浙江省中考数学试卷

合集下载

2023年浙江省温州市中考数学真题(解析版)

2023年浙江省温州市中考数学真题(解析版)

数学卷Ⅰ一、选择题(本题有10小题,第1-5小题,每小题3分,第6-10小题,每小题4分,共35分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1. 如图,比数轴上点A表示的数大3的数是()A. 1-B. 0C. 1D. 2【答案】D【解析】【分析】根据数轴及有理数的加法可进行求解.-+=;【详解】解:由数轴可知点A表示的数是1-,所以比1-大3的数是132故选D.【点睛】本题主要考查数轴及有理数的加法,熟练掌握数轴上有理数的表示及有理数的加法是解题的关键.2. 截面为扇环的几何体与长方体组成的摆件如图所示,它的主视图是()A. B.C. D.【答案】A【解析】【分析】根据几何体的三视图可进行求解.【详解】解:由图可知该几何体的主视图是 ;故选:A .【点睛】本题主要考查三视图,熟练掌握三视图是解题的关键.3. 苏步青来自“数学家之乡”,为纪念其卓越贡献,国际上将一颗距地球约218000000公里的行星命名为“苏步青星”.数据218000000用科学记数法表示为( ) A. 90.21810⨯ B. 82.1810⨯C. 721.810⨯D. 621810⨯【答案】B 【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时,n 是正整数;当原数的绝对值小于1时,n 是负整数. 【详解】解:数据218000000用科学记数法表示为82.1810⨯; 故选B .【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键.4. 某校计划组织研学活动,现有四个地点可供选择:南麂岛、百丈漈、楠溪江、雁荡山.若从中随机选择一个地点,则选中“南麂岛”或“百丈漈”的概率为( ) A.14B.13C.12D.23【答案】C 【解析】分析】根据概率公式可直接求解.【详解】解:∵有四个地点可供选择:南麂岛、百丈漈、楠溪江、雁荡山, ∴若从中随机选择一个地点,则选中“南麂岛”或“百丈漈”的概率为2142=; 故选:C . 【点睛】本题考查了根据概率公式求简单事件的概率,正确理解题意是关键.5. 某校计划组织研学活动,现有四个地点可供选择:南麂岛、百丈漈、楠溪江、雁荡山.为了解学生想法,校方进行问卷调查(每人选一个地点),并绘制成如图所示统计图.已知选择雁荡山的有270人,那么选择楠溪江的有( )【A. 90人B. 180人C. 270人D. 360人【答案】B 【解析】【分析】根据选择雁荡山的有270人,占比为30%,求得总人数,进而即可求解. 【详解】解:∵雁荡山的有270人,占比为30%, ∴总人数为27090030%=人 ∴选择楠溪江的有90020%180⨯=人, 故选:B .【点睛】本题考查了扇形统计图,从统计图获取信息是解题的关键. 6. 化简43()a a ⋅-的结果是( ) A. 12a B. 12a - C. 7a D. 7a -【答案】D 【解析】【分析】根据积的乘方以及同底数幂的乘法进行计算即可求解.【详解】解:43()a a ⋅-()437a aa=⨯-=-,故选:D .【点睛】本题考查了积的乘方以及同底数幂的乘法,熟练掌握积的乘方以及同底数幂的乘法的运算法则是解题的关键.7. 一瓶牛奶的营养成分中,碳水化合物含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30g .设蛋白质、脂肪的含量分别为()g x ,()g y ,可列出方程为( )A.5302x y += B. 5302x y += C.3302x y += D. 3302x y += 【答案】A 【解析】【分析】根据碳水化合物、蛋白质与脂肪的含量共30g 列方程.【详解】解:设蛋白质、脂肪的含量分别为g x ,g y ,则碳水化合物含量为(1.5)g x ,则: 1.530x x y ++=,即5302x y +=, 故选A .【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,找出合适的等量关系,列方程.8. 图1是第七届国际数学教育大会(ICME )的会徽,图2由其主体图案中相邻两个直角三角形组合而成.作菱形CDEF ,使点D ,E ,F 分别在边OC ,OB ,BC 上,过点E 作EH AB ⊥于点H .当AB BC =,30BOC ∠=︒,2DE =时,EH 的长为( )A.B.32C.D.43【答案】C 【解析】【分析】根据菱形性质和解直角三角形求出OB =,BE =,继而OA ==再根据sin 3OA EH OBA OB EB ∠===,即可求sin EH EB OBA =∠=. 【详解】解:∵在菱形CDEF 中,2CD DE EF CF ====,DE BC ∥, ∴90CBO DEO ∠=∠=︒, 又∵30BOC ∠=︒,∴24sin sin 30DE OD BOC ===∠︒,cos 4cos30OE OD BOC =∠=⨯︒=,∴246OC CD OD =+=+=,,∴1sin 632BC OC BOC =∠=⨯=,cos 6cos30OB OC BOC =∠=⨯︒=,∴BE OB OE =-==∵3AB BC ==,∴在Rt OBA 中,OA ===∵EH AB ⊥,∴sinOA EH OBA OB EB ∠====,∴sin 3EH EB OBA =∠== 故选C .【点睛】本题主要考查了解直角三角形、菱形的性质,根据菱形性质和解直角三角形求出OC 、OB 、OA 是解题关键.9. 如图,四边形ABCD 内接于O ,BC AD ∥,AC BD ⊥.若120AOD ∠=︒,AD =,则CAO ∠的度数与BC 的长分别为( )A. 10°,1B. 10°C. 15°,1D. 15°【答案】C 【解析】【分析】过点O 作OE AD ⊥于点E ,由题意易得45CAD ADB CBD BCA ∠=∠=︒=∠=∠,然后可得30OAD ODA ∠=∠=︒,1602ABD ACD AOD ∠=∠=∠=︒,12AE AD ==,进而可得122CD CF CD ====,最后问题可求解. 【详解】解:过点O 作OE AD ⊥于点E ,如图所示:∵BC AD ∥, ∴CBD ADB ∠=∠, ∵CBD CAD ∠=∠, ∴CAD ADB ∠=∠, ∵AC BD ⊥, ∴90AFD ∠=︒,∴45CAD ADB CBD BCA ∠=∠=︒=∠=∠,∵120AOD ∠=︒,OA OD =,AD =,∴30OAD ODA ∠=∠=︒,1602ABD ACD AOD ∠=∠=∠=︒,122AE AD ==, ∴15CAO CAD OAD ∠=∠-∠=︒,1cos30AEOA OC OD ====︒,105BCD BCA ACD ∠=∠+∠=︒,∴290,18030COD CAD CDB BCD CBD ∠=∠=︒∠=︒-∠-∠=︒,∴122CD CF CD ====,∴1BC ==; 故选C .【点睛】本题主要考查平行线的性质、圆周角定理及三角函数,熟练掌握平行线的性质、圆周角定理及三角函数是解题的关键.10. 【素材1】某景区游览路线及方向如图1所示,∵∵∵各路段路程相等,∵∵∵各路段路程相等,∵∵两路段路程相等.【素材2】设游玩行走速度恒定,经过每个景点都停留20分钟.小温游路线∵∵∵∵∵∵用时3小时25分钟;小州游路线∵∵∵,他离入口的路程s 与时间t 的关系(部分数据)如图2所示,在2100米处,他到出口还要走10分钟.【问题】路线∵∵∵∵∵各路段路程之和为( )A. 4200米B. 4800米C. 5200米D. 5400米【答案】B 【解析】【分析】设∵∵∵各路段路程为x 米,∵∵∵各路段路程为y 米,∵∵各路段路程为z 米,由题意及图象可知21004510x y z x y z ++++-=,然后根据“游玩行走速度恒定,经过每个景点都停留20分钟.小温游路线∵∵∵∵∵∵用时3小时25分钟”可进行求解.【详解】解:由图象可知:小州游玩行走的时间为75104045+-=(分钟),小温游玩行走的时间为205100105-=(分钟); 设∵∵∵各路段路程为x 米,∵∵∵各路段路程为y 米,∵∵各路段路程为z 米,由图象可得:21004510x y z x y z ++++-=, 解得:2700x y z ++=,∴游玩行走的速度为()270021001060-÷=(米/秒),由于游玩行走速度恒定,则小温游路线∵∵∵∵∵∵的路程为33105606300x y +=⨯=, ∴2100x y +=,∴路线∵∵∵∵∵各路段路程之和为22270021004800x y z x y z x y ++=++++=+=(米); 故选B .【点睛】本题主要考查三元一次方程组的应用及函数图象,解题的关键是理解题中所给信息,找到它们之间的等量关系.卷Ⅱ二、填空题(本题有6小题,第11—15小题,每小题4分,第16小题5分,共25分)11. 分解因式:222a a -=____________ . 【答案】2(1)a a -. 【解析】【分析】利用提公因式法进行解题,即可得到答案. 【详解】解:2222(1)a a a a -=-. 故答案为:2(1)a a -.【点睛】本题考查了因式分解,解题的关键是掌握提公因式法进行解题.12. 某校学生“亚运知识”竞赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩在80分及以上的学生有___________人.【答案】140 【解析】【分析】根据频数直方图,直接可得结论.【详解】解:依题意,其中成绩在80分及以上的学生有8060140+=人, 故答案为:140.【点睛】本题考查了频数直方图,从统计图获取信息是解题的关键.13. 不等式组323142x x +≥⎧⎪⎨-<⎪⎩的解是___________.【答案】13x -≤<##31x >≥- 【解析】【分析】根据不等式的性质先求出每一个不等式的解集,再求出它们的公共部分即可.【详解】解不等式组:323142x x +≥⎧⎪⎨-<⎪⎩①②解:由①得,1x ≥-; 由②得,3x < 所以,13x -≤<. 故答案为:13x -≤<.【点睛】本题主要考查解一元一次不等式组,正确求出每一个不等式解集是基础,熟知求公共解的原则是解题关键.14. 若扇形的圆心角为40︒,半径为18,则它的弧长为___________. 【答案】4π 【解析】【分析】根据弧长公式π180n rl =即可求解. 【详解】解:扇形的圆心角为40︒,半径为18, ∵它的弧长为4018π4π180⨯=, 故答案为:4π.【点睛】本题考查了求弧长,熟练掌握弧长公式是解题的关键.15. 在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,加压后气体对汽缸壁所产生的压强P (kPa )与汽缸内气体的体积V (mL )成反比例,P 关于V 的函数图象如图所示.若压强由75kPa 加压到100kPa ,则气体体积压缩了___________mL .【答案】20 【解析】【分析】由图象易得P 关于V 的函数解析式为6000P V=,然后问题可求解. 【详解】解:设P 关于V 的函数解析式为kP V=,由图象可把点()100,60代入得:6000k =, ∴P 关于V 的函数解析式为6000P V=, ∴当75kPa P =时,则60008075V ==,∴压强由75kPa 加压到100kPa ,则气体体积压缩了1008020mL -=; 故答案为20.【点睛】本题主要考查反比例函数的应用,熟练掌握反比例函数的应用是解题的关键.16. 图1是44⨯,现将它剪拼成一个“房子”造型(如图2),过左侧的三个端点作圆,并在圆内右侧部分留出矩形CDEF 作为题字区域(点A ,E ,D ,B 在圆上,点C ,F 在AB 上),形成一幅装饰画,则圆的半径为___________.若点A ,N ,M 在同一直线上,AB PN ∥,DE =,则题字区域的面积为___________.【答案】 ∵. 5∵. 【解析】【分析】根据不共线三点确定一个圆,根据对称性得出圆心位置,进而垂径定理、勾股定理求得r ,连接OE ,取ED 的中点T ,连接OT ,在Rt OET △中,根据勾股定理即可求解.【详解】解:如图所示,依题意,2GH =GQ =, ∵过左侧的三个端点,,Q K L 作圆,4QH HL ==, 又NK QL ⊥,∵O 在KN 上,连接OQ ,则OQ 为半径, ∵2OH r KH r =-=-,在Rt OHQ △中,222OH QH QO +=∴()22224r r -+=解得:=5r ;连接OE ,取ED 的中点T ,连接OT ,交AB 于点S ,连接PB ,AM ,的∵AB PN ∥, ∵AB OT ⊥, ∵AS SB =,∵点A ,N ,M 在同一直线上, ∵AN ASNM SB=, ∵MN AN =, 又NB NA =, ∵90ABM ∠=︒∵MN NB =,NP MP ⊥ ∴MP PB =2= ∴122NS MB == ∵246KH HN +=+= ∴651ON =-= ∴3OS =,∵DE =,设EF ST a ==,则122ET DE a == 在Rt OET △中,222OE OT TE =+即()22253a ⎫=++⎪⎪⎝⎭整理得2512320a a +-= 即()()4580a a +-= 解得:85a =或4a =-2=故答案为:5【点睛】本题考查了垂径定理,平行线分线段成比例,勾股定理,七巧板,熟练掌握以上知识是解题的关键.三、解答题(本题有8小题,共90分.解答需写出必要的文字说明、演算步骤或证明过程)17. 计算:(1)()21143-⎛⎫-+-- ⎪⎝⎭.(2)22311a a a+-++. 【答案】(1)12 (2)1a - 【解析】【分析】(1)先计算绝对值、立方根、负整数指数,再计算加减; (2)根据同分母分式的加减法解答即可. 【小问1详解】()21143-⎛⎫-+-- ⎪⎝⎭1294=-++12=.【小问2详解】22311a a a +-++ 2231a a +-=+ 211a a -=+(1)(1)1a a a +-=+1a =-.【点睛】本题考查了实数的混合运算和同分母分式的加减,熟练掌握相关运算法则是解题的关键. 18. 如图,在24⨯的方格纸ABCD 中,每个小方格的边长为1.已知格点P ,请按要求画格点三角形(顶点均在格点上).(1)在图中画一个等腰三角形PEF ,点E 在BC 上,点F 在AD 上,再画出该三角形绕矩形ABCD 的中心旋转180°后的图形.(2)在图中画一个Rt PQR △,使45P ∠=︒,点Q 在BC 上,点R 在AD 上,再画出该三角形向右平移1个单位后的图形.【答案】(1)见解析 (2)见解析 【解析】【分析】(1即底边为小方格的对角线,根据要求画出底边,再在其底边的垂直平分线找到在格点上的顶点即可得到等腰PEF !,然后根据中心旋转性质作出绕矩形ABCD 的中心旋转180°后的图形. (2)根据网格特点,按要求构造等腰直角三角形,然后按平移的规律作出平移后图形即可. 【小问1详解】(1)画法不唯一,如图1( PF =PE EF ==,或图2(PE =PF EF ==. 【小问2详解】画法不唯一,如图3或图4.【点睛】本题主要考查了格点作图,解题关键是掌握网格特点,灵活画出相等的线段和互相垂直或平行的线段.19. 某公司有A ,B ,C 三种型号电动汽车出租,每辆车每天费用分别为300元、380元、500元.阳阳打算从该公司租一辆汽车外出旅游一天,往返行程为210km ,为了选择合适的型号,通过网络调查,获得三种型号汽车充满电后的里程数据如图所示.(1)阳阳已经对B ,C 型号汽车数据统计如表,请继续求出A 型号汽车的平均里程、中位数和众数. (2)为了尽可能避免行程中充电耽误时间,又能经济实惠地用车,请你从相关统计量和符合行程要求的百分比等进行分析,给出合理的用车型号建议.【答案】(1)平均里程:200km ;中位数:200km ,众数:205km (2)见解析 【解析】【分析】(1)观察统计图,根据平均数、中位数和众数的计算方法求解即可; (2)根据各型号汽车的平均里程、中位数、众数和租金方面进行分析. 【小问1详解】 解:由统计图可知: A 型号汽车的平均里程:31904195520062052210200(km)34562A x ⨯+⨯+⨯+⨯+⨯==++++,A 型号汽车的里程由小到大排序:最中间的两个数(第10、11个数据)是200、200,故中位数200200200(km)2+==, 出现充满电后的里程最多的是205公里,共六次,故众数为205km . 【小问2详解】选择B 型号汽车.理由:A 型号汽车的平均里程、中位数、众数均低于210km ,且只有10%的车辆能达到行程要求,故不建议选择;B ,C 型号汽车的平均里程、中位数、众数都超过210km ,其中B 型号汽车有90%符合行程要求,很大程度上可以避免行程中充电耽误时间,且B 型号汽车比C 型号汽车更经济实惠,故建议选择B 型号汽车.【点睛】本题考查了统计量的选择,平均数、中位数和众数,熟练掌握平均数、方差、中位数的定义和意义是解题的关键.20. 如图,在直角坐标系中,点()2,A m 在直线522y x =-上,过点A 的直线交y 轴于点()0,3B .(1)求m 的值和直线AB 的函数表达式.(2)若点()1,P t y 在线段AB 上,点()21,Q t y -在直线522y x =-上,求12y y -的最大值. 【答案】(1)32m =,334y x =-+(2)152【解析】【分析】(1)把点A 的坐标代入直线解析式可求解m ,然后设直线AB 的函数解析式为y kx b =+,进而根据待定系数法可进行求解函数解析式; (2)由(1)及题意易得()133024y t t =-+≤≤,()25921222y t t =--=-,则有12391115324242y y t t t ⎛⎫-=-+--=-+ ⎪⎝⎭,然后根据一次函数性质可进行求解.【小问1详解】解:把点()2,A m 代入522y x =-,得32m =.设直线AB 的函数表达式为y kx b =+,把点32,2A ⎛⎫ ⎪⎝⎭,()0,3B 代入得3223.k b b ⎧+=⎪⎨⎪=⎩,解得343.k b ⎧=-⎪⎨⎪=⎩,的∴直线AB 的函数表达式为334y x =-+. 【小问2详解】解:∵点()1,P t y 在线段AB 上,点()21,Q t y -在直线522y x =-上, ∴()133024y t t =-+≤≤,()25921222y t t =--=-, ∴12391115324242y y t t t ⎛⎫-=-+--=-+ ⎪⎝⎭. ∵1104k =-<, ∴12y y -的值随x 的增大而减小, ∴当0=t 时,12y y -的最大值为152. 【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.21. 如图,已知矩形ABCD ,点E 在CB 延长线上,点F 在BC 延长线上,过点下作FH EF ⊥交ED 的延长线于点H ,连结AF 交EH 于点G ,GE GH =.(1)求证:BE CF =. (2)当56AB FH =,4=AD 时,求EF 的长. 【答案】(1)见解析 (2)6EF = 【解析】【分析】(1)根据等边对等角得出GFE E ∠=∠,根据矩形的性质得出AB CD =,90ABC DCB ∠=∠=︒,即可证明()AAS ABF DCE ≌,根据全等三角形的性质得出BF CE =,进而即可求解;(2)根据CD FH ∥,得出DCEHFE △△,设BE CF x ==,则4BC AD ==, 4CE x =+,24EF x =+,根据相似三角形的性质列出等式,解方程即可求解.【小问1详解】解:∵FH EF ⊥,GE GH =,∴GE GF GH ==, ∴GFE E ∠=∠. ∵四边形ABCD 是矩形,∴AB CD =,90ABC DCB ∠=∠=︒, ∴()AAS ABF DCE ≌, ∴BF CE =,∴BF BC CE BC -=-,即BE CF =. 【小问2详解】 ∵CD FH ∥, ∴DCE HFE △△,∴EC CDEF FH =. ∵CD AB =, ∴56CD AB FH FH ==. 设BE CF x ==,∵4BC AD ==,∴4CE x =+,24EF x =+, ∴45246x x +=+,解得1x =, ∴6EF =.【点睛】本题考查了矩形的性质,全等三角形的性质与判定,等腰三角形的性质与判定,相似三角形的性质与判定,熟练掌握以上知识是解题的关键.22. 一次足球训练中,小明从球门正前方8m 的A 处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为6m 时,球达到最高点,此时球离地面3m .已知球门高OB 为2.44m ,现以O 为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素).(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O 正上方2.25m 处? 【答案】(1)()212312y x =--+,球不能射进球门 (2)当时他应该带球向正后方移动1米射门 【解析】【分析】(1)根据建立的平面直角三角坐标系设抛物线解析式为顶点式,代入A 点坐标求出a 的值即可得到函数表达式,再把0x =代入函数解析式,求出函数值,与球门高度比较即可得到结论; (2)根据二次函数平移的规律,设出平移后的解析式,然后将点()0,2.25代入即可求解. 【小问1详解】解:由题意得:抛物线的顶点坐标为()2,3, 设抛物线解析式为()223y a x =-+, 把点()8,0A代入,得3630a +=,解得112a =-, ∴抛物线的函数表达式为()212312y x =--+, 当0x =时,82.443y =>, ∴球不能射进球门; 【小问2详解】设小明带球向正后方移动m 米,则移动后的抛物线为()212312y x m =---+, 把点()0,2.25代入得()212.252312m =---+, 解得15m =-(舍去),21m =,∴当时他应该带球向正后方移动1米射门.【点睛】此题考查了二次函数的应用,待定系数法求函数解析式、二次函数图象的平移等知识,读懂题意,熟练掌握待定系数法是解题的关键.23. 根据背景素材,探索解决问题.注:测量时,以答题纸上的图上距离为准,并精确到1mm .【答案】规划一:[任务 1]选择点A 和点B ;1tan 18∠=,1tan 24∠=,1tan 33∠=,测得图上4mm AB =;[任务 2]18mm ;[任务 3]发射塔的实际高度为43.2米;规划二:[任务 1]选择点A 和点C .[任务 2]18mm ;[任务 3]发射塔的实际高度为43.2米; 【解析】【分析】规划一:[任务 1]选择点A 和点B ,根据正切的定义求得三个角的正切值,测得图上4mm AB = [任务 2]如图1,过点A 作AF MN ⊥于点F ,过点B 作BG MN ⊥于点G ,设()mm MF x =.根据1tan 4x MAF AF ∠==,41tan 3x MBG BG +∠==,得出4AF x =,312BG x =+.由AF BG =,解得12x =,根据1tan 488FN FAN ∠==,得出6mm FN =,即可求解; [任务3 ]测得图上5mm DE =,设发射塔的实际高度为h 米.由题意,得51812h =,解得43.2h =, 规划二:[任务 1]选择点A 和点C .根据正切的定义求得三个角的正切值,测得图上12mm AC =; [任务 2]如图2,过点A 作AF MN ⊥于点F ,过点C 作CG MN ⊥,交MN 的延长线于点G ,则12mm FG AC ==,设()mm MF x =.根据1tan 4x MAF AF ∠==,121tan 2x MCG CG +∠==,得出4AF x =,224CG x =+.根据AF CG =,得出12x =,然后根据1tan 488FN FAN ∠==,得出6mm FN =,进而即可求解.[任务 3]测得图上5mm DE =,设发射塔的实际高度为h 米.由题意,得51812h=,解得43.2h =,即可求解.【详解】解:有以下两种规划,任选一种作答即可. 规划一:[任务 1]选择点A 和点B .1tan 18∠=,1tan 24∠=,1tan 33∠=,测得图上4mm AB =. [任务 2]如图1,过点A 作AF MN ⊥于点F ,过点B 作BG MN ⊥于点G ,则4mm FG AB ==,设()mm MF x =. ∵1tan 4x MAF AF ∠==,41tan 3x MBG BG +∠==,∴4AFx =,312BG x =+.∵AF BG =, ∴4312x x =+ 解得12x =,∴448mm AF BG x ===. ∵1tan 488FN FAN ∠==, ∴6mm FN =,∴12618mm MN MF FN =+=+=.[任务3 ]测得图上5mm DE =,设发射塔的实际高度为h 米. 由题意,得51812h=,解得43.2h =, ∴发射塔的实际高度为43.2米. 规划二:[任务 1]选择点A 和点C .1tan 18∠=,1tan 24∠=,1tan 42∠=,测得图上12mm AC =. [任务 2]如图2,过点A 作AF MN ⊥于点F ,过点C 作CG MN ⊥,交MN延长线于点G ,则12mm FG AC ==,设()mm MF x =.的∵1tan 4x MAF AF ∠==,121tan 2x MCG CG +∠==,∴4AFx =,224CG x =+.∵AF CG =,∴4224x x =+,解得12x =, ∴448mm AF CG x ===. ∵1tan 488FN FAN ∠==,∴6mm FN =, ∴12618mm MN MF FN =+=+=.[任务 3]测得图上5mm DE =,设发射塔的实际高度为h 米. 由题意,得51812h=,解得43.2h =. ∴发射塔的实际高度为43.2米.【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数关系是解题的关键.24. 如图1,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆于点D ,BE CD ⊥,交CD 延长线于点E ,交半圆于点F ,已知32OA =,1AC =.如图2,连接AF ,P 为线段AF 上一点,过点P 作BC 的平行线分别交CE ,BE 于点M ,N ,过点P 作PH AB ⊥于点H .设PH x =,MN y =.(1)求CE 的长和y 关于x 的函数表达式.(2)当PH PN <,且长度分别等于PH ,PN ,a 的三条线段组成的三角形与BCE 相似时,求a 的值.(3)延长PN 交半圆O 于点Q ,当1534NQ x =-时,求MN 的长. 【答案】(1)165CE =,25412y x =-+ (2)1615或2740或6041(3)178【解析】【分析】(1)如图1,连接OD ,根据切线的性质得出OD CE ⊥,证明OD BE ∥,得出CD COCE CB=,即可得出165CE =;证明四边形APMC 是平行四边形,得出MN ME BC CE =,代入数据可得25412y x =-+; (2)根据BCE 三边之比为3:4:5,可分为三种情况.当:3:5PH PN =时,当:4:5PH PN =时,当:3:4PH PN =时,分别列出比例式,进而即可求解.(3)连接AQ ,BQ ,过点Q 作QG AB ⊥于点G ,根据1tan tan 33x BQG QAB x ∠=∠==,得出1133BG QG x ==,由1033AB AG BG x =+==,可得910x =,代入(1)中解析式,即可求解.【小问1详解】 解:如图1,连接OD .∵CD 切半圆O 于点D , ∴OD CE ⊥. ∵32OA =,1AC =, ∴52OC =, ∴2CD =. ∵BE CE ⊥, ∴OD BE ∥, ∴CD COCE CB=,即5224CE =,∴165CE =. 如图2,90AFB E ∠=∠=︒, ∴AF CE ∥.∵MN CB ∥,∴四边形APMC 是平行四边形, ∴53sin 1sin 35PH PH x CM PA x C =====∠.∵MN MEBC CE=, ∴165531645x y -=,∴25412y x =-+. 【小问2详解】 ∵251312PN y x =-=-+,PH PN <,BCE 三边之比为3:4:5(如图2), ∴可分为三种情况. i )当:3:5PH PN =时,53PN PH =,2553123x x -+=,解得45x =,∴416315a x ==.ii )当:4:5PH PN =时,54PN PH =,2553124x x -+=,解得910x =, ∴327440a x ==. iii )当:3:4PH PN =时,43PN PH =,2543123x x -+=,解得3641x =,∴560341a x ==.【小问3详解】如图3,连接AQ ,BQ ,过点Q 作QG AB ⊥于点G ,则90AQB AGQ ∠=∠=︒,QG PH x ==, ∴QAB BQG ∠=∠.∵1534NQ x =-,251312PN y x =-=-+,∴53HG PQ NQ PN x ==+=. ∵43AH x =, ∴3AG AH HG x =+=, ∴1tan tan 33x BQG QAB x ∠=∠==, ∴1133BG QG x ==, ∴1033AB AG BG x =+==,910x =, ∴25174128y x =-+=,即MN 的长为178. 【点睛】本题考查了切线的性质,解直角三角形,相似三角形的性质与判定,函数解析式,分类讨论,作出辅助线是解题的关键.。

2023年浙江省衢州市中考数学真题(含答案解析)

2023年浙江省衢州市中考数学真题(含答案解析)

试卷第 1页,共 7页
A. BEA
B. DEB
C. ECA
D. ADO
7.如图,在 ABC 中,以点 A 为圆心,适当长为半径画弧,分别交 AB , AC 于点 D,
E.分别以点 D,E 为圆心,大于 1 DE 长为半径画弧,交于 BAC 内一点 F.连结 AF 并 2
延长,交 BC 于点 G.连结 DG , EG .添加下列条件,不能使 BG CG 成立的是( )
选择其中任一航班,则他们选择同一航班的概率等于

13.在如图所示的方格纸上建立适当的平面直角坐标系,若点 A 的坐标为 0,1 ,点 B
的坐标为 2, 2 ,则点 C 的坐标为

14.如图是一个圆形餐盘的正面及其固定支架的截面图,凹槽 ABCD 是矩形.当餐盘正
立且紧靠支架于点 A,D 时,恰好与 BC 边相切,则此餐盘的半径等于
cm.
15.如图,点 A、B 在 x 轴上,分别以 OA ,AB 为边,在 x 轴上方作正方形 OACD ,ABEF .反
比例函数 y k k 0 的图象分别交边 CD ,BE 于点 P,Q.作 PM x 轴于点 M,QN y
x
轴于点 N.若 OA 2AB ,Q 为 BE 的中点,且阴影部分面积等于 6,则 k 的值为
答案第 1页,共 20页
【点睛】本题考查了中位数,众数,方差,平均数,熟知以上概念是解题的关键. 5.A 【分析】代入 x, y 的值,逐一判断即可解答.
【详解】解:当
x y
1 2
时,方程左边
2
1
3
2
8
,方程左边
方程右边,故
A
符合题意;
x 2

浙江省杭州市新东方2024-2025学年七年级上学期期中考数学试卷01

浙江省杭州市新东方2024-2025学年七年级上学期期中考数学试卷01

浙江省杭州市新东方2024-2025学年七年级上学期期中考数学试卷01一、填空题1.3:0.54的比值是(),化成最简整数比是().2.()5÷=():40=六成=()%=()[小数]3.甲数除以乙数的商是3.2,甲:乙=():(),乙数比甲数少()% 4.小明做了20道计算题,错了4道,正确率是().5.一个圆的直径8厘米,周长()厘米,面积()平方厘米.6.小周看一本有300页世界名著,第一天看了一部分,如果再看12页正好是总页数的2 3,她第二天应从第()页开始看.7.小强从家里到学校,步行需18分钟,骑车需6分钟,步行与骑车所用的时间比是(),步行与骑车的速度比是().8.把一批图书按3:2:4的比例分给甲乙丙三个小队,已知丙分得16本,甲分得()本.9.小圆半径16厘米,大圆半径20厘米,大小圆的周长比是(),面积比是().10.根据7160%:0.8 3.723A B C D E⨯=÷==+=-,把A、B、C、D、E按从小到大的顺序排列.()二、判断题11.两个数的比值是4,如果前项,后项都乘以3.它们的比值仍是4.()12.六年级学生中,男生人数是女生的45,那么女生人数:全年级人数为49.()13.把1.2吨:300千克化成最简整数比是1:250.()14.一种商品,先涨价10%,再降价10%,现价与原价相等.() 15.半圆的周长就是它所在圆周长的一半.()三、单选题16.与45%不相等的数是()A.920B.0.45C.4.5D.四成五17.今年小麦比去年增产二成六,今年产量是去年的()A.102.6%B.120.6%C.126%D.106.2%18.12米增加它的14后,再减少14米,结果是()A.12米B.11.25米C.14.75米19.学校有排球32个,比篮球多38,篮球有多少个?正确的算式是:()A.33218⎛⎫⨯+⎪⎝⎭B.33218⎛⎫⨯-⎪⎝⎭C.33218⎛⎫÷+⎪⎝⎭D.33218⎛⎫÷-⎪⎝⎭20.在1.8千克水中放入200克盐,盐与盐水的比是()A.1:9B.1:10C.9:100四、解答题21.化简比:(1)32:24=____;(2)13:48=____;(3)0.5:1.25=____.22.求比值:(1)10.24:5=____;(2)0.65:0.13=____;(3)312:154=____.23.递等式计算:(1)5118342⎛⎫÷-⨯⎪⎝⎭;(2)74211553⎡⎤⎛⎫÷--⎪⎢⎥⎝⎭⎣⎦;(3)2424 3535÷-⨯;(4)330.2514.72560%510⎛⎫⨯⨯+⨯⎪⎝⎭.24.列式计算:一个数的40%等于75的23,求这个数.25.半径10厘米,求周长.26.正方形面积20平方厘米,求圆面积.27.据杭州市统计局统计,我市市区居民2003年3月份人均保健支出72元,4月份受“非典”影响减少到64元,减少了百分之几?(百分号前的数保留一位小数)28.一套衣服的售价是360元,卖出后获利润20%,求这套衣服的进价?29.爸爸到银行存50000元三年定期,年利率为3.6%,到期后共可得本息多少元?30.仓库有水泥3000包,将其中的60%按4:5运到甲乙两个工地,甲工地运到水泥多少包?31.“乐购”超市运来一批时新水果,其中蛇果占这批水果的20%,火龙果占35%.已知火龙果比蛇果多450千克,其余是哈密瓜,问哈密瓜有多少千克?32.商店同时卖出两台洗衣机,每台2400元,其中一台比进价高20%,另一台比进价低20%.总的来看商店是赚钱还是赔钱?赚(赔)多少元?33.自行车车轮直径60厘米,小张骑一分钟车轮可滚动100周,过一座1884米的桥要几分钟?34.姐妹俩同时从家走向同一所学校,姐姐走到全程的一半时,妹妹离学校还有600米,照这样的速度,姐姐到学校时,妹妹行了全程的80%,她们家离学校多少米?35.一家书店推出一项优惠政策,凡购买同一种书100本以上,就按书价的90%收款.某校到书店购买甲、乙两种书,购得乙种书的册数是甲种书的45,甲种书的总价比乙种书的总价高720元.已知乙种书每本15元,甲种书每本20元.学校购得甲种书多少本?36.某市出租车收费标准如下:3km 以内(含3km )收费11元;3km 至10km 每km 收费3元;10km 以上每km 收费4元.(不足1km 以1km 计算)(1)小明家距离学校12.3km ,某个周末,小明身边带了39元钱,问:小明从学校坐出租车到家的钱够吗?如果不够,他至少要先走多少km 路?(2)某天,小明和爸爸分别从不同的地方坐出租车回家,正好同时到家,且正好都行了整km ,父子俩一合计,发现两人共行20km ,共付车费67元,已知小明的行程超过10km ,而父亲的行程在3km 到10km 之间,两人各行了多少km ?37.长为2,宽为a 的长方形纸片()12a <<,用如图所示的方法折叠,剪下折叠所得的正方形纸片(称为第一次操作);再把剩下的长方形用同样的方法折叠,剪下折叠所得的正方形纸片(称为第二次操作);如此反复操作下去.若在第n 次操作后,剩下的纸片为正方形,则操作终止.当3n =时,求a 的值.38.A 容器中有500克12%的食盐水,B 容器中有500克的水,首先,将A 容器中一半的食盐水倒入B 容器中,充分搅拌,其次,再将B 容器中一半的食盐水倒入A 容器中,充分搅拌.最后,从A 容器中将部分食盐水移入B 容器中,使A 与B 各容器内的食盐水质量相同,请问结果B 容器中的食盐水浓度究竟为百分之几?。

2023年浙江省中考数学试卷

2023年浙江省中考数学试卷

2023年浙江省中考数学试卷第一部分:选择题1. 在一个盒子里,有5个红色球、3个蓝色球和2个绿色球。

如果从盒子中随机抽取一个球,那么抽到红色球的概率是多少?A. 1/2B. 1/3C. 1/4D. 1/52. 有一枚公正的硬币,投掷它3次,出现正面的次数是1次的概率是多少?A. 1/2B. 1/4C. 1/8D. 1/163. 已知函数f(x) = x^2 + 3x + 2,求f(4)的值。

4. 设一边长为2的正方形ABCX,点D在线段AC上,且AD:DC = 1:3,连接BD并延长线段BD至点E,求BE的长度。

5. 甲、乙两条铁路线从同一地出发,甲线每小时行驶80公里,乙线每小时行驶60公里。

若两线相距400公里,则两条铁路线相遇需要多少小时?A. 4B. 5C. 6D. 7第二部分:填空题6. 已知等差数列的前三项依次是5,9,13,其第n项的值为________。

7. 已知一条直线的斜率为2,过该直线上的一点的坐标为(1, 3),则直线的方程为y = ________。

8. 用a表示正方形的边长,设正方形的面积是16平方单位,求a的值。

9. 若a:b = 3:5,b:c = 2:7,则a:c = ________。

第三部分:解答题10. 请计算以下算式的值:(6 - 3) × 2 - 4 ÷ 2。

11. 小明通过测量得到一个长方形的长为10米,宽为5米。

请计算该长方形的周长和面积。

12. 已知等差数列的公差为3,首项为2,前五项的和为________。

第四部分:应用题13. 小明拿到了一份做作业的时间表,他要在每天晚上30分钟做作业。

假设小明每天晚上均按时并且准确地做作业,30天后,他一共做了多少分钟的作业?14. 父亲和儿子同时骑自行车从A地和B地出发,相向而行。

父亲每小时骑行20公里,而儿子每小时骑行15公里。

如果A地和B地相距60公里,问他们相遇需要多长时间?15. 三角形ABC是等边三角形,边长为4厘米。

2023年浙江省台州市中考数学试卷及答案解析

2023年浙江省台州市中考数学试卷及答案解析

2023年浙江省台州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(4分)下列各数中,最小的是()A.2B.1C.﹣1D.﹣22.(4分)如图是由5个相同的正方体搭成的立体图形,其主视图是()A.B.C.D.3.(4分)下列无理数中,大小在3与4之间的是()A.B.2C.D.4.(4分)下列运算正确的是()A.2(a﹣1)=2a﹣2B.(a+b)2=a2+b2C.3a+2a=5a2D.(ab)2=ab25.(4分)不等式x+1≥2的解集在数轴上表示为()A.B.C.D.6.(4分)如图是中国象棋棋盘的一部分,建立如图所示的平面直角坐标系,已知“車”所在位置的坐标为(﹣2,2),则“炮”所在位置的坐标为()A.(3,1)B.(1,3)C.(4,1)D.(3,2)7.(4分)以下调查中,适合全面调查的是()A.了解全国中学生的视力情况B.检测“神舟十六号”飞船的零部件C.检测台州的城市空气质量D.调查某池塘中现有鱼的数量8.(4分)如图,⊙O的圆心O与正方形的中心重合,已知⊙O的半径和正方形的边长都为4,则圆上任意一点到正方形边上任意一点距离的最小值为()A.B.2C.D.9.(4分)如图,锐角三角形ABC中,AB=AC,点D,E分别在边AB,AC上,连接BE,CD.下列命题中,假命题是()A.若CD=BE,则∠DCB=∠EBC B.若∠DCB=∠EBC,则CD=BE C.若BD=CE,则∠DCB=∠EBC D.若∠DCB=∠EBC,则BD=CE 10.(4分)抛物线y=ax2﹣a(a≠0)与直线y=kx交于A(x1,y1),B(x2,y2)两点,若x1+x2<0,则直线y=ax+k一定经过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限二、填空题(本题有6小题,每小题5分,共30分)11.(5分)因式分解:x2﹣3x=.12.(5分)一个不透明的口袋中有5个除颜色外完全相同的小球,其中2个红球,3个白球.随机摸出一个小球,摸出红球的概率是.13.(5分)用一张等宽的纸条折成如图所示的图案,若∠1=20°,则∠2的度数为.14.(5分)如图,矩形ABCD中,AB=4,AD=6.在边AD上取一点E,使BE=BC,过点C作CF⊥BE,垂足为点F,则BF的长为.15.(5分)3月12日植树节期间,某校环保小卫士组织植树活动.第一组植树12棵;第二组比第一组多6人,植树36棵;结果两组平均每人植树的棵数相等,则第一组有____人.16.(5分)如图,点C,D在线段AB上(点C在点A,D之间),分别以AD,BC为边向同侧作等边三角形ADE与等边三角形CBF,边长分别为a,b,CF与DE交于点H,延长AE,BF交于点G,AG长为c.(1)若四边形EHFG的周长与△CDH的周长相等,则a,b,c之间的等量关系为;(2)若四边形EHFG的面积与△CDH的面积相等,则a,b,c之间的等量关系为.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)计算:.18.(8分)解方程组:.19.(8分)教室里的投影仪投影时,可以把投影光线CA,CB及在黑板上的投影图象高度AB抽象成如图所示的△ABC,∠BAC=90°,黑板上投影图象的高度AB=120cm,CB 与AB的夹角∠B=33.7°,求AC的长.(结果精确到1cm.参考数据:sin33.7°≈0.55,cos33.7°≈0.83,tan33.7°≈0.67)20.(8分)科学课上,同学用自制密度计测量液体的密度.密度计悬浮在不同的液体中时,浸在液体中的高度h(单位:cm)是液体的密度ρ(单位:g/cm3)的反比例函数,当密度计悬浮在密度为1g/cm3的水中时,h=20cm.(1)求h关于ρ的函数解析式;(2)当密度计悬浮在另一种液体中时,h=25cm,求该液体的密度ρ.21.(10分)如图,四边形ABCD中,AD∥BC,∠A=∠C,BD为对角线.(1)证明:四边形ABCD是平行四边形;(2)已知AD>AB,请用无刻度的直尺和圆规作菱形BEDF,顶点E,F分别在边BC,AD上(保留作图痕迹,不要求写作法).22.(12分)为了改进几何教学,张老师选择A,B两班进行教学实验研究,在实验班B实施新的教学方法,在控制班A采用原来的教学方法.在实验开始前,进行一次几何能力测试(前测,总分25分),经过一段时间的教学后,再用难度、题型、总分相同的试卷进行测试(后测),得到前测和后测数据并整理成表1和表2.表1:前测数据测试分数x0<x≤55<x≤1010<x≤1515<x≤2020<x≤25控制班A289931实验班B2510821表2:后测数据测试分数x0<x≤55<x≤1010<x≤1515<x≤2020<x≤25控制班A14161262实验班B6811183(1)A,B两班的学生人数分别是多少?(2)请选择一种适当的统计量,分析比较A,B两班的后测数据.(3)通过分析前测、后测数据,请对张老师的教学实验效果进行评价.23.(12分)我们可以通过中心投影的方法建立圆上的点与直线上点的对应关系,用直线上点的位置刻画圆上点的位置.如图,AB是⊙O的直径,直线l是⊙O的切线,B为切点.P,Q是圆上两点(不与点A重合,且在直径AB的同侧),分别作射线AP,AQ交直线l于点C,点D.(1)如图1,当AB=6,BP长为π时,求BC的长;(2)如图2,当,时,求的值;(3)如图3,当,BC=CD时,连接BP,PQ,直接写出的值.24.(14分)【问题背景】“刻漏”是我国古代的一种利用水流计时的工具.综合实践小组准备用甲、乙两个透明的竖直放置的容器和一根带节流阀(控制水的流速大小)的软管制作简易计时装置.【实验操作】综合实践小组设计了如下的实验:先在甲容器里加满水,此时水面高度为30cm,开始放水后每隔10min观察一次甲容器中的水面高度,获得的数据如表:流水时间t/min010203040水面高度h/cm(观察值)302928.12725.8任务1:分别计算表中每隔10min水面高度观察值的变化量.【建立模型】小组讨论发现:“t=0,h=30”是初始状态下的准确数据,水面高度值的变化不均匀,但可以用一次函数近似地刻画水面高度h与流水时间t的关系.任务2:利用t=0时,h=30;t=10时,h=29这两组数据求水面高度h与流水时间t 的函数解析式;【反思优化】经检验,发现有两组表中观察值不满足任务2中求出的函数解析式,存在偏差,小组决定优化函数解析式,减少偏差.通过查阅资料后知道:t为表中数据时,根据解析式求出所对应的函数值,计算这些函数值与对应h的观察值之差的平方和,记为w;w越小,偏差越小.任务3:(1)计算任务2得到的函数解析式的w值;(2)请确定经过(0,30)的一次函数解析式,使得w的值最小;【设计刻度】得到优化的函数解析式后,综合实践小组决定在甲容器外壁设计刻度,通过刻度直接读取时间.任务4:请你简要写出时间刻度的设计方案.2023年浙江省台州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.【分析】正数>0>负数,两个负数比较大小,绝对值大的反而小;据此进行判断即可.【解答】解:∵|﹣1|=1,|﹣2|=2,1<2,∴﹣1>﹣2,则2>1>﹣1>﹣2,那么最小的数为:﹣2,故选:D.【点评】本题考查有理数的大小比较,此为基础且重要知识点,必须熟练掌握.2.【分析】根据主视图的意义,从正面看该组合体所得到的图形进行判断即可.【解答】解:从正面看该组合体,其主视图是.故选:C.【点评】本题考查简单组合体的三视图,理解视图的意义,掌握三视图的画法是正确判断的前提.3.【分析】一个正数越大,其算术平方根越大;据此进行无理数的估算进行判断即可.【解答】解:∵4<7<8<9<13<16<17,∴<<<<<<,即2<<2<3<<4<,那么在3和4之间,故选:C.【点评】本题考查无理数的估算,此为基础且重要知识点,必须熟练掌握.4.【分析】根据去括号法则,完全平方公式,合并同类项法则,积的乘方法则将各项计算后进行判断即可.【解答】解:A.2(a﹣1)=2a﹣2×1=2a﹣2,则A符合题意;B.(a+b)2=a2+2ab+b2,则B不符合题意;C.3a+2a=(3+2)a=5a,则C不符合题意;D.(ab)2=a2b2,则D不符合题意;故选:A.【点评】本题考查整式的运算,其相关运算法则是基础且重要知识点,必须熟练掌握.5.【分析】直接解一元一次不等式,再将解集在数轴上表示即可.【解答】解:x+1≥2,解得:x≥1,在数轴上表示,如图所示:故选:B.【点评】此题主要考查了解一元一次不等式,正确解不等式是解题关键.6.【分析】直接利用“車”位于点(﹣2,2),得出原点的位置,进而得出答案.【解答】解:如图所示:“炮”所在位置的坐标为:(3,1).故选:A.【点评】此题主要考查了坐标确定位置,正确得出原点的位置是解题关键.7.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.【解答】解:A.了解全国中学生的视力情况,适合抽样调查,故本选项不合题意;B.检测“神舟十六号”飞船的零部件,适合普查,故本选项符合题意;C.检测台州的城市空气质量,适合抽样调查,故本选项不合题意;D.调查某池塘中现有鱼的数量,适合抽样调查,故本选项不合题意.故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.【分析】如图,由三角形三边关系分析可得当O、A、B三点共线时,圆上任意一点到正方形边上任意一点距离有最小值,最小值为OB﹣AB,以此即可求解.【解答】解:如图,点B为⊙O上一点,点D为正方形上一点,连接BD,OC,OA,AB,由三角形三边关系可得,OB﹣OD<BD,OB是圆的半径,为定值,当点D在A时,取得最大值,∴当O、A、B三点共线时,圆上任意一点到正方形边上任意一点距离有最小值,最小值为OB﹣AB,由题意可得,AC=4,OB=4,∵点O为正方形的中心,∴OA⊥OC,OA=OC,∴△AOC为等腰直角三角形,∴OA===,∴圆上任意一点到正方形边上任意一点距离的最小值为OB﹣AB=4﹣.故选:D.【点评】本题主要考查正方形的性质、利用三角形三边关系求最值问题,利用三角形三边关系分析得出当O、A、B三点共线时,圆上任意一点到正方形边上任意一点距离有最小值是解题关键.9.【分析】由AB=AC,得∠ABC=∠ACB,而BC=BC,∠DCB=∠EBC,可得△DCB≌△EBC(ASA),故CD=BE,判断选项B是真命题;BD=CE,判断选项D是真命题;根据BC=BC,∠ABC=∠ACB,BD=CE,得△DCB≌△EBC(SAS),有∠DCB=∠EBC,判断选项C是真命题;不能证明CD=BE时,∠DCB=∠EBC,可判断选项A是假命题.【解答】解:∵AB=AC,∴∠ABC=∠ACB,∵BC=BC,∠DCB=∠EBC,∴△DCB≌△EBC(ASA),∴CD=BE,故选项B是真命题,不符合题意;BD=CE,故选项D是真命题,不符合题意;∵BC=BC,∠ABC=∠ACB,BD=CE,∴△DCB≌△EBC(SAS),∴∠DCB=∠EBC,故选项C是真命题,不符合题意;不能证明CD=BE时,∠DCB=∠EBC,故选项A是假命题,符合题意;故选:A.【点评】本题考查命题与定理,涉及全等三角形的判定与性质,等腰三角形性质及应用,解题的关键是掌握全等三角形判定定理.10.【分析】根据已知条件可得出ax2﹣kx﹣a=0,再利用根与系数的关系,分情况讨论即可.【解答】解:∵抛物线y=ax2﹣a(a≠0)与直线y=kx交于A(x1,y1),B(x2,y2)两点,∴kx=ax2﹣a,∴ax2﹣kx﹣a=0,∴,∴,当a>0,k<0时,直线y=ax+k经过第一、三、四象限,当a<0,k>0时,直线y=ax+k经过第一、二、四象限,综上,直线y=ax+k一定经过一、四象限.故选:D.【点评】本题考查了二次函数与系数的关系,解题的关键是熟练掌握根与系数的关系.二、填空题(本题有6小题,每小题5分,共30分)11.【分析】提取公因式x即可.【解答】解:原式=x•x﹣x•3=x(x﹣3),故答案为:x(x﹣3).【点评】本题考查提公因式法因式分解,此为基础且重要知识点,必须熟练掌握.12.【分析】利用红球的个数÷球的总个数可得红球的概率.【解答】解:∵一个口袋里有5个除颜色外完全相同的小球,其中2个红球,3个白球,∴摸到红球的概率是.故答案为:.【点评】此题主要考查了概率公式,关键是掌握概率=所求情况数与总情况数之比.13.【分析】利用平行线的性质和各角之间的关系即可求解.【解答】解:如图,标注三角形的三个顶点A、B、C.∠2=∠BAC=180°﹣∠ABC﹣∠ACB.∵图案是由一张等宽的纸条折成的,∴AB=AC,∴∠ABC=∠ACB.又∵纸条的长边平行,∴∠ABC=∠1=20°,∴∠2=∠BAC=180°﹣2∠ABC=180°﹣2∠1=180°﹣2×20°=140°.故答案为:140°.【点评】本题比较简单,主要考查了平行线的性质的运用.14.【分析】根据矩形的性质可得出∠AEB=∠FBC,结合已知BE=BC,利用AAS证得△ABE和△FCB全等,得出FC=AB=4,再根据矩形的性质得到BC=AD=6,从而在Rt △FCB中利用勾股定理求出BF的长.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠AEB=∠FBC,∵CF⊥BE,∴∠CFB=90°,∴∠CFB=∠A,在△ABE和△FCB中,,∴△ABE≌△FCB(AAS),∴FC=AB=4,∵四边形ABCD是矩形,∴BC=AD=6,在Rt△FCB中,由勾股定理得,故答案为:.【点评】本题考查了矩形的性质,三角形全等的性质与判定,勾股定理,熟知矩形的对边平行且相等,四个角都是直角.15.【分析】可设第一组有x人,则第二组有(x+6)人,根据两组平均每人植树的棵数相等,列出方程计算即可求解.【解答】解:设第一组有x人,则第二组有(x+6)人,依题意有:=,解得x=3,经检验,x=3是原方程的解.故第一组有3人.故答案为:3.【点评】本题考查了应用类问题,关键是根据两组平均每人植树的棵数相等找到等量关系.16.【分析】(1)由△ADE和△CBF是等边三角形,可得△CDH和△ABG是等边三角形,DE∥BG,CF∥AG,即知EG=AG﹣AE=c﹣a,GF=BG﹣BF=c﹣b,根据四边形EHFG 的周长与△CDH的周长相等,有2[(c﹣a)+(c﹣b)]=3(a+b﹣c),故5a+5b=7c;=S△ABG﹣S△BCF﹣S△ADE+S△CDH,四边形EHFG的面积与△CDH的面(2)由S四边形EHFG=S△BCF+S△ADE,即c2=a2+b2,从而可得a2+b2=c2.积相等,可得S△ABG【解答】解:(1)∵△ADE和△CBF是等边三角形,∴∠A=∠ADE=∠B=∠BCF=60°,∴△CDH和△ABG是等边三角形,DE∥BG,CF∥AG,∴四边形EHFG是平行四边形,AB=AG=BG=c,CH=DH=CD=AD+BC﹣AB=a+b﹣c,∴EG=AG﹣AE=c﹣a,GF=BG﹣BF=c﹣b,∵四边形EHFG的周长与△CDH的周长相等,∴2[(c﹣a)+(c﹣b)]=3(a+b﹣c),整理得:5a+5b=7c,故答案为:5a+5b=7c;=S△ABG﹣S△BCF﹣S△ADE+S△CDH,四边形EHFG的面积与△CDH的面(2)∵S四边形EHFG积相等,﹣S△BCF﹣S△ADE+S△CDH=S△CDH,∴S△ABG=S△BCF+S△ADE,∴S△ABG∵△ABG,△ADE和△CBF是等边三角形,∴c2=a2+b2,∴c2=a2+b2,故答案为:a2+b2=c2.【点评】本题考查等边三角形的性质及应用,解题的关键是用含a,b,c的代数式表示相关线段的长度.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.【分析】根据有理数的乘方,绝对值的性质,算术平方根进行计算即可.【解答】解:22+|﹣3|﹣=4+3﹣=4+3﹣5=7﹣5=2.【点评】本题考查实数的运算,实数的相关运算法则是基础且重要知识点,必须熟练掌握.18.【分析】利用加减消元法求解即可.【解答】解:,①+②得3x=9,解得x=3,把x=3代入①,得3+y=7,解得y=4,∴方程组的解是.【点评】本题主要考查解二元一次方程组,解答的关键是熟练掌握解二元一次方程组的方法.19.【分析】在Rt△ABC中,利用锐角三角函数的定义进行计算,即可解答.【解答】解:在Rt△ABC中,AB=120cm,∠BAC=90°,∠B=33.7°,∴tan B=,∴AC=AB•tan33.7°≈120×0.67=80.4≈80(cm),∴AC的长约为80cm.【点评】本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.20.【分析】(1)设h关于ρ的函数解析式为,把ρ=1,h=20代入解析式,解方程即可得到结论;(2)把h=25代入,求得ρ=0.8,于是得到结论.【解答】解:(1)设h关于ρ的函数解析式为,把ρ=1,h=20代入解析式,得k=1×20=20,∴h关于ρ的函数解析式为;(2)把h=25代入,得,解得:ρ=0.8,答:该液体的密度ρ为0.8g/cm3.【点评】本题考查了反比例函数的应用,正确地求出反比例函数的解析式是解题的关键.21.【分析】(1)证明AB∥CD,可得结论;(2)桌线段BD的垂直平分线交AD与点F交BC与点E即可.【解答】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∠A=∠C,∴180°﹣(∠ADB+∠A)=180°﹣(∠CBD+∠C),即∠ABD=∠CDB,∴AB∥CD,∴四边形ABCD是平行四边形;(2)解:如图,四边形BEDF就是所求作的菱形.【点评】本题考查作图﹣复杂作图,平行四边形的判定和性质,菱形的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题.22.【分析】(1)将表格中A、B班各等级人数分别相加即可得出答案;(2)分别计算出A、B班级成绩的平均数,再从平均数、中位数和百分率方面求解即可;(3)计算出前测A、B班级成绩的平均数,再与后测的平均数、中位数及百分率分析求解即可.【解答】解:(1)A班的人数:28+9+9+3+1=50(人),B班的人数:25+10+8+2+1=46(人),答:A,B两班的学生人数分别是50人,46人.(2)==9.1,=≈12.9,从平均数看,B班成绩好于A班成绩.从中位数看,A班中位数在5<x≤10这一范围,B班中位数在10<x≤15这一范围,B 班成绩好于A班成绩.从百分率看,A班15分以上的人数占16%,B班15分以上的人数约占46%,B班成绩好于A班成绩.(3)前测结果中:,.4,从平均数看,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.从中位数看,两班前测中位数均在0<x≤5这一范围,后测A班中位数在5<x≤10这一范围,B班中位数在10<x≤15这一范围,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.从百分率看,A班15分上的人数增加了100%,B班15分以上的人数增加了600%,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.【点评】本题主要考查统计量的选择,解题的关键是掌握加权平均数、中位数的定义和意义.23.【分析】(1)连接OP,设∠BOP的度数为n,可得=π,n=60,即∠BOP=60°,故∠BAP=30°,而直线l是⊙O的切线,有∠ABC=90°,从而BC==2;(2)连接BQ,过点C作CF⊥AD于点F,求出cos∠BAQ==,由=,得∠BAC=∠DAC,有CF=BC,证明∠FCD=∠BAQ,即得=,故=;(3)连接BQ,证明△APQ∽△ADC,得=①,证明△APB∽△ABC,得②,由BC=CD,将①②两式相除得:=,故=.【解答】解:(1)如图,连接OP,设∠BOP的度数为n°,∵AB=6,长为π,∴=π,∴n=60,即∠BOP=60°,∴∠BAP=30°,∵直线l是⊙O的切线,∴∠ABC=90°,∴BC==2;(2)如图,连接BQ,过点C作CF⊥AD于点F,∵AB为⊙O直径,∴∠BQA=90°,∴cos∠BAQ==,∵=,∴∠BAC=∠DAC,∵CF⊥AD,AB⊥BC,∴CF=BC,∵∠BAQ+∠ADB=90°,∠FCD+∠ADB=90°,∴∠FCD=∠BAQ,∴cos∠FCD=cos∠BAQ=,∴=,∴=;(3)如图,连接BQ,∵AB⊥BC,BQ⊥AD,∴∠ABQ=90°﹣∠QBD=∠ADC,∵∠ABQ=∠APQ,∴∠APQ=∠ADC,∵∠PAQ=∠DAC,∴△APQ∽△ADC,∴=①,∵∠ABC=90°=∠APB,∠BAC=∠PAB,∴△APB∽△ABC,∴②,由BC=CD,将①②两式相除得:=,∵cos∠BAQ==,∴=.【点评】本题考查圆的综合应用,涉及相似三角形的判定与性质,锐角三角函数,圆的切线等知识,解题的关键是熟练掌握圆的相关性质及应用.24.【分析】任务1:依表计算即可;任务2:根据待定系法确定关系式即可;任务3:(1)根据题意计算即可;(2)设h=kt+30,代入w计算化简,利用二次函数性质求w的最小值即可;任务4:按照上一问题中的结论设计即可.【解答】解:任务1:变化量分别为:29﹣30=﹣1(cm);28.1﹣29=﹣0.9(cm);27﹣28.1=﹣1.1(cm);25.8﹣27=﹣1.2(cm),∴每隔10min水面高度观察值的变化量为:﹣1,﹣0.9,﹣1.1,﹣1.2.任务2:设水面高度h与流水时间t的函数解析式为h=kt+b,∵t=0时,h=30;t=10时,h=29;∴,解得:,∴水面高度h与流水时间t的函数解析式为h=﹣0.1t+30;任务3:(1)w=(30﹣30)²+(29﹣29)2+(28﹣28.1)2+(27﹣27)2+(26﹣25.8)2=0.05.(2)w=(10k+30﹣30)2+(10k+30﹣29)2+(10k+30﹣28.1)2+(10k+30﹣27)2+(10k+30﹣25.8)2=3000(k+0.102)2﹣0.038,∴当k=﹣0.102时,w的最小值为0.038.任务4:在容器外壁每隔1.02cm标记一次刻度,这样水面每降低一个刻度,就代表时间经过了10分钟.【点评】本题考查了一次函数的应用,充分理解题意是解题关键。

浙江省2023年中考数学真题(图形的相似)附答案

浙江省2023年中考数学真题(图形的相似)附答案

浙江省2023年中考数学真题(图形的相似)一、选择题1.如图.在直角坐标系中.△ABC的三个顶点分别为A(1.2) B(2.1) C(3.2).现以原点O为位似中心.在第一象限内作与△ABC的位似比为2的位似图形△A′B′C′.则顶点C′的坐标是()A.(2,4)B.(4,2)C.(6,4)D.(5,4)2.如图.点P是△ABC的重心.点D是边AC的中点.PE∥AC交BC于点E.DF∥BC交EP于点F.若四边形CDFE的面积为6.则△ABC的面积为()A.12B.14C.18D.243.如图.在四边形ABCD中.AD∥BC.∥C=45°.以AB为腰作等腰直角三角形BAE.顶点E恰好落在CD边上.若AD=1.则CE的长是()A.√2B.√2C.2D.124.如图.在△ABC中.D是边BC上的点(不与点B.C重合).过点D作DE//AB交AC于点E;过点D作DF//AC交AB于点F.N是线段BF上的点.BN=2NF;M是线段DE上的点.DM=2ME.若已知△CMN的面积.则一定能求出()A.△AFE的面积B.△BDF的面积C.△BCN的面积D.△DCE的面积5.图1是第七届国际数学教育大会(ICME)的会徽.图2由其主体图案中相邻两个直角三角形组合而成.作菱形CDEF.使点D.E.F分别在边OC.OB.BC上.过点E作EH⊥AB于点H.当AB=BC,∠BOC= 30°,DE=2时.EH的长为()A.√3B.32C.√2D.43二、填空题6.小慧同学在学习了九年级上册“4.1比例线段”3节课后.发现学习内容是一个逐步特殊化的过程.请在横线上填写适当的数值+感受这种特殊化的学习过程.7.如图.在△ABC中.AB=AC ∠A<90°.点D.E.F分别在边AB.BC.CA上.连接DE.EF.FD.已知点B和点F关于直线DE对称.设BCAB=k .若AD=DF.则CFFA=(结果用含k的代数式表示).8.如图.在Rt△ABC中.∠C=90°,E为AB边上一点.以AE为直径的半圆O与BC相切于点D.连接AD.BE=3 BD=3√5.P是AB边上的动点.当△ADP为等腰三角形时.AP的长为.三、解答题9.如图.在⊙O中.直径AB垂直弦CD于点E.连接AC AD BC作CF⊥AD于点F.交线段OB于点G(不与点O.B重合).连接OF.(1)若BE=1.求GE的长.(2)求证:BC2=BG⋅BO(3)若FO=FG.猜想∠CAD的度数.并证明你的结论.10.在边长为1的正方形ABCD中.点E在边AD上(不与点A.D重合).射线BE与射线CD交于点F.(1)若ED=13.求DF的长.(2)求证:AE⋅CF=1.(3)以点B为圆心.BC长为半径画弧.交线段BE于点G.若EG=ED.求ED的长.11.如图.已知矩形ABCD.点E在CB延长线上.点F在BC延长线上.过点F作FH⊥EF交ED的延长线于点H.连结AF交EH于点G,GE=GH.(1)求证:BE=CF.(2)当ABFH=56,AD=4时.求EF的长.12.如图1.AB为半圆O的直径.C为BA延长线上一点.CD切半圆于点D,BE⊥CD.交CD延长线于点E.交半圆于点F.已知OA=32,AC=1.如图2.连结AF.P为线段AF上一点.过点P作BC的平行线分别交CE.BE于点M.N.过点P作PH⊥AB于点H.设PH=x,MN=y.(1)求CE的长和y关于x的函数表达式.(2)当PH<PN.且长度分别等于PH,PN.a的三条线段组成的三角形与△BCE相似时.求a的值.(3)延长PN交半圆O于点Q.当NQ=154x−3时.求MN的长.13.在平行四边形ABCD中(顶点A,B,C,D按逆时针方向排列)AB=12,AD=10.∥B为锐角.且sinB=45.(1)如图1.求AB边上的高CH的长.(2)P是边AB上的一动点.点C,D同时绕点P按逆时针方向旋转90°得点C′,D′.①如图2.当点C′落在射线CA上时.求BP的长.②当ΔAC′D′当是直角三角形时.求BP的长.14.我们可以通过中心投影的方法建立圆上的点与直线上点的对应关系.用直线上点的位置刻画圆上点的位置.如图.AB是⊙O的直径.直线l是⊙O的切线.B为切点.P.Q是圆上两点(不与点A重合.且在直径AB的同侧).分别作射线AP.AQ交直线l于点C.点D.(1)如图1.当AB =6.BP ⌢长为π时.求BC 的长.(2)如图2.当AQ AB =34.BP ⌢=PQ ⌢时.求BC CD的值. (3)如图3.当sin∠BAQ =√64.BC =CD 时.连接BP.PQ.直接写出PQ BP 的值. 15.如图1.锐角△ABC 内接于⊙O .D 为BC 的中点.连接AD 并延长交⊙O 于点E.连接BE ,CE .过C 作AC 的垂线交AE 于点F.点G 在AD 上.连接BG ,CG .若BC 平分∠EBG 且∠BCG =∠AFC .(1)求∠BGC 的度数.(2)①求证:AF =BC .②若AG =DF .求tan∠GBC 的值.(3)如图2.当点O 恰好在BG 上且OG =1时.求AC 的长.16.已知.AB 是半径为1的⊙O 的弦.⊙O 的另一条弦CD 满足CD =AB .且CD ⊥AB 于点H (其中点H 在圆内.且AH >BH ,CH >DH ).(1)在图1中用尺规作出弦CD 与点H (不写作法.保留作图痕迹).(2)连结AD.猜想.当弦AB 的长度发生变化时.线段AD 的长度是否变化?若发生变化.说明理由:若不变.求出AD 的长度.(3)如图2.延长AH 至点F.使得HF =AH .连结CF.∠HCF 的平分线CP 交AD 的延长线于点P.点M 为AP 的中点.连结HM.若PD =12AD .求证:MH ⊥CP . 17.如图.在∥O 中.AB 是一条不过圆心O 的弦.点C.D 是AB⌢的三等分点.直径CE 交AB 于点F.连结AD 交CF 于点G.连结AC.过点C 的切线交BA 的延长线于点H .(1)求证:AD∥HC ;(2)若OG GC=2.求tan∥FAG 的值; (3)连结BC 交AD 于点N .若∥O 的半径为5.下面三个问题.依次按照易、中、难排列.对应的分值为2分、3分、4分.请根据自己的认知水平.选择其中一道问题进行解答。

2023年金华市中考数学试卷及答案

2023年金华市中考数学试卷及答案

2023年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1. 某一天,哈尔滨、北京、杭州、金华四个城市的最低气温分别是20-℃,10-℃,0℃,2℃,其中最低气温是( )A. 20-℃B. 10-℃C. 0℃D. 2℃2. 某物体如图所示,其俯视图是( )A. B. C. D. 3. 在2023年金华市政府工作报告中提到,2022年全市共引进大学生约123000人,其中数123000用科学记数法表示为( )A. 31.2310⨯B. 312310⨯C. 412.310⨯D. 51.2310⨯ 4. 在下列长度的四条线段中,能与长6cm,8cm 的两条线段围成一个三角形的是( )A. 1cmB. 2cmC. 13cmD. 14cm5. ,则x 的值可以是( ) A. 0 B. 1- C. 2- D. 26. 上周双休日,某班8名同学课外阅读的时间如下(单位:时):1,4,2,4,3,3,4,5.这组数据的众数是( )A. 1时B. 2时C. 3时D. 4时7. 如图,已知12350∠=∠=∠=︒,则4∠的度数是( )A. 120︒B. 125︒C. 130︒D. 135︒8. 如图,两个灯笼的位置,A B 的坐标分别是()()3,3,1,2-,将点B 向右平移2个单位,再向上平移1个单位得到点B ',则关于点,A B '的位置描述正确是( )A. 关于x 轴对称B. 关于y 轴对称C. 关于原点O 对称D. 关于直线y x =对称9. 如图,一次函数y ax b =+的图象与反比例函数k y x=的图象交于点()()232A B m -,,,,则不等式k ax b x+>的解是( )A. 30x -<<或2x >B. 3x <-或02x <<C. 20x -<<或2x >D. 30x -<<或3x >10. 如图,在Rt ABC △中,90ACB ∠=︒,以其三边为边在AB 的同侧作三个正方形,点F 在GH 上,CG 与EF 交于点P CM ,与BE 交于点Q .若HF FG =,则PCQEABEF S S 四边形正方形的值是( )A. 14B. 15C. D. 625二、填空题(本题有6小题,每小题4分,共24分)11. 因式分解:x x +2_____.12. 如图,把两根钢条OA OB ,的一个端点连在一起,点C D ,分别是OA OB ,的中点.若4cm CD =,则该工件内槽宽AB 的长为__________cm .13. 下表为某中学统计的七年级500名学生体重达标情况(单位:人),在该年级随机抽取一名学生,该生体重“标准”的概率是__________.14. 在直角坐标系中,点()4,5绕原点O 逆时针方向旋转90︒,得到的点的坐标是__________.15. 如图,在ABC 中,6cm,50AB AC BAC ==∠=︒,以AB 为直径作半圆,交BC 于点D ,交AC 于点E ,则弧DE 的长为__________cm .16. 如图是一块矩形菜地()(),m ,m ABCD AB a AD b ==,面积为()2m s .现将边AB 增加1m .(1)如图1,若5a =,边AD 减少1m ,得到的矩形面积不变,则b 的值是__________.(2)如图2,若边AD 增加2m ,有且只有一个a 的值,使得到的矩形面积为()22m s ,则s 的值是__________. 三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17. 计算:0(2023)2sin305-︒+-.18. 已知13x=,求()()()212134x x x x+-+-的值.19. 为激发学生参与劳动的兴趣,某校开设了以“端午”为主题的活动课程,要求每位学生在“折纸龙”“采艾叶”“做香囊”与“包粽子”四门课程中选且只选其中一门,随机调查了本校部分学生的选课情况,绘制了两幅不完整的统计图.请根据图表信息回答下列问题:(1)求本次被调查的学生人数,并补全条形统计图.(2)本校共有1000名学生,若每间教室最多可安排30名学生,试估计开设“折纸龙”课程的教室至少需要几间.20. 如图,点A在第一象限内,A与x轴相切于点B,与y轴相交于点,C D.连接AB,过点A作AH CD⊥于点H.(1)求证:四边形ABOH为矩形.(2)已知A的半径为4,OB=,求弦CD的长.21. 如图,为制作角度尺,将长为10,宽为4的矩形OABC分割成410⨯的小正方形网格.在该矩形边上取点P,来表示POA∠的度数.阅读以下作图过程,并回答下列问题:(1)分别求点34,P P 表示的度数.(2)用直尺和圆规在该矩形的边上作点5P ,使该点表示37.5︒(保留作图痕迹,不写作法).22. 兄妹俩放学后沿图1中的马路从学校出发,到书吧看书后回家,哥哥步行先出发,途中速度保持不变;妺妺骑车,到书吧前的速度为200米/分.图2中的图象分别表示两人离学校的路程s (米)与哥哥离开学校的时间t (分)的函数关系.(1)求哥哥步行的速度.(2)已知妺妺比哥哥迟2分钟到书吧.①求图中a 的值;①妺妺在书吧待了10分钟后回家,速度是哥哥的1.6倍,能否在哥哥到家前追上哥哥?若能,求追上时兄妺俩离家还有多远;若不能,说明理由.23. 问题:如何设计“倍力桥”的结构?探究1:图3是“桥”侧面示意图,,A B 为横梁与地面的交点,,C E 为圆心,12,,DH H 是横梁侧面两边的交点.测得32cm AB =,点C 到AB 的距离为12cm .试判断四边形1CDEH 的形状,并求l 的值.探究2:若搭成的“桥”刚好能绕成环,其侧面示意图的内部形成一个多边形.①若有12根横梁绕成环,图4是其侧面示意图,内部形成十二边形12312H H H H ,求l 的值;①若有n 根横梁绕成的环(n 为偶数,且6n ≥),试用关于n 的代数式表示内部形成的多边形123nH H H H 的周长.24. 如图,直线2y x =+与x 轴,y 轴分别交于点,A B ,抛物线的顶点P 在直线AB 上,与x 轴的交点为,C D ,其中点C 的坐标为()2,0.直线BC 与直线PD 相交于点E .(1)如图2,若抛物线经过原点O .①求该抛物线的函数表达式;①求BE EC的值. (2)连接,PC CPE ∠与BAO ∠能否相等?若能,求符合条件的点P 的横坐标;若不能,试说明理由.2023年浙江省金华市中考数学试卷答案一、选择题.1. A2. B3. D4. C5. D6. D7.C8. B9. A10. B解:①四边形ACGH 是正方形,且HF FG =. 设HF FG a ==,则2AC CG GH AH a ====. ①四边形ABEF 是正方形.①90AFP ∠=︒.①90HAF HFA GFP ∠=︒-∠=∠. ①tan tan HAF GFP ∠=∠,即12HF GP HA FG ==. ①12GP a =. ①13222PC a a a =-=. 同理tan tan HAF CAB ∠=∠,即12HF BC HA AC ==. ①BC a =. 同理12CQ a =. ①52PB a =. 22221524BQ a a a ⎛⎫=+= ⎪⎝⎭,2111224BCQ S a a a =⨯⨯=△. ①Rt Rt BQC BPE ∽△△.①2225142554BCQ BEP a S BQ S BP a ⎛⎫=== ⎪⎝⎭△△. ①2554BEP BCQ S S a ==△△. ①2BEP BCQ CQEP S S S a =-=四边形△△. ①()22222225ABEF S AB AC BC a a a ==+=+=正方形. ①22155PCQEABEF S a a S ==四边形正方形. 故选:B .二、填空题.11. ()1x x +12. 8 13. 71014. ()5,4- 15. 56π 解:如图,连接AD ,OD ,OE .①AB 为直径.①AD AB ⊥.①6cm,50AB AC BAC ==∠=︒. ①BD CD =,1252BAD CAD BAC ∠=∠=∠=︒.①250DOE BAD ∠=∠=︒,113cm 22OD AB AC ===. ①弧DE 的长为()50351806cm ππ⨯⨯=. 故答案为:56πcm .16. ①. 6 ①. 6+解:(1)根据题意,得,起始长方形的面积为()2m s ab =,变化后长方形的面积为()()()211m a b +-. ①5a =,边AD 减少1m ,得到的矩形面积不变. ①()()5115b b +-=.解得6b =.故答案为:6.(2)根据题意,得,起始长方形的面积为()2m s ab =,变化后长方形的面积为()()()212m a b ++. ①()()212s a b =++,s b a=. ①()212s s a a ⎛⎫=++ ⎪⎝⎭. ①221s s a a=++. ①()2220a s a s +-+=.①有且只有一个a 的值.①()22Δ4280b ac s s =-=--=. ①21240s s -+=.解得1266s s =+=-(舍去).故答案为:6+. 三、解答题.17. 718. 019. (1)本次调查抽取的学生人数为50人,见解析 (2)6间20. (1)见解析 (2)6【小问1详解】证明:①A 与x 轴相切于点B .①AB x ⊥轴.①,AH CD HO OB ⊥⊥.①90AHO HOB OBA ∠=∠=∠=︒.①四边形AHOB 是矩形.【小问2详解】如图,连接AC .四边形AHOB 是矩形.AH OB ∴==在Rt AHC 中,222CH AC AH =-.3CH ∴==.点A 为圆心,AH CD ⊥.2CD CH ∴=6=.21. (1)点3P 表示60︒;点4P 表示15︒(2)见解析【小问1详解】解:①四边形OABC 是矩形.BC OA ∴∥.2230OP C P OA ∴∠=∠=︒由作图可知,EF 是2OP 的中垂线.332OP P P ∴=.323230POP P P O ∴∠=∠=︒.332260POA POP P OA ∴∠=∠+∠=︒.∴点3P 表示60︒.①由作图可知,22P D P O =.22P OD P DO ∴∠=∠.又CB OA .2P DO DOA ∴∠=∠.221152POD DOA POA ∴∠=∠=∠=︒. ①点4P 表示15︒.故答案为:点3P 表示60︒,点4P 表示15︒.【小问2详解】解:如图所示.作34POP ∠的角平分线等.如图2,点5P 即为所求作的点.①点3P 表示60︒,点4P 表示15︒.5P OA ∠=()()()34434111601537.5222POA P OA P OA POA P OA ∠-∠+∠=∠+∠=︒+︒=︒. ①5P 表示37.5︒.22. (1)100v =(2)①6a =;①能追上,理由见解析【小问1详解】解:由图可得()8,800A .8001008v ∴==(米/分). ①哥哥步行速度为100米/分.【小问2详解】①根据妺妺到书吧前的速度为200米/分,可知DE 的解析式的k 为200.设DE 所在直线为200s t b =+,将()10,800代入,得80020010b =⨯+.解得1200b =-.①DE 所在直线为2001200s t =-.当0s =时,20012000t -=,解得6t =.①6a =.①能追上.如图,根据哥哥的速度没变,可得,BC OA 的解析式的k 值相同,妹妹的速度减小但仍大于哥哥的速度,将妹妹的行程图象补充完整.设BC 所在直线为1100s t b =+,将()17,800B 代入,得180010017b =⨯+.解得1900b =-.①100900s t =-.①妺妺的速度是160米/分.设FG 所在直线为2160s t b =+,将()20,800F 代入,得280016020b =⨯+.解得22400b =-.①1602400s t =-.联立方程1009001602400s t s t =-⎧⎨=-⎩.解得251600t s =⎧⎨=⎩. ①19001600300-=米,即追上时兄妺俩离家300米远.23. 探究1:四边形1CDEH 是菱形,22cm l =;探究2:①(16cm l =+;①6cm 360tan n n ⎛⎫ ⎪ ⎪︒ ⎪⎝⎭ 解:探究1:四边形1CDEH 是菱形,理由如下:由图1可知,1CD EH ∥,1ED CH ∥.∴1CDEH 为平行四边形.桥梁的规格是相同的.①桥梁的宽度相同,即四边形1CDEH 每条边上的高相等. ①1CDEH 的面积等于边长乘这条边上的高.∴1CDEH 每条边相等.∴1CDEH 为菱形.①如图1,过点C 作CM AB ⊥于点M .由题意,得,12CA CB CM ==,32cm AB =. ①1162AM AB ==.在Rt CAM △中,222CA AM CM =+.①20CA ===.①222cm l CA =+=.故答案为:22cm l =.探究2:①如图2,过点C 作12CN H H ⊥于点N .由题意,得1212120,,3H CH CH CH CN ∠=︒==.130CH N ∴∠=︒.1126,tan 30CN CH CN H N ∴︒===== 又四边形1CDEH 是菱形.①l 16EH CH ==.①((22616cm l =++=+.故答案为:(16cm l =+.①如图3,过点C 作12CN H H ⊥于点N .由题意,形成的多边形为正n 边形.∴外角12360CH H n∠=︒.在1Rt CNH 中,1123360tan tan CN H N CH H n ==∠︒. 又1212,CH CH CN H H =⊥. ①12162360tan H H H N n==︒. ∴形成的多边形的周长为6cm 360tan n n ⎛⎫ ⎪ ⎪︒ ⎪⎝⎭. 故答案为:6cm 360tan n n ⎛⎫ ⎪ ⎪︒ ⎪⎝⎭. 24. (1)①2y x =+;①13 (2)能,6或23或67-或143-. 【小问1详解】解:①①2OC =.①顶点P 的横坐标为1.①当1x =时,22y x =+=. ①点P的坐标是⎛ ⎝⎭.设抛物线的函数表达式为2(1)y a x =-+把()0,0代入.得0a =+.解得a =. ①该抛物线的函数表达式为21)22y x =--+.即22y x =-+. ①如图1,过点E 作EH OC ⊥于点H .设直线BC为y kx =把()2,0C 代入,得02k =+解得k =. ①直线BC为2y x =-+ 同理,直线OP为2y x =.由2.y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩解得1,2x y ⎧=⎪⎪⎨⎪=⎪⎩①12E ⎛ ⎝⎭. ①113,2222OH HC ==-=. ①EH BO ∥.①13BE OH EC HC ==. 【小问2详解】设点P 的坐标为t ⎛+ ⎝,则点D 的坐标为()22,0t -. ①如图21-,当2t >时,存在CPE BAO ∠=∠.记,CPE BAO APC αβ∠=∠=∠=,则APD αβ∠=+. ①PCD ∠为PAC △的外角.①PCD αβ∠=+.①PC PD =.①PDC PCD αβ∠=∠=+.①APD ADP ∠=∠.①2AP AD t ==.过点P 作PF x ⊥轴于点F ,则2AF t =+.在Rt APF 中,2cos 3AF BAO AP ∠==. ①2223t t +=,解得6t =. ①点P 的横坐标为6.①如图2-2,当02t <≤时,存在CPE BAO ∠=∠.记,CPE BAD APD αβ∠=∠=∠=.①PDC ∠为PAD 的外角.①PDC αβ∠=+.①PCD PDC αβ∠=∠=+①APC ACP ∠=∠.①4AP AC ==.过点P 作PF x ⊥轴于点F ,则2AF t =+.在Rt APF 中,2cos 3AF BAO AP ∠==. ①2243t +=,解得23t =. ①点P 的横坐标为23.①如图2-3,当20t -<≤时,存在CPE BAO ∠=∠.记BAO α∠=.①PC PD =. ①1122PDC PCD CPE α∠=∠=∠=. ①1122APD BAO PDC αα∠=∠-∠=-=.①APD PDA ∠=∠.①2AD AP t ==-.过点P 作PF x ⊥轴于点F ,则2AF t =+.在Rt APF 中,2cos 3AF BAO AP =∠=. ①2223t t +=-,解得67t =-. ①点P 的横坐标为67-. ①如图2-4,当2t ≤-时,存在CPE BAO ∠=∠.记BAO α∠=. ①PC PD =. ①1122PCD PDC CPE α∠=∠=∠=.①1122APC BAO PCD ααα∠=∠-∠=-=. ①4PA CA ==. 过点P 作PF x ⊥轴于点F ,则2AF t =--.在Rt APF 中,2cos 3AF PAF AP =∠=. ①2243t --=,解得143t =-. ①点P 的横坐标为143-. 综上,点P 的横坐标为26146,,,373--.。

2024年浙江省中考数学试卷(附答案)

2024年浙江省中考数学试卷(附答案)

2024年浙江省中考数学试卷(附答案)一、选择题(每题3分)1.(3分)以下四个城市中某天中午12时气温最低的城市是()北京济南太原郑州0℃﹣1℃﹣2℃3℃A.北京B.济南C.太原D.郑州【分析】有理数大小比较的法则:(1)正数都大于0;(2)负数都小于0;(3)正数大于一切负数;(4)两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:|﹣1|=1,|﹣2|=2,∵1<2,∴﹣1>﹣2;∵3℃>0℃>﹣1℃>﹣2℃,∴所给的四个城市中某天中午12时气温最低的城市是太原.故选:C.【点评】此题主要考查了有理数大小比较的方法,解答此题的关键是要明确:(1)正数都大于0;(2)负数都小于0;(3)正数大于一切负数;(4)两个负数,绝对值大的其值反而小.2.(3分)5个相同正方体搭成的几何体主视图为()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看,共有三列,从左到右小正方形的个数分别为2、2、1.故选:B.【点评】此题主要考查了简单组合体的三视图,主视图是从物体的正面看得到的视图.3.(3分)2024年浙江经济一季度GDP为2013,7000,0万元,其中2013,7000,0用科学记数法表示为()A.20.137×109B.0.20137×108C.2.0137×109D.2.0137×108【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.4.(3分)下列式子运算正确的是()A.x3+x2=x5B.x3•x2=x6C.(x3)2=x9D.x6÷x2=x4【分析】根据合并同类项、同底数幂的乘除法及幂的乘方与积的乘方进行计算,逐一判断即可.【解答】解:A.x3+x2不能合并同类项,故本选项不符合题意;B.x3•x2=x5,故本选项不符合题意;C.(x3)2=x6,故本选项不符合题意;D.x6÷x2=x4,故本选项符合题意;故选:D.【点评】本题主要考查合并同类项、同底数幂的乘除法及幂的乘方与积的乘方,熟练掌握以上知识点是解题的关键.5.(3分)某班有5位学生参加志愿服务次数为:7,7,8,10,13.则这5位学生志愿服务次数的中位数为()A.7B.8C.9D.10【分析】根据中位数的定义求解即可.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:菜鸡班有5位学生参加志愿服务次数为:7,7,8,10,13,从小到大排列排在中间的数是8,所以这5位学生志愿服务次数的中位数为8.故选:B.【点评】本题主要考查中位数,解题的关键是掌握中位数的定义.6.(3分)如图,在平面直角坐标系中,△ABC与△A′B′C′是位似图形,位似中心为点O.若点A(﹣3,1)的对应点为A′(﹣6,2),则点B(﹣2,4)的对应点B′的坐标为()A.(﹣4,8)B.(8,﹣4)C.(﹣8,4)D.(4,﹣8)【分析】根据点A与点A′的坐标求出相似比,再根据位似变换的性质计算即可.【解答】解:∵△ABC与△A′B′C′是位似图形,位似中心为点O,点A(﹣3,1)的对应点为A′(﹣6,2),∴△ABC与△A′B′C′的相似比为1:2,∵点B的坐标为(﹣2,4),∴点B的对应点B′的坐标为(﹣2×2,4×2),即(﹣4,8),故选:A.【点评】本题主要考查的是位似变换,正确求出相似比是解题的关键.7.(3分)不等式组的解集在数轴上表示为()A.B.C.D.【分析】按照解一元一次不等式组的步骤进行计算,即可解答.【解答】解:,解不等式①得:x≥1,解不等式②得:x<4,∴原不等式组的解集为:1≤x<4,∴该不等式组的解集在数轴上表示如图所示:故选:A.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,熟练掌握解一元一次不等式组的步骤是解题的关键.8.(3分)如图,正方形ABCD由四个全等的直角三角形(△ABE,△BCF,△CDG,△DAH)和中间一个小正方形EFGH组成,连接DE.若AE=4,BE=3,则DE=()A.5B.C.D.4【分析】由全等三角形的性质得DH=AE=4,AH=BE=3,则EH=AE﹣AH=1,而∠DHE=90°,所以DE==,于是得到问题的答案.【解答】解:∵Rt△DAH≌Rt△ABE,∴DH=AE=4,AH=BE=3,∴EH=AE﹣AH=4﹣3=1,∵四边形形EFGH是正方形,∴∠DHE=90°,∴DE===,故选:C.【点评】此题重点考查全等三角形的性质、正方形的性质、勾股定理等知识,求得DH=4,EH=1,并且证明∠DHE=90°是解题的关键.9.(3分)反比例函数的图象上有P(t,y1),Q(t+4,y2)两点.下列正确的选项是()A.当t<﹣4时,y2<y1<0B.当﹣4<t<0时,y2<y1<0C.当﹣4<t<0时,0<y1<y2D.当t>0时,0<y1<y2【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再对各选项进行逐一判断即可.【解答】解:∵反比例函数中,k=4>0,∴此函数图象的两个分支分别位于第一、三象限,在每一象限内y随x的增大而减小,A、当t<﹣4时,t+4<0,∵t<t+4,∴y2<y1<0,正确,符合题意;B、当﹣4<t<0时,点P(t,y1)在第三象限,点Q(t+4,y2)在第一象限,∴y1<0,y2>0,∴y1<0<y2,原结论错误,不符合题意;C、由B知,当﹣4<t<0时,y1<0<y2,原结论错误,不符合题意;D、当t>0时,t+4>0,∴P(t,y1),Q(t+4,y2)在第一象限,∵t<t+4,∴y1>y2>0,原结论错误,不符合题意.故选:A.【点评】本题考查的是反比例函数图象上点的坐标特征,熟知反比例函数的图象与系数的关系是解题的关键.10.(3分)如图,在▱ABCD中,AC,BD相交于点O,AC=2,.过点A作AE⊥BC的垂线交BC于点E,记BE长为x,BC长为y.当x,y的值发生变化时,下列代数式的值不变的是()A.x+y B.x﹣y C.xy D.x2+y2【分析】过D作DH⊥BC,交BC延长线于H,由平行四边形当性质推出AB=DC,AD∥BC,得到AE=DH,判定Rt△DCH≌Rt△ABE(HL),得到CH=BE=x,由勾股定理得到22﹣(y﹣x)2=﹣(y+x)2,得到xy=2.【解答】解:过D作DH⊥BC,交BC延长线于H,∵四边形ABCD是平行四边形,∴AB=DC,AD∥BC,∵AE⊥BC,DH⊥BC,∴AE=DH,∴Rt△DCH≌Rt△ABE(HL),∴CH=BE=x,∵BC=y,∴EC=BC﹣BE=y﹣x,BH=BC+CH=y+x,∵AE2=AC2﹣EC2,DH2=BD2﹣BH2,∴22﹣(y﹣x)2=﹣(y+x)2,∴xy=2.故选:C.【点评】本题考查平行四边形的性质,全等三角形的判定和性质,勾股定理,关键是由Rt△DCH≌Rt△ABE(HL),得到CH=BE,由勾股定理得到22﹣(y﹣x)2=﹣(y+x)2.二、填空题(每题3分)11.(3分)因式分解:a2﹣7a=a(a﹣7).【分析】用提取公因式法分解因式即可.【解答】解:a2﹣7a=a(a﹣7).故答案为:a(a﹣7).【点评】本题考查了分解因式,能选择适当的方法分解因式是解此题的关键,注意:因式分解的方法有:提取公因式法,公式法,十字相乘法等.12.(3分)若,则x=3.【分析】先去分母将分式方程化为整式方程,求出整式方程的解,再进行检验即可.【解答】解:两边都乘以(x﹣1),得2=x﹣1,解得x=3,经检验x=3是原方程的解,所以原方程的解为x=3.故答案为:3.【点评】本题考查解分式方程,掌握分式方程的解法是正确解答的关键.13.(3分)如图,AB是⊙O的直径,AC与⊙O相切,A为切点,连接BC.已知∠ACB=50°,则∠B的度数为40°.【分析】由切线的性质得到∠BAC=90°,由直角三角形的性质求出∠B=90°﹣50°=40.【解答】解:∵AB是⊙O的直径,AC与⊙O相切,A为切点,∴BA⊥AC,∴∠BAC=90°,∵∠ACB=50°,∴∠B=90°﹣50°=40°.故答案为:40°.【点评】本题考查切线的性质,关键是由切线的性质得到∠BAC=90°.14.(3分)有8张卡片,上面分别写着数1,2,3,4,5,6,7,8.从中随机抽取1张,该卡片上的数是4的整数倍的概率是.【分析】直接由概率公式求解即可.【解答】解:∵有8张卡片,上面分别写着数1,2,3,4,5,6,7,8,其中该卡片上的数是4的整数倍的数是4,8,∴该卡片上的数是4的整数倍的概率是=,故答案为:.【点评】本题考查了概率公式:概率=所求情况数与总情况数之比.熟记概率公式是解题的关键.15.(3分)如图,D,E分别是△ABC边AB,AC的中点,连接BE,DE.若∠AED=∠BEC,DE=2,则BE的长为4.【分析】根据三角形中位线定理得到BC=2DE=4,DE∥BC,根据平行线的性质得到∠AED=∠C,根据题意得到∠BEC=∠C,再根据等腰三角形的性质求出BE.【解答】解:∵D,E分别是△ABC边AB,AC的中点,∴BC=2DE=2×2=4,DE∥BC,∴∠AED=∠C,∵∠AED=∠BEC,∴∠BEC=∠C,∴BE=BC=4,故答案为:4.【点评】本题主要考查的是三角形中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.16.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,.线段AB与A′B′关于过点O的直线l对称,点B的对应点B′在线段OC上,A′B′交CD于点E,则△B′CE与四边形OB′ED的面积比为.【分析】根据轴对称可得到等线段等角,再结合菱形的性质可得到△A'ED≌△CEB'(AAS),再证△DOE ≌△B'OE(SSS),由B'C:B'O=2:3即可求出答案.【解答】解:如图连接OE、A'D,∵AB关于过O的直线对称,∴A'在BD延长线上,∵,∴设AC=10k,BD=6k,在菱形ABCD中,OA=OC=5k,CB=OD=3k,∵AB与A'B'关于过O的直线对称,∴OA=OA'=5k,OB=OB'=3k,∠A'=∠DAC=∠DCA,∴A'D=B'C=2k,∵∠A'ED=∠B'CE,∴△A'ED≌△CEB'(AAS),∴DE=B'E,∵OE=OE,OD=OB',∴△DOE≌△B'OE(SSS),=S△B′OE,∴S△DOE∵==,∴==.故答案为:.【点评】本题主要考查了轴对称的性质和菱形的性质、全等三角形的判定和性质,熟练掌握以上基础知识和线段之间的转化是解题关键.三、解答题(17-21每题8分,22、23每题10分,24题12分)17.(8分)计算:.【分析】利用负整数指数幂,立方根的定义,绝对值的性质计算即可.【解答】解:原式=4﹣2+5=7.【点评】本题考查实数的运算,负整数指数幂,立方根,绝对值,熟练掌握相关运算法则是解题的关键.18.(8分)解方程组:.【分析】先有①×3+②得出10x=5,求出x=,再把x=代入①求出y即可.【解答】解:,①×3+②得:10x=5,解得:x=,把x=代入①得:2×﹣y=5,解得:y=﹣4,所以方程组的解是.【点评】本题考查了二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.19.(8分)如图,在△ABC中,AD⊥BC,AE是BC边上的中线,AB=10,AD=6,tan∠ACB=1.(1)求BC的长;(2)求sin∠DAE的值.【分析】(1)由tan∠ACB=1可得CD=AD=6,根据勾股定理可得BD的长,进而底层BC的长;(2)根据AE是BC边上的中线可得CE的长,由DE=CE﹣CD可得DE的长,根据勾股定理可得AE 的长,再根据三角函数的定义解答即可.【解答】解:(1)∵AD⊥BC,AB=10,AD=6,∴BD===8;∵tan∠ACB=1,∴CD=AD=6,∴BC=BD+CD=8+6=14;(2)∵AE是BC边上的中线,∴CE==7,∴DE=CE﹣CD=7﹣6=1,∵AD⊥BC,∴==,∴sin∠DAE===.【点评】本题考查了解直角三角形以及勾股定理,在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.20.(8分)某校开展科学活动.为了解学生对活动项目的喜爱情况,随机抽取部分学生进行问卷调查.调查问卷和统计结果描述如下:科学活动喜爱项目调查问卷以下问题均为单选题,请根据实际情况填写.问题1:在以下四类科学“嘉年华”项目中,你最喜爱的是A(A)科普讲座(B)科幻电影(C)AI应用(D)科学魔术如果问题1选择C.请继续回答问题2.问题2:你更关注的AI应用是E(E)辅助学习(F)虚拟体验(G)智能生活(H)其他根据以上信息.解答下列问题:(1)本次调查中最喜爱“AI应用”的学生中更关注“辅助学习”有多少人?(2)菜鸡学校共有1200名学生,根据统计信息,估计该校最喜爱“科普讲座”的学生人数.【分析】(1)用本次调查中最喜爱“AI应用”的学生人数乘E所占百分比即可;(2)用1200乘该校最喜爱“科普讲座”项目的百分比即可.【解答】解:(1)80×40%=32(人),答:本次调查中最喜爱“AI应用”的学生中更关注“辅助学习”有32人;(2)1200×=324(人),答:估计该校最喜爱“科普讲座”的学生人数大约有324人.【点评】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.(8分)尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2.以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦…我明白了!(1)证明AF∥CE;(2)指出小丽作法中存在的问题.【分析】(1)根据小明的作法知,CF=AE,根据平行四边形的性质求出AD∥BC,根据“一组对边平行且相等的四边形是平行四边形”求出四边形AFCE是平行四边形,根据“平行四边形的对边互相平行”即可得证;(2)以A为圆心,EC为半径画弧,交BC于点F,此时可能会有两个交点,只有其中之一符合题意.【解答】(1)证明:根据小明的作法知,CF=AE,∵四边形ABCD是平行四边形,∴AD∥BC,又∵CF=AE,∴四边形AFCE是平行四边形,∴AF ∥CE ;(2)解:以A 为圆心,EC 为半径画弧,交BC 于点F ,此时可能会有两个交点,只有其中之一符合题意.故小丽的作法有问题.【点评】此题考查了平行四边形的判定与性质,熟记平行四边形的判定定理与性质定理是解题的关键.22.(10分)小明和小丽在跑步机上慢跑锻炼.小明先跑,10分钟后小丽才开始跑,小丽跑步时中间休息了两次.跑步机上C 档比B 档快40米/分、B 档比A 档快40米/分.小明与小丽的跑步相关信息如表所示,跑步累计里程s (米)与小明跑步时间t (分)的函数关系如图所示.时间里程分段速度档跑步里程小明16:00~16:50不分段A 档4000米小丽16:10~16:50第一段B 档1800米第一次休息第二段B 档1200米第二次休息第三段C 档1600米(1)求A ,B ,C 各档速度(单位:米/分);(2)求小丽两次休息时间的总和(单位:分);(3)小丽第二次休息后,在a 分钟时两人跑步累计里程相等,求a 的值.【分析】(1)由小明的跑步里程及时间可得A 档速度,再根据B 档比A 档快40米/分、C 档比B 档快40米/分,即可得出答案;(2)结合图象求出小丽每段跑步所用时间,再根据总时间即可求解;(3)由题意可得,此时小丽在跑第三段,所跑时间为a ﹣10﹣15﹣10﹣5=a ﹣40(分),可得方程80a=3000+160(a﹣40),求解即可.【解答】解:(1)由题意可知,A档速度为4000÷50=80(米/分),则B档速度为80+40=120(米/分),C档速度为120+40=160(米/分),答:A,B,C各档速度80米/分、120米/分、160米/分.(2)小丽第一段跑步时间为1800÷120=15(分),小丽第二段跑步时间为(3000﹣1800)÷120=10(分),小丽第三段跑步时间为(4600﹣3000)÷160=10(分),则小丽两次休息时间的总和为50﹣10﹣15﹣10﹣10=5(分),答:小丽两次休息时间的总和为5分钟.(3)∵小丽第二次休息后,在a分钟时两人跑步累计里程相等,∴此时小丽在跑第三段,所跑时间为a﹣10﹣15﹣10﹣5=a﹣40(分),∴80a=3000+160(a﹣40),∴a=42.5.【点评】本题主要考查一次函数的应用,读懂图中的数据是解题的关键.23.(10分)已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(﹣2,5),对称轴为直线.(1)求二次函数的表达式;(2)若点B(1,7)向上平移2个单位长度,向左平移m(m>0)个单位长度后,恰好落在y=x2+bx+c 的图象上,求m的值;(3)当﹣2≤x≤n时,二次函数y=x2+bx+c的最大值与最小值的差为,求n的取值范围.【分析】(1)依据题意,由二次函数为y=x2+bx+c,可得抛物线为直线x=﹣=﹣,可得b的值,再由图象经过点A(﹣2,5),求出c的值,进而可以得解;(2)依据题意,由点B(1,7)向上平移2个单位长度,向左平移m个单位长度(m>0),进而可得平移后的点为(1﹣m,9),结合(1﹣m,9)在y=x2+x+3图象上,可得9=(1﹣m)2+(1﹣m)+3,进而计算可以得解;(3)依据题意,由y=x2+x+3=(x+)2+,可得当x=﹣时,y取最小值,最小值为,再根据n<﹣、﹣2<﹣≤n≤1和n>1进行分类讨论,即可计算得解.【解答】解:(1)由题意,∵二次函数为y=x2+bx+c,∴抛物线的对称轴为直线x=﹣=﹣.∴b=1.∴抛物线为y=x2+x+c.又图象经过点A(﹣2,5),∴4﹣2+c=5.∴c=3.∴抛物线为y=x2+x+3.(2)由题意,∵点B(1,7)向上平移2个单位长度,向左平移m个单位长度(m>0),∴平移后的点为(1﹣m,9).又(1﹣m,9)在y=x2+x+3,∴9=(1﹣m)2+(1﹣m)+3.∴m=4或m=﹣1(舍去).∴m=4.(3)由题意,当时,∴最大值与最小值的差为.∴,不符合题意,舍去.当﹣≤n≤1时,∴最大值与最小值的差为,符合题意.当n>1时,最大值与最小值的差为,解得n1=1或n2=﹣2,不符合题意.综上所述,n的取值范围为﹣≤n≤1.【点评】本题主要考查了待定系数法求二次函数解析式、二次函数的性质、二次函数图象上点的坐标特征、二次函数的最值、坐标与图形变化﹣平移,解题时要熟练掌握并能灵活运用是关键.24.(12分)如图,在圆内接四边形ABCD中,AD<AC,∠ADC<∠BAD,延长AD至点E,使AE=AC,延长BA至点F,连结EF,使∠AFE=∠ADC.(1)若∠AFE=60°,CD为直径,求∠ABD的度数.(2)求证:①EF∥BC;②EF=BD.【分析】(1)根据圆周角定理进行计算即可;(2)①利用圆内接四边形的外角等于它的内对角以及平行线的判定方法即可得出结论;②根据全等三角形的性质,圆周角定理进行解答即可.【解答】(1)解:∵CD为直径,∴∠CAD=90°,∵∠AFE=∠ADC=60°,∴∠ACD=90°﹣60°=30°,∴∠ABD=∠ACD=30°;(2)证明:①如图,延长AB,∵四边形ABCD是圆内接四边形,∴∠CBM=∠ADC,又∵∠AFE=∠ADC,∴∠AFE=∠CBM,∴EF∥BC;②过点D作DG∥BC交⊙O于点G,连接AG,CG,∵DG∥BC,∴=,∴BD=CG,∵四边形ACGD是圆内接四边形,∴∠GDE=∠ACG,∵EF∥DG∴∠DEF=∠GDE,∴∠DEF=∠ACG,∵∠AFE=∠ADC,∠ADC=∠AGC,∴∠AFE=∠AGC,∵AE=AC,∴△AEF≌△ACG(AAS),∴EF=CG,∴EF=BD.【点评】本题考查圆周角定理,圆内接四边形的性质,掌握圆周角定理,圆内接四边形的性质以及平行四边形的性质是正确解答的关键.。

2023年浙江省嘉兴市中考数学真题(解析版)

2023年浙江省嘉兴市中考数学真题(解析版)

嘉兴市2023年初中毕业生学业水平考试数学(本试卷满分120分,考试时间120分钟)第I 卷(选择题共30分)一、选择题(本题有10小题,每小题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.【答案】B【解析】解:()236⨯-=-.故选:B .2.【答案】C【解析】解:从上面看从下往上数,左边有1个正方形,右边有1个正方形,∴俯视图是:.故选:C .3.【答案】B【解析】A 选项,了解一批节能灯管的使用寿命,具有破坏性,适合采用抽样调查,不符合题意;B 选项,了解某校803班学生的视力情况,适合采用普查,符合题意;C 选项,了解某省初中生每周上网时长情况,适合采用抽样调查,不合题意;D 选项,了解京杭大运河中鱼的种类,适合采用抽样调查,不合题意.故选:B .4.【答案】D【解析】解:A 选项,3332a a a +=,故错误;B 选项,660a a -=,故错误;C 选项,()339a a =,故错误;D 选项,12212210a a a a -÷==,故正确;故选:D .5.【答案】C【解析】解:∵ABC 的位似比为2的位似图形是A B C ''' ,且()3,2C ,()23,22C '∴⨯⨯,即()6,4C ',故选:C .6.【答案】D【解析】解:由数轴得:0a c b <<<,a b <,故选项A 不符合题意;∵c b <,∴c a b a -<-,故选项B 不符合题意;∵a b <,a b <,∴0a b +>,故选项C 不符合题意;∵a b <,0c ≠,∴22ac bc <,故选项D 符合题意;故选:D .7.【答案】D 【解析】解:如图所示,连接CH ,∵折叠,∴EB EH EC==∴,,B C H 在以E 为圆心,BC 为直径的圆上,∴90BHC ∠=︒,∴CH BD⊥∵矩形ABCD ,其中34AB BC ==,,∴4,3BC CD ==∴5BD ==,∴125BC CD CH BD ⨯==,∵tan BC CH BDC CD HD ∠==∴95HD =,故选:D .8.【答案】C【解析】解:∵30k =>,∴图象在一、三象限,且在每个象限内y 随x 的增大而减小,∵2101-<-<<,∴2130y y y <<<.故选:C .9.【答案】B【解析】解:如图,连接BD,点P 是ABC 的重心,点D 是边AC 的中点,P 在BD 上,∴2ABC BDC S S = ,:2:1BP PD =,D F B C ∥ ,∴DFP BEP14DFP BEP S S ∴= ,EF AC ∥Q ,∴BEP BCD △△,222439BEP BCD S BP S BD ⎛⎫⎛⎫∴=== ⎪ ⎪⎝⎭⎝⎭,设DFP △的面积为m ,则BEP △的面积为4m ,BCD △的面积为9m ,四边形CDFE 的面积为6,946m m m ∴+-=,1m ∴=,∴BCD △的面积为9,ABC ∴ 的面积是18.故选:B .10.【答案】D【解析】解:由蓄水池的横断面示意图可得,水的深度增长的速度由慢到快,然后再由快到慢,最后不变,故选:D .第Ⅱ卷(非选择题共90分)二、填空题(本题有6小题,每小题4分,共24分)11.【答案】2023【解析】解:2023-的相反数是2023,故20232023-=,故答案为:2023.12.【答案】OA OC =或OB OD =或AB CD=【解析】解:∵在AOB 与COD △中,A C ∠=∠,AOB COD ∠=∠,∴添加OA OC =,则()ASA AOB COD ≌;或添加OB OD =,则()AAS AOB COD V V ≌;或添加AB CD =,则()AAS AOB COD V V ≌;故答案为:OA OC =(答案不唯一).13.【答案】13【解析】解:将三张卡片正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是13故答案为:13.14.【答案】65︒##65度【解析】解:如图,CO BO ,∵AB ,AC 分别与O 相切于点B ,C ,∴90ACO ABO ∠=∠=︒,∵50A ∠=︒,∴360909050130COB ∠=︒-︒-︒-︒=︒,∵ BCBC =,∴1652D BOC ∠=∠=︒,故答案为:65︒.15.【答案】158310038100x y x y ⎧⨯++=⎪⎨⎪++=⎩【解析】解:依题意得:158310038100x y x y ⎧⨯++=⎪⎨⎪++=⎩,故答案为:158310038100x y x y ⎧⨯++=⎪⎨⎪++=⎩.16.【答案】①.-②.1218π-+【解析】解:如图1,过点G 作GH BC ⊥于H,∵3045ABC DEF DFE ∠=︒∠=∠=︒,,90GHB GHC ∠=∠=︒,∴BH =,GH CH =,∵12BC BH CH GH =+=+=,∴6GH =,∴()6CG ===;如图2,将DEF 绕点C 顺时针旋转60︒得到11D E F ,1FE 与AB 交于1G ,连接1D D ,由旋转的性质得:1160E CB DCD ∠=∠=︒,1CD CD =,∴1CDD 是等边三角形,∵30ABC ∠=︒,∴190CG B ∠=︒,∴112CG BC =,∵1CE BC =,∴1112CG CE =,即AB 垂直平分1CE ,∵11CD E 是等腰直角三角形,∴点1D 在直线AB 上,连接1AD ,22D E F 是DEF 旋转0︒到60︒的过程中任意位置,则线段DH 扫过的面积是弓形12D D D 的面积加上1D DB 的面积,∵12BC EF ==,∴22DC DB BC ===∴11D C D D ==作1DN CD ⊥于N ,则1ND NC ==∴DN ==,过点B 作1BM D D ⊥交1D D 的延长线于M ,则90M ∠=︒,∵160D DC ∠=︒,90CDB ∠=︒,∴118030BDM D DC CDB ∠=︒-∠-∠=︒,∴12BM BD ==,∴线段DH 扫过的面积112D DB D D D S S =+ 弓形,111CD D D DB CD D S S S =-+ 扇形,(2601136022π⋅=-⨯+⨯1218π=-+,故答案为:-,1218π-+.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.【答案】(1)()2a a +;(2)3x >.【解析】解:(1)()222a a a a +=+;(2)()211x x ->+去括号,得221x x ->+,移项合并,得3x >.18.【答案】都错误,见解析【解析】小丁和小迪的解法都错误;解:去分母,得(3)2x x x +-=-,去括号,得232x x -=-,解得,1x =,经检验:1x =是方程的解.19.【答案】(1)①见解析;②见解析(2)四边形BECD 是菱形,见解析【解析】(1)①如图:直线MN 即为所求;②如图,即为所求;;(2)四边形BECD 是菱形,理由如下:∵MN 垂直平分BC ,∴,OB OC BD CD ==,∵OD OE =,∴四边形BECD 是平行四边形,又∵BD CD =,∴四边形BECD 是菱形.20.【答案】(1)6(2)n(3)见解析【解析】(1)解:∵223181-=⨯,225382-=⨯,227583-=⨯,229784-=⨯,∴2211985-=⨯,22131186-=⨯,故答案为:6;(2)由题意得:()()2221218+--=n n n ,故答案为:n ;(3)()()222121n n +--()()21212121n n n n =++-+-+42n =⨯8n =.21.【答案】(1)①3015辆,②68.3分(2)选B 款,理由见解析【解析】(1)①由中位数的概念可得,B 款新能源汽车在2022年9月至2023年3月期间月销售量的中位数为3015辆;②172270367364268.32332x ⨯+⨯+⨯+⨯==+++分.∴A 款新能原汽车四项评分数据的平均数为68.3分;(2)给出1:2:1:2的权重时,72170267164267.81212A x ⨯+⨯+⨯+⨯=≈+++(分),70171270168269.71212B x ⨯+⨯+⨯+⨯=≈+++(分),75165267161265.71212C x ⨯+⨯+⨯+⨯=≈+++(分),结合2023年3月的销售量,∴可以选B 款.22.【答案】(1)12.9cm (2)能,见解析【解析】(1)解:过点C 作OB 的垂线分别交仰角、俯角线于点E ,D ,交水平线于点F ,如图所示,在Rt AEF 中,tan EAF EF AF∠=.tan151300.2735.1(cm)EF AF ∴=⋅︒=⨯=.,,90AF AF EAF DAF AFE AFD =∠=∠∠=∠=︒ ,ADF AEF ∴△≌△.35.1(cm)EF DF ∴==.16035.1195.1(cm)CE CF EF ∴=+=+=,235.1270.2(cm)26(cm)ED EF ==⨯=>,∴小杜下蹲的最小距离208195.112.9(cm)=-=.(2)解:能,理由如下:过点B 作OB 的垂线分别交仰角、俯角线于点M ,N ,交水平线于点P ,如图所示,在Rt APM △中,tan MP MAP AP∠=.tan 201500.3654.0(cm)MP AP =⋅⨯=︒∴=,,,90AP AP MAP NAP APM APN =∠=∠∠=∠=︒ ,AMP ANP ∴△≌△.54.0(cm)PN MP ∴==,16054.0106.0(cm)BN BP PN ∴=-=-=.小若垫起脚尖后头顶的高度为1203123(cm)+=.∴小若头顶超出点N 的高度123106.017.0(cm)15(cm)-=>.∴小若垫起脚尖后能被识别.23.【答案】任务一:4m ;任务二:22m 15;任务三:应该尽量提高掷出点的高度、尽量提高掷出点的速度、选择适当的掷出仰角【解析】任务一:建立如图所示的直角坐标系,由题意得:抛物线的顶点坐标为()1,1.8,设抛物线的解析式为()21 1.8y a x =-+,过点()0,1.6,∴ 1.8 1.6a +=,解得0.2a =-,∴()20.21 1.8y x =--+,当0y =时,()20.21 1.80x --+=,得14,2x x ==-(舍去),∴素材1中的投掷距离OB 为4m ;(2)建立直角坐标系,如图,设素材2中抛物线的解析式为2y ax bx c =++,由题意得,过点()()()0,1.6,1,2.45,8,0,∴ 1.6 2.456480c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得0.1511.6a b c =-⎧⎪=⎨⎪=⎩,∴20.15 1.6y x x =-++∴顶点纵坐标为()()2240.15 1.61449440.1515ac b a ⨯-⨯--==⨯-,49221.81515-=(m ),∴素材2和素材1中球的最大高度的变化量为22m 15;任务三:应该尽量提高掷出点的高度、尽量提高掷出点的速度、选择适当的掷出仰角.24.【答案】(1)8AB =;(2)①见解析;②80y x =;③BG 的长为5或【解析】(1)解:连接OA ,∵O 的直径CD 垂直弦AB 于点E ,且8CE =,2DE =,∴10CD CE DE =+=,AE BE =,∴152OA OD CD ===,3OE OD DE =-=,在Rt OAE △中,4AE ===,∴28AB AE ==;(2)解:①连接DG ,∵点G 是 BC的中点,∴»»CGBG =,∴GAF D ∠=∠,∵O 的直径CD 垂直弦AB 于点E ,∴90CGD CEF ∠=∠=︒,∴90F DCG D ∠=︒-∠=∠,∴GAF F ∠=∠;②∵8CE =,4AE=,90CEA ∠=︒,∴22224845AC AE CE =+=+=∵O 的直径CD 垂直弦AB 于点E ,∴ AC BC=,∴CAF CGA ∠=∠,∵ACF GCA =∠∠,∴CAF CGA ∽△△,∴AC CF CG AC =,即x =,∴80y x =;③当10CF CD ==时,在Rt CEF △中,6EF ===,∴2BF EF BE =-=,∵180FGB BGC FAC ∠=︒-∠=∠,∴FGB FAC ∽△△,∴BG BFAC CF =,即210=,∴5BG =;当10DF CD ==时,在Rt DEF △中,222210246EF DF DE =-=-=,在Rt CEF △中,()222284610CF CE EF =+=+∴64BF EF BE =-=,同理FGB FAC ∽△△,∴BG BF AC CF =,即645410=,∴32BG =综上,BG 的长为455或32-.。

2023年浙江省中考数学真题试卷附解析

2023年浙江省中考数学真题试卷附解析

2023年浙江省中考数学真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,⊙O的直径 AB 与弦 AC 的夹角为35°,过C点的切线 PC 与 AB 的延长线交于点P,那么∠P 等于()A.15°B.20°C.25°D.30°2.如图,A、B是⊙O上的两点,AC是⊙O的切线,∠OBA=75°,⊙O的半径为1,则OC 的长等于()A.32B.22C.233D.23.直线l与半径为r 的⊙O相交,且点0到直线l的距离为 5,则r的取值是()A. r>5 B.r=5 C. r<5 D. r≤ 5 4.如图,△ABC 和△DEF 是位似图形,且位似比为 2:3,则EFBC等于()A.12B.13C.14D.235.体育老师对九年级(1)班学生“你最喜欢的体育项目是什么?(只写一项)”的问题进行了调查,把所得数据绘制成频数分布直方图(如图).由图可知,最喜欢篮球的频率是()A.0.16 B.0.24 C.0.3 D.0.46.如图,直线a∥b ,∠2=95°,则∠1等于()A.100°B. 95°C. 99°D.85°7.一次函数21y x =-+的图象与两坐标轴所围成的三角形的面积为( ) A .1B .12C .14D .188.如图,直线y kx b =+与x 轴交于点(-4,0),则0y >时,x 的取值范围是( ) A .4x >-B .0x >C .4x <-D .0x <9.为了考察甲、乙两种小麦,分别从中抽取5株苗,测得苗高(单位:cm )如下: 甲:2 4 6 8 10 乙:l 3 5 7 9用2S 甲和2S 乙分别表示这两个样本的方差,那么 ( )A .2S 甲>2S 乙B .2S 甲 <2S 乙C .2S 甲=2S 乙D .2S 甲与2S 乙的关系不能确定 10.把m 2(m-n )+m (n-m )因式分解等于( )A .(m-n )(m 2-m )B .m (m-n )(m+1)C .m (n-m )(m+1)D .m (m-n )(m-1) 11.由5 个顶点、8条棱、5个面构成的几何体是( ) A . 立方体B .三棱锥C .四棱锥D .不存在12.下列语句中正确的是 ( ) A .两条不相交的直线叫做平行线 B .一条直线的平行线只有一条C .在同一平面内的两条线段,若它们不相交,则一定互相平行D .在同一平面内,两条不相交的直线叫做平行线二、填空题13.已知一个样本的频数分布表中,5.5~10.5一组的频数为8,频率为0.5,20.5~25.5这一组的频率为0.25,则频数为 .14.若关于x 的不等式组41320x xx a +⎧>+⎪⎨⎪-<⎩的解为2x <,则a 的取值范围是 .15.若1x a =+是不等式1122x -<的解,则a .16.如图,截去立方体一角变成一个多面体,这个多面体有 个面, 条棱, 顶点.17.已知10ax by +=的解为21x y =⎧⎨=-⎩,12x y =-⎧⎨=⎩,则37a b += .18.若219x x ⎛⎫+= ⎪⎝⎭,则21x x ⎛⎫- ⎪⎝⎭的值为 .19.若816x =,则2x = ,4x = . 20.解方程组323(1)52(2)x y x y -=-⎧⎨-=⎩(1)若用代入法,则把②变形,得y= ,代人①,得 ;(2)若用加减法,则②×2,把两个方程的两边分别 ,得到的一元一次方程是 . 21.按键的顺序是31.823.7.请列出算式: .三、解答题22.如图所示,拦水坝的横截面是梯形ABCD,已知坝高为4米,坝顶宽BC•为3米,背水坡AB 的坡度i=1:3,迎水坡CD 长为5米. (1)求大坝的下底宽AD 的长;(2)修建这种大坝100米,需要多少土石方?23.如图所示,以□ABCD 的顶点A 为圆心,AB 为半径作圆,交AD ,BC 于E ,F ,•延长BA 交⊙O 于G ,求证:⌒GE =⌒EF .24.已知二次函数2y ax bx c =++,当x=1 时,y=一2,当x=0时,y=一 1,当x=—1时,y= 一4,求此函数的解析式.F EDCBA25.在△ABC 中,P 是BC 上一动点,过点P 作PE ∥AC 交AB 于点E ,过点P 作PF ∥AB 交AC 于点F ,当点P 运动到什么位置时,四边形AEPF 是菱形?26.如图26-1,△ABC 的边BC 在直线l 上,AC ⊥BC ,且AC=BC ;△EFP 的边FP 也在直线l 上,边EF 与边AC 重合,且EF=FP .(1)在图26-1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的数量关系和位置关系;(2)将△EFP 沿直线l 向左平移到图26-2的位置时,EP 交AC 于点Q ,连结AP ,BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想;(3)将△EFP 沿直线l 向左平移到图26-3的位置时,EP 的延长线交AC 的延长线于点Q ,连结AP ,BQ .你认为(2)中所猜想的BQ 与AP 的数量关系和位置关系还成立吗?(只要写出结论,不必证明).27.化简:(1)249()77a a a a a a--⋅-+ (2)12()11b b b b b+÷---.28.如图所示,正六边形的边长为a ,作相似变换,使所得的像扩大到原来的2倍,并写出 所画正六边形的边长.A (E ) BC (F ) P lllA图26-1图26-2图26-3E29.小王解方程:1112(3)(2)(43)223x x x--+=-过程如下:解:去括号得:14 611323x x x--+=-移项得:46311 23xx x-+=--+合并同类项:413 6x=-化系数为 1:1841 x=-当他把1841x=-代入原方程后,发现左右两边不相等. 他知道自已肯定解错了,可又不知道原因.于是他来数学门诊部“瞧病”. 聪明的你能帮帮他吗?30.对于任何实数a2a a吗?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.答案A4.D5.D6.答案: D7.C8.A9.C10.A11.CD二、填空题 13. 414.2a ≥15.<516.7,12,717.10018.519.2,420.(1)52x -,32(52)3x x --=-;(2)相减,77x -=-21.(-31.8)÷3.7=三、解答题 22.解:(1) AD=18(米);(2)4200米3.23.证明:连接AF ,则AB=AF ,所以∠ABF=∠AFB .因为四边形ABCD 是平行四边形,所以AD ∥BC ,∴∠DAF=∠AFB ,∠GAE=∠ABF ,∴∠GAE=∠EAF ,∴⌒CE =⌒EF .24.由已知得214a b c c a b c ++=-⎧⎪=-⎨⎪-+=-⎩,解这个方程组得211a b c =-⎧⎪=⎨⎪=-⎩∴ 这个函数的解析式:221y x x =-+-P运动到∠A的平分线与BC的交点26.(1)AB=AP;AB⊥AP.(2)BQ=AP;BQ⊥AP.证明:①由已知,得EF=FP,EF⊥FP,∴∠EPF=45°.又∵AC⊥BC,∴∠CQP=∠CPQ=45°,∴CQ=CP.在Rt△BCQ和Rt△ACP中,BC=AC,∠BCQ=∠ACP=90°,CQ=CP,∴Rt△BCQ≌Rt△ACP,∴BQ=AP.②如图3,延长BQ交AP于点M.∵Rt△BCQ≌Rt△ACP,∴∠1=∠2.在Rt△BCQ中,∠1+∠3=90°,又∠3=∠4,∴∠2+∠4=∠1+∠3=90°.∴∠QMA=90°,∴BQ⊥AP.(3)成立27.(1)14;(2)1b-28.图略,2a29.去括号时发生了错误;625 x=30.不一定lAB F CQ图3M1234EP。

浙江省宁波市2023年中考数学试卷(及参考答案)

浙江省宁波市2023年中考数学试卷(及参考答案)

浙江省宁波市2023年中考数学试卷一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.在这四个数中,最小的数是()A.B.C.0D.2.下列计算正确的是()A.B.C.D.3.据中国宁波网消息:2023年一季度宁波全市实现地区生产总值380180000000元,同比增长4.5%.数380180000000用科学记数法表示为()A.B.C.D.4.如图所示的几何体是由一个圆柱和一个长方体组成的,它的主视图是()A.B.C.D.5.不等式组的解在数轴上表示正确的是()A.B.C.D.6.甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数(单位:环)及方差(单位:环2)如下表所示:甲乙丙丁98991.20.4 1.80.4根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁7.如图,一次函数的图像与反比例函数的图像相交于两点,点的横坐标为1,点的横坐标为,当时,的取值范围是()A.或B.或C.或D.或8.茶叶作为浙江省农业十大主导产业之一,是助力乡村振兴的民生产业.某村有土地60公顷,计划将其中的土地种植蔬菜,其余的土地开辟为茶园和种植粮食,已知茶园的面积比种粮食面积的2倍少3公顷,问茶园和种粮食的面积各多少公顷?设茶园的面积为x公顷,种粮食的面积为y公顷,可列方程组为()A.B.C.D.9.已知二次函数,下列说法正确的是()A.点在该函数的图象上B.当且时,C.该函数的图象与x轴一定有交点D.当时,该函数图象的对称轴一定在直线的左侧10.如图,以钝角三角形ABC最长边BC为边向外作矩形,连结,设,,的面积分别为,若要求出的值,只需知道()A.的面积B.的面积C.的面积D.矩形的面积二、填空题(每小题5分,共30分)11.分解因式:12.要使分式有意义,的取值应满足.13.一个不透明的袋子里装有3个绿球、3个黑球和6个红球,它们除颜色外其余相同.从袋中任意摸出一个球为绿球的概率为.14.如图,圆锥形烟囱帽的底面半径为,母线长为,则烟囱帽的侧面积为.(结果保留)15.如图,在中,,E为边上一点,以为直径的半圆O与相切于点D,连接,.P是边上的动点,当为等腰三角形时,的长为.16.如图,点A,B分别在函数图象的两支上(A在第一象限),连接AB交x轴于点C.点D,E在函数图象上,轴,轴,连接.若,的面积为9,四边形的面积为14,则的值为,a的值为.三、解答题(本大题有8小题,共80分)17.计算:(1).(2).18.在4×4的方格纸中,请按下列要求画出格点三角形(顶点均在格点上).(1)在图1中先画出一个以格点P为顶点的等腰三角形,再画出该三角形向右平移2个单位后的.(2)将图2中的格点绕点C按顺时针方向旋转,画出经旋转后的.19.如图,已知二次函数图象经过点和.(1)求该二次函数的表达式及图象的顶点坐标.(2)当时,请根据图象直接写出x的取值范围.20.宁波象山作为杭州亚运会分赛区,积极推进各项准备工作.某校开展了亚运知识的宣传教育活动,为了解这次活动的效果,从全校1200名学生中随机抽取部分学生进行知识测试(测试满分为100分,得分x均为不小于60的整数),并将测试成绩分为四个等第;合格(),一般(),良好(),优秀(),制作了如下统计图(部分信息未给出)由图中给出的信息解答下列问题:(1)求测试成绩为一般的学生人数,并补全须数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等级?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校测试成绩为良好和优秀的学生共有多少人?21.某综合实践研究小组为了测量观察目标时的仰角和俯角,利用量角器和铅锤自制了一个简易测角仪,如图1所示.(1)如图2,在点观察所测物体最高点,当量角器零刻度线上两点均在视线上时,测得视线与铅垂线所夹的锐角为,设仰角为,请直接用含的代数式示.(2)如图3,为了测量广场上空气球离地面的高度,该小组利用自制简易测角仪在点分别测得气球的仰角为,为,地面上点在同一水平直线上,,求气球离地面的高度.(参考数据:,)22.某校与部队联合开展红色之旅研学活动,上午7:00,部队官兵乘坐军车从营地出发,同时学校师生乘坐大巴从学校出发,沿公路(如图1)到爱国主义教育基地进行研学,上午8:00,军车在离营地地方追上大巴并继续前行,到达仓库后,部队官兵下车领取研学物资,然后乘坐军车按原速前行,最后和师生同时到达基地,军车和大巴离营地的路程s(km)与所用时间t(h)的函数关系如图2所示.(1)求大巴离营地的路程s与所用时间t的函数表达式及a的值,(2)求部队官兵在仓库领取物资所用的时间.23.定义:有两个相邻的内角是直角,并且有两条邻边相等的四边形称为邻等四边形,相等两邻边的夹角称为邻等角.(1)如图1,在四边形中,,对角线平分.求证:四边形为邻等四边形.(2)如图2,在6×5的方格纸中,A,B,C三点均在格点上,若四边形是邻等四边形,请画出所有符合条件的格点D.(3)如图3,四边形是邻等四边形,,为邻等角,连接,过B 作交的延长线于点E.若,求四边形的周长.24.如图1,锐角内接于,D为的中点,连接并延长交于点E,连接,过C作的垂线交于点F,点G在上,连接,若平分且.(1)求的度数.(2)①求证:.②若,求的值,(3)如图2,当点O恰好在上且时,求的长.答案1.【答案】A2.【答案】D3.【答案】B4.【答案】A5.【答案】C6.【答案】D7.【答案】B8.【答案】B9.【答案】C10.【答案】C11.【答案】(x+y)(x-y)12.【答案】13.【答案】14.【答案】15.【答案】或16.【答案】12;917.【答案】(1)解:;(2)解:.18.【答案】(1)解:如图,,即为所求作的三角形;(2)如图,即为所求作的三角形,19.【答案】(1)解:∵二次函数图象经过点和.∴,解得:,∴抛物线为,∴顶点坐标为:;(2)20.【答案】(1)解:人,∴测试成绩为一般的学生人数为:人;补全直方图如图:(2);答:扇形统计图中“良好”所对应的扇形圆心角的度数是126°.(3)共200人,将成绩按照从小到大排序后,第100个数据和第101个数据均在的范围内,即中位数落在良好等第中;(4)(人);答:估计该校测试成绩为良好和优秀的学生共有660人.21.【答案】(1)解:如图所示:由题意知,在中,,则,即,;(2)解:如图所示:,在中,,由等腰直角三角形性质得到,在中,,由,即,解得,气球离地面的高度.22.【答案】(1)解:设大巴离营地的路程s与所用时间t的函数表达式为,由图象可知,直线过点,∴,解得:,∴;当时:,解得:,∴;(2)由图象可知,军车的速度为:,∴军车到达仓库所用时间为:,从仓库到达基地所用时间为:,∴部队官兵在仓库领取物资所用的时间为.23.【答案】(1)解:∵,∴,,∵对角线平分,∴,∴,∴,∴四边形为邻等四边形.(2)解:,,即为所求;(3)如图,过作于,∵,∴四边形是矩形,∴,,∵,∴四边形为平行四边形,∴,,设,而,∴,,由新定义可得,由勾股定理可得:,整理得:,解得:,(不符合题意舍去),∴,∴四边形的周长为.24.【答案】(1)解:∵平分,∴,∵,∴,∵,∴,∵,∴,∴;(2)①证明:∵为中点,,∴,∴,∵,∴,∴,∵,,∴,∴;②解:设,,∴,,∵,,∴,∴,即,∴,即,∴,∴,∴(负根舍去);(3)解:如图,设的半径为,连接交于,过作于,∵,∴,∴,∵,,∴,∴,∵,∴,而,,∴,∴,∵,∴,∵,∴,∴,即,解得:,(负根舍去),∴.。

精品解析:2023年浙江省杭州市中考数学真题(解析版)

精品解析:2023年浙江省杭州市中考数学真题(解析版)

2023年杭州市初中学业水平考试数学考生须知:1.本试卷满分120分,考试时间100分钟.2.答题前,在答题纸上写姓名和准考证号,并在试卷首页的指定位置写上姓名和座位号.3.必须在答题纸的对应答题位置上答题,写在其他地方无效.答题方式详见答题纸上的说明.4.如需画图作答,必须用黑色字迹的钢笔或签字笔将图形线条描黑.5.考试结束后,试题卷和答题纸一并上交.参考公式:二次函数()20y ax bx c a =++≠图象的顶点坐标公式:24,24b ac b a a ⎛⎫-- ⎪⎝⎭.试题卷一、选择题:(本大题有10个小题,每小题3分,共30分)1.杭州奥体中心体育场又称“大莲花”,里面有80800个座位.数据80800用科学记数法表示为()A.48.810⨯ B.48.0810⨯ C.58.810⨯ D.58.0810⨯【答案】B【解析】【分析】根据科学记数法的表示方法求解即可.【详解】4808008.0810=⨯.故选:B .【点睛】本题主要考查科学记数法.科学记数法的表示形式为10n a ⨯的形式,其中1<10a ≤,n 为整数.解题关键是正确确定a 的值以及n 的值.2.22(2)2-+=()A.0 B.2 C.4 D.8【答案】D【解析】【分析】先计算乘方,再计算加法即可求解.【详解】解:22(2)2448-+=+=,故选:D .【点睛】本题考查有理数度混合运算,熟练掌握有理数乘方运算法则是解题的关键.3.分解因式:241a -=()A.()()2121a a -+ B.()()22a a -+ C.()()41a a -+ D.()()411a a -+【答案】A【解析】【分析】利用平方差公式分解即可.【详解】()()()2241212121a a a a -=-=+-.故选:A .【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.4.如图,矩形ABCD 的对角线,AC BD 相交于点O .若60AOB ∠=︒,则AB BC =()A.12 B.312- C.32 D.33【答案】D【解析】【分析】根据矩形性质得出1122OA OC AC OB OD BD AC BD =====,,,推出OA OB =则有等边三角形AOB ,即60BAO ∠=︒,然后运用余切函数即可解答.【详解】解:∵四边形ABCD 是矩形,∴1122OA OC AC OB OD BD AC BD =====,,,∴OA OB =,∵60AOB ∠=︒,∴AOB 是等边三角形,∴60BAO ∠=︒,∴906030ACB ∠=︒-︒=︒,∵3tan tan 303AB ACB BC ∠==︒=,故D 正确.故选:D .【点睛】本题考查了等边三角形性质和判定、矩形的性质、余切的定义等知识点,求出60BAO ∠=︒是解答本题的关键.5.在直角坐标系中,把点(),2A m 先向右平移1个单位,再向上平移3个单位得到点B .若点B 的横坐标和纵坐标相等,则m =()A.2B.3C.4D.5【答案】C【解析】【分析】先根据平移方式确定点B 的坐标,再根据点B 的横坐标和纵坐标相等列方程,解方程即可.【详解】解: 点(),2A m 先向右平移1个单位,再向上平移3个单位得到点B ,∴()1,23B m ++,即()1,5B m +,点B 的横坐标和纵坐标相等,∴15m +=,∴4m =,故选C .【点睛】本题考查平面直角坐标系内点的平移,一元一次方程的应用等,解题的关键是掌握平面直角坐标系内点平移时坐标的变化规律:横坐标右加左减,纵坐标上加下减.6.如图,在O 中,半径,OA OB 互相垂直,点C 在劣弧AB 上.若19ABC ∠=︒,则BAC ∠=()A.23︒B.24︒C.25︒D.26︒【答案】D【解析】【分析】根据,OA OB 互相垂直可得 ADB 所对的圆心角为270︒,根据圆周角定理可得12701352ACB ∠=⨯︒=︒,再根据三角形内角和定理即可求解.【详解】解:如图,半径,OA OB 互相垂直,∴90AOB ∠=︒,∴ ADB 所对的圆心角为270︒,∴ ADB 所对的圆周角12701352ACB ∠=⨯︒=︒,又 19ABC ∠=︒,∴18026BAC ACB ABC ∠=︒-∠-∠=︒,故选D .【点睛】本题考查圆周角定理、三角形内角和定理,解题的关键是掌握:同圆或等圆中,同弧所对的圆周角等于圆心角的一半.7.已知数轴上的点,A B 分别表示数,a b ,其中10a -<<,01b <<.若a b c ⨯=,数c 在数轴上用点C 表示,则点,,A B C 在数轴上的位置可能是()A. B.C. D.【答案】B【解析】【分析】先由10a -<<,01b <<,a b c ⨯=,根据不等式性质得出0a c <<,再分别判定即可.【详解】解:∵10a -<<,01b <<,∴0a ab <<∵a b c⨯=∴0a c <<A 、01bc <<<,故此选项不符合题意;B 、0a c <<,故此选项符合题意;C 、1c >,故此选项不符合题意;D 、1c <-,故此选项不符合题意;故选:B .【点睛】本题考查用数轴上的点表示数,不等式性质,由10a -<<,01b <<,a b c ⨯=得出0a c <<是解题的关键.8.设二次函数()()(0,,y a x m x m k a m k =--->是实数),则()A.当2k =时,函数y 的最小值为a- B.当2k =时,函数y 的最小值为2a -C.当4k =时,函数y 的最小值为a- D.当4k =时,函数y 的最小值为2a -【答案】A【解析】【分析】令0y =,则()()0a x m x m k =---,解得:1x m =,2x m k =+,从而求得抛物线对称轴为直线222m m k m k x +++==,再分别求出当2k =或4k =时函数y 的最小值即可求解.【详解】解:令0y =,则()()0a x m x m k =---,解得:1x m =,2x m k =+,∴抛物线对称轴为直线222m m k m k x +++==当2k =时,抛物线对称轴为直线1x m =+,把1x m =+代入()()2y a x m x m =---,得y a =-,∵0a >∴当1x m =+,2k =时,y 有最小值,最小值为a -.故A 正确,B 错误;当4k =时,抛物线对称轴为直线2x m =+,把2x m =+代入()()4y a x m x m =---,得4y a =-,∵0a >∴当2x m =+,4k =时,y 有最小值,最小值为4a -,故C 、D 错误,故选:A .【点睛】本题考查抛物线的最值,抛物线对称轴.利用抛物线的对称性求出抛物线对称轴是解题的关键.9.一枚质地均匀的正方体骰子(六个面分别标有数字1,2,3,4,5,6),投掷5次,分别记录每次骰子向上的一面出现的数字.根据下面的统计结果,能判断记录的这5个数字中一定没有..出现数字6的是()A.中位数是3,众数是2B.平均数是3,中位数是2C.平均数是3,方差是2D.平均数是3,众数是2【答案】C【解析】【分析】根据中位数、众数、平均数、方差的定义,结合选项中设定情况,逐项判断即可.【详解】解:当中位数是3,众数是2时,记录的5个数字可能为:2,2,3,4,5或2,2,3,4,6或2,2,3,5,6,故A 选项不合题意;当平均数是3,中位数是2时,5个数之和为15,记录的5个数字可能为1,1,2,5,6或1,2,2,5,5,故B 选项不合题意;当平均数是3,方差是2时,5个数之和为15,假设6出现了1次,方差最小的情况下另外4个数为:1,2,3,3,此时方差()()()()()2222211323333363 2.825s ⎡⎤=⨯-+-+-+-+-=>⎣⎦,因此假设不成立,即一定没有出现数字6,故C 选项符合题意;当平均数是3,众数是2时,5个数之和为15,2至少出现两次,记录的5个数字可能为1,2,2,4,6,故D 选项不合题意;故选:C .【点睛】本题考查中位数、众数、平均数、方差,解题的关键是根据每个选项中的设定情况,列出可能出现的5个数字.10.第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(,,,DAE ABF BCG CDH △△△△)和中间一个小正方形EFGH 拼成的大正方形ABCD 中,ABF BAF ∠>∠,连接BE .设,BAF BEF αβ∠=∠=,若正方形EFGH 与正方形ABCD 的面积之比为21:,tan tan n αβ=,则n =()A.5B.4C.3D.2【答案】C【解析】【分析】设BF AE a ==,EF b =,首先根据2tan tan αβ=得到22222a ab b +=,然后表示出正方形ABCD 的面积为223AB b =,正方形EFGH 的面积为22EF b =,最后利用正方形EFGH 与正方形ABCD 的面积之比为1:n 求解即可.【详解】设BF AE a ==,EF b =,∵2tan tan αβ=,90AFB ∠=︒,∴2BF BF AF EF ⎛⎫= ⎪⎝⎭,即2a a ab b ⎛⎫= ⎪+⎝⎭,∴22a a a b b=+,整理得22a ab b +=,∴22222a ab b +=,∵90AFB ∠=︒,∴()22222222223AB AF BF a b a a ab b b =+=++=++=,∴正方形ABCD 的面积为223AB b =,∵正方形EFGH 的面积为22EF b =,∵正方形EFGH 与正方形ABCD 的面积之比为1:n ,∴2213b b n=,∴解得3n =.故选:C .【点睛】此题考查了勾股定理,解直角三角形,赵爽“弦图”等知识,解题的关键是熟练掌握以上知识点.二、填空题:(本大题有6个小题,每小题4分,共24分)11.计算:=______【答案】【解析】【12.如图,点,D E 分别在ABC 的边,AB AC 上,且DE BC ∥,点F 在线段BC 的延长线上.若28ADE ∠=︒,118ACF ︒∠=,则A ∠=_________.【答案】90︒##90度【解析】【分析】首先根据平行线的性质得到28B ADE ∠=∠=︒,然后根据三角形外角的性质求解即可.【详解】∵DE BC ∥,28ADE ∠=︒,∴28B ADE ∠=∠=︒,∵118ACF ︒∠=,∴1182890A ACF B ∠=∠-∠=︒-︒=︒.故答案为:90︒.【点睛】此题考查了平行线的性质和三角形外角的性质,解题的关键是熟练掌握以上知识点.13.一个仅装有球的不透明布袋里只有6个红球和n 个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为25,则n =_________.【答案】9【解析】【分析】根据概率公式列分式方程,解方程即可.【详解】解: 从中任意摸出一个球是红球的概率为25,∴6265n =+,去分母,得()6526n ⨯=+,解得9n =,经检验9n =是所列分式方程的根,∴9n =,故答案为:9.【点睛】本题考查已知概率求数量、解分式方程,解题的关键是掌握概率公式.14.如图,六边形ABCDEF 是O 的内接正六边形,设正六边形ABCDEF 的面积为1S ,ACE △的面积为2S ,则12S S =_________.【答案】2【解析】【分析】连接,,OA OC OE ,首先证明出ACE △是O 的内接正三角形,然后证明出()ASA BAC OAC ≌ ,得到BAC AFE CDE S S S == ,OAC OAE OCE S S S == ,进而求解即可.【详解】如图所示,连接,,OA OC OE,∵六边形ABCDEF 是O 的内接正六边形,∴AC AE CE ==,∴ACE △是O 的内接正三角形,∵120B ∠=︒,AB BC =,∴()1180302BAC BCA B ∠=∠=︒-∠=︒,∵60CAE ∠=︒,∴30OAC OAE ∠=∠=︒,∴30BAC OAC ∠=∠=︒,同理可得,30BCA OCA ∠=∠=︒,又∵AC AC =,∴()ASA BAC OAC ≌ ,∴BAC OAC S S = ,由圆和正六边形的性质可得,BAC AFE CDE S S S == ,由圆和正三角形的性质可得,OAC OAE OCE S S S == ,∵()2122BAC AFE CDE OAC OAE OCE OAC OAE OCE S S S S S S S S S S S =+++++=++= ,∴122S S =.故答案为:2.【点睛】此题考查了圆内接正多边形的性质,正六边形和正三角形的性质,全等三角形的性质和判定等知识,解题的关键是熟练掌握以上知识点.15.在““探索一次函数y kx b =+的系数,k b 与图像的关系”活动中,老师给出了直角坐标系中的三个点:()()()0,2,2,3,3,1A B C .同学们画出了经过这三个点中每两个点的一次函数的图像,并得到对应的函数表达式111222333,,y k x b y k x b y k x b =+=+=+.分别计算11k b +,2233,k b k b ++的值,其中最大的值等于_________.【答案】5【解析】【分析】分别求出三个函数解析式,然后求出11k b +,2233,k b k b ++进行比较即可解答.【详解】解:设111y k x b =+过()()0,2,2,3A B ,则有:111232b k b =⎧⎨=+⎩,解得:11122k b ⎧=⎪⎨⎪=⎩,则1115222k b +=+=;同理:22275k b +=-+=,3315233k b +=-+=则分别计算11k b +,2233,k b k b ++的最大值为值22275k b +=-+=.故答案为5.【点睛】本题主要考查了求一次函数解析式,掌握待定系数法是解答本题的关键.16.如图,在ABC 中,,90AB AC A =∠<︒,点,,D E F 分别在边AB ,,BC CA 上,连接,,DE EF FD ,已知点B 和点F 关于直线DE 对称.设BC k AB =,若AD DF =,则CF FA=_________(结果用含k 的代数式表示).【答案】222k k -【解析】【分析】先根据轴对称的性质和已知条件证明DE AC ∥,再证BDE BAC ∽△△,推出12EC k AB =⋅,通过证明ABC ECF ∽,推出212CF k AB =⋅,即可求出CF FA 的值.【详解】解: 点B 和点F 关于直线DE 对称,∴DB DF =,AD DF =,∴AD DB =.AD DF =,∴A DFA ∠=∠,点B 和点F 关于直线DE 对称,∴BDE FDE ∠=∠,又 BDE FDE BDF A DFA ∠+∠=∠=∠+∠,∴FDE DFA ∠=∠,∴DE AC ∥,∴C DEB ∠=∠,DEF EFC ∠=∠,点B 和点F 关于直线DE 对称,∴DEB DEF ∠=∠,∴C EFC ∠=∠,AB AC =,∴C B ∠=∠,在ABC 和ECF △中,B C ACB EFC∠=∠⎧⎨∠=∠⎩,∴ABC ECF ∽.在ABC 中,DE AC ∥,∴BDE A ∠=∠,BED C ∠=∠,∴BDE BAC ∽△△,∴12BE BD BC BA ==,∴12EC BC =, BC k AB =,∴BC k AB =⋅,12EC k AB =⋅, ABC ECF ∽.∴AB BC EC CF =,∴12AB k AB CF k AB ⋅=⋅,解得212CF k AB =⋅,∴222212122k AB CF CF CF k FA AC CF AB CF k AB k AB ⋅====----⋅.故答案为:222k k-.【点睛】本题考查相似三角形的判定与性质,轴对称的性质,平行线的判定与性质,等腰三角形的性质,三角形外角的定义和性质等,有一定难度,解题的关键是证明ABC ECF ∽.三、解答题:(本大题有7个小题,共66分)17.设一元二次方程20x bx c ++=.在下面的四组条件中选择其中一组..,b c 的值,使这个方程有两个不相等的实数根,并解这个方程.①2,1b c ==;②3,1b c ==;③3,1b c ==-;④2,2b c ==.注:如果选择多组条件分别作答,按第一个解答计分.【答案】选②,1352x -+=,2352x --=;选③,13132x -+=,23132x -=【解析】【分析】先根据判别式判断一元二次方程根的情况,再利用公式法解一元二次方程即可.【详解】解:20x bx c ++=中1a =,①2,1b c ==时,22424110b ac ∆=-=-⨯⨯=,方程有两个相等的实数根;②3,1b c ==时,224341150b ac ∆=-=-⨯⨯=>,方程有两个不相等的实数根;③3,1b c ==-时,()2243411130b ac ∆=-=-⨯⨯-=>,方程有两个不相等的实数根;④2,2b c ==时,224241240b ac ∆=-=-⨯⨯=-<,方程没有实数根;因此可选择②或③.选择②3,1b c ==时,2310x x ++=,224341150b ac ∆=-=-⨯⨯=>,322b x a --±==,132x -+=,232x --=;选择③3,1b c ==-时,2310x x +-=,()2243411130b ac ∆=-=-⨯⨯-=>,322b x a -±-±==,132x -+=,232x --=.【点睛】本题考查根据判别式判断一元二次方程根的情况,解一元二次方程,解题的关键是掌握:对于一元二次方程20ax bx c ++=,当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个不相等的实数根;当Δ0<时,方程没有实数根.18.某校为了了解家长和学生观看安全教育视频的情况,随机抽取本校部分学生作调查,把收集的数据按照A ,B ,C ,D 四类(A 表示仅学生参与;B 表示家长和学生一起参与;C 表示仅家长参与;D 表示其他)进行统计,得到每一类的学生人数,并把统计结果绘制成如图所示的未完成的条形统计图和扇形统计图.(1)在这次抽样调查中,共调查了多少名学生?(2)补全条形统计图.(3)已知该校共有1000名学生,估计B 类的学生人数.【答案】(1)200名(2)见解析(3)600名【解析】【分析】(1)由A 类别人数及其所占百分比可得总人数;(2)先求出B 类学生人数为:200601010120---=(名),再补画长形图即可;(3)用该校学生总数1000乘以B 类的学生所占百分比即可求解.【小问1详解】解:6030%200÷=(名),答:这次抽样调查中,共调查了200名学生;【小问2详解】解:B 类学生人数为:200601010120---=(名),补全条形统计图如图所示:【小问3详解】解:1201000100%600200⨯⨯=(名),答:估计B 类的学生人数600名.【点睛】本题考查样本容量,条形统计图,扇形统计图,用样本估计总体,从条形统计图与扇形统计图获取到有用信息是解题的关键.19.如图,平行四边形ABCD 的对角线,AC BD 相交于点O ,点,E F 在对角线BD 上,且BE EF FD ==,连接,AE EC ,,CF FA .(1)求证:四边形AECF 是平行四边形.(2)若ABE 的面积等于2,求CFO △的面积.【答案】(1)见解析(2)1【解析】【分析】(1)根据平行四边形对角线互相平分可得OA OC =,OB OD =,结合BE FD =可得OE OF =,即可证明四边形AECF 是平行四边形;(2)根据等底等高的三角形面积相等可得2AEF ABE S S == ,再根据平行四边形的性质可得11121222CFO CEF AEF S S S ===⨯= .【小问1详解】证明: 四边形ABCD 是平行四边形,∴OA OC =,OB OD =,BE FD =,∴OB BE OD FD -=-,∴OE OF =,又 OA OC =,∴四边形AECF 是平行四边形.【小问2详解】解: 2ABE S = ,BE EF =,∴2AEF ABE S S == ,四边形AECF 是平行四边形,∴11121222CFO CEF AEF S S S ===⨯= .【点睛】本题考查平行四边形的判定与性质,解题的关键是掌握平行四边形的对角线互相平分.20.在直角坐标系中,已知120k k ≠,设函数11k y x =与函数()2225y k x =-+的图象交于点A 和点B .已知点A 的横坐标是2,点B 的纵坐标是4-.(1)求12,k k 的值.(2)过点A 作y 轴的垂线,过点B 作x 轴的垂线,在第二象限交于点C ;过点A 作x 轴的垂线,过点B 作y 轴的垂线,在第四象限交于点D .求证:直线CD 经过原点.【答案】(1)110k =,22k =(2)见解析【解析】【分析】(1)首先将点A 的横坐标代入()2225y k x =-+求出点A 的坐标,然后代入11k y x =求出110k =,然后将点B 的纵坐标代入110y x =求出5,42B ⎛⎫-- ⎪⎝⎭,然后代入()2225y k x =-+即可求出22k =;(2)首先根据题意画出图形,然后求出点C 和点D 的坐标,然后利用待定系数法求出CD 所在直线的表达式,进而求解即可.【小问1详解】∵点A 的横坐标是2,∴将2x =代入()22255y k x =-+=∴()2,5A ,∴将()2,5A 代入11k y x =得,110k =,∴110y x=,∵点B 的纵坐标是4-,∴将4y =-代入110y x =得,52x =-,∴5,42B ⎛⎫-- ⎪⎝⎭,∴将5,42B ⎛⎫-- ⎪⎝⎭代入()2225y k x =-+得,254252k ⎛⎫-=--+ ⎪⎝⎭,∴解得22k =,∴()222521y x x =-+=+;【小问2详解】如图所示,由题意可得,5,52C ⎛⎫- ⎪⎝⎭,()2,4D -,∴设CD 所在直线的表达式为y kx b =+,∴55224k b k b ⎧-+=⎪⎨⎪+=-⎩,解得20k b =-⎧⎨=⎩,∴2y x =-,∴当0x =时,0y =,∴直线CD 经过原点.【点睛】此题考查了反比例函数和一次函数综合,待定系数法求函数表达式等知识,解题的关键是熟练掌握以上知识点.21.在边长为1的正方形ABCD 中,点E 在边AD 上(不与点A ,D 重合),射线BE 与射线CD 交于点F.(1)若13ED =,求DF 的长.(2)求证:1AE CF ⋅=.(3)以点B 为圆心,BC 长为半径画弧,交线段BE 于点G .若EG ED =,求ED 的长.【答案】(1)12(2)见解析(3)14【解析】【分析】(1)证明AEB DEF △∽△,利用相似三角形的对应边成比例求解;(2)证明AEB CBF ∽,利用相似三角形的对应边成比例证明;(3)设EG ED x ==,则1AE x =-,1BE x =+,在Rt ABE △中,利用勾股定理求解.【小问1详解】解:由题知,1AB BC CD DA ====,若13ED =,则23AE AD ED =-=. 四边形ABCD 是正方形,∴90A FDE ∠=∠=︒,又 AEB FED ∠=∠,∴AEB DEF △∽△,∴AB AE DF ED =,即21313DF =,∴12DF =.【小问2详解】证明: 四边形ABCD 是正方形,∴90A C ∠=∠=︒,AB CD ∥,∴ABE F ∠=∠,∴ABE CFB ∽,∴AB AE CF BC=,∴111AE CF AB BC ⋅=⋅=⨯=.【小问3详解】解:设EG ED x ==,则1AE AD AE x =-=-,1BE BG GE BC GE x =+=+=+.在Rt ABE △中,222AB AE BE +=,即2221(1)(1)x x +-=+,解得14x =.∴14ED =.【点睛】本题考查了相似三角形的性质与判定,勾股定理的应用,正方形的性质等,熟练掌握相关性质定理是解题的关键.22.设二次函数21y ax bx =++,(0a ≠,b 是实数).已知函数值y 和自变量x 的部分对应取值如下表所示:x …1-0123…y …m 1n 1p…(1)若4m =,求二次函数的表达式;(2)在(1)问的条件下,写出一个符合条件的x 的取值范围,使得y 随x 的增大而减小.(3)若在m 、n 、p 这三个实数中,只有一个是正数,求a 的取值范围.【答案】(1)221y x x =-+(2)当0a >时,则1x <时,y 随x 的增大而减小;当a<0时,则1x >时,y 随x 的增大而减小(3)13a ≤-【解析】【分析】(1)用待定系数法求解即可.(2)利用抛物线的对称性质求得抛物线的对称轴为直线1x =;再根据抛物线的增减性求解即可.(3)先把()2,1代入21y ax bx =++,得2b a =-,从而得221y ax ax =-+,再求出31m a =+,1n a =-+,31p a =+,从而得m p =,然后m 、n 、p 这三个实数中,只有一个是正数,得10310a a -+>⎧⎨+≤⎩,求解即可.【小问1详解】解:把()1,4-,()2,1代入21y ax bx =++,得144211a b a b -+=⎧⎨++=⎩,解得:12a b =⎧⎨=-⎩,∴221y x x =-+.【小问2详解】解:∵()0,1,()2,1在21y ax bx =++图象上,∴抛物线的对称轴为直线0212x +==,∴当0a >时,则1x <时,y 随x 的增大而减小,当a<0时,则1x >时,y 随x 的增大而减小.【小问3详解】解:把()2,1代入21y ax bx =++,得1421a b =++,∴2b a=-∴22121y ax bx ax ax =++=-+把()1,m -代入221y ax ax =-+得,2131m a a a =++=+,把()1,n 代入221y ax ax =-+得,211n a a a =-+=-+,把()3,p 代入221y ax ax =-+得,96131p a a a =-+=+,∴m p =,∵m 、n 、p 这三个实数中,只有一个是正数,∴10310a a -+>⎧⎨+≤⎩,解得:13a ≤-.【点睛】本题考查用待定系数法求抛物线解析式,抛物线的图象性质,解不等式组,熟练掌握用待定系数法求抛物线解析式和抛物线的图象性质是解析的关键.23.如图,在O 中,直径AB 垂直弦CD 于点E ,连接,,AC AD BC ,作CF AD ⊥于点F ,交线段OB 于点G (不与点,O B 重合),连接OF .(1)若1BE =,求GE 的长.(2)求证:2BC BG BO =⋅.(3)若FO FG =,猜想CAD ∠的度数,并证明你的结论.【答案】(1)1(2)见解析(3)45CAD ∠=︒,证明见解析【解析】【分析】(1)由垂径定理可得90AED ∠=︒,结合CF AD ⊥可得DAE FCD ∠=∠,根据圆周角定理可得DAE BCD ∠=∠,进而可得BCD FCD ∠=∠,通过证明BCE GCE ≌可得1GE BE ==;(2)证明ACB △CEB ∽,根据对应边成比例可得2BC BA BE =⋅,再根据2AB BO =,12BE BG =,可证2BC BG BO =⋅;(3)设DAE CAE α∠=∠=,FOG FGO β∠=∠=,可证90αβ=︒-,903OCF α∠=︒-,通过SAS 证明COF AOF ≌,进而可得OCF OAF ∠=∠,即903αα︒-=,则245CAD α∠==︒.【小问1详解】解: 直径AB 垂直弦CD ,∴90AED ∠=︒,∴90DAE D ∠+∠=︒,CF AD ⊥,∴90FCD D ∠+∠=︒,∴DAE FCD ∠=∠,由圆周角定理得DAE BCD ∠=∠,∴BCD FCD ∠=∠,在BCE 和GCE 中,BCE GCE CE CE BEC GEC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴BCE GCE≌()ASA ,∴1GE BE ==;【小问2详解】证明: AB 是O 的直径,∴90ACB ∠=︒,在ACB △和CEB 中,90ACB CEB ABC CBE ∠=∠=︒⎧⎨∠=∠⎩,∴ACB △CEB ∽,∴BC BA BE BC=,∴2BC BA BE =⋅,由(1)知GE BE =,∴12BE BG =,又 2AB BO =,∴2122BC BA BE BO BG BG BO =⋅=⋅=⋅;【小问3详解】解:45CAD ∠=︒,证明如下:如图,连接OC ,FO FG =,∴FOG FGO ∠=∠,直径AB 垂直弦CD ,∴CE DE =,90AED AEC ∠=∠=︒,又 AE AE =,∴ACE △ADE ≌()SAS ,∴DAE CAE ∠=∠,设DAE CAE α∠=∠=,FOG FGO β∠=∠=,则FCD BCD DAE α∠=∠=∠=,OA OC =,∴OCA OAC α∠=∠=,又 90ACB ∠=︒,∴903OCF ACB OCA FCD BCD α∠=∠-∠-∠-∠=︒-,CGE OGF β∠=∠=,GCE α∠=,90CGE GCE ∠+∠=︒∴90βα+=︒,∴90αβ=︒-,2COG OAC OCA ααα∠=∠+∠=+=,∴()2290180COF COG GOF αββββ∠=∠+∠=+=︒-+=︒-,∴COF AOF ∠=∠,在COF 和AOF 中,CO AO COF AOF OF OF =⎧⎪∠=∠⎨⎪=⎩∴()SAS COF AOF ≌,∴OCF OAF ∠=∠,即903αα︒-=,∴22.5α=︒,∴245CAD α∠==︒.【点睛】本题考查垂径定理,圆周角定理,全等三角形的判定与性质,相似三角形的判定与性质,等腰三角形的性质等,难度较大,解题的关键是综合应用上述知识点,特别是第3问,需要大胆猜想,再逐步论证.。

2023年浙江省中考数学试卷附解析

2023年浙江省中考数学试卷附解析

2023年浙江省中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.今年5月12日,四川汶川发生强烈地震后,我市立即抽调骨干医生组成医疗队赶赴灾区进行抗震救灾.某医院要从包括张医生在内的4名外科骨干医生中,随机地抽调2名医生参加抗震救灾医疗队,那么抽调到张医生的概率是( )A .21B .31C .41D .61 2.若反比例函数的图象xk y =经过点(-3,4),则此函数图象必定不经过点( ) A .(3,-4) B .(4,-3) C .(-4,3) D .(-3,-4)3.已知点 C 是线段 AB 的黄金分割点,其中AC >BC ,以 AC 为边作正方形面积记为 S 1, 以 AB 与 BC 分别为长和宽作长方形,面积记为S 2, 则下列关于 S 1和 S 2 关系正 确的是( )A .12S S >B .12S S =C .12S S <D .不确定 4.一个二次函数的图象与抛物线2241y x x =--有相同的顶点,并且在对称轴的左侧,y 随x 的增大而增大;在对称轴的右侧,y 随X 的增大而减小,则这个二次函教的关系式为 ( )A .224y x x =-+-B .223(0)y ax ax a =-->C .2245y x x =---D .223(0)y ax ax a a =-+-<5.如图,在ABC △中,AC BC AB =>,点P 为ABC △所在平面内一点,且点P 与ABC △的任意两个顶点构成PAB PBC PAC △,△,△均是..等腰三角形,则满足上述条件的所有点P 的个数为( )A .3B .4C .6D .7 6.下列说法中正确的有( )①单项式212x y π-的系数是12-②多项式3a b ab ++是一次多项式③多项式23342a b ab -+ 的第二项是4ab④2123x x+-是多项式 A .0 个 B .1 个 C .2 个 D . 3 个 二、填空题C B A7.已知△ABC ,可以画△ABC 的外接圆且只能画 个;对于给定的⊙O ,可以画⊙O 的 个内接三角形. 8.已知AD ∥BC ,要使四边形ABCD 为平行四边形,需要增加的条件是__________(•填一个你认为正确的条件).9.在□ABCD 中,∠A 比∠B 大20°,则∠C 为 度.10.一元二次方程2(1)210k x x ---=有两个不相等的实数根,则k 的取值范围是 .11.如图,OB ⊥OA 于点0,以 OA 为半径画弧,交OB 于点B ,P 是半径OA 上的动点.已知0A=2cm .设0P=xcm ,阴影部分的面积为ycm 2,则y(cm 2)关于x(cm)的函数解析式为 .12.已知点P(a ,b)在第二象限,则直线y=ax+b 不经过第 象限.13.若方程组41231ax y x y +=⎧⎨-=⎩无解,则a 的值是 .14.如图,△ABO 按逆时针旋转变换到△CDO ,在这个变换中,旋转中心是_____,•BO 变换到了_______,∠C 是由______旋转变换得到的.15.把一个 化成几个 的的形式,这种变形叫做把这个多项式分解因式.16.如图所示,AD 是△ABC 的中线,AB=8.AC=6,则△ABD 与△ACD 的周长之差是 .17.○中填入最小的正整数,△中填入最小的非负数,□中填人大于-5,而小于 4 的整数的个数,并将计算结果填在下边的横线上.( ○+△)×□= .18.我国的国土面积约为960万km 2,用科学记数法表示为 m 2.19.如图,数轴上点A 、B 表示的数分别是 , .20. 计算:1009998976543+21-+-++-+--= .三、解答题21.下图为住宅区内的两幢楼,它们的高m CD AB 30==,现需了解甲楼对乙楼的采光的影响情况.当太阳光与水平线的夹角为30°时.试求:1)若两楼间的距离m AC 24 时,甲楼的影子,落在乙楼上有多高?2)若甲楼的影子,刚好不影响乙楼,那么两楼的距离应当有多远?22.如图,AB 是⊙O 的弦,直径 CD ⊥AB ,垂足为 P ,如果AB = 8,PD = 2,试求⊙O 的半径R .23.如图所示,把边长为2的正方形剪成四个全等的直角三角形,•请你用这四个直角三角形拼成符合下列要求的图形各一个,并标上必要的记号:(1)不是正方形的菱形;(2)不是正方形的矩形;(3)梯形;(4)不是矩形和菱形的平行四边形;(5)不是梯形和平行四边形的凸四边形.甲 乙 A C300 B D24.阅读下面解题过程,并回答问题: 化简:2(13)|1|x x ---.解:由隐含条件130x -≥,得13x ≤,∴10x -> ∴原式=(13)(1)1312x x x x x ---=--+=-按照上面的解法,化简:22(3)(2)x x ---.25.已知一个几何体的三视图和有关的尺寸如图,写出这个几何体的名称,并求出这个几何体的表面积.26.如图,AB=AC ,BD=BC. 若∠A = 38°,求∠DBC 的度数.27.如图所示,在Rt △ABC 中,∠A=∠B ,CD 是∠ACB 的平分线,请判定CD 与AB 的位置关系,并说明理由.28.在下图所提供的汇率表中,汇 (钞 )卖价一栏表示银行卖出 100 外币元的人民币价格;钞买价一栏表示银行买入 100 外币元的人民币价格.(1)求银行卖a 美元的人民币价格. 若银行买入1550 美元,需人民币多少元?(2)求银行买入 b 欧元现钞的人民币价格. 若用1250 欧元向银行兑换人民币,可得到人民币多少元?(3)若用 c美元向银行兑换欧元,可得到多少欧元?29.随着人民生活水平懂得提高,购房者对居住面积的要求有了新的变化.现从某区近期卖出的不同户型的商品房中随机抽取1000套进行统计,并根据统计结果绘出如图所示的统计图,请结合统计图提供的信息,解答下列问题:(1)卖出面积为60~80平方米的商品房多少套?据此补全统计图.(2)面积在什么范围内的住房卖出的最多?约占全部卖出住房的百分之几?(3)假如你是房地产开发商,根据以上信息,你将会多建面积在哪些范围内的住房?请简要说明理由:30.如图,已知∠1=∠2,求证:AB∥CD.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.D3.B4.D5.C6.A二、填空题7.1,无数8.AD=BC(答案不惟一)9.10010.k≠k<且12y x π=-(0≤x ≤2)12.三13.-1214.点O ,DO, ∠A15.多项式, 整式,乘积16.217.818.1296010⋅⨯19.-2. 5,220.50三、解答题21.解:(1)设阳光照射在乙楼CD 的E 处,连结BD ,则BD=AC=24,∠D BE =30°,DE=33BD=83,∵AB=CD=30,∴CE=30-83;即阳光照射在乙楼离地面高30-83米处;(2)要使甲楼的影子不影响乙,则阳光刚好照射在乙楼C 处,在Rt △ABC 中,∠A BC =60°,AC=3AB=303,即两楼相距303米.22.设⊙O 的半径为R ,则AO=R ,OP=R- 2 ,AP=12AB=4,得22(2)16R R =-+, ∴R= 5.答:⊙O 的半径为5. 23.略 .125.该几何体为直三棱柱;表面积为36cm2 26.在△ABC中.∵AB=AC,∠A=38,∴∠ABC=∠C=12×(180°-∠A)=71°.在△DBC中,∵BD=BC,∴∠BDC=∠C=71°.∴∠D8C=180°-∠BDC-∠C=180°-71°-71°=38°.27.CD⊥AB,理由略28.(1) 8.2896a元,12733.405 元;(2)9.O438b 元,11304.75元 (3)8.2151821519.148891488c c欧元.29.(1)350套;(2)80~100m2,占48%;(3)60~80m2和80~1OOm2.理由:购房者对面积在这两个范围内的住房需求量最高30.略。

2023年浙江省嘉兴市中考数学真题试卷及答案

2023年浙江省嘉兴市中考数学真题试卷及答案

2023年浙江省嘉兴市中考数学真题试卷一、选择题(本题有10小题,每小题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1. ()23⨯-的运算结果是( ) A. 6B. 6-C. 1D. 1-2. 如图的几何体由3个同样大小的正方体搭成,它的俯视图是( )A. B. C. D.3. 在下面的调查中,最适合用全面调查的是( ) A. 了解一批节能灯管的使用寿命 B. 了解某校803班学生的视力情况 C. 了解某省初中生每周上网时长情况 D. 了解京杭大运河中鱼的种类4. 下列计算正确的是( ) A. 336a a a +=B. 666a a a -=C. ()336a a =D. 12210a a a ÷=5. 如图,在直角坐标系中,ABC 的三个顶点分别为()()()1,2,2,1,3,2A B C ,现以原点O 为位似中心,在第一象限内作与ABC 的位似比为2的位似图形A B C ''',则顶点C '的坐标是( )A. ()2,4B. ()4,2C. ()6,4D. ()5,46. 实数a ,b ,c 在数轴上的对应点的位置如图所示,下列结论正确的是( )A. a c b >>B. c a b a ->-C. 0a b +<D. 22ac bc <7. 如图,已知矩形纸片ABCD ,其中34AB BC ==,,现将纸片进行如下操作: 第一步,如图①将纸片对折,使AB 与DC 重合,折痕为EF ,展开后如图②; 第二步,再将图②中的纸片沿对角线BD 折叠,展开后如图③;第三步,将图③中的纸片沿过点E 的直线折叠,使点C 落在对角线BD 上的点H 处,如图④.则DH 的长为( )A.32B.85C.53D.958. 已知点()12A y -,,()21B y -,,()31C y ,均在反比例函数3y x=的图象上,则1y ,2y ,3y 的大小关系是( ) A. 123y y y <<B. 312 y y y <<C. 213y y y <<D. 321y y y <<9. 如图,点P 是ABC 的重心,点D 是边AC 的中点,PE AC ∥交BC 于点E ,DF BC ∥交EP 于点F ,若四边形CDFE 的面积为6,则ABC 的面积为( )A. 15B. 18C. 24D. 3610. 下图是底部放有一个实心铁球的长方体水槽轴截面示意图,现向水槽匀速注水,下列图象中能大致反映水槽中水的深度(y )与注水时间(x )关系的是( )A. B. C. D.第Ⅱ卷(非选择题 共90分)二、填空题(本题有6小题,每小题4分,共24分)11. 计算:2023-=___.12. 如图,在AOB 与COD △中,A C ∠=∠,请添加一个条件___________,使得△≌△AOB COD .13. 现有三张正面印有2023年杭州亚运会吉祥物琮琮、宸宸和莲莲的不透明卡片,卡片除正面图案不同外,其余均相同,将三张卡片正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是___________.14. 如图,点A 是O 外一点,AB ,AC 分别与O 相切于点B ,C ,点D 在BDC 上,已知50A ∠=︒,则D ∠的度数是___________.15. 我国古代数学名著《张丘建算经》中有这样一题:一只公鸡值5钱,一只母鸡值3钱,3只小鸡值1钱,现花100钱买了100只鸡.若公鸡有8只,设母鸡有x 只,小鸡有y 只,可列方程组为___________. 16. 一副三角板ABC 和DEF 中,90304512C D B E BC EF ∠=∠=︒∠=︒∠=︒==,,,.将它们叠合在一起,边BC 与EF 重合,CD 与AB 相交于点G (如图1),此时线段CG 的长是___________,现将DEF 绕点()C F 按顺时针方向旋转(如图2),边EF 与AB 相交于点H ,连结DH ,在旋转0︒到60︒的过程中,线段DH 扫过的面积是___________.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17. (1)分解因式:22a a +. (2)解不等式:()211x x ->+.18. 小丁和小迪分别解方程3122x x x x--=--过程如下:你认为小丁和小迪的解法是否正确?若正确,请在框内打“√”;若错误,请在框内打“×”,并写出你的解答过程.19. 如图,在Rt ABC △中,90ACB ∠=︒.(1)尺规作图:①作线段BC 的垂直平分线MN ,交AB 于点D ,交BC 于点O ;②在直线MN 上截取OE ,使OE OD ,连接CD BE CE ,,.(保留作图痕迹) (2)猜想证明:作图所得的四边形BECD 是否为菱形?并说明理由.20. 观察下面的等式:223181-=⨯,225382-=⨯,227583-=⨯,229784-=⨯,…. (1)尝试:2213118-=⨯___________.(2)归纳:()()2221218n n +--=⨯___________(用含n 的代数式表示,n 为正整数). (3)推理:运用所学知识,推理说明你归纳的结论是正确的.21. 小明的爸爸准备购买一辆新能源汽车.在爸爸的预算范围内,小明收集了A ,B ,C 三款汽车在2022年9月至2023年3月期间的国内销售量和网友对车辆的外观造型、舒适程度、操控性能、售后服务等四项评分数据,统计如下:(1)数据分析:∴求B 款新能源汽车在2022年9月至2023年3月期间月销售量的中位数;∴若将车辆的外观造型,舒适程度、操控性能,售后服务等四项评分数据按2:3:3:2的比例统计,求A 款新能原汽车四项评分数据的平均数. (2)合理建议:请按你认为的各项“重要程度”设计四项评分数据的比例,并结合销售量,以此为依据建议小明的爸爸购买哪款汽车?说说你的理由.22. 图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角围内才能被识别),其示意图如图2,摄像头A 的仰角、俯角均为15︒,摄像头高度160cm OA =,识别的最远水平距离150cm OB =.(1)身高208cm的小杜,头部高度为26cm,他站在离摄像头水平距离130cm的点C处,请问小杜最少需要下蹲多少厘米才能被识别.(2)身高120cm的小若,头部高度为15cm,踮起脚尖可以增高3cm,但仍无法被识别.社区及时将摄像头的仰角、俯角都调整为20︒(如图3),此时小若能被识别吗?请计算说明.(精确到0.1cm,参考数据︒≈︒≈︒≈︒≈︒≈︒≈)sin150.26,cos150.97,tan150.27,sin200.34,cos200.94,tan200.3623. 根据以下素材,探究完成任务.小林在练习投掷实心球,其示意图如图,第一次练习时,球从点A处被抛出,其路线是抛物线.点A距离地面1.6m,当球到OA的水平距离为1m时,达到最大高度为1.8m.根据体育老师建议,第二次练习时,小林在正前方1m处(如图)架起距离地面高为2.45m的横线.球从点AOC=.处被抛出,恰好越过横线,测得投掷距离8m24. 小贺在复习浙教版教材九上第81页第5题后,进行变式、探究与思考:如图1,O 的直径CD 垂直弦AB 于点E ,且8CE =,2DE =.(1)复习回顾:求AB 的长.(2)探究拓展:如图2,连接AC ,点G 是BC 上一动点,连接AG ,延长CG 交AB 的延长线于点F . ①当点G 是BC 的中点时,求证:GAF F ∠=∠;②设CG x =,CF y =,请写出y 关于x 的函数关系式,并说明理由; ③如图3,连接DF BG ,,当CDF 为等腰三角形时,请计算BG 的长.2022年浙江省嘉兴市中考数学真题试题一、选择题(本题有10小题)1. 若收入3元记为+3,则支出2元记为()A. 1B. -1C. 2D. -22. 如图是由四个相同的小立方体搭成的几何体,它的主视图是()A. B. C. D.3. 计算a2·a()A. aB. 3aC. 2a2D. a34. 如图,在⊙O中,∠BOC=130°,点A在BAC上,则∠BAC的度数为()A. 55°B. 65°C. 75°D. 130°5. 不等式3x+1<2x的解在数轴上表示正确的是()A. B.C. D.6. “方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长'''',形成一个“方胜”图案,则点D,为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A B C DB′之间的距离为()A. 1cmB. 2cm-1)cm -1)cm7. A ,B 两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A 成绩较好且更稳定的是( )A. A B x x >且22A B S S >. B. A B x x >且22B A S S <. C. A B x x <且22A B S S >D. A B x x <且22B A S S <.8. “市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x 场,平了y 场,根据题意可列方程组为( ) A. 7317x y x y +=⎧⎨+=⎩B. 9317x y x y +=⎧⎨+=⎩C. 7317x y x y +=⎧⎨+=⎩D. 9317x y x y +=⎧⎨+=⎩9. 如图,在ABC 中,8AB AC ==,点E ,F ,G 分别在边AB ,BC ,AC 上,EF AC ∥,GF AB ∥,则四边形AEFG 的周长是( )A. 32B. 24C. 16D. 810. 已知点(,)A a b ,(4,)B c 在直线3y kx =+(k 为常数,0k ≠)上,若ab 的最大值为9,则c 的值为( ) A.52B. 2C.32D. 1二、填空题(本题有6小题)11. 分解因式:m 2-1=_____.12. 不透明的袋子中装有5个球,其中有3个红球和2个黑球,它们除颜色外都相同.从袋子中随机取出1个球,它是黑球的概率是_____.13. 小曹同学复习时将几种三角形的关系整理如图,请帮他在横线上____填上一个适当的条件.14. 如图,在ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为_________.15. 某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B处,当钢梁保持水平时,弹簧秤读数为kn>)倍,且钢梁保持水平,则弹簧秤读数为(N).若铁笼固定不动,移动弹簧秤使BP扩大到原来的n(1_______(N)(用含n,k的代数式表示).16. 如图,在廓形AOB中,点C,D在AB上,将CD沿弦CD折叠后恰好与OA,OB相切于点E,F.已知OA=,则EF的度数为_______;折痕CD的长为_______.∠=︒,6AOB120三、解答题(本题有8小题)17. (1)计算:(01--(2)解方程:31 21xx-=-.18. 小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,AC⊥BD,OB=OD.求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.19. 设5a是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,5a表示的两位数是45.(1)尝试:①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;③当a=3时,352=1225=;……(2)归纳:25a与100a(a+1)+25有怎样的大小关系?试说明理由.(3)运用:若25a与100a的差为2525,求a的值.20. 6月13日,某港口的潮水高度y(cm)和时间x(h)的部分数据及函数图象如下:(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当4x =时,y 的值为多少?当y 的值最大时,x 的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260cm 时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?21. 小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2.已知10cm AD BE ==,5cm CD CE ==,AD CD ⊥,BE CE ⊥,40DCE ∠=︒.(结果精确到0.1cm ,参考数据:sin 200.34︒≈,cos200.94︒≈,tan 200.36︒≈,sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈)(1)连结DE ,求线段DE 的长.(2)求点A ,B 之间的距离.22. 某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名中小学生进行问卷调查,并将调查问卷(部分)和结果描述如下:中小学生每周参加家庭劳动时间x(h)分为5组:第一组(0≤x<0.5),第二组(0.5≤x<1),第三组(1≤x<1.5),第四组(1.5≤x<2),第五组(x≥2).根据以上信息,解答下列问题:∴1∴本次调查中,中小学生每周参加家庭劳动时间的中位数落在哪一组?∴2∴在本次被调查的中小学生中,选择“不喜欢”的人数为多少?∴3∴该教育部门倡议本地区中小学生每周参加家庭劳动时间不少于2,请结合上述统计图,对该地区中小学生每周参加家庭劳动时间的情况作出评价,并提出两条合理化建议.23. 已知抛物线L1:y=a(x+1)2-4(a≠0)经过点A(1,0).(1)求抛物线L1的函数表达式.(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围.24. 小东在做九上课本123页习题:“1也是一个很有趣的比.已知线段AB(如图1),用直尺和圆规作AB上的一点P,使AP:AB=1.”小东的作法是:如图2,以AB为斜边作等腰直角三角形ABC,再以点A为圆心,AC长为半径作弧,交线段AB于点P,点P即为所求作的点.小东称点P为线段AB的“趣点”.(1)你赞同他的作法吗?请说明理由.(2)小东在此基础上进行了如下操作和探究:连结CP,点D为线段AC上的动点,点E在AB的上方,构造DPE,使得DPE∽CPB.①如图3,当点D运动到点A时,求∠CPE的度数.②如图4,DE分别交CP,CB于点M,N,当点D为线段AC的“趣点”时(CD<AD),猜想:点N是否为线段ME的“趣点”?并说明理由.2023年浙江省嘉兴市中考数学真题试卷答案一、选择题(本题有10小题,每小题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1. B2.C3. B4. D5. C6. D7. D .8. C9. B10. D解:由蓄水池的横断面示意图可得水的深度增长的速度由慢到快,然后再由快到慢,最后不变故选:D .第Ⅱ卷(非选择题 共90分)二、填空题(本题有6小题,每小题4分,共24分)11. 202312. OA OC =或OB OD =或AB CD = 13. 1314.65︒ 15. 158310038100x y x y ⎧⨯++=⎪⎨⎪++=⎩16. ∴.∴. 1218π-解:如图1,过点G 作GH BC ⊥于H∵3045ABC DEF DFE ∠=︒∠=∠=︒,,90GHB GHC ∠=∠=︒∴BH =,GH CH =∵12BC BH CH GH =+=+=∴6GH =∴()6CG ===; 如图2,将DEF 绕点C 顺时针旋转60︒得到11D E F ,1FE 与AB 交于1G ,连接1D D由旋转的性质得:1160E CB DCD ∠=∠=︒,1CD CD =∴1CDD 是等边三角形∵30ABC ∠=︒∴190CG B ∠=︒ ∴112CG BC = ∵1CE BC = ∴1112CG CE =,即AB 垂直平分1CE ∵11CD E 是等腰直角三角形∴点1D 在直线AB 上连接1AD ,22D E F 是DEF 旋转0︒到60︒的过程中任意位置则线段DH 扫过的面积是弓形12D D D 的面积加上1D DB 的面积∵12BC EF ==∴DC DB BC ===∴11DC D D ==作1DN CD ⊥于N ,则1ND NC ==∴DN ===过点B 作1BM D D ⊥交1D D 的延长线于M ,则90M ∠=︒∵160D DC ∠=︒,90CDB ∠=︒∴118030BDM D DC CDB ∠=︒-∠-∠=︒∴12BM BD ==∴线段DH 扫过的面积112D DB D D D S S=+弓形 111CD D D DB CDD S SS =-+扇形(2601136022π⋅=-⨯⨯1218π=-故答案为:1218π-.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17. (1)()2a a +;(2)3x >.18.都错误,见解析小丁和小迪的解法都错误;解:去分母,得(3)2x x x +-=-去括号,得232x x -=-解得,1x =经检验:1x =是方程的解.19. (1)①见解析;∴见解析(2)四边形BECD 是菱形,见解析【小问1详解】①如图:直线MN 即为所求;②如图,即为所求;;【小问2详解】四边形BECD 是菱形,理由如下:∵MN 垂直平分BC∴,OB OC BD CD ==∵OD OE =∴四边形BECD 是平行四边形又∴BD CD =∴四边形BECD 是菱形.20. (1)6 (2)n(3)见解析【小问1详解】解:∴223181-=⨯,225382-=⨯,227583-=⨯,229784-=⨯ ∴2211985-=⨯,22131186-=⨯故答案为:6;【小问2详解】由题意得:()()2221218+--=n n n故答案为:n ;【小问3详解】 ()()222121n n +--()()21212121n n n n =++-+-+42n =⨯8n =.21. (1)∴3015辆,∴68.3分(2)选B 款,理由见解析【小问1详解】∴由中位数的概念可得B 款新能源汽车在2022年9月至2023年3月期间月销售量的中位数为3015辆; ∴172270367364268.32332x ⨯+⨯+⨯+⨯==+++分. ∴A 款新能原汽车四项评分数据的平均数为68.3分;【小问2详解】给出1:2:1:2的权重时72170267164267.81212A x ⨯+⨯+⨯+⨯=≈+++(分) 70171270168269.71212B x ⨯+⨯+⨯+⨯=≈+++(分) 75165267161265.71212C x ⨯+⨯+⨯+⨯=≈+++(分) 结合2023年3月的销售量∴可以选B 款.22. (1)12.9cm(2)能,见解析【小问1详解】解:过点C 作OB 的垂线分别交仰角、俯角线于点E ,D ,交水平线于点F ,如图所示在Rt AEF 中,tan EAF EF AF∠=. tan151300.2735.1(cm)EF AF ∴=⋅︒=⨯=.,,90AF AF EAF DAF AFE AFD =∠=∠∠=∠=︒ ADF AEF ∴△≌△.35.1(cm)EF DF ∴==.16035.1195.1(cm)CE CF EF ∴=+=+=,235.1270.2(cm)26(cm)ED EF ==⨯=> ∴小杜下蹲的最小距离208195.112.9(cm)=-=.【小问2详解】解:能,理由如下:过点B 作OB 的垂线分别交仰角、俯角线于点M ,N ,交水平线于点P ,如图所示在Rt APM △中,tan MP MAP AP∠=. tan 201500.3654.0(cm)MP AP =⋅⨯=︒∴=,,90AP AP MAP NAP APM APN =∠=∠∠=∠=︒AMP ANP ∴△≌△.54.0(cm)PN MP ∴==16054.0106.0(cm)BN BP PN ∴=-=-=.小若垫起脚尖后头顶的高度为1203123(cm)+=.∴小若头顶超出点N 的高度123106.017.0(cm)15(cm)-=>.∴小若垫起脚尖后能被识别.23.【详解】任务一:建立如图所示的直角坐标系由题意得:抛物线的顶点坐标为()1,1.8设抛物线的解析式为()21 1.8y a x =-+,过点()0,1.6 ∴ 1.8 1.6a +=解得0.2a =-∴()20.21 1.8y x =--+当0y =时,()20.21 1.80x --+=得14,2x x ==-(舍去)∴素材1中的投掷距离OB 为4m ;(2)建立直角坐标系,如图设素材2中抛物线的解析式为2y ax bx c =++由题意得,过点()()()0,1.6,1,2.45,8,0 ∴ 1.6 2.456480c a b c a b c =⎧⎪++=⎨⎪++=⎩解得0.1511.6a b c =-⎧⎪=⎨⎪=⎩∴20.15 1.6y x x =-++ ∴顶点纵坐标为()()2240.15 1.61449440.1515ac b a ⨯-⨯--==⨯- 49221.81515-=(m ) ∴素材2和素材1中球的最大高度的变化量为22m 15; 任务三:应该尽量提高掷出点的高度、尽量提高掷出点的速度、选择适当的掷出仰角.24. (1)8AB =;(2)①见解析;②80y x =;③BG的长为5或. 【小问1详解】解:连接OA∵O 的直径CD 垂直弦AB 于点E ,且8CE =,2DE =∴10CD CE DE =+=,AE BE = ∴152OA OD CD ===,3OE OD DE =-=在Rt OAE △中,4AE ==∴28AB AE ==;【小问2详解】解:①连接DG∵点G 是BC 的中点∴CG BG =∴GAF D ∠=∠∵O 的直径CD 垂直弦AB 于点E∴90CGD CEF ∠=∠=︒∴90F DCG D ∠=︒-∠=∠∴GAF F ∠=∠;②∵8CE =,4AE =,90CEA ∠=︒∴AC ===∵O 的直径CD 垂直弦AB 于点E∴AC BC =∴CAF CGA ∠=∠∵ACF GCA =∠∠∴CAF CGA ∽△△∴AC CFCG AC =,即x = ∴80y x =; ③当10CF CD ==时,在Rt CEF △中,6EF ===∴2BF EF BE =-=∵180FGB BGC FAC ∠=︒-∠=∠∴FGB FAC ∽△△ ∴BG BFAC CF=,210=∴BG = 当10DF CD ==时在Rt DEF △中,EF ===在Rt CEF △中,CF ===∴4BF EF BE =-=同理FGB FAC ∽△△∴BG BFAC CF =,=∴BG =;综上,BG 的长为5或.2022年浙江省嘉兴市中考数学真题试卷答案一、选择题二、填空题11. ()()11m m +-12. 2513. 60A ∠=︒(答案不唯一)14. 315. k n16.∴. 60° ∴.【详解】作O 关于CD 的对称点M ,则ON =MN连接MD 、ME 、MF 、MO ,MO 交CD 于N∴将CD 沿弦CD 折叠∴点D 、E 、F 、B 都在以M 为圆心,半径为6的圆上∴将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .∴ME ⊥OA ,MF ⊥OB∴90MEO MFO ∠=∠=︒∵120AOB ∠=︒∴四边形MEOF 中36060EMF AOB MEO MFO ∠=︒-∠-∠-∠=︒即EF 的度数为60°;∵90MEO MFO ∠=∠=︒,ME MF =∴MEO MFO ≅(HL ) ∴1302EMO FMO FME ∠=∠=∠=︒∴6cos cos30ME OM EMO ===∠︒∴MN =∵MO ⊥DC∴12DN CD ====∴CD =故答案为:60°;三、解答题17. (1)1-;(2)2x =-18. 赞成小洁的说法,补充OA OC =19. (1)③34100+25;(2)相等,证明见解析;(3)5a =【小问1详解】解:①当a =1时,152=225=1×2×100+25;②当a =2时,252=625=2×3×100+25;③当a =3时,352=1225=34100+25;【小问2详解】解:相等,理由如下: ()222510510010025,a a a a =+=++100a (a +1)+25=210010025,a a 25100125.a a a【小问3详解】 25a 与100a 的差为2525 2100100251002525,a a a整理得:21002500,a即225,a = 解得:5,a1≤a ≤95.a ∴=20. (1)①见解析;②200y =,21x =(2)①当27x 时,y 随x 的增大而增大;②当14x =时,y 有最小值80(3)510x <<和1823x <<【小问1详解】①②观察函数图象:当4x =时,200y =;当y 的值最大时,21x =;21x =.【小问2详解】答案不唯一.①当27x 时,y 随x 的增大而增大;②当14x =时,y 有最小值80.【小问3详解】根据图像可得:当潮水高度超过260cm 时510x <<和1823x <<21. (1)3.4cm(2)22.2cm22. (1)第三组 (2)175人(3)该地区中小学生每周参加家庭劳动时间大多数都小于2h ,建议学校多开展劳动教育,养成劳动的好习惯.(答案不唯一)23.(1)223y x x =+-(2)m 的值为4(3)3n >【小问1详解】解:把(1,0)A 代入2(1)4y a x =+-得:2(11)40a +-=解得1a =22(1)423y x x x ∴=+-=+-;答:抛物线1L 的函数表达式为223y x x =+-;【小问2详解】解:抛物线21:(1)4L y x =+-的顶点为(1,4)-- 将抛物线1L 向上平移(0)m m >个单位得到抛物线2L ,则抛物线2L 的顶点为(1,4)m --+ 而(1,4)m --+关于原点的对称点为(1,4)m - 把(1,4)m -代入223y x x =+-得:212134m +⨯-=- 解得4m =答:m 的值为4;【小问3详解】解:把抛物线1L 向右平移(0)n n >个单位得到抛物线3L ,抛物线3L 解析式为2(1)4y x n =-+- 点1(1,)B y ,2(3,)C y 都抛物线3L 上221(11)4(2)4y n n ∴=-+-=--222(31)4(4)4y n n =-+-=--y 1>y 222(2)4(4)4n n ∴-->--整理变形得:22(2)(4)0n n --->(24)(24)0n n n n -+---+>2(62)0n -⨯->620n -<解得3n >n ∴的取值范围是3n >.24. (1)赞同,理由见解析,(2)①45︒,②点N 是线段ME 的“趣点”,理由见解析【小问1详解】证明:赞同,理由如下:等腰直角三角形ABC,45,AC BC A B 21cos 45,22AC AB ,AC AP 1,2APAB ∴点P 为线段AB 的“趣点”.【小问2详解】①由题意可得:45,90,,CAB B ACB ACAP BC 11804567.5,2ACP APC 9067.522.5,BCP 1804522.5112.5,CPB DPE ∽CPB ,D ,A 重合112.5,DPE CPB18045.CPE DPE CPB②点N 是线段ME 的“趣点”,理由如下:当点D 为线段AC 的“趣点”时(CD <AD )第 31 页 共 31 页 1,2AD AC而,AC AP 1,2AD AP1,,2ACA A AB ,ADP ACB ∽90ADP ACB 45,,APD DP CB ∥ 22.5,DPCPCB PDE ,DM PM9022.567.5,MDCMCD ,MD MC同理可得:,MC MN,MP MD MC MN22.5,45,MDP MPD E B 45,90,EMP MPE 1,2MPMN ME ME点N 是线段ME 的“趣点”.。

浙江省中考数学试题及答案

浙江省中考数学试题及答案

浙江省中考数学试题及答案一. 选择题1. 已知函数 f(x) = 2x - 5,求 f(3) 的值。

A. 1B. 3C. 4D. 62. 若 2x + 5y = 7,4x + 10y = 14,则 x = ?A. 1B. 2C. 3D. 43. 已知等差数列 {an} 的公差为 4,a1 = 3,an = 19,求 n 的值。

A. 4B. 5C. 6D. 74. 甲、乙两人同时从 A、B 两个地方相向而行,甲先到达 B,若甲速度为 5 km/h,乙速度为 3 km/h,已知 A、B 之间的距离为 40 km,甲离开 A 的时间比乙离开 B 的时间早 1 小时,则甲离开 A 多少小时后两人相遇?A. 2B. 3C. 4D. 55. 若等腰梯形 ABCD 中,AB ∥ CD,AB = 5 cm,BC = 8 cm,CD = 13 cm,则 AD = ?A. 3 cmB. 4 cmC. 5 cmD. 6 cm二. 解答题1. 某商场举办促销活动,原价为 100 元的商品打八折,现价为多少元?2. 一个正方形的周长为 16 cm,求它的面积。

3. 解方程 4x - 7 = 5。

4. 已知等比数列 {an} 中,a2 = 6,a5 = 192,求公比 q。

5.一个矩形花坛,长为 5 m,宽为 3 m,现在要在花坛四周修建一条宽为 1 m 的路,这个路的面积是多少平方米?三. 解答题答案1. 打八折后的价格为 100 × 0.8 = 80 元。

2. 正方形的周长为 16 cm,每条边的长度为 16 ÷ 4 = 4 cm,所以面积为 4 × 4 = 16 平方厘米。

3. 通过移项得到 4x = 12,再除以 4 可得 x = 3。

4. 根据等比数列的性质,有 a5 ÷ a2 = q^3,带入已知数据可以得到192 ÷ 6 = q^3,解得 q = 4。

5. 花坛上下两条边的长度为 5 + 2 × 1 = 7 m,左右两条边的长度为 3 + 2 × 1 = 5 m,所以路的面积为 7 × 5 - 5 × 3 = 35 - 15 = 20 平方米。

浙江省2023年中考数学真题(四边形)附答案

浙江省2023年中考数学真题(四边形)附答案

浙江省2023年中考数学真题(四边形)一、选择题1.如图矩形ABCD的对角线AC,BD相交于点O.若∠AOB=60°则ABBC=()A.12B.√3−12C.√32D.√332.第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图在由四个全等的直角三角形(△DAE,△ABF,△BCG,△CDH)和中间一个小正方形EFGH拼成的大正方形ABCD中∠ABF>∠BAF连接BE.设∠BAF=α,∠BEF=β若正方形EFGH与正方形ABCD的面积之比为1:n,tanα=tan2β则n=()A.5B.4C.3D.23.图1是第七届国际数学教育大会(ICME)的会徽图2由其主体图案中相邻两个直角三角形组合而成.作菱形CDEF 使点D E F分别在边OC OB BC上过点E作EH⊥AB于点H.当AB=BC,∠BOC=30°,DE=2时EH的长为()A.√3B.32C.√2D.434.如图⊙O的圆心O与正方形的中心重合已知⊙O的半径和正方形的边长都为4 则圆上任意一点到正方形边上任意一点距离的最小值为().A.√2B.2C.4+2√2D.4−2√25.如图以钝角三角形ABC最长边BC为边向外作矩形BCDE连结AE,AD设△AED△ABE△ACD的面积分别为S,S1,S2若要求出S−S1−S2的值只需知道()A.△ABE的面积B.△ACD的面积C.△ABC的面积D.矩形BCDE的面积6.如图已知矩形纸片ABCD 其中AB=3,BC=4现将纸片进行如下操作:第一步如图①将纸片对折使AB与DC重合折痕为EF 展开后如图②;第二步再将图②中的纸片沿对角线BD折叠展开后如图③;第三步将图③中的纸片沿过点E的直线折叠使点C落在对角线BD上的点H处如图④.则DH的长为()A.32B.85C.53D.9 57.如图在菱形ABCD中AB=1 ∠DAB=60° 则AC的长为()A.12B.1C.√32D.√38.如图在矩形ABCD中O为对角线BD的中点∠ABD=60°.动点E在线段OB上动点F在线段OD上点E,F同时从点O出发分别向终点B,D运动且始终保持OE=OF.点E关于AD,AB的对称点为E1,E2;点F关于BC,CD的对称点为F1,F2.在整个过程中四边形E1E2F1F2形状的变化依次是()A.菱形→平行四边形→矩形→平行四边形→菱形B.菱形→正方形→平行四边形→菱形→平行四边形C.平行四边形→矩形→平行四边形→菱形→平行四边形D.平行四边形→菱形→正方形→平行四边形→菱形二、填空题9.如图把两根钢条OA OB的一个端点连在一起点C D分别是OA OB的中点.若CD=4cm 则该工件内槽宽AB的长为cm.10.如图在菱形ABCD中∠DAB=40°连结AC以点A为圆心AC长为半径作弧交直线AD于点E连结CE则∠AEC的度数是.11.如图在平面直角坐标系xOy中函数y=kx(k为大于0的常数x>0)图象上的两点A(x1,y1),B(x2,y2)满足x2=2x1.△ABC的边AC//x轴边BC//y轴若△OAB的面积为6 则△ABC的面积是.12.如图矩形ABCD中AB=4AD=6.在边AD上取一点E 使BE=BC过点C作CF⊥BE垂足为点F 则BF的长为.13.如图分别以a b m n为边长作正方形已知m>n且满足am-bn=2.an+bm=4.(1)若a=3 b=4 则图1阴影部分的面积是;(2)若图1阴影部分的面积为3.图2四边形ABCD的面积为5 则图2阴影部分的面积是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、选择题(本题共 8小题,每小题4分,计32分;每小题都给出四个备选答案,其中有 且只有一个是正确的,把正确答案的代号填入下表中)13. 下列各式中,运算正确的是(C ) 2=2.一 314.若矩形的面积S 为定值,矩形的长为 a ,宽为b ,则b关于a 的函数图象大致是浙江省中考数学试卷(满分:150分考试时间120分钟)一、填空题(本题共12小题,每小题3分,计36分.) 1. 二的相反数是 ________________ . 2. 因式分解:X 2—X = ________________ . 3. 20XX 年4月6日《闽西日报》刊载:龙岩市统计局公布去年我市各级各类学校在校生 约为620000人,用科学记数法表示为 _________________ 人. x -24. 当X = 时,分式 的值为零• x 25. 函数y = J x +2的自变量x 的取值范围是 ____________________ a b6.如图所示,a//b ,c 与a 、b 相交,若N 1=50:,则N 2= ________________________ 度.7. 正八边形的每一个外角等于 _________________ 度.8. 小明的身高是 1.6m ,他的影长是 2m ,同一时刻旗杆的影长是 15m ,则旗杆的高是 m.9. 10. 装修工人拟用某种材料包装圆柱体的石柱侧面,现量得石柱底面周长约为 约为3m ,那么至少需用该材料 ____________________ m 2. 把一块周长为20cm 的三角形铁片裁成四块形状、大小完全 相同的小三角形铁片(如图示),则每块小三角形铁片的周 长为 __________________ c m. 0.9m ,柱高 11.如图,厂房屋顶人字架(等腰三角形)的跨度为贝忡柱BC ( C 为底边中点)的长约为 __________12m , A = 26",m.(精确到B上弦X/中XC 柱、跨度—A(第 11 题)0.01m )12.若 a 、、卄口 a , b b 满足2 ,b aa 2 ab b 2a 24ab b2的值为(A)(B )(C )(D)(A) x 4x 2 (B) 3-2)2 二 3-2(D)15.某商品标价1200元,打八折售出后仍盈利(A)800 元(B)860 元(1彳16•计算(-1)2004 +"+2)°-|丄的结果为12丿(A)0 (B)117.顺次连结等腰梯形各边中点所得四边形是(A)梯形(B)矩形18.商店里出售下列形状的地砖:CD正三角形其中一种地砖镶嵌地面,可供选择的地砖共有(A)1 种(B)2 种100兀,则该商品进价是(C) 900 元(D) 960 元(C) - 3(D)-2(C)菱形(D)正方形③正方形D正五边形D正六边形,只选购(C) 3 种(D) 4 种19.在半径为2a的O O中,弦AB长为23a,则.AOB为(A) 90 ( B) 120:(C) 13519.如图,AB是O O的直径,且AB=10,弦MN的长为8,若弦MN的两端在圆周上滑动时,始终与AB相交,记点A、B到MN的距离分别为h1、h2,则I h1- h2|等于(A)5 (B)6(C)7 (D)8三、解答题:(共大题共8小题,计82分)21. (9分)先化简,再求值:(1 一^匚)(X +2—^L),其中x = J3-1.x—2 x—222. (9分)今年4月25日,我市举行龙岩冠豸山机场首航仪式,利用这一契机,推出“冠豸山绿色之旅”等多项旅游项目.“五一”这天,对连城八家旅行社中部分游客的年龄(年龄取整数)进行了抽样统计,经整理后分成六组,并绘制成频率分布直方图(如图示).已知从左到右依次为1~6小组的频率分别是0.08、0.20、0.32、0.24 0.12、0.04,第1 小组的频数为8,请结合图形回答下列问题:(1)这次抽样的样本容量是 _______________ ;(2)样本中年龄的中位数落在第________________ 小组内;(3)“五一”这天,若到连城豸的游客约有5000人,请几频率组距10.5 20.5 30.5 40.50.5 60.570.5 年龄(岁)(第22题)你用学过的统计知识去估计20.5)~50.5年龄段的游客约有 ________________ 人.23. (8分)如图,ABCD是一张矩形纸片,点O为矩形对角线的交点.直线MN经过点O交AD于M,交BC于N.操作:先沿直线 MN 剪开,并将直角梯形 MNCD 绕点0旋 转 __________________度后(填入一个你认为正确的序号:O 1 90 ; ②180’ ;◎ 270360 ),恰与直角梯形 NMAB 完全重24.(10分)张老师在一次“探究性学习”课中,设计了如下数表:n 2 3 4 5a 22-1 32-1 42-1 52-1b46810c 22+1 32+1 42+1 52+1请你分别观察、、与之间的关系,并用含自然数n (n>1)的代数式表示:a = ________________ ,b = __________________ ,c = _________________ . (2) 猜想:以a 、b 、c 为边的三角形是否为直角三角形?并证明你的猜想. 25. (10分)已知关于x 的方程4x 2 -4(k1)x k 2 ^0的两实根X 1、X 2满足:| xf+i x 2|=2,试求k 的值.26. (10分)为加强公民节约用水, 减少污水排放的环保意识, 某城市制定了以下用水收费标准(含城市污水处理费):每户每月用水未超过 8 m 3时,按1.2元/m 3收费;每户每月 用水超过8 m 3时,其中的8 m 3仍按原标准收费,超过部分按1.9元/m 3收费.设某户每月 用水量为x(m 3),应交水费为y(元).(1)分别写出用水未超过 8m 3和超过8m 3时,y 与x 之间的函数关系式;(2)某用户五月份共交水费 13.4元,问该用户五月份用水多少 m 3(12分)如图,已知O O 1 ABC 的外接圆,以 D ,连结CD ,且/ BCD= / A.(1) 求证:CD 为O O 1的切线;(2) 如果CD=2, AB=3,试求O O 1的直径.(第27题)1 2 128. (14分)如图,已知抛物线 C : y x x 3与x 轴交于点A 、B 两点,过定点221的直线I : y x -2(a = 0)交x 轴于点Q.合;再将重合后的直角梯形 MNCD 以直线MN 为轴翻转180;后所得到的图形是下列中的______________ .(填写正确图形的代号)27. BC 为直径作O O 2,交AB 的延长线于(B)(C )O 1O 2Aa(1)求证:不论a取何实数(0)抛物线C与直线I总有两个交点;(2)写出点A、B的坐标:A (—, —)、B (—,—)及点Q的坐标;Q (—,—)(用含a的代数式表示);并依点Q坐标的变化确定:当 _______________时(填上a的取值范围),直线I与抛物线C在第一象限内有交点;(2)设直线I与抛物线C在第一象限内的交点为P,是否存在这样的点P,使得/ APB=90°?若存在,求出此时参考答案及评分标准填空题(每小题3分,共36分)1. 3;2. x (x -1)( x +1);3. 6.2X 105;4. 2;5. x>-2;6. 130;7. 45;8. 12;9. 2.7;10. 10;11.2.93;112.-2x -3 x 2 -921. (9分)解:原式=.................................................................................x —2 x —2=^1^ _________ ___________x-2 x-3 x 3 1= —— ...................................................................................................................................... (6 分)x 3当x =、运-1时,1 1原式= --------------- =—= ----- =2 — J3 ................................................................................... (9 分);3 -1 3 .3222. (9 分)(1) 100 (2) 3 (3) 3800 ................................................................. (每空 3 分) 23. (8 分)G> ;( D ) .................................................................................................. (每空4分)2 224. (10 分)(1) n -12 n n+1 .................................................................... (每空2 分,计 6 分)(2)答:以a 、b 、c 为边的三角形是直角三角形............................................................. (7分)证明:T a 2+ b 2=(n 2-1)2+4 n 2=n 4-2 n 2+1+4 n 2= n 4+2 n 2+1=( n 2+1)2=c 2•••以a 、b 、c 为边的三角形是直角三角形 ................................................... (10分)41. 当 X 1>0, X 2>0 时,有 x 什 X 2=2,即 k+1=2 , k=1 无解。

2. 当 X 1<0, X 2<0 时,有-(xi+ X 2)=2,即 k+仁-2, k=-3 ..................................................... ( 6分)△ =[-4(k+1)]2-16(k 2+1)=32k ........................................................................................ ( 7分)当k =1时,△ >0符合题意;( 2 分)125. (10分)解法一:依题意,X L X 2(k 2 1) 0,所以X 1与X 2同号……(2 分)当k =-3时,△<0舍去。

相关文档
最新文档