数学史朱家生习题答案

合集下载

(完整word版)第一套数学史试题及答案,推荐文档

(完整word版)第一套数学史试题及答案,推荐文档

《数学史选讲》练习题班级姓名学号一、单项选择题(每小题2 分,共26 分)1.世界上讲述方程最早的著作是( )A.中国的《九章算术》B.阿拉伯花拉子米的《代数学》C.卡尔丹的《大法》D.牛顿的《普遍算术》2.《数学汇编》是一部荟萃总结前人成果的典型著作,它被认为是古希腊数学的安魂曲,其作者为( )。

A.托勒玫B.帕波斯C.阿波罗尼奥斯D.丢番图3.美索不达米亚是最早采用位值制记数的民族,他们主要用的是( )A.六十进制B.十进制C.五进制D.二十进制4.“一尺之棰,日取其半,万世不竭”出自我国古代名著( )。

A.《考工记》B.《墨经》C.《史记》D.《庄子》5.下列数学著作中不属于“算经十书”的是( )。

A.《数书九章》B.《五经算术》C.《缀术》D.《缉古算经》6.微积分诞生于( )。

A.15 世纪B.16 世纪C.17 世纪D.18 世纪7.以“万物皆数”为信条的古希腊数学学派是( )。

A.爱奥尼亚学派B.伊利亚学派C.诡辩学派D.毕达哥拉斯学派8.最早记载勾股定理的我国古代名著是( )A.《九章算术》B.《孙子算经》C.《周髀算经》D.《缀术》9.首先使用符号“0”来表示零的国家或民族是( )。

A.中国B.印度C.阿拉伯D.古希腊10.在《几何原本》所建立的几何体系中,“整体大于部分”是( )。

A.定义B.定理C.公设D.公理11.刘徽首先建立了可靠的理论来推算圆周率,他所算得的“徽率”是( )。

A.3.1B.3.14C.3.142D.3.141592612.费马对微积分诞生的贡献主要在于其发明的( )A.求瞬时速度的方法B.求切线的方法C.求极值的方法D.求体积的方法13.祖冲之的代表作是()A.《考工记》B.《海岛算经》C.《缀术》D.《缉古算经》二、填空题(每空2 分,共52 分)14.《九章算术》内容丰富,全书共有章,大约有个问题。

15.世界上第一个把π 计算到 3.1415926<π <3.1415927 的数学家是。

1数学史试题及答案

1数学史试题及答案

填空1.世界上第一个把π计算到3。

1415926<π<3。

1415927 的数学家是祖冲之2.我国元代数学著作《四元玉鉴》的作者是(朱世杰3.就微分学与积分学的起源而言(积分学早于微分学)4.在现存的中国古代数学著作中,最早的一部是(《周髀算经》5.发现著名公式e iθ =cosθ +isinθ的是(欧拉6.中国古典数学发展的顶峰时期是(宋元时期)。

7.最早使用“函数”(function)这一术语的数学家是(.莱布尼茨).8.1834 年有位数学家发现了一个处处连续但处处不可微的函数例子,这位数学家是(波尔查诺)。

9.古埃及的数学知识常常记载在(纸草书上)。

10.大数学家欧拉出生于(瑞士)11.首先获得四次方程一般解法的数学家是(费拉利。

12.《九章算术》的“少广”章主要讨论(开方术)。

13.最早采用位值制记数的国家或民族是(美索不达米亚).14.希尔伯特在历史上第一次明确地提出了选择和组织公理系统的原则,即:相容性、__完备性__、独立性15.在现存的中国古代数学著作中,《周髀算经》是最早的一部.卷上叙述的关于荣方与陈子的对话,包含了勾股定理的一般形式.16.二项式展开式的系数图表,在中学课本中称其为__杨辉__三角,而数学史学者常常称它为_贾宪__三角。

17.欧几里得《几何原本》全书共分13 卷,包括有_5_条公理、_5条公设。

18.两千年来有关欧几里得《几何原本》第五公设的争议,导致了《非欧几何》的诞生。

19.阿拉伯数学家花拉子米的《代数学》第一次给出了一次和二次方程的一般解法,并用__几何__方法对这一解法给出了证明。

20.在微积分方法正式发明之前,许多数学家的工作已经显示着微积分的萌芽,如开普勒的旋转体体积计算、巴罗的微分三角形方法以及瓦里士的曲线弧长的计算等。

语言的数学家是维尔斯特拉斯。

21.1882 年德国数学家林德曼证明了数的超越性。

22.数学家们为研究古希腊三大尺规作图难题花费了两千年的时间,23.罗巴契夫斯基所建立的“非欧几何”假定过直线外一点,至少有两条 年德国数学家林德曼证明了数直线与已知直线平行,而且在该几何体系中,三角形内角和__小于___两直角。

数学史概论复习题及参考 答案[1]

数学史概论复习题及参考 答案[1]
7.玛雅数字(?):二十进制数系
二、 “河谷文明”指的是什么?P16
答:历史学家往往把兴起于埃及。美索不大 米亚、中国和印度等地域的古代文明称为 “河谷文明”。
三、 关于古埃及数学的知识主要依据哪两 部纸草书?P17,纸草书中问题绝大部分都是 实用性质,但有个别例外,请举例。P23
答:古埃及数学的知识主要依据莱茵德纸草 书和莫斯科纸草书两部纸草书。
7、从20世纪80年代开始,又出现了对数学 的定义作符合时代的修正的新尝试。主要是 一批美国学者,将数学简单地定义为关于 “模式” 的科学:“【数学】这个领域已被 称作模式的科学,其目的是要揭示人们从自 然界和数学本身的抽象世界中所观察到的结 构和对称性” 。
三、数学史通常采用哪些线索进行分期?P9 答:一般可以按照如下线索:
5 、 19 世 纪 晚 期 , 集 合 论 的 创 始 人 康 托 尔 (1845—1918)曾经提出: “数学是绝对自由 发展的学科,它只服从明显的思维,就是说 它的概念必须摆脱自相矛盾,并且必须通过 定义而确定地、有秩序地与先前已经建立和 存在的概念相联系”。
6、20世纪50年代,前苏联一批有影响的数 学家试图修正前面提到的恩格斯的定义来概 括现代数学发展的特征:“现代数学就是各 种量之间的可能的,一般说是各种变化着的 量的关系和相互联系的数学”。
4、现代数学时期(1820年一现在) (1)现代数学酝酿时期(1820’一1870) (2)现代数学形成时期(1870—1940’) (3)现代数学繁荣时期(当代数学时期,1950
-现在)
第一章 数学的起源
与早期发展
一、 世界上早期常见有几种古老文明记数 系统,它们分别是什么数字,采用多少进制 数系?
答:1.古埃及的象形数字(公元前3400年 左右):十进制数系

数学史练习题及答案资料

数学史练习题及答案资料

《数学史论约》复习题参考及答案本科一、填空(22分)1、数学史的研究对象是(数学这门学科产生、发展的历史),既要研究其历史进程,还要研究其(一般规律);2、数学史分期的依据主要有两大类,其一是根据(数学学科自身的研究对象、内容结构、知识领域的演进)来分期,其一是根据(数学学科所处的社会、政治、经济、文化环境的变迁)来分期;3、17世纪产生了影响深远的数学分支学科,它们分别是(解析几何)、(微积分)、(射影几何)、(概率论)、(数论);4、18世纪数学的发展以(微积分的深入发展)为主线;5、整数458 用古埃及记数法可以表示为()。

6、研究巴比伦数学的主要历史资料是(契形文字泥板),而莱因特纸草书和莫斯科纸草书是研究古代(埃及数学)的主要历史资料;7、古希腊数学发展历经1200多年,可以分为(古典)时期和(亚历山大里亚)时期;8、17世纪创立的几门影响深远的数学分支学科,分别是笛卡儿和(费马)创立了解析几何,牛顿和(莱布尼茨)创立了微积分,(笛沙格)和帕斯卡创立了射影几何,(帕斯卡)和费马创立了概率论,费马创立了数论;9、19世纪数学发展的特征是(创造)精神和(严格)精神都高度发扬;10、整数458 用巴比伦的记数法可以表示为()。

11、数学史的研究内容,从宏观上可以分为两部分,其一是内史,即(数学内在学科因素促使其发展),其一是外史,即(数学外在的似乎因素影响其发展);12、19世纪数学发展的特征,可以用以下三方面的典型成就加以说明:(1)分析基础严密化和(复变函数论创立),(2)(非欧几里得几何学问世)和射影几何的完善,(3)群论和(非交换代数诞生);13、20世纪数学发展“日新月异,突飞猛进”,其显著趋势是:数学基础公理化,数学发展整体化,(电子计算机)的挑战,应用数学异军突起,数学传播与(研究)的社会化协作,(新理论)的导向;14、《九章算术》的内容分九章,全书共(246)问,魏晋时期的数学家(刘徽)曾为它作注;15、整数458 用玛雅记数法可以表示为()。

《数学史》朱家生版+课后题目参考答案+第四章

《数学史》朱家生版+课后题目参考答案+第四章

1.作为世界四大文明古国之一,中国在公元前3000年至公元前1500年间有哪些数学成就?试讲这些成就和其他文明古国做一比较.据《易.系辞》记载:“上古结绳而治,后世圣人易之以书契”。

在殷墟出土的甲骨文卜辞中有很多记数的文字。

从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进位制的记数法,出现最大的数字为三万。

算筹是中国古代的计算工具,而这种计算方法称为筹算。

算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。

用算筹记数,有纵、横两种方式:表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间(法则是:一纵十横,百立千僵,千、十相望,万、百相当),并以空位表示零。

算筹为加、减、乘、除等运算建立起良好的条件。

筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。

在几何学方面《史记.夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现“勾三股四弦五”这个勾股定理(西方称毕氏定理)的特例。

战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。

战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。

著名的有《墨经》中关于某些几何名词的定义和命题,例如:“圆,一中同长也”、“平,同高也”等等。

墨家还给出有穷和无穷的定义。

《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如“至大无外谓之大一,至小无内谓之小一”、“一尺之棰,日取其半,万世不竭”等。

这些许多几何概念的定义、极限思想和其他数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。

十进制是一种便捷的计数方法,而筹算是一种有效的工具,两者均是中国对世界的重大贡献。

在同时代的各古代文明中,只有中国提出了十进制。

数学史考试题和答案

数学史考试题和答案

数学史考试题和答案一、单项选择题(每题2分,共20分)1. 被认为是数学史上第一位数学家的是:A. 毕达哥拉斯B. 欧几里得C. 阿基米德D. 牛顿答案:A2. 以下哪位数学家不是古希腊数学家?A. 欧拉B. 阿基米德C. 希帕提亚D. 欧几里得答案:A3. “几何原本”是由哪位数学家所著?A. 牛顿B. 欧拉C. 欧几里得D. 高斯答案:C4. 微积分的发明归功于以下哪两位数学家?A. 牛顿和莱布尼茨B. 欧拉和拉格朗日C. 阿基米德和高斯D. 笛卡尔和帕斯卡答案:A5. 以下哪位数学家不是法国人?A. 帕斯卡B. 拉普拉斯C. 拉格朗日D. 高斯答案:D6. 被誉为“现代数学之父”的是:A. 牛顿B. 高斯C. 欧拉D. 笛卡尔答案:D7. 以下哪位数学家是概率论的先驱?A. 帕斯卡B. 欧拉C. 牛顿D. 阿基米德答案:A8. 以下哪位数学家是解析几何的创始人?A. 牛顿B. 笛卡尔C. 欧拉D. 高斯答案:B9. 以下哪位数学家是复数理论的先驱?A. 欧拉B. 牛顿C. 欧几里得D. 笛卡尔答案:A10. 以下哪位数学家是群论的创始人?A. 高斯B. 拉格朗日C. 伽罗瓦D. 欧拉答案:C二、填空题(每题2分,共20分)1. 毕达哥拉斯定理,也被称为勾股定理,是由古希腊数学家______提出的。

答案:毕达哥拉斯2. 阿基米德是古希腊的数学家、物理学家、工程师,他发现了浮力原理,并计算了圆周率的近似值,他的近似值在______和______之间。

答案:3.14084 和 3.142853. 欧几里得的《几何原本》是数学史上最重要的著作之一,它系统地总结了古希腊几何学的知识,并提出了______条公理。

答案:234. 牛顿和莱布尼茨独立发现了微积分,牛顿的微积分工作主要体现在他的著作《______》中。

答案:自然哲学的数学原理5. 欧拉是18世纪的瑞士数学家,他在数学的许多领域都有贡献,包括数论、图论、拓扑学等,他的名字被用来命名了欧拉公式:e^(iπ) + 1 = ______。

数学史习题及答案

数学史习题及答案

第六讲思考题解析几何产生的时代背景是什么解析几何的实际背景更多的是来自对变量数学的需求。

文艺复兴后的欧洲进入了一个生产迅速发展,思想普遍活跃的时代。

机械的广泛使用,促使人们对机械性能进行研究,这需要运动学知识和相应的数学理论;建筑的兴盛、河道和堤坝的修建又提出了有关固体力学和流体力学的问题,这些问题的合理解决需要正确的数学计算;航海事业的发展向天文学,实际上也是向数学提出了如何精确测定经纬度、计算各种不同形状船体的面积、体积以及确定重心的方法,望远镜与显微镜的发明,提出了研究凹凸透镜的曲面形状问题。

在数学上就需要研究求曲线的切线问题。

所有这些都难以仅用初等几何或仅用初等代数在常量数学的范围内解决,于是,人们就试图创设变量数学。

作为代数与几何相结合的产物――解析几何,也就在这种背景下问世了。

解析几何的实际背景更多的是来自对变量数学的需求。

从16世纪开始,欧洲资本主义逐渐发展起来,进入了一个生产迅速发展,思想普遍活跃的时代。

生产实践积累了大量的新经验,并提出了大量的新问题。

可是,对于机械、建筑、水利、航海、造船、显微镜和火器制造等领域的许多数学问题,已有的常量数学已无能为力,人们迫切地寻求解决变量问题的新数学方法。

第七讲思考题谈谈您对于“读读欧拉,他是我们大家的老师”(拉普拉斯语)的看法莱昂哈德·欧拉(Leonhard Euler ,1707年4月5日~1783年9月18日)是瑞士数学家和物理学家。

他被一些数学史学者称为历史上最伟大的两位数学家之一(另一位是卡尔·弗里德里克·高斯)。

欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:y = F(x) (函数的定义由莱布尼兹在1694年给出)。

他是把微积分应用于物理学的先驱者之一。

他的全部创造在整个物理学和许多工程领域里都有着广泛的应用。

欧拉的数学和科学成果简直多得令人难以相信。

他写了三十二部足本著作,其中有几部不止一卷,还写下了许许多多富有创造性的数学和科学论文。

数学史试题答案(简答论述)

数学史试题答案(简答论述)

数学史试题答案(简答论述)在数学史试题答案(简答论述)中,我们将简要探讨数学史中的一些重要问题,并给出相应的答案。

数学史作为一门学科,涵盖了数学的起源、发展和应用等方面的内容,是了解数学发展历程以及数学思想演变的重要途径。

下面,我们将就数学史中的几个关键问题进行解答。

一、早期数学的起源是什么?早期数学的起源可以追溯到古代文明的发展。

在人类历史的早期阶段,人们开始观察周围的自然现象,并试图用数字和符号来描述和解释。

早期数学主要集中在实际问题的计算以及土地测量、贸易和农业等领域的应用。

古代文明如古代埃及、巴比伦、印度和中国等,都在早期数学的发展中起到了重要的作用。

二、古希腊数学的特点是什么?古希腊数学以几何学为主要特点。

古希腊的数学家将几何学作为研究对象,并尝试用严谨的证明来建立几何学上的定理和问题。

其中最著名的数学家是欧几里德,他的《几何原本》成为了后来数学教育的典范。

古希腊数学的其他重要特点还包括:重视形式化证明、注重逻辑推理和使用严谨的推理方法等。

三、古代中国数学的贡献有哪些?古代中国数学的贡献主要体现在算术和代数方面。

中国古代数学家在古代科学技术的发展中起到了重要作用。

中国古代数学家创造了很多数学概念和方法,如无理数、负数概念以及高次方程的解法等。

古代中国在商业贸易、地理测量以及天文学方面的发展也离不开数学的应用。

四、中世纪数学的发展情况如何?中世纪数学的发展主要受到宗教和哲学思想的影响。

在这一时期,欧洲的学问主要受到天主教教会的影响,数学被视为一种法学,被广泛用于天文学和天主教历法的计算。

然而,这一时期的数学发展相对较为缓慢,主要是基于继承古希腊和古罗马的数学知识。

直到文艺复兴时期,数学的发展才开始重新蓬勃起来。

五、现代数学的特点有哪些?现代数学具有抽象、严谨和应用广泛的特点。

在18世纪以后,数学逐渐脱离了实际应用的限制,开始探索抽象的数学理论和方法。

19世纪是现代数学发展的关键时期,包括微积分、数论和几何学等方面的重要突破。

数学史第1章

数学史第1章

1.2.1 古巴比伦的记数制与算术
❖ 古巴比伦人的记数系统是60进制
❖ 1854年 森开莱泥板
1,4,9,16,25,36,49,1·4,1·21…直到58·1

表示2×602+2×60+2=7322
❖ 古巴比伦人也使用分数,他们总是用60作为分母。
1.2.1 古巴比伦的记数制与算术
❖ 与古埃及人相仿,古巴比伦人的算术运算也是 借助于各种各样的表来进行的。
❖ 设有本金为1,利率为20%,问需要多久即可使 利息与本金相等。
❖ 这需要求解指数方程

❖ 使用一次插入法,相当于现在这样的算法:
故得
(年)
1.2.2 古巴比伦的代数
❖ 在公元前2000年前后,古巴比伦数学已出现了用文字叙 述的代数问题。
❖ 可能由于许多代数问题都与几何有关,因此他们常常用 “长”,“宽”,“面积”来代表未知数和它们的乘积等。
直到公元前332年亚历山大大帝征服埃及为止。
埃及人创造了连续3000多年的辉煌历史,发明了铜器、创造 了文字、掌握了较高的天文学和几何学知识,建造了巍峨宏伟的 神庙和金字塔。
埃及的胡夫金字塔
大约建于公元前2500年左右,边长230米,塔高146.6米,(现高137 米)地基正方形边长的相对误差不超过2厘米,底角相对误差不超过12″。 230万石块推成,每块1.5吨至160吨,重量约684万吨,10万人共用20年的时 间才完成的人类奇迹。
V 1 h(a2 ab b2 ) 3
1.2 古巴比伦的数学
❖ 古巴比伦 (美索不达米亚) ❖ 两河流域 (幼发拉底河与
底格里斯河) ❖ 伊拉克 ❖ 美索不达米亚文明 ❖ 楔形文字
1.2 古巴比伦的数学

数学史朱家生版+课后题目参考答案解析+第五章

数学史朱家生版+课后题目参考答案解析+第五章

1.导致欧洲中世纪黑暗时期出现的主要原因是什么因为中世纪时期是欧洲最为混乱的时期,也是其经济、政治、文化、军事等全面停滞发展的时期,当时的欧洲居民生活在水深火热之中,所以被称为黑暗时期.1、政治的黑暗、政权的分散:自罗马帝国衰亡后,中欧、西欧被来自东欧的日耳曼民族统治,日耳曼民族又有很多种族,因此相互征伐不断,如法兰克帝国、神圣罗马帝国、英格兰王国、教皇国等等,这些国家相互征伐、动乱不已,而且中世纪时期虽然是欧洲的封建时期,但却不集权、不统一,类似分封制的封建制度导致封建国家缺乏强有力的基础,例如神圣罗马帝国、皇帝仅仅是一个称号而已.而封建地主又对百姓盘剥,加之战乱不断、瘟疫横行,民不聊生.2、宗教的干涉:这一时期的基督教对各国的干扰极强,甚至对政权的建立、稳定都十分重要.宗教严格的控制文化教育、人们的生活:一方面他们严格要求中下层教士及普通百姓,另一方面,上层教士又和封建势力相勾结,腐败没落,压榨百姓和人民,中世纪的宗教裁判所又有极大的权力,可以处死他们所认为的异端分子,由于思想、科学被严格控制,这一时期的欧洲思想、文化、科学鲜有成就.3、经济的没落,由于盘剥严重、科技落后,这一时期的经济几乎没有发展,没有进步就代表了落后;4、瘟疫盛行:宗教的干涉,科技的落后,医学的不发达,导致瘟疫的盛行,540年~590年查士丁尼瘟疫导致东地中海约2500万人死亡;1346年到1350的鼠疫导致欧洲约2500万人死亡,灾难极大地打击的了欧洲的经济、政治甚至人口的发展.简而言之,这一时期的欧洲百姓生活在一种暗无天日,毫无希望的生活里,所以被称为黑暗时期.2、在欧洲中世纪黑暗时期曾经出现过那些知名的数学家,他们在当时那样的背景下各自做了哪些数学工作答:罗马人博伊西斯(罗马贵族),曾不顾禁令用拉丁文从古希腊着作的片段中编译了一些算术、几何、音乐、天文的初级读物,他把这些内容称为“四大科”,其中的数学着作还被教会学校作为标准课本使用了近千年之久,但博伊西斯本人还是遭受政治迫害被捕入狱并死在狱中。

《数学史》练习题库及答案

《数学史》练习题库及答案

《数学史论约》试题一、填空1、数学史的研究对象是();2、数学史分期的依据主要有两大类,其一是根据()来分期,其一是根据()来分期;3、17世纪产生了影响深远的数学分支学科,它们分别是()、()、()、()、();4、18世纪数学的发展以()为主线;5、整数458 用古埃及记数法可以表示为()。

6、研究巴比伦数学的主要历史资料是(),而莱因特纸草书和莫斯科纸草书是研究古代()的主要历史资料;7、古希腊数学发展历经1200多年,可以分为()时期和()时期;8、17世纪创立的几门影响深远的数学分支学科,分别是笛卡儿和()创立了解析几何,牛顿和()创立了微积分,()和帕斯卡创立了射影几何,()和费马创立了概率论,费马创立了数论;9、19世纪数学发展的特征是()精神和()精神都高度发扬;10、整数458 用巴比伦的记数法可以表示为()。

11、数学史的研究内容,从宏观上可以分为两部分,其一是内史,即(),其一是外史,即();12、19世纪数学发展的特征,可以用以下三方面的典型成就加以说明:(1)分析基础严密化和(),(2)()和射影几何的完善,(3)群论和();13、20世纪数学发展“日新月异,突飞猛进”,其显著趋势是:数学基础公理化,数学发展整体化,()的挑战,应用数学异军突起,数学传播与()的社会化协作,()的导向;14、《九章算术》的内容分九章,全书共()问,魏晋时期的数学家()曾为它作注;15、整数458 用玛雅记数法可以表示为()。

16、数学史的研究对象是数学这门学科产生、发展的历史,既要研究其(历史进程),还要研究其();17、古希腊数学学派有泰勒斯学派、(毕达哥拉斯学派)、(厄利亚学派)、巧辩学派、柏拉图学派、欧多克索学派和();18、阿拉伯数学家()在他的著作()中,系统地研究了当时对一元一次和一元二次方程的求解方法;19、19世纪数学发展的特点,可以用以下三方面的典型成就加以说明:(1)()和复变函数论的创立;(2)非欧几里得几何学问世和();(3)在代数学领域()与非交换代数的诞生。

(完整word版)《数学史》朱家生版+课后题目参考答案+第六章

(完整word版)《数学史》朱家生版+课后题目参考答案+第六章

1.解析几何产生的背景是什么?在那个时期哪些问题导致了人们对运用代数方法处理几何问题的兴趣?解析几何的实际背景更多的是来自对变量数学的需求.文艺复兴后的欧洲进入了一个生产迅速发展,思想普遍活跃的时代.机械的广泛使用,促使人们对机械性能进行研究,这需要运动学知识和相应的数学理论;建筑的兴盛、河道和堤坝的修建又提出了有关固体力学和流体力学的问题,这些问题的合理解决需要正确的数学计算;航海事业的发展向天文学,实际上也是向数学提出了如何精确测定经纬度、计算各种不同形状船体的面积、体积以及确定重心的方法,望远镜与显微镜的发明,提出了研究凹凸透镜的曲面形状问题.在数学上就需要研究求曲线的切线问题.所有这些都难以仅用初等几何或仅用初等代数在常量数学的范围内解决,于是,人们就试图创设变量数学.作为代数与几何相结合的产物――解析几何,也就在这种背景下问世了.2、笛卡尔研究解析几何的出发点是什么?他又是怎么得到解析几何思想的?答:笛卡儿对数学方法的深入研究,是他断定数学可以有效地应用到其他科学上去。

他分析了古代已有的几何学和当时已经定型的代数学的优缺点,批评希腊几何过于抽象,并且过多地依靠图形,而代数则使人受到某些规则和公式的约束.他提出“寻求另外一种包含这两门科学的好处而没有他们的缺点的方法。

”当他看到代数具有作为一门普遍的科学方法的潜力,便着手把代数用到几何上去。

在《几何学》一书中,他仿造韦达的方法,用代数来解决几何作图的问题,比希腊人有了明显进展。

(在变量的理解和应用上。

希腊人无法处理三个以上变量的乘积.而笛卡儿是从纯数学方面考虑,所以可以处理三个以上的变量的乘积。

)笛卡儿之所以能创立解析几何,主要是他勇于探索,勤于思考.运用科学方法的必然结果。

3。

阐述费马的主要数学成就。

(1)对解析几何的贡献费马独立于勒奈·笛卡儿发现了解析几何的基本原理。

1629年以前,费马便着手重写公元前三世纪古希腊几何学家阿波罗尼奥斯失传的《平面轨迹》一书。

《数学史》考试练习题及答案

《数学史》考试练习题及答案

《数学史》考试练习题及答案一、单选题1. 1834年有位数学家发现了一个处处连续但处处不可微的函数例子,这位数学家是( )。

A 、高斯B 、波尔查诺C 、魏尔斯特拉斯D 、柯西答案:B2. 在现存的中国古代数学著作中,最早的一部是()A 、《孙子算经》B 、《墨经》C 、《算数书》D 、《周髀算经》答案:D3. 1917年,()获美国哈佛大学博士学位,成为第一位获得博士学位的中国数学家。

A 、胡敦复B 、姜立夫C 、郑之蕃D 、胡明夫答案:D4. 1983年,中国的数学家丘成桐获得的数学奖是下列的哪一项?()A 、匈牙利科学院设立的波约奖B 、菲尔兹奖C 、沃尔夫奖D 、诺贝尔奖答案:B5. 首先获得四次方程一般解法的数学家是( ) 。

A 、塔塔利亚B 、卡当C 、费罗D 、费拉利答案:D6. 希腊论证数学的祖师之一是()A 、泰勒斯B 、柏拉图C 、亚里士多德D 、芝诺答案:A7. 就微分学与积分学的起源而言()A 、积分学早于微分学B 、微分学早于积分学C 、积分学与微分学同期D 、不确定答案:A8. 大数学家欧拉出生于( )A 、瑞士B 、奥地利C 、德国D 、法国答案:A9. 古埃及的数学知识常常记载在( )。

A 、纸草书上B 、竹片上C 、木板上D 、泥板上答案:A10. 数学教学与研究的结合,已成为今日西方大学普遍的传统。

这一传统来自哪两所大学?()A 、巴黎综合工科学校与高等师范学校B 、剑桥大学和牛津大学C 、歌廷根大学和柏林大学D 、清华大学和北京大学答案:A11. 《九章算术》的“少广”章主要讨论() 。

A 、比例术B 、面积术C 、体积术D 、开方术答案:D12. 中国古典数学发展的顶峰时期是()。

A 、两汉时期B 、隋唐时期C 、魏晋南北朝时期D 、宋元时期答案:D13. 最早使用“函数”(function)这一术语的数学家是( )A 、莱布尼茨B 、约翰·伯努利C 、雅各布·伯努利D 、欧拉答案:A14. 我国元代数学著作《四元玉鉴》的作者是()A 、秦九韶B 、杨辉C 、朱世杰D 、贾宪答案:C15. 最早采用位值制记数的国家或民族是( ) 。

数学史高中试题及答案

数学史高中试题及答案

数学史高中试题及答案一、单项选择题(每题3分,共30分)1. 数学史上第一个证明勾股定理的人是:A. 欧几里得B. 毕达哥拉斯C. 阿基米德D. 牛顿答案:B2. 被誉为“几何之父”的数学家是:A. 阿基米德B. 欧几里得C. 牛顿D. 高斯答案:B3. 以下哪位数学家不是古希腊的:A. 阿基米德B. 欧拉C. 欧几里得D. 毕达哥拉斯答案:B4. 微积分的发明归功于以下哪两位数学家:A. 牛顿和莱布尼茨B. 笛卡尔和帕斯卡C. 高斯和欧拉D. 阿基米德和毕达哥拉斯答案:A5. 以下哪位数学家不是法国的:A. 帕斯卡B. 笛卡尔C. 牛顿D. 拉格朗日答案:C6. 被誉为“数学王子”的数学家是:A. 高斯B. 欧拉C. 牛顿D. 阿基米德答案:A7. 以下哪位数学家不是德国的:A. 高斯B. 莱布尼茨C. 欧拉D. 康托尔答案:C8. 以下哪位数学家不是意大利的:A. 斐波那契B. 伽利略C. 帕斯卡D. 费马答案:C9. 以下哪位数学家不是瑞士的:A. 欧拉B. 伯努利C. 爱因斯坦D. 高斯答案:D10. 以下哪位数学家不是英国的:A. 牛顿B. 哈代C. 拉格朗日D. 罗素答案:C二、填空题(每题4分,共20分)1. 被称为“代数学之父”的数学家是________。

答案:丢番图2. 被称为“解析几何之父”的数学家是________和________。

答案:笛卡尔、费马3. 被称为“概率论之父”的数学家是________。

答案:帕斯卡4. 被称为“现代数学之父”的数学家是________。

答案:高斯5. 被称为“数学分析之父”的数学家是________。

答案:魏尔斯特拉斯三、简答题(每题10分,共40分)1. 请简述欧几里得对数学的主要贡献。

答案:欧几里得是古希腊数学家,他的主要贡献是编写了《几何原本》,这是数学史上最重要的著作之一,系统地总结了古希腊几何学的知识,奠定了几何学的基础,对后世数学的发展产生了深远的影响。

数学史教案(朱家生)

数学史教案(朱家生)

闽江学院教案课程名称:数学史课程代码:授课专业班级:10数本(1)(2)(3)(4)授课教师:陈福松系别:数学系2012 年9 月1 日绪论一、教学时间安排:3学时二、教学目的、要求:1.了解数学史研究对象;2.理解学习数学史的意义。

三、教学的重点和难点:数学史研究对象和学习数学史的意义的介绍四、教学方法和教学手段:讲授法、多媒体辅助五、教学过程设计:导入、新课、小结六、教学内容:数学是人类文明的一个重要组成部分。

与其他文化一样,数学科学也是几千年来人类智慧的结晶。

(数学是人类文明的一个重要组成部分?)(1)从远古时期的结绳记事、屈指记数到借助于现代电子计算机进行计算、证明与科学管理,从利用勾股测量等具体的操作到抽象的公理化体系的产生,……所有这些,都构成了科学史上最富有理性魅力的题材。

(1)随着时代的进步,数学科学的思想、方法与内容已经渗透到人类生活的各个领域,科学技术包括社会科学的数学化已成为一种共识。

(数学科学的思想、方法与内容已经渗透到人类生活的各个领域?科学技术包括社会科学的数学化已成为一种共识?)人类的现实生活需要数学、国家的发展、科学技术的进步更离不开数学。

(20世纪中叶,美、苏两国在检讨本国科技落后时,寻找到的最终根源都是“数学问题”没处理好)因此,具备一些必需的数学知识和一定的数学思想方法,是现代人才基(为什么说具备必需的数学知识和一定的数学思想方本素质的非常重要的组成部分。

法,是现代人才基本素质的非常重要的组成部分?)(1)与其他学科相比,数学是一门积累性很强的学科,他的许多重大理论都是在继(天文学——地心学说;物理学——燃素说,承和发展原有理论的基础上发展起来的。

等等都被推翻了。

)如果我们不去追溯古今数学思想方法的演变与发展,也就不可能真正理解数学的真谛,正确把握数学科学发展的方向。

(许多有成就的数学家都关注数学发展史。

如我国的华罗庚、苏步青、吴文俊、张奠宙、法国的庞加莱等大数学家都非常关注数学史的发展)。

《数学史》朱家生版+课后题目参考答案+第二章

《数学史》朱家生版+课后题目参考答案+第二章

1、试从数学科学发展的角度,探讨古希腊把逻辑学中的演绎证明引入数学的理由,并进一步论述数学与逻辑的关系。

答:一般认为,数学是研究空间形式和数量关系的一门科学,逻辑是研究思维形式及其规律和方法的一门科学,但它们都完全撇开其内容,仅仅从形式方面加以研究,因而均具有高度的抽象性,所以在分类上它们同属于形式科学。

同时,数学和逻辑的应用都十分广泛,往往成为研究其它科学的工具,因此常常同被人们称为工具性科学。

围绕逻辑与数学的关系讨论下去,曾经形成三种意见──逻辑主义、形式主义和直觉主义。

其中逻辑主义、直觉主义,过多强调了数学和逻辑的同一性,而忽视了数学与逻辑的差异性。

因此,认识数学和逻辑的关系,在于把握二者关系的辩证性──同一、差异又互补。

研究中国传统数学中逻辑思想与方法的必要性一直以来,不论是在逻辑史学界,还是在数学史学界,对于中国传统数学中逻辑思想与方法的研究没有得到应有的重视。

但从下面我们简单论述来看,加强这方面的研究却具有显明的必要性。

一、从逻辑与数学的关系看数学与逻辑的研究对象虽各不相同,但它们的性质、特点却有很多共同和类似的地方,正因为如此,才使得它们关系十分密切,在内容和方法上可以互相运用和相互渗透。

一般认为,数学是研究空间形式和数量关系的一门科学,逻辑是研究思维形式及其规律和方法的一门科学,但它们都完全撇开其内容,仅仅从形式方面加以研究,因而均具有高度的抽象性,所以在分类上它们同属于形式科学。

同时,数学和逻辑的应用都十分广泛,往往成为研究其它科学的工具,因此常常同被人们称为工具性科学。

围绕逻辑与数学的关系讨论下去,曾经形成三种意见──逻辑主义、形式主义和直觉主义。

其中逻辑主义、直觉主义,过多强调了数学和逻辑的同一性,而忽视了数学与逻辑的差异性。

因此,认识数学和逻辑的关系,在于把握二者关系的辩证性──同一、差异又互补。

首先,肯定数学和逻辑的同一性。

这是因为:(1)数学和逻辑都是高度抽象的学科,数学是研究数量的形式结构的,逻辑是研究思维的形式结构的,形式结构都是高度抽象的,是抽象结构,它们的定义、定理、原理、法则等的正确性均不涉及各种事物具体内容;(2) 数学和逻辑都讲严格性,数学只有具有推理论证的严密性和结论的确定性或可靠性才成其为科学,逻辑也只有当它的推理论证严格而公理系统化时才形成科学;(3) 数学和逻辑都具有广泛的应用性,数学的应用自不待言,对逻辑而言可以肯定地说哪里有思维哪里就要逻辑,一切科学都在应用逻辑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学史朱家生习题答案
数学史朱家生习题答案
数学作为一门古老而又重要的学科,其历史可以追溯到古代文明的起源。

在数学的发展过程中,许多数学家都做出了重要的贡献,其中朱家生是中国数学史上的一位重要人物。

本文将通过回答一些与朱家生相关的习题,来探讨他的数学思想和贡献。

1. 朱家生是谁?他的数学成就有哪些?
朱家生(1916-2004)是中国著名的数学家,他在数学教育和研究领域做出了重要的贡献。

他曾任教于北京大学,并担任中国数学会主席。

朱家生的数学成就包括但不限于:在数论和代数几何方面作出了重要的研究,提出了朱家生猜想,并在数学教育改革中起到了重要的推动作用。

2. 朱家生猜想是什么?它为数学界带来了什么影响?
朱家生猜想是一个关于数论中的整数分拆问题的猜想。

具体来说,它猜测了任何一个正整数都可以表示为不同奇素数的和。

这个猜想在数论领域引起了广泛的关注,并且至今尚未被证明或者推翻。

朱家生猜想的提出激发了许多数学家对整数分拆问题的研究,推动了相关领域的发展。

3. 朱家生如何影响了数学教育改革?
朱家生在中国的数学教育改革中起到了重要的推动作用。

他提倡“数学思维”的培养,强调数学教育应该注重培养学生的创造力和解决问题的能力。

他主张通过培养学生的数学素养来提高整个国家的科学技术水平。

朱家生的观点对中国的数学教育产生了深远的影响,推动了数学教育的改革和发展。

4. 朱家生的数学思想有哪些特点?
朱家生的数学思想具有以下几个特点:
首先,他注重数学的实际应用。

他认为数学应该与实际问题相结合,通过解决实际问题来推动数学的发展。

其次,他强调数学的创造性思维。

他认为数学不仅仅是一种工具,更是一种思维方式,通过培养学生的创造力和解决问题的能力来推动数学的发展。

最后,他重视数学教育的普及。

他认为数学是一门普及的学科,应该为更多的人所了解和掌握,通过数学的普及来提高整个社会的科学素养。

5. 朱家生对中国数学界的影响是什么?
朱家生对中国数学界的影响是深远的。

他在数学教育和研究领域的贡献,推动了中国数学的发展。

他的数学思想和教育理念影响了许多数学家和教育者,激发了他们对数学的热爱和研究的热情。

他的贡献为中国数学界树立了榜样,推动了中国数学的繁荣和发展。

总结起来,朱家生是中国数学史上的一位重要人物,他的数学成就和教育贡献对中国数学界产生了深远的影响。

通过回答与他相关的习题,我们可以更好地了解他的数学思想和对数学发展的贡献。

朱家生的研究和教育理念将继续激励着数学家和教育者,推动数学的发展和创新。

相关文档
最新文档