初二数学竞赛题(含答案)

合集下载

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。

全国初二数学竞赛试题及答案解析

全国初二数学竞赛试题及答案解析

全国初二数学竞赛试题及答案解析一、选择题(每题3分,共30分)1. 若a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不规则三角形答案:A解析:根据勾股定理的逆定理,如果三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

2. 已知x^2 - 5x + 6 = 0,求x的值。

A. 1B. 2C. 3D. 6答案:C解析:这是一个二次方程,可以通过因式分解法求解。

x^2 - 5x + 6 = (x - 2)(x - 3) = 0,解得x = 2 或 x = 3。

...30. 已知一个数列的前三项为2, 3, 5,且每一项都是前两项的和,求第10项的值。

答案:55解析:这是一个斐波那契数列,每一项都是前两项的和。

根据数列的规律,可以依次计算出第10项的值为55。

二、填空题(每题4分,共20分)31. 如果一个圆的半径是r,那么它的面积是______。

答案:πr^232. 一个长方体的长、宽、高分别是a、b、c,它的体积是______。

答案:abc...三、解答题(每题10分,共50分)36. 已知一个等腰三角形的底边长为10厘米,两腰的长度相等,且底角为45度。

求这个等腰三角形的面积。

答案:25√2解析:首先,根据底角为45度,我们可以知道这是一个等腰直角三角形。

根据勾股定理,两腰的长度为底边的√2倍,即10√2厘米。

然后,根据三角形面积公式(底×高÷2),面积为10×(10√2)÷2=50√2平方厘米。

37. 一个数的平方减去这个数等于36,求这个数。

答案:9 或 -4解析:设这个数为x,根据题意,我们有x^2 - x - 36 = 0。

这是一个二次方程,可以通过因式分解法求解:(x - 9)(x + 4) = 0。

解得x = 9 或 x = -4。

...结束语:本次全国初二数学竞赛试题涵盖了代数、几何、数列等多个领域,旨在考察学生的数学基础知识和解题能力。

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。

初二数学竞赛试卷及答案

初二数学竞赛试卷及答案

一、选择题(每题3分,共30分)1. 已知一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的周长为()A. 24cmB. 26cmC. 28cmD. 30cm2. 下列分数中,分子分母互质的是()A. $\frac{2}{3}$B. $\frac{4}{5}$C. $\frac{6}{7}$D. $\frac{8}{9}$3. 下列数中,能被3整除的是()A. 258B. 267C. 278D. 2874. 下列图形中,具有轴对称性的是()A. 正方形B. 长方形C. 等腰三角形D. 平行四边形5. 下列方程中,方程的解为x=2的是()A. 2x-1=3B. 2x+1=3C. 2x-1=5D. 2x+1=56. 下列数中,平方根是整数的是()A. 16B. 25C. 36D. 497. 下列代数式中,合并同类项后的结果为3x的是()A. 2x+1xB. 2x-1xC. 2x+2xD. 2x-2x8. 下列函数中,函数值为正数的x值有()A. x=1B. x=2C. x=3D. x=49. 下列数中,是质数的是()A. 17B. 18C. 19D. 2010. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 等腰三角形D. 平行四边形二、填空题(每题5分,共25分)11. 若a=3,b=5,则a+b的值为______。

12. 下列分数中,最简分数是______。

13. 下列数中,能被5整除的是______。

14. 下列方程中,方程的解为x=3的是______。

15. 下列数中,平方根是正数的是______。

16. 下列代数式中,合并同类项后的结果为5x的是______。

17. 下列函数中,函数值为0的x值有______。

18. 下列数中,是合数的是______。

19. 下列图形中,面积最小的是______。

20. 若a=2,b=4,则a×b的值为______。

三、解答题(每题15分,共30分)21. 已知一个等腰三角形的底边长为8cm,腰长为10cm,求该三角形的面积。

数学竞赛8年级真题试卷【含答案】

数学竞赛8年级真题试卷【含答案】

数学竞赛8年级真题试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x² 2x + 1,则f(1)的值为?A. 0B. 1C. 2D. 32. 下列哪个数是无理数?A. √9B. √16C. √3D. √13. 若a > b,则下列哪个选项是正确的?A. a c > b cB. a + c < b + cC. ac < bcD. a/c > b/c (c ≠ 0)4. 下列哪个方程的解集是实数集?A. x² + 1 = 0B. x² 2x + 1 = 0C. x² + x + 1 = 0D. x² x + 1 = 05. 若一组数据的平均数为10,则这组数据的和为?A. 5B. 10C. 20D. 50二、判断题(每题1分,共5分)1. 若a > b,则a² > b²。

()2. 两个负数相乘的结果是正数。

()3. 任何实数的平方都是非负数。

()4. 若a、b、c是等差数列,则a²、b²、c²也是等差数列。

()5. 两个无理数的和一定是无理数。

()三、填空题(每题1分,共5分)1. 若a + b = 5,a b = 3,则a = ______,b = ______。

2. 若x² 5x + 6 = 0,则x = ______或x = ______。

3. 若一组数据的方差为4,则这组数据的平均数为______。

4. 若等差数列{an}的前n项和为Sn = 2n² + 3n,则a1 = ______,d = ______。

5. 若函数f(x) = 2x + 3,则f(2) = ______。

四、简答题(每题2分,共10分)1. 解释什么是无理数。

2. 什么是等差数列?给出一个等差数列的例子。

3. 解释函数的定义。

初二竞赛数学试题及答案

初二竞赛数学试题及答案

初二竞赛数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个等腰三角形的两边长分别为5和8,那么这个三角形的周长是多少?A. 18B. 21C. 26D. 30答案:B3. 如果一个数的平方等于36,那么这个数是多少?A. 6B. -6C. 6或-6D. 以上都不是答案:C4. 一个圆的半径是3厘米,那么它的面积是多少平方厘米?A. 28.26B. 36C. 9答案:A5. 一个数除以2余1,除以3余2,除以5余4,这个数是多少?A. 29B. 34C. 39D. 44答案:A6. 一个长方体的长、宽、高分别是2厘米、3厘米和4厘米,那么它的体积是多少立方厘米?A. 24B. 12C. 8D. 6答案:A7. 一个数的立方等于-125,那么这个数是多少?A. -5B. 5C. -5或5D. 以上都不是答案:A8. 一个直角三角形的两个直角边长分别是3和4,那么它的斜边长是多少?A. 5B. 7C. 9D. 129. 一个数的倒数等于它本身,这个数是多少?A. 1B. -1C. 1或-1D. 0答案:C10. 一个数的绝对值等于5,那么这个数是多少?A. 5B. -5C. 5或-5D. 0答案:C二、填空题(每题3分,共30分)1. 一个数的平方根是2,那么这个数是______。

答案:42. 一个数的立方根是-2,那么这个数是______。

答案:-83. 一个数的平方等于64,那么这个数是______。

答案:±84. 一个圆的直径是10厘米,那么它的半径是______厘米。

答案:55. 一个直角三角形的斜边长是13厘米,一个直角边长是5厘米,那么另一个直角边长是______厘米。

6. 一个长方体的体积是48立方厘米,长和宽分别是4厘米和3厘米,那么它的高是______厘米。

答案:47. 一个数除以4余1,除以5余2,除以7余3,那么这个数是______。

初二数学竞赛试题及答案

初二数学竞赛试题及答案

初二数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 4B. 2/3C. √2D. 0.5答案:C2. 如果一个三角形的两边长分别为3和4,且第三边长为整数,那么第三边长可能是:A. 1B. 2C. 5D. 7答案:C3. 计算下列表达式的值:(3x - 2) / (x + 1),当x = 2时,结果为:A. 1/3B. 1C. 4D. 5答案:C4. 一个数的平方是其本身的数有:A. 0和1B. 0和-1C. 1和-1D. 0和2答案:A5. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A6. 一个数的立方是-8,这个数是:A. 2B. -2C. 3D. -3答案:B7. 一个数的绝对值是其本身,这个数可能是:A. 正数B. 负数C. 0D. 正数或08. 计算下列表达式的值:(2x + 3) / (x - 1),当x = 2时,结果为:A. 5B. 7C. 9D. 11答案:B9. 一个等腰三角形的两边长分别为5和8,那么其周长可能是:A. 18B. 21C. 26D. 30答案:C10. 一个数的相反数是-3,这个数是:A. 3B. -3C. 0D. 6答案:A二、填空题(每题4分,共20分)11. 一个数的平方根是4,那么这个数是______。

12. 一个数的立方根是2,那么这个数是______。

答案:813. 如果一个角的补角是120°,那么这个角的度数是______。

答案:60°14. 一个数的倒数是1/2,那么这个数是______。

答案:215. 一个数的绝对值是5,那么这个数可能是______或______。

答案:5或-5三、解答题(每题10分,共50分)16. 已知一个直角三角形的两个直角边长分别为6和8,求斜边的长度。

答案:根据勾股定理,斜边的长度为√(6² + 8²) = √(36 + 64) = √100 = 10。

2023年湖州市初二年级数学竞赛试卷含答案

2023年湖州市初二年级数学竞赛试卷含答案

湖州市初二年级数学竞赛试卷答题时注意: 1. 用圆珠笔或钢笔作答.2. 解答书写时不要超过装订线.D旳四个选项, 其中有且只有一种选项是对旳旳. 请将对旳选项旳代号填入题后旳括号里. 不填、多填或错填均得零分)1. 旳末位数字是().A. 1B. 3C. 5D. 72.设a、b是方程旳两个实数根, 则旳值是()A. B. C. D.3.桌上放着6张扑克牌,所有正面朝下。

你已被告知其中有两张且只有两张是老K,不过你不懂得老K在哪个位置。

你随便取了两张并把它们翻开,会出现下面两种状况:(1)两张牌中至少有l张是老K;(2)两张牌中没有l张是老K。

比较这两种状况旳也许性, 可知 ( )A. (1)旳也许性大B. (2)旳也许性大C. 两者同样.D. 不能确定4.如图, △ABC中, AD是∠BAC内旳一条射线, BE⊥AD, M是BC上旳点, 把△BEM绕点M旋转1800得到△CHM, 延长CH交AD于F, 则下列结论错误旳是()A. BM=CMB. FM= EHC. CF⊥ADD. F M⊥BC5. 如图所示,是矩形内一点,已知PA=6 PB=8 PC=10,则PD旳值为()A. B. 8 C. D. 96.一种人步行从A 地出发, 匀速向B 地走去.同步另一种人骑摩托车从B 地出发, 匀速向A 地驶去.二人在途中相遇, 骑车者立即把步行者送到B 地, 再向A 地驶去, 这样他在途中所用旳时间是他从B 地直接驶往A 地原计划所用时间旳2.5倍, 那么骑摩托车者旳速度与步行者旳速度之比是( ) A. 2:1 B. 3:1 C. 4:1 D. 5:17.某人月初用x 元人民币投资股票,由于行情很好,他旳资金每月都增长 ,虽然他每月末都取出1000元用于平常开销,他旳资金仍然在三个月后增长了一倍,那么x 旳值是( ) A. 9000 B. 10000 C. 11000 D. 111008. 一堂“探索与实践”活动课上, 小明借助学过旳数学知识, 运用三角形和矩形为班里旳班报设计了一种报徽, 设计图案如下: 如图, 两条线段EF 、MN 将大长方形ABCD 提成四个小矩形, 已知DE=a, AE=b, AN=c, BN=d, 且S1旳面积为8, S2旳面积为6, S3旳面积为5, 则阴影三角形旳面积为( ) A . B .3 C .4 D.二、填空题(共6小题, 每题5分, 满分30分) 9. 若m= ,a 是m 旳小数部分, 则a=____________.10. 若有关 旳不等式组 无实数解, 则 旳取值范围是11. 你玩过“数字黑洞”旳游戏吗? 下面我们就来玩一种数字游戏, 它可以产生“黑洞数”, 操作环节如下: 第一步, 任意写出一种自然数(如下称为原数);第二步, 再写出一种新旳三位数, 它旳百位数字是原数中偶数数字旳个数, 十位数字是原数中奇数数字旳个数, 个位数字是原数旳位数;如下每一步, 都对上一步得到旳数按照第二步旳规则继续操作, 直至这个数不再变化为止. 不管你开始写旳是一种什么数, 几步之后变成旳自然数总是相似旳, 最终这个总相似旳数就称为“黑洞数”. 请你认为例进行尝试: 这个数字游戏旳“黑洞数”是(零作为偶数)得 分 评卷人610第5题 ABCD8第4题12.如图, △ABC中, ∠A=30°以BE为边, 将此三角形对折, 另一方面, 又以BA为边, 再一次对折, C点落在BE上, 此时∠CDB=84°, 则原三角形旳∠B =____________度。

初中数学竞赛试卷及答案

初中数学竞赛试卷及答案

一、选择题(每题5分,共25分)1. 下列数中,不是有理数的是()A. -2/3B. 0.8C. √3D. -1/22. 若a、b是方程2x^2-5x+3=0的两根,则a+b的值为()A. 2B. 5C. 3D. 13. 已知三角形的三边长分别为3,4,5,则该三角形的面积是()A. 6B. 8C. 12D. 154. 若等差数列{an}的公差为d,且a1=1,a4=7,则d的值为()A. 2B. 3C. 4D. 55. 下列函数中,y=3x^2-2x+1在x=1时的函数值是()A. 2C. 4D. 5二、填空题(每题5分,共25分)6. 若a、b、c是等差数列,且a+b+c=12,b=4,则a+c的值为______。

7. 已知等比数列{an}的公比为q,且a1=2,a3=8,则q的值为______。

8. 在直角坐标系中,点A(2,3),B(-1,-4)关于直线y=x对称的点分别是______。

9. 已知函数f(x)=x^2-4x+4,则f(2)的值为______。

10. 在等腰三角形ABC中,AB=AC,且底边BC=6,腰BC上的高AD=4,则三角形ABC的面积为______。

三、解答题(每题15分,共45分)11. (解答题)已知等差数列{an}的公差为d,且a1=3,a4=11,求该数列的前10项之和。

12. (解答题)已知函数f(x)=2x^2-3x+1,求函数f(x)的对称轴。

13. (解答题)在直角坐标系中,已知点A(-2,3),B(2,-1),C(4,-3),求三角形ABC的外接圆的方程。

答案:一、选择题1. C2. B3. B4. A5. B二、填空题7. 28. (-1, 2)9. 110. 12三、解答题11. (解答题)解:由题意得a4=a1+3d,即11=3+3d,解得d=2。

所以,an=a1+(n-1)d=3+(n-1)×2=2n+1。

因此,前10项之和S10=10×(a1+a10)/2=10×(3+21)/2=120。

数学竞赛初二试题及答案

数学竞赛初二试题及答案

数学竞赛初二试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. √2C. 0.5D. 3.14答案:B2. 一个等腰三角形的两边长分别为5和10,那么它的周长是多少?A. 20B. 25C. 30D. 无法确定答案:B3. 一个数的平方等于16,这个数是多少?A. 4B. -4C. 4或-4D. 以上都不对答案:C4. 以下哪个表达式等于0?A. (x-1)(x+1)B. (x+1)(x-1)C. x^2 - 1D. x^2 + 1答案:C5. 一个圆的半径是3,那么它的面积是多少?A. 9πB. 18πC. 27πD. 36π答案:C6. 以下哪个是一次函数?A. y = 2x + 3B. y = x^2 + 1C. y = 1/xD. y = x^3 - 2答案:A7. 以下哪个是二次函数?A. y = 2x + 3B. y = x^2 + 1C. y = 1/xD. y = x^3 - 2答案:B8. 以下哪个是反比例函数?A. y = 2x + 3B. y = x^2 + 1C. y = 1/xD. y = x^3 - 2答案:C9. 一个数的立方等于-8,这个数是多少?A. -2B. 2C. -2或2D. 以上都不对答案:A10. 以下哪个是正比例函数?A. y = 2x + 3B. y = x^2 + 1C. y = 1/xD. y = kx(k为常数)答案:D二、填空题(每题4分,共40分)11. 一个数的平方根是4,那么这个数是_________。

答案:1612. 一个数的立方根是-2,那么这个数是_________。

答案:-813. 一个直角三角形的两条直角边长分别为3和4,那么它的斜边长是_________。

答案:514. 一个等差数列的首项是2,公差是3,那么它的第5项是_________。

答案:1715. 一个等比数列的首项是2,公比是2,那么它的第4项是_________。

初二数竞赛试题及答案

初二数竞赛试题及答案

初二数竞赛试题及答案初二数学竞赛试题一、选择题(每题3分,共15分)1. 下列哪个数不是有理数?A. πB. √2C. 0.33333(无限循环)D. 1/32. 如果一个数的平方等于81,那么这个数是:A. 9B. -9C. 9 或 -9D. 813. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长是:A. 5B. 6C. 7D. 84. 一个数列的前三项为2, 4, 6,这个数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法判断5. 以下哪个是二次方程的解:A. x = 1/2B. x = 2C. x = -3D. x = 0二、填空题(每题2分,共10分)6. 一个数的立方等于-27,这个数是_________。

7. 如果一个数的绝对值是5,那么这个数可以是_________。

8. 一个数的倒数是1/4,那么这个数是_________。

9. 一个数的平方根是4,那么这个数是_________。

10. 一个数的平方根是-4,那么这个数是_________。

三、解答题(每题5分,共20分)11. 解方程:2x + 3 = 11。

12. 证明:如果一个三角形的两边分别为a和b,且a < b,那么这个三角形的周长不可能是偶数。

13. 计算:(2x + 3)(x - 4)。

14. 一个圆的半径是5厘米,求它的面积。

四、证明题(每题5分,共10分)15. 证明:直角三角形的斜边的平方等于两直角边的平方和。

16. 证明:如果一个数的平方是正数,那么这个数本身是正数或负数。

五、综合题(每题10分,共10分)17. 一个班级有40名学生,其中20名男生和20名女生。

如果随机抽取一名学生,求以下概率:A. 抽到男生的概率。

B. 抽到女生的概率。

C. 如果已经知道抽到的是男生,那么这名男生是班长的概率。

答案:一、选择题1. A2. C3. A4. A5. D二、填空题6. -37. ±58. 49. 1610. 无实数解三、解答题11. 解:2x + 3 = 11,2x = 8,x = 4。

初二数学竞赛试题及参考答案

初二数学竞赛试题及参考答案

初二数学竞赛试题及参考答案一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333D. √22. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 83. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 44. 以下哪个表达式等于0?A. 2 + 3B. 2 - 2C. 2 × 3D. 2 ÷ 25. 如果一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 125π二、填空题(每题2分,共10分)6. 一个数的立方根是它本身,这个数可以是______。

7. 一个数的绝对值是它本身,这个数可以是______。

8. 一个数的相反数是它本身,这个数是______。

9. 一个数的倒数是它本身,这个数是______。

10. 如果一个数的平方是16,那么这个数可以是______。

三、简答题(每题5分,共20分)11. 解释什么是勾股定理,并给出一个例子。

12. 解释什么是有理数和无理数,并给出一个例子。

13. 解释什么是因式分解,并给出一个例子。

14. 解释什么是二次方程,并给出一个例子。

四、解答题(每题10分,共30分)15. 一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,求它的体积。

16. 一个等腰三角形的底边长为8厘米,两腰边长为5厘米,求它的面积。

17. 一个二次方程 \( ax^2 + bx + c = 0 \) 的系数 a、b、c 分别为 2、-7 和 3,求它的根。

五、附加题(每题5分,共5分)18. 一个数列的前三项是 1, 1, 2,从第四项开始,每一项都是前三项的和。

求这个数列的前10项。

参考答案一、选择题1. D2. A3. A4. B5. B二、填空题6. 0, 1, -1, 17. 非负数8. 09. ±110. ±4三、简答题11. 勾股定理是指在一个直角三角形中,直角边的平方和等于斜边的平方。

数学竞赛初二试卷及答案

数学竞赛初二试卷及答案

一、选择题(每题5分,共25分)1. 下列各数中,既是正整数又是偶数的是()A. 1B. 3C. 5D. 82. 已知一个数的平方根是2,那么这个数是()A. 4B. 6C. 8D. 103. 下列各数中,是绝对值最小的是()A. -2B. 2C. -3D. 34. 如果a=3,b=5,那么a²+b²的值是()A. 8B. 14C. 18D. 225. 已知一个等差数列的首项是2,公差是3,那么第10项是()A. 29B. 32C. 35D. 38二、填空题(每题5分,共25分)6. 一个数的倒数是它的平方根,这个数是______。

7. 已知一个数的平方根是4,那么这个数的立方根是______。

8. 下列各数中,是质数的是______。

9. 一个等差数列的前三项分别是3、5、7,那么这个数列的公差是______。

10. 已知一个等比数列的首项是2,公比是3,那么第5项是______。

三、解答题(每题15分,共45分)11. (10分)一个等差数列的前三项分别是2、5、8,求这个数列的公差和第10项。

解答:公差 d = 5 - 2 = 3第10项 a₁₀ = a₁ + (10 - 1)d = 2 + 9 3 = 2912. (10分)一个等比数列的首项是2,公比是3,求这个数列的前5项。

解答:第1项 a₁ = 2第2项 a₂ = 2 3 = 6第3项 a₃ = 2 3² = 18第4项 a₄ = 2 3³ = 54第5项 a₅ = 2 3⁴ = 16213. (15分)已知一个数的平方根是4,那么这个数的立方根是多少?解答:设这个数为x,则有x² = 4解得x = ±2所以这个数的立方根是±2。

答案:一、1.D 2.A 3.A 4.B 5.C二、6. 1 7. 2 8. 2、3、5、7 9. 3 10. 162三、11. 公差为3,第10项为29;12. 2、6、18、54、162;13. ±2。

初二数学竞赛测试题(含答案)

初二数学竞赛测试题(含答案)

初二数学竞赛测试题班级 _____________________一、选择题(每小题4分,共32分)1.如果a >b,则2a -b 一定是( C ) A 、负数 B 、非负数 C 、正数 D 、非正数。

2.已知x ﹥0,y ﹤0,∣x ∣﹤∣y ∣,则x+y 是( C )A 、零B 、正数C 、负数D 、不确定。

3.如图,△ABC 中,∠B=∠C ,D 在BC 边上, ∠BAD=500,在AC 上取一点E ,使得∠ADE=∠AED ,则∠EDC 的度数为( B )A 、150B 、250C 、300D 、504.满足等式 2003200320032003=+--+xy y x x y y x的正整数对(x,y )的个数是( )A 、1B 、2C 、3D 、45.今有四个命题:①若两实数的和与积都是奇数,则这两数都是奇数。

②若两实数的和与积都是偶数,则这两数都是偶数。

③若两实数的和与积都是有理数,则这两数都是有理数。

④若两实数的和与积都是无理数,则这两数都是无理数。

其中正确命题个数为( )A 、0B 、1C 、2D 、46.若M=3x 2-8xy+9y 2-4x+6y+13(x,y 是实数),则M 的值一定是( )A 、正数B 、负数C 、零D 、整数7.设A=48)41001441431(222+++-+-⨯ 则与A 最接近的正整数是( ) A 、18 B 、20 C 、24 D 、25 8.如果关于x 的方程k(k+1) (k-2)x 2-2(k+1) (k+2)x+k+2=0,只有一个实数解,则实数k 可取不同的值的个数为( )(A)2 (B)3 (C)4 (D)5.二.填空题(每小题5 分共30分)9.如图,有一块矩形ABCD,AB=8,AD=6.将纸片折叠,使得AD 边落在AB 边上,折痕为AE,再将△AED 沿DE 向上翻折,AE 与BC 的交点为F,则△CEF 的面积为 .10.关于x 的方程∣∣x-2 ∣-1∣=a 有三个整数解,则a 的值是 .11.已知关于x 的方程a 2x 2-(3a 2-8a)x+2a 2-13a+15=0(其中a 是非负整数),至少有一个整数根,那么a= . 12.若关于x 的方程13213+-=++x x ax x 有增根x=-1,则a= . 13.已知三个质数a,b,c 满足a+b+c+abc=99,那么a c c b b a -+-+-= .14.在一个圆形时钟的表面,OA 表示秒针,OB 表示分针(O 为两针的旋转中心).若现在时间恰好是12点整,则经过 秒钟后,△OAB 的面积第一次达到最大.三、解答题:15.如图已知△ABC 中,∠ACB=900, AC=BC ,CD ∥AB ,BD=AB ,求∠D 的度数。

初二数学竞赛试题包含答案

初二数学竞赛试题包含答案

1 / 4初二数学竞赛试题一选择题(每小题5分,共45分)1.a.b.c 是正整数,a >b 且a 2-ab-ac+bc=7.则a-c 等于(D ) A. -1 B. –1或-7 C . 1 D . 1或7 2. 已知a ≠0. b ≠0且a1+b1=4 则bab a bab a 323434-+-++等于(B )A .411- B. 1019- C.0 D. 10193.对于非负数a 1.a 2…a 5满足M=(a 1+a 2+a 3+a 4)(a 2+a 3+a 4+a 5) N=(a 1+a 2+a 3+a 4+a 5)(a 2+a 3+a 4) ,则(B ) A. M >N B. M ≥N C. M <N D. M ≤N4.下列各图是纸箱厂剩下的废纸片,全是由全等的正方形组成的图形,为了充分5.,以使所作三角形与ABC 全等,这样的三角形最多可以画出(C ) A 8 个 B 6个 C 4个 D2个 6.有下列四个命题:(1) (2) 两边和第三边上的高对应相等的两个锐角三角形不一定是全等三角形 (3) 两边和第三边上的高对应相等的两个三角形是全等三角形(4) 两边和其中一边所对的角对应相等的两个三角形不一定是全等三角形 其中正确的是(D ) A.(1) (2) B. (2) (3) C. (3) (4) D.(4) (1)7.若x =a1-a ,则24x x +的值为(B )A . a-a 1 B.a1-a C. a+a1 D.不能确定8.如果两个三角形的两边和其中一边上的高分别对应相等,那么这两个三角形的 第三边所对的角(D )A .相等 B.不相等 C.互余 D.互补或相等 9 .已知实数a 满足 2000-a +2001-a =a,则a-20002的值为(C )A .1999 B.2000 C.2001 D.2002 二.填空题(每题5分,共40分) 10. 已知A=3232--+,化简后,A=211.设x=nn n n ++-+11,y=nn n n -+++11.且19x 2+143xy+19y 2=2005,则整数n=_2______.12.若m 适合于关系式y x y x m y x m y x --+-=-++--+199.19932253,则m=_201__ 13.满足23)31(2x x --=-的所有整数x 的和是___5_____14.在△ABC 中,∠C=90°,BC=40,AD 是∠BAC 的平分线交BC 于D,且DC :DB=3:5则点D 到AB 的距离是__15______15.在△ABC 中,AB=5,AC=9,则BC 边上的中线AD 的长的取值范围是_2<AD <7___16.如图,在四边形ABCD 中,AC 平分∠BAD ,过C 作CE ⊥AB 于E ,并且AE=21(AB+AD ),则∠ABC+∠3 / 417.张家村、李家村和杨家村三个村庄的位置不在同一眼机井,要求机井到三条道路的距离相等,那么打机井的位置有__4____处.三.三所学校分别记作A 、B 、C ,体育场记作O ,它是△ABC 的三条角平分线的交点,O 、A 、B 、C 每两地之间有直线道路相连,一支长跑队伍从体育场O 出发,跑遍各校再回到O 点,指出哪条路线跑的距离最短(已知AC >BC >AB ),并说明理由(9分)解:O →A →B →C →O (或 O →C →B →A →O )四.设a+b+c+3=2(a +11-++cb ),求a 2+b 2+c 2的值(8分)解:a=1,b=0.c=2 . a 2+b 2+c 2=5五.已知c b a x --+a c b x --+b c a x --=3,且a 1+b1+c1≠0,求(x-a-b-c )2005的值(9分)解: (x-a-b-c )2005=0六、如图,,已知AD ∥BC,∠EAD=∠EAB,∠EBA=∠EBC,直线DC 过E 交AD 于D,交BC 于C,求证: AD+BC=AB (9分)4 / 4。

初二的数学竞赛试题及答案

初二的数学竞赛试题及答案

初二的数学竞赛试题及答案初二数学竞赛试题一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. -3.14B. √2C. 0.33333(无限循环)D. 1/32. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是?A. 5B. 6C. 7D. 83. 一个数的平方根是它本身,这个数是?A. 0B. 1C. -1D. 24. 以下哪个不是二次根式?A. √3B. 2√2C. √(-1)D. √45. 一个多项式P(x) = x^2 - 5x + 6可以分解为?A. (x - 1)(x - 6)B. (x - 2)(x - 3)C. (x - 3)(x - 2)D. (x + 1)(x + 6)二、填空题(每题3分,共15分)6. 如果一个数的立方根是2,那么这个数是______。

7. 一个数的相反数是-5,那么这个数是______。

8. 如果一个数的绝对值是7,那么这个数可以是______或______。

9. 一个二次方程x^2 + ax + b = 0的判别式是______。

10. 如果一个分数的分子是3,分母是6,那么这个分数化简后的结果是______。

三、解答题(每题10分,共70分)11. 解方程:2x + 5 = 3x - 2。

12. 证明:如果一个三角形的两边和这两边之间的夹角相等,那么这个三角形是等腰三角形。

13. 计算:(2a + 3b)(2a - 3b)。

14. 化简:(3x^2 - 2x + 1) / (x + 1)。

15. 解不等式:3x - 5 > 2x + 4。

答案一、选择题1. B2. A3. A4. C5. C二、填空题6. 87. 58. 7, -79. a^2 - 4b10. 1/2三、解答题11. 解:2x + 5 = 3x - 2x = 712. 证明:设三角形ABC中,AB = AC,∠BAC = ∠BAC,根据SAS(边角边)相似,△ABC ∽ △BAC,所以AB = AC,故△ABC是等腰三角形。

初二数学竞赛题(含答案).doc

初二数学竞赛题(含答案).doc

初中数学 初二第 1一、 (每小 7 分共 56 分 )1、某商店售出两只不同的 算器,每只均以 90 元成交,其中一只盈利 20%,另一只 本 20%, 在 次 中, 店的盈 情况是( )A 、不盈不B 、盈利 2.5 元C 、 本 7.5 元D 、 本 15 元2、 a1998 ,b1999 ,c 2000, 下列不等关系中正确的是 ()199920002001A 、 a b cB 、 a cb C 、 bc a D 、 c b a3、已知11 5b,b a的 是 ()ab a a bA 、5B 、7C 、3D 、1、已知 2x33 AB,其中 A 、B 常数,那么 A +B 的 ()4x 2x x 1xA 、- 2B 、2C 、-4D 、 45、已知△ ABC 的三个内角 A 、B 、C ,令 B C ,C AA B , ,, 中角的个数至多 ( )A 、1B 、2C 、3D 、 0 6、下列 法: (1)奇正整数 可表示成 4n 1 或 4n 3 的形式,其中 n 是正整数; (2)任意一个正整数 可表示 3n 或 3n 1 或 3n2 的形式,其中; (3)一个奇正整数的平方 可以 表示 8n 1 的形式,其中 n 是正整数; (4)任意一个完全平方数 可以表示 3n 或 3n 1 的形 式A 、0B 、2C 、3D 、 47、本 中有两小 , 你 一 作答:(1)在 1000 , 1001, 10021999 1000 个二次根式中,与 2000 是同 二次根式的个数共有 ⋯⋯⋯⋯⋯⋯⋯⋯ ( )A 、3B 、4C 、5D 、 6(2)已知三角形的每条 是整数,且小于等于 4, 的互不全等的三角形有 ( ) A 、10 个 B 、12 个 C 、13 个 D 、14 个 8、 面上有十二个数 1,2,3,⋯ ,12。

将其中某些数的前面添上一个 号,使 面上所有 数之代数和等于零, 至少要添 n 个 号, 个数 n 是 ( )A 、4B 、5C 、6D 、 7 二、填空 (每小 7 分共 84 分 )9、如 , XK ,ZF 是△ XYZ 的高且交于一点 H ,∠ XHF = 40°,那么∠ XYZ = °。

八年级数学竞赛试题(含答案)-

八年级数学竞赛试题(含答案)-

CD八年级数学竞赛试题一、选择题:1.方程组12,6x y x y ⎧+=⎪⎨+=⎪⎩的解的个数为( ).2.口袋中有20个球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( ). (A ) 14 (B ) 16 (C )18 (D )20 3.已知三个关于x 的一元二次方程02=++c bx ax ,02=++a cx bx ,02=++b ax cx恰有一个公共实数根,则222a b c bc ca ab++的值为( ). (A ) 0 (B )1 (C )2 (D )3 4.若3210x x x +++=,则2627--+x x+ … +x x ++-11+ … +2726x x +的值是( )(A )1 (B )0 (C )-1 (D )25.若a b c t b c c a a b===+++,则一次函数2y tx t =+的图象必定经过的象限是( ) (A )第一、二象限 (B )第一、二、三象限 (C )第二、三、四象限 (D )第三、四象限6.满足两条直角边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( )(A)1个 (B) 2个 (C) 3个 (D)无穷多个8.如图在四边形ABCD 中,∠DAB=∠BCD=90°,AB=AD ,若这个四边形的面积是10,则BC+CD 等于( ) A .54 B .102 C .64D .289.线段a x y +-=21(1≤x ≤3,),当a 的值由-1增加到2时,该线段运动所经过的平面区域的面积为 ( )A .6B .8C .9D .1010.四条直线两两相交,且任意三条不交于同一点,则这四条直线共可构成的同位角有( ) (A )24组 (B )48组 (C )12组 (D )16组 11、如图,P 是△ABC 内一点,BP ,CP ,AP 的延长线分别与 AC ,AB ,BC 交于点E ,F ,D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学竞赛初二第1试试题一、选择题(每小题7分共56分)1、某商店售出两只不同的计算器,每只均以90元成交,其中一只盈利20%,另一只亏本20%,则在这次买卖中,该店的盈亏情况是( )A 、不盈不亏B 、盈利2.5元C 、亏本7.5元D 、亏本15元2、设20012000,20001999,19991998===c b a ,则下列不等关系中正确的是( ) A 、c b a << B 、b c a << C 、a c b << D 、a b c <<3、已知,511ba b a +=+则b a a b +的值是( ) A 、5 B 、7 C 、3 D 、31 4、已知xB x A x x x +-=--1322,其中A 、B 为常数,那么A +B 的值为( ) A 、-2 B 、2C 、-4D 、45、已知△ABC 的三个内角为A 、B 、C ,令B A A C C B +=+=+=γβα,,则γβα,,中锐角的个数至多为( )A 、1B 、2C 、3D 、06、下列说法:(1)奇正整数总可表示成为14+n 或34+n 的形式,其中n 是正整数;(2)任意一个正整数总可表示为n 3或13+n 或23+n 的形式,其中;(3)一个奇正整数的平方总可以表示为18+n 的形式,其中n 是正整数;(4)任意一个完全平方数总可以表示为n 3或13+n 的形式A 、0B 、2C 、3D 、47、本题中有两小题,请你选一题作答:(1)在19991002,1001,1000 这1000个二次根式中,与2000是同类二次根式的个数共有……………………( )A 、3B 、4C 、5D 、6(2)已知三角形的每条边长是整数,且小于等于4,这样的互不全等的三角形有( )A 、10个B 、12个C 、13个D 、14个8、钟面上有十二个数1,2,3,…,12。

将其中某些数的前面添上一个负号,使钟面上所有数之代数和等于零,则至少要添n 个负号,这个数n 是( )A 、4B 、5C 、6D 、7二、填空题(每小题7分共84分)9、如图,XK ,ZF 是△XYZ 的高且交于一点H ,∠XHF =40°,那么∠XYZ = °。

10、已知凸四边形ABCD 的面积是a ,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,那么图中阴影部分的总面积是 。

11、图中共有 个三角形。

12、已知一条直线上有A 、B 、C 、三点,线段AB 的中点为P ,AB =10;线段BC 的中点为Q ,BC =6,则线段PQ 的长为 。

13、三个互不相等的有理数,既可分别表示为1,b a +,a 的形式,又可分别表示为0,ba ,b 的形式,则20012000b a += 。

14、计算:2200120012001199920012000222-+的结果为 。

15、三位数除以它的各位数字和所得的商中,值最大的是 。

16、某校初二(1)班有40名学生,其中参加数学竞赛的有31人,参加物理竞赛的有20人,有8人没有参加任何一项竞赛,则同时参加这两项竞赛的学生共有 人。

17、本题中有两小题,请你任选一题作答。

(1)如图,AB ∥DC ,M 和N 分别是AD 和BC 的中点,如果四边形ABCD 的面积为24cm 2,那么CDO QPO S S ∆∆-= 。

(2)若a >3,则226944a a a a +-++-= 。

18、跳格游戏:如图:人从格外只能进入第1格,在格中,每次可向前跳1格或2格,那么人从格外跳到第6格可以有 种方法。

19、已知两个连续奇数的平方差是2000,则这两个连续奇数可以是20.一个等边三角形的周长比一个正方形的周长长2 00 1个单位,这个三角形的边长比这个正方形的边长长d 个单位,则d 不可能取得的正整数个数至少有 个.初中数学竞赛初二年级 第二试一、选择题(每题7分,共56分.以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内.)1.已知式子-1|x |1)8)(x -(x +的值为零,则x 的值为( ). (A)±1 (B)-1 (C)8 (D)-1或82.一个立方体的六个面上标着连续的整数,若相对的两个面上所标之数的和相等,则这六个数的和为( ). (A)75 (B)76 (C)78 (D)813.买20支铅笔、3块橡皮擦、2本日记本需32元,买39支铅笔、5块橡皮擦、3本日记本需58元,则买5支铅笔、5块橡皮擦、5本日记本需( ).(A)20元 (B)25元 (C)30元 (D)35元4.仪表板上有四个开关,如果相邻的两个开关不能同时是关的,那么所有不同的状态有( ).(A)4种 (B)6种 (C)8种 (D)12种5.如图,AD 是△ ABC 的中线,E 、F 分别在AB 、AC 上,且DE ⊥DF ,则( ).(A)BE+CF>EF (B)BE+CF =EF (C)BE+CF<EF (D)BE+CF 与EF 的大小关系不确定6.如果a 、b 是整数,且x 2-x-l 是ax 2+bx 2+l 的因式,那么b 的值为( ).(A)-2 (B)-1 (C)0 (D)27.如果:|x|+x+y =10,|y|+x-y =12,那么x+y=( ).(A)-2 (B)2 (C)518 (D)3228.把16个互不相等的实数排列成如图。

先取出每一行中最大的数,共得到4个数,设其中最小的为x ;再取出每一列中最小的数,也得到4个数,设其中最大的数为y ,那么x ,y 的大小关系是( ).(A)x =y (B)x<y (C)x≥y (D)x≤y 二、填至越(每题7分,共56分) 9.已知2 001是两个质数的和,那么这两个质数的乘积是 10.已知a 1-b 1=2,则b-3ab -a 2b -ab -2a 的值为 11.已知实数a 、b 、c 满足a+b =5,c 2=ab+b-9,则c= ·12.已知|x+2|+|1-x|=9-|y-5|-|1+y|,则x+y 的最小值为 ,最大值为 .13.如图,△ABC 中,点D 、E 、F 分别在三边上,AD 、BE 、CF 交于一点G ,BD =2CD ,面积S 1=3,面积S 2=4,则S △ABC =14.本题中有两小题,请你任选一题作答.(1)如图,设L 1 和L 2是镜面平行且镜面相对的两面镜子.把一个小球放在L 1和L 2之间,小球在镜L 1 中的像为A',A'在镜L 2中的像为A”.若L 1、L 2的距离为7,则AA"=(2)已知a 2b -1+b 2a -1=l ,则a 2+b 2= .15.有一等腰三角形纸片,若能从一个底角的顶点出发,将其剪成两个等腰三角形纸片,则原等腰三角形纸片的顶角为 度.16.锐角三角形ABC 中,AB>BC>AC ,且最大内角比最小内角大24°,则∠4的取值范围是 ,三、解答题(每题1.2分,共48分、)17. 已知:如图,△ ABC 中,AC =BC ,∠ACB =90°,D 是AC 上一点,AE ⊥BD 交BD 的延长线于E ,且AE =21BD .求证:BD 是∠ABC 的角平分线. 18.把一根1米长的金属线材,截成长为23厘米和13厘米两种规格,用怎样的方案截取材料利用率最高?求出最高利用率.(利用率=原材料长度实际利用材料长度×100%,截口损耗不计) 19.将1~8这八个数放在正方体的八个顶点上,使任一面上四个数中任意三数之和不小于10.求各面上四数之和中的最小值.20 .7位数61287xy 是72的倍数,求出所有的符合条件的7位数.初中数学竞赛A 卷一、选择题(每题8分,共48分.以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内。

)1.如果|x-2 |+x-2=O ,那么x 的取值范围是( ).A .x>2B .x<2C .x≥2D .x≤22.已知n 是整数,现有两个代数式:(1)2n+3,(2)4n-l 其中,能表示“任意奇数”的( ).A .只有(1)B .只有(2)C .有(1)和(2)D .一个也没有3.“*”表示一种运算符号,其意义是a*b=2a -b .如果x*(1*3)=2,那么x 等于( ).A .1B . 21C .23 D .2 a11 a12 a13 a14 a2l a22 a23 a24 a31 a32 a33 a34 a4l a42 a43 a444.把10个相同的小正方体按如图所示的位置堆放,它的外表含有若干个小正方形.如果将图l 中标有字母A 的一个小正方体搬去.这时外表含有的小正方形个数与搬动前相比( ).A .不增不减B .减少1个C .减少2个D .减少3个5.如果有理数a 、b 、c 满足关系a<b<0<c ,那么代数式32cab ac bc 的值( ). A .必为正数 B .必为负数 C .可正可负 D .可能为O6.已知a 、b 、c 三个数中有两个奇数、一个偶数,n 是整数.如果S=(a+n+ 1)(b+2n+2)(c+3n+3),那么( ).A .S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D .S 的奇偶性不能确定二、填空题(每题8分.共48分)7.如果数轴上点A 到原点的距离为3,点B 到原点的距离为5,那么A 、B 两点的距离为 .8.已知a 是质数,b 是奇数,且a 2+b=2001,则a+b= .9.如果某个月里,星期一多于星期二,星期六少于星期日.那么,这个月的第五天是星期 ,这个月共有 天.10.2001减去它的21,再减去剩余数的31,再减去剩余数的41……依此类推,一直到减去剩余数的20011,那么最后剩余的数是 .11.你可以依次剪6张正方形纸片拼成如图示意的图形.如果你所拼得的图形中正方形的面积为l ,且正方形⑥与正方形③的面积相等,那么正方形⑤的面积为 .12.如果依次用a 1,a 2,a 3,a 4分别表示图3中(1)、(2)、(3)、(4)内三角形的个数,那么a 1=3.a 2=8,a 3=15.a 1= .三、解答题(每题l6分,共64分)l3.某风景区的旅游线路如图所示,其中A 为入口处.B 、C 、D 为风景点,E 为三叉路的交汇点,图中所给的数据为相应两点间的路程(单位:km).某游客从A 处出发,以每小时2 km 的速度步行游览,每到一个景点逗留的时间均为半小时.(1)若该游客沿路线“A→D→C→E→A”游览回到A 处时,共用去3 h .求C 、E 两点间的路程;(2)若该游客从A 处出发.打算在最短时间内游览完三个景点并返回A 处(仍按上述步行速度和在景点的逗留时间,不考虑其他因素),请你为他设计一条步行路线,并对路线设计的合理性予以说明.14.根据有关规定,企业单位职工,今年按如下办法缴纳养老保险费:如果个人月工资在当地职工去年人均月工资的60 %到300 %范围内,那么需按个人月工资的7%缴纳;如果个人月工资超过当地职工去年人均月工资的300%,那么超过的部分不再缴纳;如果个人月工资低于当地职工去年人均月工资的60%,那么仍需按去年人均月工资的60%来计算缴纳.(1)该市企业单位职工,今年个人月缴纳的养老保险费最多为多少元?最少为多少元?(2)根据下表中的已知数据填空:序号姓名今年10月份工资(元) 本月缴纳养老保险费(元)①徐建3000②王磊500③李华5615.用橡皮泥做一个棱长为4 cm的正方体.(1)如图(1)所示,在顶面中心位置处从上到下打一个边长为1 cm的正方形通孔,打孔后的橡皮泥块的表面积为cm2;(2)如果在第(1)题打孔后,再在正面中心位置处(按图(2)中的虚线)从前到后打一个边长为1 cm的正方形通孔,那么打孔后的橡皮泥块的表面积为cm2;(3)如果把第(2)题中从前到后所打的正方形通孔扩成一个长x cm、宽1 cm的长方形通孔,能不能使所得橡皮泥块的表面积为130 cm2?如果能,请求出x;如果不能,请说明理由.16.如图所示,有一张长为3、宽为1的长方形纸片,现要在这张纸片上画两个小长方形,使小长方形的每条边都与大长方形的一边平行,并且每个小长方形的长与宽之比也都为3:1,然后把它们剪下,这时,所剪得的两张小长方形纸片的周长之和有最大值.求这个最大值.初中数学竞赛B 卷一、选择题(每题8分,共48分.以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内.)1.已知b>a>0,a 2+b 2=4ab ,则b a b a -+等于( ). A .-21 B . 3 C .2 D .-3 2.已知xB x A x x x ++=+-1322,其中A 、B 为常数,则A-B 的值为( ). A .-8 B8C .-1D .43.1 O 个棱长为l 的小正方体木块,堆成如图所示的形状,则它的表面积为( ).A .30B .34C .36D .484.如图所示.△ABC 中,∠B=∠C ,D 在BC 上,∠BAD=50°,AE=AD ,则∠EDC 的度数为( ). A .15° B .25° C .30°D .50°5.将一个正方形分割成n 个小正方形(n>1),则n 不可能取( ).A .4B .5C .8D .96.如图所示,在一条笔直的公路上有7个村庄,其中A 、B 、C 、D 、E 、F 离城市的距离分别为4,10,15,17,l9,20 km ,而村庄G 正好是AF 的中点.现要在某个村庄建一个活动中心,使各村到活动中心的路程之和最短,则活动中心应建在( ).A .A 处B .C 处 C .G 处D .E 处二、填空题(每题8分,共48分)7.一列数71,72,73,…,72001,其中末位数是3的有 个.8.已知对任意有理数a 、b ,关于x 、y 的二元一次方程(a -b)x -(a+b)y=a+b 有一组公共解,则公共解为 .9.数a 比数b 与c 的和大于16,a 的平方比b 与c 的和的平方大1664.那么,a 、b 、c 的和等于10.数的集合X 由1,2,3,…,600组成,将集合X 中是3的倍数,或4的倍数,或既是3的倍数又是4的倍数的所有数,组成一个新的集合y ,则集合y 中所有数的和为 .11.若a 1=5,a 5=8,并且对所有正整数n ,有a n +a n+1+a n+2=7,则a 2001=12.三条线段能构成三角形的条件是:任意两条线段长度的和大于第三条线段的长度.现有长为144 cm 的铁丝,要截成n 小段(n>2),每段的长度不小于1 cm ,如果其中任意三小段都不能拼成三角形,则n 的最大值为三、解答题(每题16分,共64分)13.中国第三届京剧艺术节在南京举行,某场京剧演出的票价由2元到100元多种,某团体需购买票价为6元和10元的票共140张,其中票价为10元的票数不少于票价为6元的票数的2倍,问这两种票各购买多少张所需的钱最少?最少需要多少钱?14.如图所示,BD 、CE 分别是△ABC 的边AC 和AB 上的高,点P 在BD 的延长线上,BP= AC ,点Q 在CE 上,CQ=AB .求证:(1)AP=AQ;(2)AP⊥AQ.15.有五个数,每两个数的和分别为2,3,4,5,6,7,8,6,5,4(未按顺序排列).求这5个数的值.16.如图所示,已知等边三角形ABC,在AB上取点D,在AC上取点E,使得AD=AE,作等边三角形PCD、QAE和RAB,求证:P、Q、R是等边三角形的三个顶点.初中数学竞赛初二年级第l试一、选择题(每小题7分,共56分)以下每题的4个结论中,仅有一个是正确的;请将正确答案的英文字母填在题后的圆括号内.1.a、b、c是正整数,a>b,且a2-ab-ac+6c=7,则a-c等于( )(A)-1 (B)-1或-7 (C)1 (D)1或72.用数码2、4、5、7组成的四位数中,每个数码只出现一次.将所有这些四位数从小到大排列,排在第13个的四位数是( )(A)4 527 (B)5247 (C)5 742 (D)7 2453.1989年我国的GDP(国民生产总值)只相当于英国的53.5%,目前已相当于英国的81%.如果英国目前的GDP是1989年的m倍,那么我国目前的GDP约为1989年的( )(A)1.5倍(B)1.5m倍(C)27.5倍(D)m倍4.若x取整数,则使分式1-2x 36x的值为整数的x值有( ).(A)3个(B)4个(C)6个(D)8个5.已知。

相关文档
最新文档