区间的概念ppt-中职数学基础模块上册PPT课件

合集下载

演示文稿中职数学区间课件

演示文稿中职数学区间课件

-1 0
3
x
第16页,共17页。
练习:解不等式组
2(x 1) 5 x (1) 5x 3 3x 1 (2)
第17页,共17页。
表示
-2 -1 0 1
x
第12页,共17页。
(4){x|x≤3}
解: {x|x≤3}表示为(- ∞ ,3],数 轴表示
01 2 3
x
第13页,共17页。
用区间表示下列数集,并在数轴 上表示出来:
1、{x|-3<x ≤ 4} 2、 {x|x ≥ 2}
3、 {x|x < 0}
第14页,共17页。
讨论:
实数集R 用区间表示为( -∞,+∞ ) -∞ 读作: 负无穷大 +∞ 读作: 正无穷大
第8页,共17页。
填表 :
解集表示
区间表示
{x|x≥a} [a,+ ∞)
{x|x > a} (a,+ ∞)
{x|x≤b}
{x|x<b}
( -∞,b] (-∞,b)
数轴表示
a
x
a
x
bx bx
第9页,共17页。
例题:用区间表示下列数集,并在数轴上表示
(优质)中职数学区间课件 PPT课件
第1页,共17页。
(1)x-3≥0 x-3>0
(2)x-2≤0
x-2<0
{x|x≥3 பைடு நூலகம் {x|x>3 } {x|x≤2 }
{x| x<2 }
第2页,共17页。
(3)x-2≥0 x-3≤0
(4)x-2>0 x-3<0
(5)x-2≥0
x-3<0
(6)x-2>0 x-3≤0

2024年度-中职教育数学《区间》课件

2024年度-中职教育数学《区间》课件
[a, b]表示闭区间。
11
03
函数在区间上性质研究
12
函数单调性判断方法
定义法
根据函数单调性的定义,通过比 较函数在区间内任意两点的函数
值大小来判断函数的单调性。
导数法
利用导数符号判断函数的单调性 。若在某区间内函数的导数大于 0,则函数在此区间内单调增加 ;若导数小于0,则函数在此区
间内单调减少。
分类
根据区间端点的开闭情况,区间 可分为开区间、闭区间、半开半 闭区间等。
4
区间表示方法
01
02
03
不等式表示法
使用不等式表示变量的取 值范围,例如$a < x < b$表示开区间$(a, b)$。
集合表示法
使用集合论中的区间表示 法,例如${ x | a < x < b }$表示开区间$(a, b)$。
影响。
19
05
典型例题分析与解答技巧分享
20
典型例题选取与展示
例题1
01
求函数$f(x) = x^2 - 4x + 3$在区间$[0, 5]$上的最大值和最小
值。
例题2
02
判断函数$f(x) = frac{1}{x}$在区间$(0, +infty)$上的单调性。
例题3
03
求不等式$2x - 1 < 5$在区间$[2, 4]$上的解集。
图像法
通过观察函数图像来判断函数的奇偶性。若函数图像关于原点对称,则函数为 奇函数;若图像关于y轴对称,则函数为偶函数。
14
函数周期性判断方法
定义法
根据函数周期性的定义,通过比较函数在不同周期点的函数值来判断函数的周期 性。若存在正数T,使得对于定义域内的任意x,都有f(x+T)=f(x),则函数为周期 函数,T为函数的周期。

《区间的概念》中职数学基础模块上册2.2ppt课件1【语文版】

《区间的概念》中职数学基础模块上册2.2ppt课件1【语文版】


关键是,出错了你就知道上课时应该重点听哪里,注意力自然就能集中了。

4、即便上课时不理解也不要放弃

有些同学觉得老师讲的听不懂,就干脆不再听讲,按照自己的方法去学习。其实这样做真的很傻,因为不听讲就非常容易和同学们的学习进度脱节,这就会直接导致考试时成绩下降。原因是,老师讲的内容不一定都在教材中体现,有相当一部分重点内容
集合:v | 200 v 350
数轴:位于 200 与 350 之间的一段不包括端点的线段 还有其他简便方法吗?
2.2 区间
动脑思考 探索新知
由数轴上两点间的一切实数所组成的集合叫做区间. 其中,这两个点;4}
(2,4)
右半开区间
集合{x|2≤x<4}
难读到老师的表情。认真听讲不单纯是指听老师说的话,把握老师的表情和语调之类的小细节也是很有必要的。说话比平时更用力,或者表情严肃地强调的那个部分几乎百分之百地会出现在考试中。但是如果坐在后面,那种重要的提示就全都错过了。

与此相反,如果坐在前面,首先心情就很不同,自己比别人靠前的感觉让你听课时的态度变得更积极。与老师眼神交会的机会增多,感觉就好像是老师在做一对一个人辅导。

低着头,心情就放松了,但那种放松对学习一点好处也没有,之所以会放松,就是因为觉得即便是自己开小差,老师也不知道。如果你往前看,不时地和老师眼神交会一下,注意力必然会集中起来。和老师眼神交汇的那种紧张感会让你注意力集中,并充
实地听完整堂课。

3、课前预习

课前预习新课内容,找出不理解的地方标记下来。预习后尝试做课后练习题,不要怕出错,因为老师还没有讲,出错也是正常的。
“ ”与“ ”都是符号,而不是一个确切的数.

区间的概念PPT课件

区间的概念PPT课件
a 不包含a
⑧左无界右闭区间(-∞,a]表示数集{x x≤a}
a 包含a
SUCCESS
THANK YOU
2019/7/5
可编辑
例题及训练
例1、把下列集合用区间表示出来,指出它是什
么区间。
⑴ {x -3<x<1}
⑵ {x
-3≤x≤1}
⑶ {x -3<x≤1} -3≤x<1}
⑷ {x
⑸ {x x>1} x≤1}
⑹ {x
练习
例题及训练
例2、用区间表示不等式 3x>2+4x 的解集,并 在数轴上表示出来。
例3、设R为全集,集合A={x -5<x<6}, B={x x≥3,或x≤-3} ,用区间表示
A∩B.
练习
SUCCESS
THANK YOU
2019/7/5
可编辑
2.区间的概念
复习
我们知道: 用描述法表示一个数集时可以用不等式表
示 如:{x -3<x<5}
也可以在数轴上表示出来:
x
-3
0
5
也可以用区间表示:(-3,5)
区间表示法
①开区间(a,b):表示数集{x a<x<b}
a
b
不包含a、b
②闭区间 [a,b] :表示数集{x a≤x≤b}
a
b
包含a,b
区间表示法
③左开右闭区间(a,b] :表示数集{x a< x≤b}
பைடு நூலகம்
a
b
不包含a
④右开左闭区间 [a,b):表示数集{x a≤x< b}
a
区间表示法
⑤左开右无界区间(a,+∞)表示数集{x x>a}
a 不包含a

区间ppt课件

区间ppt课件
区间端点处理不当
在处理区间端点时,需要注意开闭区间的区别,否则可能导致结 果不准确。
混淆不同类型区间概念
1 2 3
混淆开闭区间 开区间和闭区间在数学上有明确的定义,但解题 者容易混淆二者概念,导致解题错误。
误解区间表示方法 在数学中,区间可以用不同的方式表示,如不等 式、集合等。解题者需要熟悉各种表示方法,避 免误解。
不等式求解与证明
01
02
03
04
区间分析法
将不等式中的变量限制在某个 区间内,通过分析函数在该区
间内的性质来求解不等式。
放缩法
通过适当的放缩,将复杂的不 等式转化为简单的不等式进行
求解。
构造函数法
构造适当的函数,利用函数的 性质来证明不等式。
数学归纳法
对于某些与自然数有关的不等 式,可以利用数学归纳法进行
些变化对函数性质的影响。
谢谢聆听
利用图像求解值域
对于难以直接求解的函数,可以通过绘制函数图像来观察其值域范 围。
多变量不等式处理方法
分离变量法
将多变量不等式中的各个变量分离开来,分别求解每个变量的取 值范围,再综合得出解集。
利用基本不等式性质
利用均值不等式、柯西不等式等基本不等式性质来简化多变量不等 式,降低求解难度。
转化为单变量不等式
B
C
区间乘法
区间乘法稍微复杂一些,需要考虑区间内元 素的符号。如果两个区间内的元素同号,则 它们的积为正;如果异号,则积为负。具体 的积的范围可以通过比较区间端点的大小来 确定。
区间除法
区间除法与乘法类似,只是将乘法运算改为 除法运算。需要注意的是,除数不能为0, 因此在进行区间除法时需要排除这种情况。
经济预测中置信区间计算

中职数学区间课件

中职数学区间课件

区间乘法运算规则及性质
总结词
区间乘法运算规则为[a, b] × [c, d] = [min(ac, bd), max(ac, bd)],其中min(ac, bd)为 定义域的起点,max(ac, bd)为值域的终点。
详细描述
此规则可以推广到多个区间相乘的情况。区间乘法运算的性质包括交换律和结合律,即 [a, b] × [c, d] = [c, d] × [a, b],并且( [a, b] × [c, d] ) × [e, f] = [a, b] × ( [c, d] × [e,
解决不等式证明问题
利用区间不等式可以判断函数的单调 性。
利用区间不等式的性质,可以证明一 些不等式。
解决最值问题
通过求解区间不等式,可以找到函数 的最值。
04
区间数列及其性质
区间数列的定义与分类
区间数列定义
区间数列是按照一定区间间隔取值的一组数列。
区间数列分类
根据区间间隔的不同,区间数列可分为等差区间数列和等比区间数列。
中职数学区间课件
汇报人: 202X-12-20
目录
• 区间概念与表示方法 • 区间运算及其性质 • 区间不等式及其解法 • 区间数列及其性质 • 区间函数及其性质 • 区间数学在实际生活中的应用举例
01
区间概念与表示方法
区间的定义与性质
区间定义
区间是数轴上两点之间的所有点 的集合。
区间性质
区间具有方向性、连续性、有序 性等性质。
区间不等式的分类
根据不等式的性质,区间不等式可以分为严格区间不等式和 非严格区间不等式。
区间不等式的解法技巧
01
02
03
观察法
通过观察不等式的形式和 特点,寻找解题思路。

01720_《区间的概念》PPT课件

01720_《区间的概念》PPT课件

区间概念在解决实际问题中具有广泛的应用,如区间算术、区间分析、区间优化等 ,为解决复杂问题提供了新的思路和方法。
2024/1/26
区间概念的推广和发展,促进了相关学科的发展和交叉融合,为现代科学技术的发 展做出了重要贡献。
24
区间在各领域的应用前景展望
在数学领域,区间概念可进一步应用 于函数逼近、数值计算、不等式证明 等方面,推动数学理论的发展和完善 。
区间与集合的对应关系
元素对应关系
区间中的每一个元素都对应集合 中的一个元素,反之亦然。
2024/1/26
运算对应关系
区间的交、并、差等运算与集合的 相应运算具有一致性。
性质对应关系
区间的连续性、连通性和有界性等 性质与集合的相应性质密切相关。
10
区间在数轴上的表
03
示与应用
2024数轴上从a到b的所有实数都属于该区间。
开区间(a, b)
不包含端点a和b,数轴上从a到b之间(不包括a和b)的所有实数都属于该区间。
2024/1/26
半开半闭区间[a, b)或(a, b]
只包含其中一个端点,数轴上从a到b之间(包括a但不包括b,或包括b但不包括a)的所 有实数都属于该区间。
25
THANKS.
2024/1/26
26
2024/1/26
地理位置
表示某个地点在地图上的经纬 度范围。
14
区间在数学分析中
04
的应用
2024/1/26
15
区间在函数定义域与值域中的应用
定义域表示
用区间表示函数的定义域,可以 清晰地展现出函数自变量的取值
范围。
值域表示
通过区间表示函数的值域,可以 直观地了解函数因变量的变化范

区间的概念ppt课件(2024)

区间的概念ppt课件(2024)
区间的概念ppt课件
2024/1/30
1
contents
目录
2024/1/30
• 区间的基本概念与性质 • 区间在数学中的应用 • 区间与集合的关系 • 区间在实际问题中的应用 • 区间的拓展与应用前景
2
01
区间的基本概念与性质
2024/1/30
3
区间的定义及表示方法
区间的定义
在数轴上,任意两个实数a和b(a<b)所确定的闭区间[a,b]、开区间(a,b)、半 开半闭区间[a,b)或(a,b]都称为一个区间。
12
区间在集合运算中的应用
并集运算
对于两个区间,如果它们有重叠部分,则它们的 并集是一个新的区间,包含两个原区间的所有元 素。
差集运算
对于两个区间,如果其中一个区间完全包含在另 一个区间中,则它们的差集是一个新的区间,包 含被减数区间中不属于减数区间的所有元素。
2024/1/30
交集运算
对于两个区间,如果它们有重叠部分,则它们的 交集是一个新的区间,包含两个原区间的公共元 素。
算法改进
针对区间算法的改进和优化, 将提高计算效率和精度,促进 其在实际问题中的应用。
跨学科研究
区间分析与其他学科的交叉研 究,将推动相关领域的创新和
发展。
21
THANKS
感谢观看
2024/1/30
22
经济增长率
在宏观经济分析中,经济增长率往往用一个区间 来表示,以反映经济增长的速度和趋势。
消费者信心指数
3
在市场调研中,消费者信心指数往往用一个区间 来表示,以反映消费者对市场和经济形势的信心 程度。
2024/1/30
17
05
区间的拓展与应用前景

【高教版】中职数学基础模块上册:2.2《区间》ppt课件(2)

【高教版】中职数学基础模块上册:2.2《区间》ppt课件(2)

区间
是指一定范围内的所有实数所构成的集 合,也就是数轴上某一“段”所有的点 所对应的所有实数。
如,大于3且小于7的所有实数构成一个区 间,在数轴上就是“由3到7的范围内所有 的点”所对应的实数。
读作“无穷大”,-和+分别读作 “负无穷大”和“正无穷大”。
定义 名称 开区间 闭区间 符号 数轴表示 备注
x 2 0 () 1 x 3 0 x 2 0 (2) x 3 0
例3、用集合的描述法表示下列区间: (1)
3,7
(2) 2,1
作业 书P35 习题 T1、T2
不包含线段的两 个端点 包含线段的两个 端点 包含右端点,不 包含左端点 包含左端点,不 包含右端点 不包含左端点的 射线 包含左端点的射 线 不包含右端点的 射线 包含右端点的射 线 整个数轴
{x | a x b} {x | a x b} {x | a x b} {x | a x b} {x | x a} {x | x a
(a,b)
[a,b] (a,b] [a,b)
(a, )
左开右闭区间
左闭右开区间 无限区间 无限区间 无限区间
[a, )
(-,a)
无限区间
无限区间
(-,a]
R
(-, )
例1、已知集合 A 0, 4 ,集合 B 2,3 , 求 A B, A B 。
例2、用区间表示下列不等式组的解集:
定义名称符号数轴表示备注不包含线段的两个端点包含线段的两个端点包含右端点不包含左端点包含左端点不包含右端点不包含左端点的射线包含左端点的射不包含右端点的射线包含右端点的射开区间闭区间无限区间无限区间无限区间无限区间无限区间分别读作负无穷大和正无穷大

中职数学区间PPT课件

中职数学区间PPT课件

-1 0
Hale Waihona Puke 3x第9页/共18页
(2){x|-2≤x<2} 解:{x|-2≤x<2}表示为[-2,2) 数轴表示
-2 -1 0 1 2
x
第10页/共18页
(3){x|x>-1} 解: {x|x>-1}表示为(-1,+∞), 数轴表示
-2 -1 0 1
x
第11页/共18页
(4){x|x≤3}
解: {x|x≤3}表示为(- ∞ ,3], 数轴表示
a
b
x
a
b
x
第5页/共18页
半开半闭区间:实数集的子集{x|a≤x<b} 或 {x| a < x ≤ b}叫做以a,b为端点的半开半 闭区间,记作:[a,b),(a,b]
数轴表示
a
b
x
a
b
x
第6页/共18页
在实数集R中,有没有 最大的数和最小的数?
实数集R 用区间表示为( -∞,+∞ ) -∞ 读作: 负无穷大 +∞ 读作: 正无穷大
第16页/共18页
1、不等式(组)的解集 2、不等式(组)的解集的表示方法
(1)集合描述法 (2)区间:闭区间
开区间 半开半闭区间 实数集R
第17页/共18页
感谢您的欣赏
第18页/共18页
(1)x-3≥0
{x| x≥3 }
x-3>0 {x| x>3 }
(2)x-2≤0
{x| x≤2 }
x-2<0 {x| x<2 }
第1页/共18页
(3)x-2≥0 x-3≤0
(4)x-2>0 x-3<0
(5)x-2≥0 x-3<0

【高教版】中职数学基础模块上册:2.2《区间》ppt课件(1)

【高教版】中职数学基础模块上册:2.2《区间》ppt课件(1)
数学(基础模块)上册
2.2
区间
共二课时 (第一课时)
【学习目标】
知识与技能 1、 掌握区间的概念; 2、 用区间表示相关的集合。 过程与方法 经历从实际情境中抽象出区间的概念的过程和通过数轴探究 区间与数集的关系,获得区间的概念和用区间表示数集的方法。 情感态度与价值观 通过数形结合的学习过程,培养学生的观察能力和数学思 维能力。
名称
开区间 闭区间 左开右闭区间 左闭右开区间 无限区间 无限区间 无限区间 无限区间 无限区间
符号
(a,b) [a,b] (a,b] [a,b) (a,+∞) [a,+∞) (-∞,a) (-∞,a] (-∞,+∞)
数轴表示
备注
不包含线段的两个端点 包含线段的两个端点 包含右端点,不包含左端点 包含左端点,不包含右端点 不包含左端点的射线 包含左端点的射线 不包含右端点的射线 包含右端点的射线 整个数轴
动脑思考明确新知
课后作业 P35 A组1,2题部分
新知应用
巩固知识典型例题
解:两个集合的数轴表示如下图所示,
新知应用 运用知识强化练习
P35 练习部分
新知学习 动脑思考明确新知
新知学习 动脑思考明新知
思考?
新知学习 理论升华整体建构
定义
{x 丨 a<x<b} {x 丨 a≤x≤b} {x 丨 a<x≤b} {x 丨 a≤x<b} {x 丨 x>a} {x 丨 x≥a} {x 丨 x<a} {x 丨 x≤a} R
问题解决:
数轴:位于200与300之间的一段不包括端点 的线段;
-200
-100
O
100
。 200
。 300 400

区间的概念ppt课件

区间的概念ppt课件

7

8
例题及训练
例2、用区间表示不等式 3x>2+4x 的解集,并 在数轴上表示出来。
例3、设R为全集,集合A={x -5<x<6}, B={x x≥3,或x≤-3} ,用区间表示A∩B.
9
练习
10
2.区间的概念
1
复习
我们知道: 用描述法表示一个数集时可以用不等式表示
如:{x -3<x<5} 也可以在数轴上表示出来:
x
-3
0
5
也可以用区间表示:(-3,5)
2
区间表示法
①开区间(a,b):表示数集{x a<x<b}
a
b
不包含a、b
②闭区间 [a,b] :表示数集{x a≤x≤b}
a
b
包含a,b
3
区间表示法
③左开右闭区间(a,b] :表示数集{x a<x≤b}
a
b 不包含a
④右开左闭区间 [a,b):表示数集{x a≤x<b}
a
b 不包含b
4
区间表示法
⑤左开右无界区间(a,+∞)表示数集{x x>a}
a
不包含a
⑥左闭右无界区间 [a,+∞)表示数集{x x≥a}
a
包含a
5
区间表示法
⑦左无界右开区间(-∞,a)表示数集合{x x<a}
a
不包含a
⑧左无界右闭区间(-∞,a]表示数集{x x≤a}
a
包含a
实数集R可以用区间(-∞,+∞)表示
6
例题及训练
例1、把下列集合用区间表示出来,指出它是什 么区间。
⑴ {x -3<x<1}
⑵ {x -3≤x≤1}
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定义
名称
符号
{x|a≤x≤b} 闭区间 [ a, b ]
数轴表示 ab
{x|a<x<b} 开区间 ( a, b )
ab
{x|a≤x<b} 半开半闭 [ a, b ) 区间
{x|a<x≤b} 半开半闭 ( a, b ] 区间
ab ab
这里的实数a与b都叫做相应区间的端点.
2020年10月2日
4
知识探究(二)
高一年级 数学 第一章 1.2.1 函数的概念
课题: 区间的概念
2020年10月2日
1
问题提出
1.什么叫函数?用什么符号表示函数? 2. 什么是函数的定义域?值域?
3.函数 f (x) 1x 的定义域怎样表示?
2020年10月2日
2
知识探究(一)
思考1:设a,b是两个实数,且a<b,介于这两个 数之间的实数x用不等式表示有哪几种可能情况?
思考1:变量x相对于常数a有哪几种大小关系?用 不等式怎样表示?
思考2:满足不等式 x a, x a, x a, x a
的实数x的集合也可以看成区间,那么这些集合 如何用区间符号表示?
[a,+∞),(a,+∞), (-∞,a],(-∞,a).
思考3:将实数集R看成一个大区间,怎样用区间 表示实数集R?
a x b,a x b,a x b,a x b
思考2:满足上述每个不等式的实数x的集合可看 成一个区间,为了区分,它们分别叫什么名称?
思考3:如果把满足不等式的实数x的集合用符号 [a,b)表示,那么满足其它三个不等式的实数x 的集合可分别用什么符号表示?
2020年10月2日
3
上述知识内容总结成下表:
(-∞,+∞)
2020年10月2日
5
思考4:一次函数y=kx+b(k≠0),二次函数
y=ax2+bx+c(a≠0),反比例函数 y k (k 0) x
的定义域、值域分别是什么?怎样用区间表示?
2020年10月2日
6
理论迁移
例1 将下列集合用区间表示出来:
(1){x | 2x 1 0}; (2){x | x 4,或 1 x 2}
..
例2 已知 f ( x 1) x 2 x ,求函数 f (x)的解析式.
ቤተ መጻሕፍቲ ባይዱ
2020年10月2日
7
2020年10月2日
8
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
汇报人:XXX 汇报日期:20XX年10月10日
2020年10月2日
9
相关文档
最新文档