值域
对于难以直接求解的函数,可以通过绘制函数图像来观察其值域范 围。
多变量不等式处理方法
分离变量法
将多变量不等式中的各个变量分离开来,分别求解每个变量的取 值范围,再综合得出解集。
利用基本不等式性质
利用均值不等式、柯西不等式等基本不等式性质来简化多变量不等 式,降低求解难度。
转化为单变量不等式
B
C
区间乘法
区间乘法稍微复杂一些,需要考虑区间内元 素的符号。如果两个区间内的元素同号,则 它们的积为正;如果异号,则积为负。具体 的积的范围可以通过比较区间端点的大小来 确定。
区间除法
区间除法与乘法类似,只是将乘法运算改为 除法运算。需要注意的是,除数不能为0, 因此在进行区间除法时需要排除这种情况。
经济预测中置信区间计算
在处理区间端点时,需要注意开闭区间的区别,否则可能导致结 果不准确。
混淆不同类型区间概念
1 2 3
混淆开闭区间 开区间和闭区间在数学上有明确的定义,但解题 者容易混淆二者概念,导致解题错误。
误解区间表示方法 在数学中,区间可以用不同的方式表示,如不等 式、集合等。解题者需要熟悉各种表示方法,避 免误解。
不等式求解与证明
01
02
03
04
区间分析法
将不等式中的变量限制在某个 区间内,通过分析函数在该区
间内的性质来求解不等式。
放缩法
通过适当的放缩,将复杂的不 等式转化为简单的不等式进行
求解。
构造函数法
构造适当的函数,利用函数的 性质来证明不等式。
数学归纳法
对于某些与自然数有关的不等 式,可以利用数学归纳法进行
些变化对函数性质的影响。
谢谢聆听
利用图像求解值域
对于难以直接求解的函数,可以通过绘制函数图像来观察其值域范 围。
多变量不等式处理方法
分离变量法
将多变量不等式中的各个变量分离开来,分别求解每个变量的取 值范围,再综合得出解集。
利用基本不等式性质
利用均值不等式、柯西不等式等基本不等式性质来简化多变量不等 式,降低求解难度。
转化为单变量不等式
B
C
区间乘法
区间乘法稍微复杂一些,需要考虑区间内元 素的符号。如果两个区间内的元素同号,则 它们的积为正;如果异号,则积为负。具体 的积的范围可以通过比较区间端点的大小来 确定。
区间除法
区间除法与乘法类似,只是将乘法运算改为 除法运算。需要注意的是,除数不能为0, 因此在进行区间除法时需要排除这种情况。
经济预测中置信区间计算
中职数学区间课件
区间乘法运算规则及性质
总结词
区间乘法运算规则为[a, b] × [c, d] = [min(ac, bd), max(ac, bd)],其中min(ac, bd)为 定义域的起点,max(ac, bd)为值域的终点。
详细描述
此规则可以推广到多个区间相乘的情况。区间乘法运算的性质包括交换律和结合律,即 [a, b] × [c, d] = [c, d] × [a, b],并且( [a, b] × [c, d] ) × [e, f] = [a, b] × ( [c, d] × [e,
解决不等式证明问题
利用区间不等式可以判断函数的单调 性。
利用区间不等式的性质,可以证明一 些不等式。
解决最值问题
通过求解区间不等式,可以找到函数 的最值。
04
区间数列及其性质
区间数列的定义与分类
区间数列定义
区间数列是按照一定区间间隔取值的一组数列。
区间数列分类
根据区间间隔的不同,区间数列可分为等差区间数列和等比区间数列。
中职数学区间课件
汇报人: 202X-12-20
目录
• 区间概念与表示方法 • 区间运算及其性质 • 区间不等式及其解法 • 区间数列及其性质 • 区间函数及其性质 • 区间数学在实际生活中的应用举例
01
区间概念与表示方法
区间的定义与性质
区间定义
区间是数轴上两点之间的所有点 的集合。
区间性质
区间具有方向性、连续性、有序 性等性质。
区间不等式的分类
根据不等式的性质,区间不等式可以分为严格区间不等式和 非严格区间不等式。
区间不等式的解法技巧
01
02
03
观察法
通过观察不等式的形式和 特点,寻找解题思路。
《区间的概念》课件
02
区间的性质
闭区间和开区间的性质
总结词
闭区间和开区间的性质是区间理论中的 重要概念,它们具有不同的性质和特征 。
VS
详细描述
闭区间是包含其端点的区间,其性质包括 区间内任意两点可以确定一个闭区间,且 闭区间上任意两点之间的距离等于区间长 度。开区间是不包含其端点的区间,其性 质包括开区间内任意两点可以确定一个开 区间,但开区间上任意两点之间的距离不 一定等于区间长度。
闭(包含)的区间,例如$(a, b]$或$[a, b)$。
半开半闭区间具有一些特殊的性 质,例如在实数轴上表现为一段
直线,但不包括端点。
半开半闭区间在数学分析中常用 于研究函数的连续性和可导性等 概念,特别是在处理分段函数时
。
05
区间的实际应用举例
在物理学中的应用:波的传播范围
总结词
波的传播范围是区间概念在物理学中的一个典型应用,它描述了波在某一特定介质中能 够传播的最大和最小范围。
区间与数轴的关系
总结词
区间与数轴之间存在密切的联系,数轴是表示区间的工具, 而区间则是数轴上的一个子集。
详细描述
数轴是实数有序化的直观表现,它为研究区间提供了可视化 的平台。通过数轴,我们可以直观地表示区间的起点和终点 ,以及区间内的任意一点。同时,数轴上任意两个不同的区 间都可以用不同的颜色或标记加以区分。
详细描述
在物理学中,波的传播范围通常由波长和频率决定。例如,无线电波、红外线、可见光 、紫外线、X射线和伽马射线等都有各自的传播范围,这些范围可以用来描述不同类型
波的特性。
在经济学中的应用:价格变动区间
总结词
价格变动区间是区间概念在经济学中 的一个应用,它反映了商品或资产在 一定时间内的最高和最低价格变动范 围。
中职数学基础模块上册《区间的概念》ppt课件1
小组讨论练习
用区间记法表示下列不等式的解集,
并在数轴上表示这些区间:
(1)-2≤x≤3; (3)-2≤x<3; (5) x>3;
(2) -3<x≤4; (4)-3<x<4; (6) x≤4.
例2 用集合的性质描述法表示下列区间: (1)(-4,0); (2)(-8 ,7].
解:(1){ x | -4<x<0}; (2){ x | -8<x≤7}.
区间 (a,b)
[a,b] [a,b) (a,b]
a数轴表示b x
a
bx
a
bx
a
bx
集合
{x| xa}
{x| xa}
{x| xa}
{x| xa}
xR
区间
a 数轴表示 x
(a,+)
ax
(-,a) a
x
[a,+)
ax
(-,a]
(-,+)
必做题: 教材P39,练习 A 组;
选做题: 教材P40,练习 B 组第 1 题.
a≤x≤b
{x| a≤x≤b} [a,b]
a<x<b
a<x≤b
{x| a<x<b} {x| a<x≤b}
(a,b)
(a,b]
a≤x<b {x| a≤x<b}
[a,b)
闭区间
开区间
半开半闭区间 半开半闭区间
其中 a,b 叫做区间的端点.
二、含有一个端点的数轴区域
a
x
x≥ a
{x| x≥ a}
[a ,+∞)
小组讨论练习
用集合的性质描述法表示下列区间,并在数轴上表示之 .
(1)[-1,2);
(2)[- 3,1 ].
例3 在数轴上表示集合 { x | x<-2 或 x≥1 }.
用区间记法表示下列不等式的解集,
并在数轴上表示这些区间:
(1)-2≤x≤3; (3)-2≤x<3; (5) x>3;
(2) -3<x≤4; (4)-3<x<4; (6) x≤4.
例2 用集合的性质描述法表示下列区间: (1)(-4,0); (2)(-8 ,7].
解:(1){ x | -4<x<0}; (2){ x | -8<x≤7}.
区间 (a,b)
[a,b] [a,b) (a,b]
a数轴表示b x
a
bx
a
bx
a
bx
集合
{x| xa}
{x| xa}
{x| xa}
{x| xa}
xR
区间
a 数轴表示 x
(a,+)
ax
(-,a) a
x
[a,+)
ax
(-,a]
(-,+)
必做题: 教材P39,练习 A 组;
选做题: 教材P40,练习 B 组第 1 题.
a≤x≤b
{x| a≤x≤b} [a,b]
a<x<b
a<x≤b
{x| a<x<b} {x| a<x≤b}
(a,b)
(a,b]
a≤x<b {x| a≤x<b}
[a,b)
闭区间
开区间
半开半闭区间 半开半闭区间
其中 a,b 叫做区间的端点.
二、含有一个端点的数轴区域
a
x
x≥ a
{x| x≥ a}
[a ,+∞)
小组讨论练习
用集合的性质描述法表示下列区间,并在数轴上表示之 .
(1)[-1,2);
(2)[- 3,1 ].
例3 在数轴上表示集合 { x | x<-2 或 x≥1 }.
区间的概念ppt课件(2024)
区间的概念ppt课件
2024/1/30
1
contents
目录
2024/1/30
• 区间的基本概念与性质 • 区间在数学中的应用 • 区间与集合的关系 • 区间在实际问题中的应用 • 区间的拓展与应用前景
2
01
区间的基本概念与性质
2024/1/30
3
区间的定义及表示方法
区间的定义
在数轴上,任意两个实数a和b(a<b)所确定的闭区间[a,b]、开区间(a,b)、半 开半闭区间[a,b)或(a,b]都称为一个区间。
12
区间在集合运算中的应用
并集运算
对于两个区间,如果它们有重叠部分,则它们的 并集是一个新的区间,包含两个原区间的所有元 素。
差集运算
对于两个区间,如果其中一个区间完全包含在另 一个区间中,则它们的差集是一个新的区间,包 含被减数区间中不属于减数区间的所有元素。
2024/1/30
交集运算
对于两个区间,如果它们有重叠部分,则它们的 交集是一个新的区间,包含两个原区间的公共元 素。
算法改进
针对区间算法的改进和优化, 将提高计算效率和精度,促进 其在实际问题中的应用。
跨学科研究
区间分析与其他学科的交叉研 究,将推动相关领域的创新和
发展。
21
THANKS
感谢观看
2024/1/30
22
经济增长率
在宏观经济分析中,经济增长率往往用一个区间 来表示,以反映经济增长的速度和趋势。
消费者信心指数
3
在市场调研中,消费者信心指数往往用一个区间 来表示,以反映消费者对市场和经济形势的信心 程度。
2024/1/30
17
05
区间的拓展与应用前景
2024/1/30
1
contents
目录
2024/1/30
• 区间的基本概念与性质 • 区间在数学中的应用 • 区间与集合的关系 • 区间在实际问题中的应用 • 区间的拓展与应用前景
2
01
区间的基本概念与性质
2024/1/30
3
区间的定义及表示方法
区间的定义
在数轴上,任意两个实数a和b(a<b)所确定的闭区间[a,b]、开区间(a,b)、半 开半闭区间[a,b)或(a,b]都称为一个区间。
12
区间在集合运算中的应用
并集运算
对于两个区间,如果它们有重叠部分,则它们的 并集是一个新的区间,包含两个原区间的所有元 素。
差集运算
对于两个区间,如果其中一个区间完全包含在另 一个区间中,则它们的差集是一个新的区间,包 含被减数区间中不属于减数区间的所有元素。
2024/1/30
交集运算
对于两个区间,如果它们有重叠部分,则它们的 交集是一个新的区间,包含两个原区间的公共元 素。
算法改进
针对区间算法的改进和优化, 将提高计算效率和精度,促进 其在实际问题中的应用。
跨学科研究
区间分析与其他学科的交叉研 究,将推动相关领域的创新和
发展。
21
THANKS
感谢观看
2024/1/30
22
经济增长率
在宏观经济分析中,经济增长率往往用一个区间 来表示,以反映经济增长的速度和趋势。
消费者信心指数
3
在市场调研中,消费者信心指数往往用一个区间 来表示,以反映消费者对市场和经济形势的信心 程度。
2024/1/30
17
05
区间的拓展与应用前景
中职数学区间PPT课件
-1 0
Hale Waihona Puke 3x第9页/共18页
(2){x|-2≤x<2} 解:{x|-2≤x<2}表示为[-2,2) 数轴表示
-2 -1 0 1 2
x
第10页/共18页
(3){x|x>-1} 解: {x|x>-1}表示为(-1,+∞), 数轴表示
-2 -1 0 1
x
第11页/共18页
(4){x|x≤3}
解: {x|x≤3}表示为(- ∞ ,3], 数轴表示
a
b
x
a
b
x
第5页/共18页
半开半闭区间:实数集的子集{x|a≤x<b} 或 {x| a < x ≤ b}叫做以a,b为端点的半开半 闭区间,记作:[a,b),(a,b]
数轴表示
a
b
x
a
b
x
第6页/共18页
在实数集R中,有没有 最大的数和最小的数?
实数集R 用区间表示为( -∞,+∞ ) -∞ 读作: 负无穷大 +∞ 读作: 正无穷大
第16页/共18页
1、不等式(组)的解集 2、不等式(组)的解集的表示方法
(1)集合描述法 (2)区间:闭区间
开区间 半开半闭区间 实数集R
第17页/共18页
感谢您的欣赏
第18页/共18页
(1)x-3≥0
{x| x≥3 }
x-3>0 {x| x>3 }
(2)x-2≤0
{x| x≤2 }
x-2<0 {x| x<2 }
第1页/共18页
(3)x-2≥0 x-3≤0
(4)x-2>0 x-3<0
(5)x-2≥0 x-3<0
高教版中职数学(基础模块)上册2.2《区间》ppt课件3
(3)xx
2 3
0 0
(4) xx
2 5
0 0
例3、用描述法表示下列集合
(1)(3,7)
(2)[-2,1)
(3)(-∞,3] (4)[-1,5]
问题解决:已知集合M=[0,a],N=[0,15],如 果M N,求实数a所在的区间.
学生练习:P35
思考:
1.若P={x|x2-x+a=0}=φ ,求a的范围,并用区间表 示.
§2.2 区 间
1、理解区间的概念 2、掌握区间的表示方法 3、理解“∞”的概念 4、会进行不等式和区间的转换
【探究活动】:
• 车票与身高的关系问题 • 电价与时间的关系问题 • 农作物的生长温度问题
共同点——“研究的是一定范围内连续的实数”
一、区间
1、定义:一定范围内的所有实数构成的集合 叫区间.这两个实数叫做区间的端点.
2.已知M=[-1,2],B=[-1,2),A={(x,y)|x∈Z∩M, y∈N∩B},试写出集合A中的所有点的坐标.
编后语
• 同学们在听课的过程中,还要善于抓住各种课程的特点,运用相应的方法去听,这样才能达到最佳的学习效果。 • 一、听理科课重在理解基本概念和规律 • 数、理、化是逻辑性很强的学科,前面的知识没学懂,后面的学习就很难继续进行。因此,掌握基本概念是学习的关键。上课时要抓好概念的理解,
2019/7/3nk
you!
2019/7/31
最新中小学教学课件
12
oa
b
x
思考:集合A={1,2,3,4,5,6,7,8,9,10}可以用区间表示么?
2、区间的表示方法
2、区间的表示方法
高教版中职数学(基础模块)上册2.2《区间》ppt课件2
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
遍自己写的笔记,既可以起到复习的作用,又可以检查笔记中的遗漏和错误。遗漏之处要补全,错别字要纠正,过于潦草的字要写清楚。同时,将自己 对讲课内容的理解、自己的收获和感想,用自己的话写在笔记本的空白处。这样,可以使笔记变的更加完整、充实。 • 三、课后“静思2分钟”大有学问 • 我们还要注意课后的及时思考。利用课间休息时间,在心中快速把刚才上课时刚讲过的一些关键思路理一遍,把老师讲解的题目从题意到解答整个过 程详细审视一遍,这样,不仅可以加深知识的理解和记忆,还可以轻而易举地掌握一些关键的解题技巧。所以,2分钟的课后静思等于同一学科知识的 课后复习30分钟。
区间及其表示
读作“无穷大”,-和+分别读作 “负无穷大”和“正无穷大”。
定义
名称
符号
数轴表示
备注
{x | a x b} 开区间
(a,b)
不包含线段的两 个端点
{x | a x b} 闭区间
[a,b]
包含线段的两个 端点
{x | a x b} {x | a x b}
x
3
0Hale Waihona Puke 例3、用集合的描述法表示下列区间:
(1) 3,7
(2) 2,1
作业 书P35 习题 T1、T2
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
遍自己写的笔记,既可以起到复习的作用,又可以检查笔记中的遗漏和错误。遗漏之处要补全,错别字要纠正,过于潦草的字要写清楚。同时,将自己 对讲课内容的理解、自己的收获和感想,用自己的话写在笔记本的空白处。这样,可以使笔记变的更加完整、充实。 • 三、课后“静思2分钟”大有学问 • 我们还要注意课后的及时思考。利用课间休息时间,在心中快速把刚才上课时刚讲过的一些关键思路理一遍,把老师讲解的题目从题意到解答整个过 程详细审视一遍,这样,不仅可以加深知识的理解和记忆,还可以轻而易举地掌握一些关键的解题技巧。所以,2分钟的课后静思等于同一学科知识的 课后复习30分钟。
区间及其表示
读作“无穷大”,-和+分别读作 “负无穷大”和“正无穷大”。
定义
名称
符号
数轴表示
备注
{x | a x b} 开区间
(a,b)
不包含线段的两 个端点
{x | a x b} 闭区间
[a,b]
包含线段的两个 端点
{x | a x b} {x | a x b}
x
3
0Hale Waihona Puke 例3、用集合的描述法表示下列区间:
(1) 3,7
(2) 2,1
作业 书P35 习题 T1、T2
语文版中职数学基础模块上册2.2《区间的概念》ppt课件1
创设情景 兴趣导入
设计运行时速达350公里的京津城际列车呈现出超越 世界的“中国速度”,使得新时速旅客列车的运行速度 值界定在200公里/小时与350 公里/小时之间.
如何表示列车的运行速度的范围?
创设情景 兴趣导入
新时速旅客列车的运行速度值界定在 200公里/小时与350 公里/小时之间.
不等式:200<v<350
2019/7/31
最新中小学教学课件
11
thank
you!
2019/7/31
最新中小学教学课件
12
编后语
• 同学们在听课的过程中,还要善于抓住各种课程的特点,运用相应的方法去听,这样才能达到最佳的学习效果。 • 一、听理科课重在理解基本概念和规律 • 数、理、化是逻辑性很强的学科,前面的知识没学懂,后面的学习就很难继续进行。因此,掌握基本概念是学习的关键。上课时要抓好概念的理解,
同时,大家要开动脑筋,思考老师是怎样提出问题、分析问题、解决问题的,要边听边想。为讲明一个定理,推出一个公式,老师讲解顺序是怎样的, 为什么这么安排?两个例题之间又有什么相同点和不同之处?特别要从中学习理科思维的方法,如观察、比较、分析、综合、归纳、演绎等。 • 作为实验科学的物理、化学和生物,就要特别重视实验和观察,并在获得感性知识的基础上,进一步通过思考来掌握科学的概念和规律,等等。 • 二、听文科课要注重在理解中记忆 • 文科多以记忆为主,比如政治,要注意哪些是观点,哪些是事例,哪些是用观点解释社会现象。听历史课时,首先要弄清楚本节教材的主要观点,然 后,弄清教材为了说明这一观点引用了哪些史实,这些史料涉及的时间、地点、人物、事件。最后,也是关键的一环,看你是否真正弄懂观点与史料间 的关系。最好还能进一步思索:这些史料能不能充分说明观点?是否还可以补充新的史料?有无相反的史料证明原观点不正确。 • 三、听英语课要注重实践 • 英语课老师往往讲得不太多,在大部分的时间里,进行的师生之间、学生之间的大量语言实践练习。因此,要上好英语课,就应积极参加语言实践活 动,珍惜课堂上的每一个练习机会。
设计运行时速达350公里的京津城际列车呈现出超越 世界的“中国速度”,使得新时速旅客列车的运行速度 值界定在200公里/小时与350 公里/小时之间.
如何表示列车的运行速度的范围?
创设情景 兴趣导入
新时速旅客列车的运行速度值界定在 200公里/小时与350 公里/小时之间.
不等式:200<v<350
2019/7/31
最新中小学教学课件
11
thank
you!
2019/7/31
最新中小学教学课件
12
编后语
• 同学们在听课的过程中,还要善于抓住各种课程的特点,运用相应的方法去听,这样才能达到最佳的学习效果。 • 一、听理科课重在理解基本概念和规律 • 数、理、化是逻辑性很强的学科,前面的知识没学懂,后面的学习就很难继续进行。因此,掌握基本概念是学习的关键。上课时要抓好概念的理解,
同时,大家要开动脑筋,思考老师是怎样提出问题、分析问题、解决问题的,要边听边想。为讲明一个定理,推出一个公式,老师讲解顺序是怎样的, 为什么这么安排?两个例题之间又有什么相同点和不同之处?特别要从中学习理科思维的方法,如观察、比较、分析、综合、归纳、演绎等。 • 作为实验科学的物理、化学和生物,就要特别重视实验和观察,并在获得感性知识的基础上,进一步通过思考来掌握科学的概念和规律,等等。 • 二、听文科课要注重在理解中记忆 • 文科多以记忆为主,比如政治,要注意哪些是观点,哪些是事例,哪些是用观点解释社会现象。听历史课时,首先要弄清楚本节教材的主要观点,然 后,弄清教材为了说明这一观点引用了哪些史实,这些史料涉及的时间、地点、人物、事件。最后,也是关键的一环,看你是否真正弄懂观点与史料间 的关系。最好还能进一步思索:这些史料能不能充分说明观点?是否还可以补充新的史料?有无相反的史料证明原观点不正确。 • 三、听英语课要注重实践 • 英语课老师往往讲得不太多,在大部分的时间里,进行的师生之间、学生之间的大量语言实践练习。因此,要上好英语课,就应积极参加语言实践活 动,珍惜课堂上的每一个练习机会。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(6)x-2>0
x-3≤0
{x| 2<x≤3 }
3
闭区间:实数集的子集 { x | a ≤ x ≤ b }叫 做以 a , b 为端点的闭区间,记作[a,b]
数轴表示
a
b
x
4
开区间:实数集的子集 { x | a < x < b } 叫做以 a , b 为端点的开区间,记作(a,b)
数轴表示
a
b
x
不等式(组) 的解集与区间
1
(1)x-3≥0 x-3>0
(2)x-2≤0 x-2<0
{x| x≥3 } {x| x>3 } {x| x≤2 } {x| x<2 }
2
(3)x-2≥0 x-3≤0
{x| 2≤x≤3 }
(4)x-2>0 x-3<0
{x| 2<x<3 }
(5)x-2≥0 x-3<0
{x| 2≤x<3 }
所以原不等式组的解集是:
{x|x≥-1}∩{x|16
练习:解不等式组 2(x 1) 5 x (1) 5x 3 3x 1 (2)
17
1、不等式(组)的解集 2、不等式(组)的解集的表示方法
(1)集合描述法 (2)区间:闭区间
开区间 半开半闭区间 实数集R
18
5
闭区间 开区间
a
b
x
a
b
x
6
半开半闭区间:实数集的子集{x|a≤x<b} 或 {x| a < x ≤ b}叫做以a,b为端点的半开半 闭区间,记作:[a,b),(a,b]
数轴表示
a
b
x
a
b
x
7
在实数集R中,有没有 最大的数和最小的数?
实数集R 用区间表示为( -∞,+∞ ) -∞ 读作: 负无穷大 +∞ 读作: 正无穷大
x
13
用区间表示下列数集,并在数 轴上表示出来:
1、{x|-3<x ≤ 4}
2、 {x|x ≥ 2}
3、 {x|x < 0}
14
讨论:
{x|x≤-1或x≥2}用区间如何表示?
解:用区间表示为
(- ∞ ,-1]∪[2,+∞)
15
{ 例题:解不等式组 7 +3x ≤ 9+5x (1) 6 + x > 4x – 3 (2) 解:原不等式组的(1)(2)的解集分别为 {x|x≥-1},{x|x<3}
8
填 表:
解集表示 区间表示
{x|x≥a} [a,+ ∞)
{x|x > a} (a,+ ∞)
{x|x≤b} {x|x<b}
( -∞,b] (-∞,b)
数轴表示
a
x
a
x
bx
bx
9
例题:用区间表示下列数集,并在数轴上表示
(1){x|-1<x<3} 解:{x|-1<x<3}表示为(-1,3)数轴表示
-1 0
3
x
10
(2){x|-2≤x<2} 解:{x|-2≤x<2}表示为[-2,2) 数轴表示
-2 -1 0 1 2
x
11
(3){x|x>-1} 解: {x|x>-1}表示为(-1,+∞), 数轴表示
-2 -1 0 1
x
12
(4){x|x≤3}
解: {x|x≤3}表示为(- ∞ ,3], 数轴表示
01 2 3