【2020年】浙江省中考数学模拟试卷(含答案)

合集下载

2020年浙江省中考数学全真模拟试卷解析版

2020年浙江省中考数学全真模拟试卷解析版

2020年浙江省中考数学全真模拟试卷一、选择题(本题有10个小题,每小题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3分)计算2﹣2的结果是()A.B.﹣C.4D.﹣42.(3分)给出四个数:﹣1、0、、,其中为无理数的是()A.﹣1B.0C.D.3.(3分)下列各图中,不能折叠成一个立方体的是()A.B.C.D.4.(3分)下列计算正确的是()A.3a2+a2=4a4B.(a2)3=a5C.a•a2=a3D.(2a)3=6a3 5.(3分)下列图形中,∠1一定小于∠2的是()A.B.C.D.6.(3分)某电动车厂2018年第三、四季度各月产量情况如图所示.则下列说法错误的是()A.7月份产量为300辆B.从10月到11月的月产量增长最快C.从11月到12月的月产量减少了20%D.第四季度比第三季度的产量增加了70%7.(3分)如图,一辆超市购物车放置在水平地面上,其侧面四边形ABCD与地面某条水平线在同一平面内,且AB∥l,若∠A=93°,∠D=111°,则直线CD与l所夹锐角的度数为()A.15°B.18°C.21°D.24°8.(3分)数学课上,老师提出问题:“一次函数的图象经过点A(3,2),B(﹣1,﹣6),由此可求得哪些结论?”小明思考后求得下列4个结论:①该函数表达式为y=2x﹣4;②该一次函数的函数值随自变量的增大而增大:③点P(2a,4a﹣4)在该函数图象上;④直线AB与坐标轴围成的三角形的面积为8.其中错误的结论是()A.①B.②C.③D.④9.(3分)如图,在扇形OAB中,点C是弧AB上任意一点(不与点A,B重合),CD∥OA 交OB于点D,点I是△OCD的内心,连结OI,BI,∠AOB=β,则∠OIB等于()A.B.180°﹣βC.D.90°+β10.(3分)如图,在直角坐标系中,O为坐标原点,点A(4,0),以OA为对角线作正方形ABOC,若将抛物线y=x2沿射线OC平移得到新抛物线y=(x﹣m)2+k(m>0).则当新抛物线与正方形的边AB有公共点时,m的值一定是()A.2,6,8B.0<m≤6C.0<m≤8D.0<m≤2或6≤m≤8二、填空题(本题有6个小题,每小题4分,共24分)11.(4分)已知∠α=60°,则∠α的余角等于度.12.(4分)掷一枚硬币,反面朝上的概率是.13.(4分)分解因式:a3﹣4a2+4a=.14.(4分)方程的解为.15.(4分)如图,点C为半圆的中点,AB是直径,点D是半圆上一点,AC,BD交于点E,若AD=1,BD=7,则CE的长为.16.(4分)如图,在直角坐标系中,O为坐标原点,点A(1,2),过点A分别作x轴、y轴的平行线交反比例函数的图象于点B,C,延长OA交BC于点D.若△ABD的面积为2,则k的值为.17.(6分)(1)计算:(2)化简:.18.(6分)小红同学想仅用一架天平和一个10克的砝码测量出登元硬币和伍角硬币的质量,于是,他找来足够多的壹元和伍角硬币(假设同种类每枚硬币的质量相同),经过操作得到如下记录:记录天平左边天平右边状态记录一5枚壹元硬币,1个1010枚伍角硬币平衡克的砝码平衡记录二15枚壹元硬币20枚伍角硬币,1个10克的砝码请你帮小红同学算一算,一枚壹元硬币和一枚伍角硬币的质量分别是多少克?19.(6分)如图是6×6的正方形网格,点A,B,C均在格点上.请按下列要求完成作图:①仅用无刻度直尺,且不能用直尺中的直角;②保留作图痕迹.(1)在图中作出一个以点A,B,C,D为顶点的平行四边形.(2)在图中作出△ABC中AB边上的中线.20.(8分)若一个正整数能表示为两个连续自然数的平方差,则称这个正整数为“和谐数”.如:1=12﹣02,7=42﹣32,因此1和7都是“和谐数”.(1)判断11是否为“和谐数”,并说明理由;(2)下面是某个同学演算后发现的两个命题,请选择其中一个命题,判断真假,并说明理由.命题1:数2n﹣1(n为正整数)是“和谐数”,命题2:“和谐数”一定是奇数.21.(8分)某校九年级共有360名学生,为了解该校九年级学生每周运动的时间,从中随机抽取了若干名学生进行问卷调查,并将获得的数据(每周运动的时间,单位:小时)进行整理、描述和分析.下面给出了部分信息.I.学生每周运动的时间的频数分布直方图如下(数据分成6组:1≤x<3,3≤x<5,5≤x<7,7≤x<9,9≤x<11,11≤x≤13)Ⅱ.学生每周运动的时间在7≤x<9这一组的数据是:7,7.2,7.4,7.5,7.5,7.6,7.8,7.8,8,8.2,8.4,8.5,8.6,8.8根据以上信息,解答下列问题(1)求这次被抽取的学生数.(2)写出被抽取学生每周运动的时间的中位数.(3)根据此次问卷调查结果,估计该校九年级全体学生每周运动的时间超过79小时的学生有多少人?22.(10分)图1是某酒店的推拉门,已知门的宽度AD=2米,两扇门的大小相同(即AB=CD),且AB+CD=AD,现将右边的门CDD1C1绕门轴DD1向外面旋转67°(如图2所示).(1)点C到直线AD的距离.(2)将左边的门ABB1A1绕门轴AA1向外面旋转,设旋转角为α(如图3所示),问α为多少度时,点B,C之间的距离最短.参考数据:(sin67°≈0.92,cos67°≈0.39,tan29.6°≈0.57,tan19.6°≈0.36,sin29.6°≈0.49)23.(10分)已知,抛物线y=x2+2mx(m为常数且m≠0).(1)判断该抛物线与x轴的交点个数,并说明理由;(2)若点A(﹣n+5,0),B(n﹣1,0)在该抛物线上,点M为抛物线的顶点,求△ABM 的面积;(3)若点(2,p),(3,q),(4,r)均在该抛物线上,且p<q<r,求m的取值范围.24.(12分)数学拓展课上,老师给出如下定义:如果三角形有一边上的中线长恰好等于该边长的1.5倍,那么称这个三角形为“趣味三角形”.理解:(1)如图1,在△ABC中,AB=AC=,BC=2,试判断△ABC是否为“趣味三角形”,并说明理由.发现:(2)如图2,已知△ABC是“趣味三角形”,AD,BE,CF分别是BC,AC,AB边上的中线,且AD=BC,试探究BE和CF之间的位置关系.应用:(3)如图3,直线l1∥l2,l1与l2之间的距离为2,点B,C在直线l1上,点A在直线l2上,AD,BE,CF分别是△ABC的边BC,AC,AB上的中线.若△ABC是“趣味三角形”,BC=2.求BE2+CF2的值.参考答案与试题解析一、选择题(本题有10个小题,每小题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3分)计算2﹣2的结果是()A.B.﹣C.4D.﹣4【分析】根据负整数指数幂的运算法则计算即可.【解答】解:2﹣2==.故选:A.2.(3分)给出四个数:﹣1、0、、,其中为无理数的是()A.﹣1B.0C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、﹣1是整数,是有理数,选项错误;B、0是整数,是有理数,选项错误;C、是无理数,故选项C符合题意;D、是分数,是有理数,选项错误.故选:C.3.(3分)下列各图中,不能折叠成一个立方体的是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:A、是正方体的展开图,不符合题意;B、有两个面重合,不是正方体的展开图,符合题意;C、是正方体的展开图,不符合题意;D、是正方体的展开图,不符合题意.故选:B.4.(3分)下列计算正确的是()A.3a2+a2=4a4B.(a2)3=a5C.a•a2=a3D.(2a)3=6a3【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、积的乘方运算法则、合并同类项法则分别化简得出答案.【解答】解:A、3a2+a2=4a2,故此选项错误;B、(a2)3=a6,故此选项错误;C、a•a2=a3,故此选项正确;D、(2a)3=8a3,故此选项错误;故选:C.5.(3分)下列图形中,∠1一定小于∠2的是()A.B.C.D.【分析】根据圆周角定理,对顶角相等,平行线的性质,以及三角形外角知识,运用排除法,逐题分析判断.【解答】解:A、若两直线平行,则∠1=∠2;B、如图,根据同弧对的圆周角相等∠2=∠3,三角形外角大于不相邻的内角,∠3>∠1,则∠1一定小于∠2;C、三角形外角大于不相邻的内角,则∠1>∠2;D、对顶角相等;故选:B.6.(3分)某电动车厂2018年第三、四季度各月产量情况如图所示.则下列说法错误的是()A.7月份产量为300辆B.从10月到11月的月产量增长最快C.从11月到12月的月产量减少了20%D.第四季度比第三季度的产量增加了70%【分析】根据题目中的折线统计图,可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由图可得,7月份产量为300辆,故选项A正确,从10月到11月的月产量增长最快,故选项B正确,从11月到12月的月产量减少了≈16.7%,故选项C错误,第四季度比第三季度的产量增加了=70%,故选项D正确,故选:C.7.(3分)如图,一辆超市购物车放置在水平地面上,其侧面四边形ABCD与地面某条水平线在同一平面内,且AB∥l,若∠A=93°,∠D=111°,则直线CD与l所夹锐角的度数为()A.15°B.18°C.21°D.24°【分析】把题意抽象为数学模型解得即可.【解答】解:如图所示,根据题意可知直线CD与l所夹锐角即为∠AED,据题意可得∠ADE=180°﹣∠ADC=69°,∠DAE=180°﹣∠BAD=87°,∴∠AED=180°﹣∠ADE﹣∠DAE=24°.故选:D.8.(3分)数学课上,老师提出问题:“一次函数的图象经过点A(3,2),B(﹣1,﹣6),由此可求得哪些结论?”小明思考后求得下列4个结论:①该函数表达式为y=2x﹣4;②该一次函数的函数值随自变量的增大而增大:③点P(2a,4a﹣4)在该函数图象上;④直线AB与坐标轴围成的三角形的面积为8.其中错误的结论是()A.①B.②C.③D.④【分析】已知一次函数过两个点A(3,2),B(﹣1,﹣6),可以用待定系数法求出关系式;根据关系式可以判定一个点(已知坐标)是否在函数的图象上;根据一次函数的增减性,可以判定函数值随自变量的变化情况,当k>0,y随x的增大而增大;根据关系式可以求出函数图象与x轴、y轴的交点坐标,进而可以求出直线AB与坐标轴围成的三角形的面积,最后综合做出结论.【解答】解:设一次函数表达式为y=kx+b,将A(3,2),B(﹣1,﹣6)代入得:解得:k=2,b=﹣4,∴关系式为y=2x﹣4,故结论①是正确的;也可以直接验证A(3,2),B(﹣1,﹣6)的坐标是否满足y=2x﹣4,从而判定①是否正确.由于k=2>0,y随x的增大而增大,故结论②也是正确的;点P(2a,4a﹣4),其坐标满足y=2x﹣4,因此该点在此函数图象上;故结论③也是正确的;直线AB与xy轴的交点分别(2,0),(0,﹣4),因此与坐标轴围成的三角形的面积为:×2×4=4≠8,故结论④是不正确的;因此,不正确的结论是④;也可以用排除法,①②③均正确,则④为不正确.故选:D.9.(3分)如图,在扇形OAB中,点C是弧AB上任意一点(不与点A,B重合),CD∥OA 交OB于点D,点I是△OCD的内心,连结OI,BI,∠AOB=β,则∠OIB等于()A.B.180°﹣βC.D.90°+β【分析】由点I是△OCD的内心,得:∠COI=∠BOI,连接IC,由圆的对称性可知:∠OIB=∠OIC=90°+∠ODC=180°﹣β.【解答】解:如图,连接IC,∵CD∥OA∴∠CDB=∠AOB=β,∴∠COD+∠OCD=∠CDB=β∵点I是△OCD的内心∴OI、CI分别平分∠COD、∠OCD∴∠COI=∠BOI=∠COD,∠OCI=∠OCD∴∠OIC=180°﹣(∠COI+∠OCI)=180°﹣(∠COD+∠OCD)=180°﹣β.在△COI和△BOI中∴△COI≌△BOI(SAS)∴∠OIB=∠OIC∴∠OIB=180°﹣β.故选:A.10.(3分)如图,在直角坐标系中,O为坐标原点,点A(4,0),以OA为对角线作正方形ABOC,若将抛物线y=x2沿射线OC平移得到新抛物线y=(x﹣m)2+k(m>0).则当新抛物线与正方形的边AB有公共点时,m的值一定是()A.2,6,8B.0<m≤6C.0<m≤8D.0<m≤2或6≤m≤8【分析】抛物线y=x2沿射线OC平移,则新的抛物线的顶点在OC上,分别求出C(2,﹣2),B(2,2),进而可得OC的直线解析式为y=﹣x;则新抛物线的顶点为(m,﹣m),即k=m,将点B(2,2)代入y=(x﹣m)2+m中,将点A(4,0)代入y=(x﹣m)2+m中,则可确定0<m≤2或6≤m≤8;【解答】解:∵抛物线y=x2沿射线OC平移,∴新的抛物线的顶点在OC上,∵点A(4,0),以OA为对角线作正方形ABOC,∴C(2,﹣2),B(2,2),∴OC的直线解析式为y=﹣x,则新抛物线的顶点为(m,﹣m),即k=﹣m,将点B(2,2)代入y=(x﹣m)2﹣m中,∴m=0或m=6;将点A(4,0)代入y=(x﹣m)2﹣m中,∴m=2或m=8;∵新抛物线与正方形的边AB有公共点,∴0<m≤2或6≤m≤8;故选:D.二、填空题(本题有6个小题,每小题4分,共24分)11.(4分)已知∠α=60°,则∠α的余角等于30度.【分析】根据两个角的和为90°,则这两个角互余解答.【解答】解:∠α的余角=90°﹣60°=30°,故答案为:30.12.(4分)掷一枚硬币,反面朝上的概率是.【分析】因为一枚硬币只有正反两面,所以共有两种情况,再根据概率公式即可解答.【解答】解:∵一枚硬币只有正反两面,∴掷一枚硬币,反面朝上的概率是.故答案为.13.(4分)分解因式:a3﹣4a2+4a=a(a﹣2)2.【分析】观察原式a3﹣4a2+4a,找到公因式a,提出公因式后发现a2﹣4a+4是完全平方公式,利用完全平方公式继续分解可得.【解答】解:a3﹣4a2+4a,=a(a2﹣4a+4),=a(a﹣2)2.故答案为:a(a﹣2)2.14.(4分)方程的解为x=﹣3.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:﹣2=x+1,解得:x=﹣3,经检验x=﹣3是分式方程的解,故答案为:x=﹣315.(4分)如图,点C为半圆的中点,AB是直径,点D是半圆上一点,AC,BD交于点E,若AD=1,BD=7,则CE的长为.【分析】先由直径所对的圆周角为90°,得∠C=∠D=90°,再利用勾股定理求出AB、BC和AC的长,然后利用∠C=∠D,∠BEC=∠AED得△BEC∽△AED,根据相似三角形的性质得比例式,进而得关于DE和CE的方程组,解方程组即可得答案.【解答】解:如图,连接AD,BC∵AB为直径∴∠C=∠D=90°∵AD=1,BD=7,∴AB===5∵点C为半圆的中点,∴AC=BC∴AC2+BC2=AB2∴2BC2=50∴BC=AC=5∵∠C=∠D,∠BEC=∠AED∴△BEC∽△AED∴===∴∴故答案为:.16.(4分)如图,在直角坐标系中,O为坐标原点,点A(1,2),过点A分别作x轴、y 轴的平行线交反比例函数的图象于点B,C,延长OA交BC于点D.若△ABD的面积为2,则k的值为6.【分析】要求k的值,只要求出点C或点B的坐标即可,根据A(1,2),可到点C的纵坐标为2,点B的横坐标为1,设出点C的横坐标,就能表示出点B的纵坐标,从而得到三角形ABC的两条直角边的比为1:2,根据三角形相似,可以得出△ABD与△ACD 高DH与DG的比是2:1,从而得到△ABD与△ACD的面积相等,求出△ABC的面积,确定点C的坐标,求出k的值.【解答】解:过点C、A分别作CE⊥x轴,AF⊥x轴,垂足为E、F,过D作DG⊥AC,DH⊥AB,垂足为G、H,∵A(1,2)∴OF=1,AF=2=CE,则点B的横坐标为1,点C的纵坐标为2,设AC=a,则C(a+1,2),∵点B、C都在反比例函数的图象上,∴1×y=2×(a+1),即y=2a+2=BF,∴AB=BF﹣AF=2a∴,由△AOF∽△DAG得:,即,∴S△ABD=S△ACD=2,∴S△ABC=2+2=4,∴AC•AB=4,即×a×2a=4,∴a=2,∴C(3,2)代入y=得:k=6故答案为:6.三、解答题(本题有8小题,第17-19题每题6分:第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)友情提示:做解答题,则忘了写出必要的过程;作图(包括选加辅助线)最后必须用黑色字迹的签字笔或钢笔将线条描黑.17.(6分)(1)计算:(2)化简:.【分析】(1)原式利用特殊角的三角函数值,绝对值的代数意义,以及算术平方根定义计算即可求出值;(2)原式括号中两项通分并利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:(1)原式=+3﹣2=1;(2)原式=•=a﹣b.18.(6分)小红同学想仅用一架天平和一个10克的砝码测量出登元硬币和伍角硬币的质量,于是,他找来足够多的壹元和伍角硬币(假设同种类每枚硬币的质量相同),经过操作得到如下记录:记录天平左边天平右边状态10枚伍角硬币平衡记录一5枚壹元硬币,1个10克的砝码记录二15枚壹元硬币20枚伍角硬币,1个平衡10克的砝码请你帮小红同学算一算,一枚壹元硬币和一枚伍角硬币的质量分别是多少克?【分析】设一枚壹元硬币x克,一枚伍角硬币y克.两个等量关系为:5枚壹元硬币质量+10=10枚伍角硬币质量;15枚壹元硬币质量=20枚伍角硬币质量+10.列出方程组,解方程组即可.【解答】解:设一枚壹元硬币x克,一枚伍角硬币y克.依题意得:,②﹣①×2,得5x=30,解得x=6,把x=6代入①,得y=4.所以原方程的解为:.答:一枚壹元硬币6克,一枚伍角硬币4克.19.(6分)如图是6×6的正方形网格,点A,B,C均在格点上.请按下列要求完成作图:①仅用无刻度直尺,且不能用直尺中的直角;②保留作图痕迹.(1)在图中作出一个以点A,B,C,D为顶点的平行四边形.(2)在图中作出△ABC中AB边上的中线.【分析】(1)根据平行四边形的判定定理画图即可;(2)根据三角形中线的定义画图即可.【解答】解:(1)如图所示,四边形ABCD即为所求;(2)如图所示.线段CE即为所求.20.(8分)若一个正整数能表示为两个连续自然数的平方差,则称这个正整数为“和谐数”.如:1=12﹣02,7=42﹣32,因此1和7都是“和谐数”.(1)判断11是否为“和谐数”,并说明理由;(2)下面是某个同学演算后发现的两个命题,请选择其中一个命题,判断真假,并说明理由.命题1:数2n﹣1(n为正整数)是“和谐数”,命题2:“和谐数”一定是奇数.【分析】(1)利用11=62﹣52即可说明11是“和谐数”;(2)由2n﹣1=n2﹣(n﹣1)2,根据“和谐数”的定义判断命题1即可;设两个连续自然数为n,n+1(n为自然数),则“和谐数”=(n+1)2﹣n2,利用平方差公式展开得到(n+1+n)(n+1﹣n)=2n+1,然后利用整除性可说明“和谐数”一定是奇数.【解答】解:(1)11是“和谐数”.理由如下:11=62﹣52;(2)命题1:数2n﹣1(n为正整数)是“和谐数”,是真命题.理由如下:∵2n﹣1=n2﹣(n﹣1)2,而当n为正整数时,数2n﹣1是正整数,n与n﹣1是两个连续自然数,∴数2n﹣1(n为正整数)是“和谐数”;命题2:“和谐数”一定是奇数,是真命题.理由如下:设两个连续自然数为n,n+1(n为自然数),则“和谐数”=(n+1)2﹣n2,∵(n+1)2﹣n2=(n+1+n)(n+1﹣n)=2n+1,当n为自然数时,2n+1是正整数,且为奇数,∴“和谐数”一定是奇数.21.(8分)某校九年级共有360名学生,为了解该校九年级学生每周运动的时间,从中随机抽取了若干名学生进行问卷调查,并将获得的数据(每周运动的时间,单位:小时)进行整理、描述和分析.下面给出了部分信息.I.学生每周运动的时间的频数分布直方图如下(数据分成6组:1≤x<3,3≤x<5,5≤x<7,7≤x<9,9≤x<11,11≤x≤13)Ⅱ.学生每周运动的时间在7≤x<9这一组的数据是:7,7.2,7.4,7.5,7.5,7.6,7.8,7.8,8,8.2,8.4,8.5,8.6,8.8根据以上信息,解答下列问题(1)求这次被抽取的学生数.(2)写出被抽取学生每周运动的时间的中位数.(3)根据此次问卷调查结果,估计该校九年级全体学生每周运动的时间超过79小时的学生有多少人?【分析】(1)根据频数分布直方图中的数据可以求得本次调查的学生数;(2)根据直方图中的数据和题目中的条件,可以求得这组数据的中位数;(3)根据直方图中的数据可以求得该校九年级全体学生每周运动的时间超过7.9小时的学生有多少人.【解答】解:(1)本次抽取的学生数为:2+6+12+14+18+8=60,即本次抽取了60名学生;(2)∵2+6+12=20,2+6+12+14=34,在7≤x<9这一组的数据是:7,7.2,7.4,7.5,7.5,7.6,7.8,7.8,8,8.2,8.4,8.5,8.6,8.8,∴被抽取学生每周运动的时间的中位数是:(8.2+8.4)÷2=8.3,即被抽取学生每周运动的时间的中位数是8.3;(3)360×=192(人),答:该校九年级全体学生每周运动的时间超过7.9小时的学生有192人.22.(10分)图1是某酒店的推拉门,已知门的宽度AD=2米,两扇门的大小相同(即AB =CD),且AB+CD=AD,现将右边的门CDD1C1绕门轴DD1向外面旋转67°(如图2所示).(1)点C到直线AD的距离.(2)将左边的门ABB1A1绕门轴AA1向外面旋转,设旋转角为α(如图3所示),问α为多少度时,点B,C之间的距离最短.参考数据:(sin67°≈0.92,cos67°≈0.39,tan29.6°≈0.57,tan19.6°≈0.36,sin29.6°≈0.49)【分析】(1)如图2,过C作CH⊥AD于H,解直角三角形即可得到结论;(2)当A、B、C三点共线时,B,C之间的距离最短,如图3,过C作CH⊥AD于H,解直角三角形即可得到结论.【解答】解:(1)如图2,过C作CH⊥AD于H,由题意得,∠D=67°,CD=AD=1,∴CH=CD•sin67°≈0.92米;答:点C到直线AD的距离约为0.92米;(2)当A、B、C三点共线时,B,C之间的距离最短,如图3,过C作CH⊥AD于H,由题意得,∠D=67°,CD=AD=1,∴CH=CD•sin67°≈0.92米,DH=CD•cos67°≈0.39,∴AH=2﹣0.39=1.61,在Rt△ACH中,tanα==≈0.57,∴α≈29.6°,答:当α为29.6度时,点B,C之间的距离最短.23.(10分)已知,抛物线y=x2+2mx(m为常数且m≠0).(1)判断该抛物线与x轴的交点个数,并说明理由;(2)若点A(﹣n+5,0),B(n﹣1,0)在该抛物线上,点M为抛物线的顶点,求△ABM 的面积;(3)若点(2,p),(3,q),(4,r)均在该抛物线上,且p<q<r,求m的取值范围.【分析】(1)m为常数且m≠0,则△=(2m)2>0,即可求解;(2)x1+x2=﹣2m=4,x1x2=0=(﹣n+5)(n﹣1),利用则S△ABM=AB×(﹣y C),即可求解;(3)由题意得:三个点中,只需要对称轴与(2,p)点最为接近即可.【解答】解:(1)m为常数且m≠0,则△=(2m)2>0,故抛物线与x轴有两个交点;(2)函数的对称轴为:x=﹣m,设函数与x轴交点的横坐标分别为x1、x2,则x1+x2=﹣2m=4,x1x2=0=(﹣n+5)(n﹣1),解得:m=﹣2,n=5或1,则AB=4,当x=﹣m=2时,y=4+4m=﹣4,则S△ABM=AB×(﹣y C)=4×4=8;(3)由题意得:三个点中,只需要对称轴与(2,p)点最为接近即可,即:﹣,解得:m故::m且m≠0.24.(12分)数学拓展课上,老师给出如下定义:如果三角形有一边上的中线长恰好等于该边长的1.5倍,那么称这个三角形为“趣味三角形”.理解:(1)如图1,在△ABC中,AB=AC=,BC=2,试判断△ABC是否为“趣味三角形”,并说明理由.发现:(2)如图2,已知△ABC是“趣味三角形”,AD,BE,CF分别是BC,AC,AB边上的中线,且AD=BC,试探究BE和CF之间的位置关系.应用:(3)如图3,直线l1∥l2,l1与l2之间的距离为2,点B,C在直线l1上,点A在直线l2上,AD,BE,CF分别是△ABC的边BC,AC,AB上的中线.若△ABC是“趣味三角形”,BC=2.求BE2+CF2的值.【分析】理解:(1)过点A作AD⊥BC于点D,由勾股定理可求AD=3,可得AD=1.5BC,由“趣味三角形”定义可判断△ABC是“趣味三角形”;发现:(2)由三角形中位线定理可得DF∥AC,AC=2DF,BD=CD,可得AO=2DO,由AD=BC,可得DO=BD=CD,可证BE⊥CF;应用:(3)分三种情况讨论,由“趣味三角形”的定义和勾股定理可求解.【解答】解:理解:(1)过点A作AD⊥BC于点D,∵AB=AC,AD⊥BC∴BD=CD=BC=1∴AD===3∴AD=1.5BC∴△ABC为“趣味三角形”;(2)BE⊥CF连接DF,设AD与CF的交点为O,∵点D,点F分别是BC,AB的中点,∴DF∥AC,AC=2DF,BD=CD∴∴AO=2DO,∴AD=3DO,AD=BC,∴DO=BC∴DO=BD=CD∴∠BOC=90°∴BE⊥CF;(3)①若AD=BC时,如图,由(2)可知,BE⊥CF∴BO2+CO2=BC2,∵O是重心∴BO=BE,CO=CE,∴BE2+CE2=(2)2,∴BE2+CE2=18②若BE=AC时,如图3,过点E作EH⊥BC于点H,过点A作AK⊥BC于点K,∴EH∥AH,AK=2∴∴KH=CH,且AE=CE∴EH=AK=1∵BE2=BH2+EH2,∴BE2=(2+CH)2+1,∵AC2=CK2+AK2,∴AC2=(2CH)2+4,∵BE=AC∴BE2=AC2,∴(2+CH)2+1=(4CH2+4)∴CH=0或CH=当CH=0时,BE2+CF2=(2)2+1+[(2)2+4]=12,当CH=时,BE2+CF2=()2+1+[()2+4]=15③若CF=AB时,同②解法,可得BE2+CF2=12或15,综上所述:BE2+CF2=18或12或15。

2020年浙江省杭州市中考数学一模试卷及答案解析

2020年浙江省杭州市中考数学一模试卷及答案解析

2020年浙江省杭州市中考数学一模试卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.(3分)﹣2的绝对值是( ) A .﹣2 B .2C .12D .−122.(3分)下列计算正确的是( )A .m 4+m 3=m 7B .(m 4) 3=m 7C .2m 5÷m 3=m 2D .m (m ﹣1)=m 2﹣m3.(3分)如图,P 为⊙O 外一点,PC 切⊙O 于C ,PB 与⊙O 交于A 、B 两点.若P A =1,PB =5,则PC =( )A .3B .√5C .4D .无法确定 4.(3分)为了解某班学生每天使用零花钱的情况,小敏随机调查了15名同学,结果如表:每天用零花钱(单位:元) 12345人数2 4 53 1则这15名同学每天使用零花钱的众数和中位数分别是( )A .3,3B .5,2C .3,2D .3,55.(3分)某工程甲单独完成要30天,乙单独完成要25天.若乙先单独干15天,剩下的由甲单独完成,设甲、乙一共用x 天完成,则可列方程为( )A .x+1525+1530=1 B .x+1530+1525=1 C .1530+x−1525=1D .x−1530+1525=16.(3分)如图,已知一组平行线a ∥b ∥c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =3,BC =4,EF =4.8,则DE =( )A .7.2B .6.4C .3.6D .2.47.(3分)如图,BD 是△ABC 的角平分线,AE ⊥BD ,垂足为F .若∠ABC =36°,∠C =44°,则∠EAC 的度数为( )A .18°B .28°C .36°D .38°8.(3分)直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是( )A .B .C .D .9.(3分)关于x 的二次函数y =x 2+2kx +k ﹣1,下列说法正确的是( ) A .对任意实数k ,函数图象与x 轴都没有交点B .对任意实数k ,函数图象没有唯一的定点C .对任意实数k ,函数图象的顶点在抛物线y =﹣x 2﹣x ﹣1上运动D .对任意实数k ,当x ≥﹣k ﹣1时,函数y 的值都随x 的增大而增大10.(3分)如图,在△ABC 中,∠C =90°,D 是BC 边上一点,∠ADC =3∠BAD ,BD =4,DC =3.则AB 的值为( )A .5+3√2B .2+2√15C .7√2D .√113二、填空题:本题有6个小题,每小题4分,共24分 11.(4分)分解因式:3x 2+6xy +3y 2= .12.(4分)一个袋子中有1个红球,2个黄球,每个球除颜色外都相同,从中摸出2个球,2个球颜色不同的概率为 . 13.(4分)分式方程2x−1=1x的解是 . 14.(4分)已知一个扇形的面积为12πcm 2,圆心角的度数为108°,则它的弧长为 .15.(4分)已知关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,则a 的取值范围是 .16.(4分)一张直角三角形纸片ABC ,∠ACB =90°,AB =13,AC =5,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,则CD 的长为 . 三、解答题:本大题有7个小题,共66分解答应写出文字说明、证明过程或演算步骤. 17.(6分)先化简再求值:(ab−b a)•aba+b,其中a =1,b =2. 18.(8分)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成统计图(不完整).根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有人,男生最喜欢“乒乓球“项目的有人.(2)请将条形统计图补充完整;(3)若该校有男生450人,女生400人,请估计该校喜欢“羽毛球”项目的学生总人数.19.(8分)如图,D、E是以AB为直径的⊙O上两点,且∠AED=45°.(1)过点D作DC∥AB,求证:直线CD与⊙O相切;(2)若⊙O的半径为12,sin∠ADE=3,求AE的长.420.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6√2,AF=4√2,求AE的长.21.(10分)已知Rt△ABC的斜边AB在平面直角坐标系的x轴上,点C(2,6)在反比例函数y1=k x的图象上,且sin∠BAC= 35(1)求k的值和边AC的长;(2)求点B的坐标;交于M与N点,求出x为何值时,y2≥y1.(3)有一直线y2=kx+10与y1=kx22.(12分)已知一次函数y1=2x+b的图象与二次函数y2=a(x2+bx+1)(a≠0,a、b为常数)的图象交于A、B两点,且A 的坐标为(0,1).(1)求出a、b的值,并写出y1,y2的表达式;(2)验证点B的坐标为(1,3),并写出当y1≥y2时,x的取值范围;(3)设u=y1+y2,v=y1﹣y2,若m≤x≤n时,u随着x的增大而增大,且v也随着x的增大而增大,求m的最小值和n的最大值.23.(12分)在△ABC 和△DBE 中,CA =CB ,EB =ED ,点D 在AC 上.(1)如图1,若∠ABC =∠DBE =60°,求证:∠ECB =∠A ;(2)如图2,设BC 与DE 交于点F .当∠ABC =∠DBE =45°时,求证:CE ∥AB ; (3)在(2)的条件下,若tan ∠DEC =12时,求EFDF的值.2020年浙江省杭州市中考数学一模试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.(3分)﹣2的绝对值是( ) A .﹣2B .2C .12D .−12【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2, 故选:B .【点评】本题考查了绝对值的定义,是中考的常见题型,比较简单,熟记绝对值的定义是本题的关键. 2.(3分)下列计算正确的是( ) A .m 4+m 3=m 7 B .(m 4) 3=m 7 C .2m 5÷m 3=m 2D .m (m ﹣1)=m 2﹣m【分析】直接利用整式的混合运算法则分别计算判断即可. 【解答】解:A 、m 4与m 3,无法合并,故此选项错误; B 、(m 4) 3=m 12,故此选项错误; C 、2m 5÷m 3=2m 2,故此选项错误; D 、m (m ﹣1)=m 2﹣m ,正确. 故选:D .【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.3.(3分)如图,P 为⊙O 外一点,PC 切⊙O 于C ,PB 与⊙O 交于A 、B 两点.若P A =1,PB =5,则PC =( )A .3B .√5C .4D .无法确定【分析】求出半径的长,求出PO 长,根据切线的性质求出∠PCO =90°,再根据勾股定理求出即可. 【解答】解:∵P A =1,PB =5, ∴AB =PB ﹣P A =4, ∴OC =OA =OB =2, ∴PO =1+2=3, ∵PC 切⊙O 于C , ∴∠PCO =90°,在Rt △PCO 中,由勾股定理得:PC =√PO 2−OC 2=√32−22=√5, 故选:B .【点评】本题考查了勾股定理和切线的性质,能熟记切线的性质的内容是解此题的关键,注意:圆的切线垂直于过切点的半径.4.(3分)为了解某班学生每天使用零花钱的情况,小敏随机调查了15名同学,结果如表:每天用零花钱(单位:元) 12345人数24531则这15名同学每天使用零花钱的众数和中位数分别是( )A .3,3B .5,2C .3,2D .3,5【分析】根据众数和中位数的定义分别进行解答即可.【解答】解:这15名同学每天使用零花钱的众数为3元,中位数为3元,故选:A.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)某工程甲单独完成要30天,乙单独完成要25天.若乙先单独干15天,剩下的由甲单独完成,设甲、乙一共用x 天完成,则可列方程为()A.x+1525+1530=1 B.x+1530+1525=1C.1530+x−1525=1 D.x−1530+1525=1【分析】根据题意列出方程求出答案.【解答】解:设甲、乙一共用x天完成,则可列方程为:x−15 30+1525=1.故选:D.【点评】本题考查由实际问题抽象出一元一次方程,解题的关键是找出等量关系,本题属于基础题型.6.(3分)如图,已知一组平行线a∥b∥c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB=3,BC=4,EF =4.8,则DE=()A.7.2 B.6.4 C.3.6 D.2.4【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案.【解答】解:∵a∥b∥c,∴DEEF=ABBC,即DE4.8=34,解得,DE=3.6,故选:C.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=36°,∠C=44°,则∠EAC的度数为()A.18°B.28°C.36°D.38°【分析】根据∠EAC=∠BAC﹣∠BAF,求出∠BAC,∠BAF即可解决问题.【解答】解:∵∠ABC=36°,∠C=44°,∴∠BAC=180°﹣36°﹣44°=100°,∵BD平分∠ABC,∴∠ABD=12∠ABC=18°,∵AE⊥BD,∴∠BF A=90°,∴∠BAF=90°﹣18°=72°,∴∠EAC =∠BAC ﹣∠BAF =100°﹣72°=28°, 故选:B .【点评】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 8.(3分)直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是( )A .B .C .D .【分析】根据一次函数的系数与图象的关系依次分析选项,找k 、b 取值范围相同的即得答案. 【解答】解:根据一次函数的系数与图象的关系依次分析选项可得:A 、由图可得,y 1=kx +b 中,k <0,b <0,y 2=bx +k 中,b >0,k <0,b 、k 的取值矛盾,故本选项错误;B 、由图可得,y 1=kx +b 中,k >0,b <0,y 2=bx +k 中,b >0,k >0,b 的取值相矛盾,故本选项错误;C 、由图可得,y 1=kx +b 中,k >0,b <0,y 2=bx +k 中,b <0,k >0,k 的取值相一致,故本选项正确;D 、由图可得,y 1=kx +b 中,k >0,b <0,y 2=bx +k 中,b <0,k <0,k 的取值相矛盾,故本选项错误; 故选:C .【点评】本题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.解答本题注意理解:直线y =kx +b 所在的位置与k 、b 的符号有直接的关系.9.(3分)关于x 的二次函数y =x 2+2kx +k ﹣1,下列说法正确的是( ) A .对任意实数k ,函数图象与x 轴都没有交点B .对任意实数k ,函数图象没有唯一的定点C .对任意实数k ,函数图象的顶点在抛物线y =﹣x 2﹣x ﹣1上运动D .对任意实数k ,当x ≥﹣k ﹣1时,函数y 的值都随x 的增大而增大【分析】利用△=(2k ﹣1)2+3>0可对A 进行判断;利用点(−12,−34)满足抛物线解析式可对B 进行判断;先求出抛物线顶点坐标为(﹣k ,﹣k 2+k ﹣1),则根据二次函数图象上点的坐标特征可对C 进行判断;先表示出抛物线的对称轴方程,然后利用二次函数的性质可对D 进行判断.【解答】解:A 、△=4k 2﹣4(k ﹣1)=(2k ﹣1)2+3>0,抛物线与x 轴有两个交点,所以A 选项错误;B 、k (2x +1)=y +1﹣x 2,k 为任意实数,则2x +1=0,y +1﹣x 2=0,所以抛物线经过定点(−12,−34),所以B 选项错误; C 、y =(x +k )2﹣k 2+k ﹣1,抛物线的顶点坐标为(﹣k ,﹣k 2+k ﹣1),则抛物线的顶点在抛物线y =﹣x 2﹣x ﹣1上运动,所以C 选项正确;D 、抛物线的对称轴为直线x =−2k2=−k ,抛物线开口向上,则x >﹣k 时,函数y 的值都随x 的增大而增大,所以D 选项错误. 故选:C .【点评】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.10.(3分)如图,在△ABC 中,∠C =90°,D 是BC 边上一点,∠ADC =3∠BAD ,BD =4,DC =3.则AB 的值为( )A.5+3√2B.2+2√15C.7√2D.√113【分析】延长CB到E,使得BE=BA.设BE=AB=a.利用相似三角形的性质,勾股定理构建方程即可解决问题.【解答】解:如图,延长CB到E,使得BE=BA.设BE=AB=a.∵BE=BA,∴∠E=∠BAE,∵∠ADC=∠ABD+∠BAD=2∠E+∠BAD=3∠BAD,∴∠BAD=∠E,∵∠ADB=∠EDA,∴△ADB∽△EDA,∴ADED=DBAD,∴AD2=4(4+a)=16+4a,∵AC2=AD2﹣CD2=AB2﹣BC2,∴16+4a﹣32=a2﹣72,解得a=2+2√15或2﹣2√15(舍弃).∴AB=2+2√15,故选:B.【点评】本题考查相似三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题:本题有6个小题,每小题4分,共24分11.(4分)分解因式:3x2+6xy+3y2=3(x+y)2.【分析】先利用提取公因式法提取数字3,再利用完全平方公式继续进行分解.【解答】解:3x2+6xy+3y2,=3(x2+2xy+y2),=3(x+y)2【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(4分)一个袋子中有1个红球,2个黄球,每个球除颜色外都相同,从中摸出2个球,2个球颜色不同的概率为23.【分析】画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:画树状图如下:由树状图知,共有6种等可能结果,其中2个球颜色不同的有4种结果, ∴2个球颜色不同的概率为46=23, 故答案为:23.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.13.(4分)分式方程2x−1=1x的解是 x =﹣1 . 【分析】观察分式方程得最简公分母为x (x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 【解答】解:方程的两边同乘x (x ﹣1),得 2x =x ﹣1, 解得x =﹣1.检验:把x =﹣1代入x (x ﹣1)=2≠0. ∴原方程的解为:x =﹣1. 故答案为:x =﹣1.【点评】本题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.14.(4分)已知一个扇形的面积为12πcm 2,圆心角的度数为108°,则它的弧长为6√105πcm . 【分析】先根据扇形的面积公式求出扇形的半径,再根据弧长公式求出弧长即可.【解答】解:设扇形的半径为Rcm ,∵扇形的面积为12πcm 2,圆心角的度数为108°, ∴108π×R 2360=12π,解得:R =2√10,∴弧长为108π×2√10180=6√105π(cm ),故答案为:6√105πcm .【点评】本题考查了扇形面积的计算和弧长的计算,能熟记公式是解此题的关键.15.(4分)已知关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,则a 的取值范围是 7≤a <9或﹣3≤a <﹣1 .【分析】先求出求出不等式组的解集,再根据已知得出关于a 的不等式组,求出不等式组的解集即可.【解答】解:{5x −a >3(x −1)①2x −1≤7②,∵解不等式①得:x >a−32, 解不等式②得:x ≤4, ∴不等式组的解集为a−32<x ≤4, ∵关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,∴当a−32>0时,这两个整数解一定是3和4,∴2≤a−32<3, ∴7≤a <9,当a−32<0时,﹣3≤a−32<−2, ∴﹣3≤a <﹣1,∴a 的取值范围是7≤a <9或﹣3≤a <﹣1. 故答案为:7≤a <9或﹣3≤a <﹣1.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能得出关于a 的不等式组是解此题的关键.16.(4分)一张直角三角形纸片ABC ,∠ACB =90°,AB =13,AC =5,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,则CD 的长为103或6017. 【分析】根据沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,分两种情况讨论:∠DEB =90°或∠BDE =90°,分别依据勾股定理或者相似三角形的性质,即可得到CD 的长. 【解答】解:∵∠ACB =90°,AB =13,AC =5, ∴BC =√AB 2−AC 2=12, 根据题意,分两种情况: ①如图,若∠DEB =90°,则∠AED =90°=∠C , CD =ED ,连接AD ,则Rt △ACD ≌Rt △AED (HL ), ∴AE =AC =5,BE =AB ﹣AE =13﹣5=8, 设CD =DE =x ,则BD =BC ﹣CD =12﹣x , 在Rt △BDE 中,DE 2+BE 2=BD 2, ∴x 2+82=(12﹣x )2解得x =103, ∴CD =103;②如图,若∠EDB =90°,则∠CDE =∠DEF =∠C =90°,CD =DE , ∴四边形CDEF 是正方形, ∴∠AFE =∠EDB =90°, ∠AEF =∠B , ∴△AEF ∽△EBD , ∴AF ED =EF BD ,6017设CD =x ,则EF =CF =x ,AF =5﹣x ,BD =12﹣x ,∴5−x x =x 12−x , 解得x =6017. ∴CD =6017. 综上所述,CD 的长为103或6017. 【点评】本题考查了翻折变换,综合运用勾股定理、相似三角形的判定与性质、正方形的判定与性质解答,解题关键是根据题意分两种情况讨论.三、解答题:本大题有7个小题,共66分解答应写出文字说明、证明过程或演算步骤.17.(6分)先化简再求值:(a b −b a )•ab a+b ,其中a =1,b =2. 【分析】先把分式化简后,再把a 、b 的值代入求出分式的值. 【解答】解:原式=a 2−b 2ab •ab a+b =(a+b)(a−b)ab ⋅ab a+b=a ﹣b ,当a =1,b =2时,原式=1﹣2=﹣1.【点评】本题考查了分式的化简求值,熟练化简分式是解题的关键.18.(8分)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成统计图(不完整).根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有 10 人,男生最喜欢“乒乓球“项目的有 20 人.(2)请将条形统计图补充完整;(3)若该校有男生450人,女生400人,请估计该校喜欢“羽毛球”项目的学生总人数.【分析】(1)根据题目中的数据和条形统计图中的数据,可以计算出女生最喜欢“踢毽子”项目的人数,然后根据扇形统计图中的数据,可以计算出男生最喜欢“乒乓球“项目的人数;(2)根据(1)中的结果,可以得到女生最喜欢“踢毽子”项目的有10人,从而可以将条形统计图补充完整;(3)根据统计图中的数据和该校有男生450人,女生400人,可以计算出该校喜欢“羽毛球”项目的学生总人数.【解答】解:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有:50﹣15﹣9﹣9﹣7=10(人),男生最喜欢“乒乓球“项目的有:50×(1﹣8%﹣10%﹣14%﹣28%)=50×40%=20(人),故答案为:10,20;(2)由(1)知,女生最喜欢“踢毽子”项目的有10人,补全完整的条形统计图如右图所示;(3)450×28%+400×950=126+72198(人),答:该校喜欢“羽毛球”项目的学生一共有198人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.19.(8分)如图,D、E是以AB为直径的⊙O上两点,且∠AED=45°.(1)过点D作DC∥AB,求证:直线CD与⊙O相切;,求AE的长.(2)若⊙O的半径为12,sin∠ADE=34【分析】(1)连接OD,根据圆周角定理求出∠AOD,根据平行线的性质求出∠ODC=90°,根据切线的判定得出即可;(2)连接BE,根据圆周角定理求出∠B=∠ADE,解直角三角形求出即可.【解答】(1)证明:连接OD,∵∠AED=45°,∴由圆周角定理得:∠AOD=2∠AED=90°,∵CD∥AB,∴∠CDO=∠AOD=90°,即OD⊥CD,∵OD过O,∴直线CD与⊙O相切;(2)解:连接BE,∵AB为⊙O的直径,∴∠AEB=90°,∵由圆周角定理得:∠B=∠ADE,sin∠ADE=3 4,∴sin∠ADE=sin B,∵sin B=AE AB ,∵⊙O的半径为12,∴AE24=34,解得:AE=18.【点评】本题考查了解直角三角形,圆周角定理,切线的判定,平行线的性质等知识点,能综合运用知识点进行推理是解此题的关键.20.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6√2,AF=4√2,求AE的长.【分析】(1)由平行四边形的性质和平行线的性质得出∠ADF=∠CED,∠B+∠C=180°;由∠AFE+∠AFD=180°,∠AFE =∠B,得出∠AFD=∠C,即可得出结论;(2)根据平行四边形的性质可得出CD=AB=8,根据相似三角形的性质可得出ADDE =AFDC,求出DE=12.证出AE⊥AD,由勾股定理即可得出答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠ADF=∠CED,∠B+∠C=180°;∵∠AFE+∠AFD=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)解:∵四边形ABCD是平行四边形,∴DC=AB=8.∵△ADF∽△DEC,∴ADDE=AFDC,即6√2DE=4√28,∴DE=12.∵AD∥BC,AE⊥BC,∴AE⊥AD.在Rt△ADE中,∠EAD=90°,DE=12,AD=6√2,∴AE =√DE 2−AD 2=√122−(6√2)2=6√2.【点评】此题主要考查的是平行四边形的性质、相似三角形的判定和性质以及勾股定理的运用,解题的关键判定三角形相似.21.(10分)已知Rt △ABC 的斜边AB 在平面直角坐标系的x 轴上,点C (2,6)在反比例函数y 1=k x的图象上,且sin ∠BAC =35 (1)求k 的值和边AC 的长;(2)求点B 的坐标;(3)有一直线y 2=kx +10与y 1=k x 交于M 与N 点,求出x 为何值时,y 2≥y 1.【分析】(1)本题需先根据C 点的坐标在反比例函数y 1=k x 的图象上,从而得出k 的值,再根据且sin ∠BAC =35,得出AC 的长;(2)本题需先根据已知条件,得出∠DAC =∠DCB ,从而得出CD 的长,根据点B 的位置即可求出正确答案;(3)解方程组即可得到结论.【解答】解:(1)∵点C (2,6)在反比例函数y =k x 的图象上,∴6=k 2,解得k =12,∵sin ∠BAC =35∴sin ∠BAC =6AC =35, ∴AC =10;∴k 的值和边AC 的长分别是:12,10;(2)①当点B 在点A 右边时,如图,作CD ⊥x 轴于D .∵△ABC 是直角三角形,∴∠DAC =∠DCB ,又∵sin ∠BAC =35,∴tan ∠DAC =34,∴BD CD =34, 又∵CD =6, ∴BD =92,∴OB =2+92=132, ∴B (132,0); ②当点B 在点A 左边时,如图,作CD ⊥x 轴于D .∵△ABC 是直角三角形, ∴∠B +∠A =90°,∠B +∠BCD =90°,∴∠DAC =∠DCB ,又∵sin ∠BAC =35,∴tan ∠DAC =34,∴BD CD =34, 又∵CD =6,∴BD =92,BO =BD ﹣2=52, ∴B (−52,0) ∴点B 的坐标是(−52,0),(132,0); (3)∵k =12,∴y 2=12x +10与y 1=12x , 解{y =12x +10y =12x得,{x =23y =18,{x =−32y =−8, ∴M (23,18),N 点(−32,﹣8),∴−32<x <0或x >23时,y 2≥y 1.【点评】本题考查了反比例函数与一次函数的交点问题,解直角三角形,正确的理解题意是解题的关键.22.(12分)已知一次函数y 1=2x +b 的图象与二次函数y 2=a (x 2+bx +1)(a ≠0,a 、b 为常数)的图象交于A 、B 两点,且A 的坐标为(0,1).(1)求出a 、b 的值,并写出y 1,y 2的表达式;(2)验证点B 的坐标为(1,3),并写出当y 1≥y 2时,x 的取值范围;(3)设u =y 1+y 2,v =y 1﹣y 2,若m ≤x ≤n 时,u 随着x 的增大而增大,且v 也随着x 的增大而增大,求m 的最小值和n 的最大值.【分析】(1)把A 点的坐标分别代入两个函数的解析式,便可求得a 与b 的值;(2)画出函数图象,根据函数图象作答;(3)求出出个函数的对称轴,根据函数的性质得出“u 随着x 的增大而增大,且v 也随着x 的增大而增大”时x 的取值范围,进而得m 的最小值和n 的最大值.【解答】解:(1)把A (0,1)代入y 1=2x +b 得b =1,把A (0,1)代入y 2=a (x 2+bx +1)得,a =1,∴y 1=2x +1,y 2=x 2+x +1;(2)作y 1=2x +1,y 2=x 2+x +1的图象如下:由函数图象可知,y 1=2x +1不在y 2=x 2+x +1下方时,0≤x ≤3,∴当y 1≥y 2时,x 的取值范围为0≤x ≤3;(3)∵u =y 1+y 2=2x +1+x 2+x +1=x 2+3x +2=(x +1.5)2﹣0.25,∴当x ≥﹣1.5时,u 随x 的增大而增大;v =y 1﹣y 2=(2x +1)﹣(x 2+x +1)=﹣x 2+x =﹣(x ﹣0.5)2+0.25,∴当x ≤0.5时,v 随x 的增大而增大,∴当﹣15≤x ≤0.5时,u 随着x 的增大而增大,且v 也随着x 的增大而增大,∵若m ≤x ≤n 时,u 随着x 的增大而增大,且v 也随着x 的增大而增大,∴m 的最小值为﹣1.5,n 的最大值为0.5.【点评】本题是二次函数的综合题,主要考查了函数的图象与性质,利用函数图象求不等式的解集,待定系数法,关键是熟练掌握二次函数的性质,灵活运用性质解题.23.(12分)在△ABC 和△DBE 中,CA =CB ,EB =ED ,点D 在AC 上.(1)如图1,若∠ABC =∠DBE =60°,求证:∠ECB =∠A ;(2)如图2,设BC 与DE 交于点F .当∠ABC =∠DBE =45°时,求证:CE ∥AB ;(3)在(2)的条件下,若tan ∠DEC =12时,求EF DF的值. 【分析】(1)根据SAS 可证明△ABD ≌△CBE .得出∠A =∠ECB ;(2)得出△ABC 和△DBE 都是等腰直角三角形,证明△ABD ∽△CBE ,则∠BAD =∠BCE =45°,可得出结论;(3)过点D 作DM ⊥CE 于点M ,过点D 作DN ∥AB 交CB 于点N ,设DM =MC =a ,得出DN =2a ,CE =a ,证明△CEF ∽△DNF ,可得出答案.【解答】(1)证明:∵CA =CB ,EB =ED ,∠ABC =∠DBE =60°,∴△ABC 和△DBE 都是等边三角形,∴AB =BC ,DB =BE ,∠A =60°.∵∠ABC =∠DBE =60°,∴∠ABD =∠CBE ,∴△ABD ≌△CBE (SAS ).∴∠A =∠ECB ;(2)证明:∵∠ABC=∠DBE=45°,CA=CB,EB=ED,∴△ABC和△DBE都是等腰直角三角形,∴∠CAB=45°,∴ABBC=√2,DB BE=√2,∴ABBC=DBBE,∵∠ABC=∠DBE,∴∠ABD=∠CBE,∴△ABD∽△CBE,∴∠BAD=∠BCE=45°,∵∠ABC=45°,∴∠ABC=∠BCE,∴CE∥AB;(3)解:过点D作DM⊥CE于点M,过点D作DN∥AB交CB于点N,∵∠ACB=90°,∠BCE=45°,∴∠DCM=45°,∴∠MDC=∠DCM=45°,∴DM=MC,设DM=MC=a,∴DC=√2a,∵DN∥AB,∴△DCN为等腰直角三角形,∴DN=√2DC=2a,∵tan∠DEC=DMME=12,∴ME=2DM,∴CE=a,∴CEDN=a2a=12,∵CE∥DN,∴△CEF∽△DNF,∴EFDF=CEDN=12.【点评】本题是三角形综合题,考查了等边三角形的判定与性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,相似三角形的判定与性质,锐角三角函数等知识,正确作出辅助线,熟练掌握基本图形的性质是解题的关键.。

浙江省杭州2020年中考模拟试卷数学试题(含答案)

浙江省杭州2020年中考模拟试卷数学试题(含答案)

2020年浙江杭州中考模拟试卷数学考试题号一二三总分评分1.-23等于( )A. -6B. 6C. -8D. 82.在平面直角坐标系中,点关于原点对称的点的坐标是A. B. C. D.3.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形的上底AD、下底BC以及腰AB均相切,切点分别是D、C、E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是().A. 9B. 10C. 12D. 144.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B 种饮料单价为x元/瓶,那么下面所列方程正确的是( )A. 2(x-1)+3x=13B. 2(x+1)+3x=13C. 2x+3(x+1)=13D. 2x+3(x-1)=135.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A. 8,9B. 8,8.5C. 16,8.5D. 16,10.56.如图,AB和CD表示两根直立于地面的柱子,AC和BD表示起固定作用的两根钢筋,AC与BD相交于点M,已知AB=8m,CD=12m,则点M离地面的高度MH为( )A. 4 mB. mC. 5mD. m7.若等腰三角形中有一个角等于110°,则其它两个角的度数为().A. 70°B. 110°和70°C. 35°和35°D. 30°和70°8.已知点A,点B在一次函数y=kx+b(k,b为常数,且k≠0)的图象上,点A在第三象限,点B在第四象限,则下列判断一定正确的是()A. b<0B. b>0C. k<0D. k>09.身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是()同学甲乙丙丁放出风筝线长140m 100m 95m 90m线与地面夹角30°45°45°60°A. 甲B. 乙C. 丙D. 丁10.已知抛物线与轴交于点A、B,与轴交于点C,则能使△ABC为等腰三角形抛物线的条数是()A. 5B. 4C. 3D. 2二、填空题:本大题有6个小题,每小题4分,共24分11.把多项式2x2y﹣4xy2+2y3分解因式的结果是________12.一组数据7,x,8,y,10,z,6的平均数为4,则x,y,z的平均数是________.13.若圆锥的地面半径为,侧面积为,则圆锥的母线是________ .14.如图,和分别是的直径和弦,且,,交于点,若,则的长是________.15.一次函数y = kx + b ,当- 3 £x £ 1时,对应的y 值为1 £y £ 9 ,则k + b =________;16.已知等腰中,,,,在线段上,是线段上的动点,的最小值是________.三、解答题:本大题有7个小题,共66分17.化简:18.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如表:(1)把表中所空各项数据填写完整;选手选拔成绩/环中位数平均数甲 10 9 8 8 10 9 ________ ________乙 10 10 8 10 7 ________ ________ 9(2(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.19.如图,已知:,,,点,分别在,上,连接,且,是上一点,的延长线交的延长线于点.(1)求证:;(2)求证:.20.大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:x(天) 1 2 3 (50)p(件)118 116 114 (20)销售单价q(元/件)与x满足:当1≤x<25时q=x+60;当25≤x≤50时q=40+ .(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?21.某校数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB=4,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.(1)求证:AP=CQ;(2)如图②,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;(3)在(2)的条件下,若AP=1,求PE的长.22.已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A (10,0),B(8,2 ),C(0,2 ),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S.(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式;(2)当纸片重叠部分的图形是四边形时,求t的取值范围;(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由.23.如图,在⊙中,弦,相交于点,且.(1)求证:;(2)若,,当时,求:①图中阴影部分面积.②弧的长.答案解析部分一、选择题1.C2.C3.D4.A5.A6.B7.C8.A9.D10.B二、填空题11.2y(x﹣y)2【解答】解:原式=2y(x2﹣2xy+y2)=2y(x﹣y)2.故答案为:2y(x﹣y)2.12.-1【解答】解:∵一组数据7,x,8,y,10,z,6的平均数为4,∴=4,解得,x+y+z=﹣3,∴=﹣1,故答案为:﹣1.13.13【解答】设母线长为R,则:解得:故答案为13.14.5【解答】连接CD;Rt△AOB中,∠A=30°,OB=5,则AB=10,OA=5 ;在Rt△ACD中,∠A=30°,AD=2OA=10 ,∴AC=cos30°×10 =15,∴BC=AC-AB=15-10=5.故答案为515.9或1【解答】解:①当x=-3时,y=1;当x=1时,y=9,则解得:所以k + b =2+7=9;②当x=-3时,y=9;当x=1时,y=1,则解得:,所以k + b=-2+3=1.故答案为9或1.16.【解答】解:∵AC=BC,OC⊥AB,∴AB=2OB=6,∵OC=4,∴BC=5,∴A,B关于y轴对称,过A作AM⊥BC于M,交y轴于P,∵∠AMB=∠COB=90°,∠ABM=∠CBO,∴△ABM∽△CBO,∴,即,∴AM=,∴PM+PB的最小值是,故答案为:.三、解答题:本大题有7个小题,共66分.17. 解:===1【分析】根据同分母分式的减法法则计算,再根据完全平方公式展开,合并同类项后约分计算即可求解.18. (1)9,9,9,9.5(2)解:s2甲= [2×(8﹣9)2+2×(9﹣9)2+2×(10﹣9)2]=;s2乙= [(7﹣9)2+(8﹣9)2+(9﹣9)2+3×(10﹣9)2]=(3)解:我认为推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适【解答】解:(1)甲:将六次测试成绩按从小到大的顺序排列为:8,8,9,9,10,10,中位数为(9+9)÷2=9,平均数为(10+9+8+8+10+9)÷6=9;乙:第6次成绩为9×6﹣(10+10+8+10+7)=9,将六次测试成绩按从小到大的顺序排列为:7,8,9,10,10,10,中位数为(9+10)÷2=9.5;填表如下:选手选拔成绩/环中位数平均数甲10 9 8 8 10 9 9 9乙10 10 8 10 7 9 9.5 919. (1)证明:∵,,∴,,又∵,∴(2)证明:∵在△BGF中,∴∠HGF>∠GBF,∵,∴∠ADE=∠GBF,∴20. (1)解:设销售量p件与销售的天数x的函数解析式为p=kx+b,代入(1,118),(2,116)得解得因此销售量p件与销售的天数x的函数解析式为p=﹣2x+120(2)解:当1≤x<25时,y=(60+x﹣40)(﹣2x+120)=﹣2x2+80x+2400,当25≤x≤50时,y=(40+ ﹣40)(﹣2x+120)= ﹣2250(3)解:当1≤x<25时,y=﹣2x2+80x+2400,=﹣2(x﹣20)2+3200,∵﹣2<0,∴当x=20时,y有最大值y1,且y1=3200;当25≤x≤50时,y= ﹣2250;∵135000>0,∴随x的增大而减小,当x=25时,最大,∵y1>y2∴这50天中第20天时该超市获得利润最大,最大利润为3200元21. (1)证明:∵四边形ABCD是正方形,∴∠ADC=∠A=∠B=∠BCD=∠DCQ=90°,AD=BC=CD=AB=4,∵∠PDQ=90°,∴∠ADP=∠CDQ,在△APD和△CQD中,,∴△APD≌△CQD(ASA),∴AP=CQ(2)解;PE=QE,理由如下:由(1)得:△APD≌△CQD,∴PD=QD,∵DE平分∠PDQ,∴∠PDE=∠QDE,在△PDE和△QDE中,,∴△PDE≌△QDE(SAS),∴PE=QE(3)解:由(2)得:PE=QE,由(1)得:CQ=AP=1,∴BQ=BC+CQ=5,BP=AB﹣AP=3,设PE=QE=x,则BE=5﹣x,在Rt△BPE中,由勾股定理得:32+(5﹣x)2=x2,解得:x=3.4,即PE的长为3.422. (1)解:∵A,B两点的坐标分别是A(10,0)和B(8,2 ),∴tan∠OAB= = ,∴∠OAB=60°,当点A′在线段AB上时,∵∠OAB=60°,TA=TA′,∴△A′TA是等边三角形,且TP⊥AA′,∴TP=(10﹣t)sin60°= (10﹣t),A′P=AP= AT= (10﹣t),∴S=S△ATP= A′P•TP= (10﹣t)2,当A´与B重合时,AT=AB==4,所以此时6≤t<10(2)解:当点A′在线段AB的延长线上,且点P在线段AB(不与B重合)上时,纸片重叠部分的图形是四边形(如图①,其中E是TA′与CB的交点),假设点P与B重合时,AT=2AB=8,点T的坐标是(2,0),由(1)中求得当A´与B重合时,T的坐标是(6,0),则当纸片重叠部分的图形是四边形时,2<t<6(3)解:S存在最大值.①当6≤t<10时,S= (10﹣t)2,在对称轴t=10的左边,S的值随着t的增大而减小,∴当t=6时,S的值最大是2 ;②当2≤t<6时,由图①,重叠部分的面积S=S△A′TP﹣S△A′EB,∵△A′EB的高是A′B•sin60°,∴S= (10﹣t)2﹣(10﹣t﹣4)2×+ (﹣4)2×= (﹣t2+2t+30)=﹣(t﹣2)2+4 ,当t=2时,S的值最大是4 ;③当0<t≤2,即当点A′和点P都在线段AB的延长线上是(如图②,其中E是TA´与CB的交点,F是TP 与CB的交点),∵∠EFT=∠ETF,四边形ETAB是等腰梯形,∴EF=ET=AB=4,∴S= EF•OC= ×4×2 =4 .综上所述,S的最大值是4 ,此时t的值是t=2.23. (1)证明:连接,,∵,∴,∵,∴,∵,∴,∵,∴≌,∴.(2)解:作于,于,由()可知,∴,∵,,,,∴四边形是正方形,∴,∵,∴≌,∴,∵,,∴,,,∵,∴.①.②,∴,∴.。

浙江省宁波2020年中考数学模拟卷(含答案)

浙江省宁波2020年中考数学模拟卷(含答案)

2020年浙江宁波中考模拟卷数学考试题号一二三总分评分1.中国人最早使用负数,可追溯到两千多年前的秦汉时期,﹣0.5的相反数是()A. 0.5B. ±0.5C. ﹣0.5D. 52.2013年12月2日,“嫦娥三号”从西昌卫星发射中心发射升空,并于12月14日在月球上成功实施软着陆.月球距离地球平均为38万公里,将数38万用科学记数法表示,其结果()A. 3.8×104B. 38×104C. 3.8×105D. 3.8×1063.下列运算正确的是()A. B. C. D.4.已知,如图所示的几何体,则从左面看到的平面图形是( )A. B. C. D.5.一个不透明的口袋中有4个完全相同的小球,分别将它们标上1,2,3,4,随机摸出标号为3的小球的概率是()A. B. C. D.6.甲,乙两班举行电脑汉字输入速度比赛,参加学生每分钟输入汉字的个数经统计计算后填人下表:班级人数中位数方差平均字数甲 55 149 191 135乙 55 151 110 135优秀的人数(每分钟输入汉字数≥150个为优秀);③甲班的成绩的波动情况比乙班的成绩的波动大.上述结论正确的是()A. ①②③B. ①②C. ①③D. ②③7.如图,已知直线a⊥c,直线b⊥c,若∠1=65°,则∠2的度数为()A. 20°B. 25°C. 50°D. 65°8.如图1,E为矩形ABCD边AD上的一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q 从点B沿BC运动到点C时停止,它们运动的速度都是2cm/s.若P、Q同时开始运动,设运动时间为t (s),△BPQ的面积为y(cm2),已知y与t的函数关系图象如图2,则下列结论错误的是()A. AE=12cmB. sin∠EBC=C. 当0<t≤8时,y=t2D. 当t=9s时,△PBQ是等腰三角形9.一直角三角形的两直角边长为12和16,则斜边上中线长为( )A. 8B. 10C. 15D. 2510.如图,M是双曲线上一点,过点M作轴、y轴的垂线,分别交直线于点D,C,若直线与轴交于点A,与轴交于点B,则的值为()A. B. C. D.二、填空题(每小题5分,共30分)11.一元二次方程x2﹣4=0的解x=________.12.P是反比例函数图象上的一点,且点P到x轴的距离为2,到y轴的距离为3,则反比例函数的解析式为________,点P关于原点的对称点在此反比例函数图象上吗?________.(填在或不在)13.小华为参加毕业晚会演出,准备制一顶圆锥形彩色纸帽,如图所示,如果纸帽的底面半径为8cm,母线长为25cm,那么制作这顶纸帽至少需要彩色纸板的面积为________cm2.(结果保留π)14.如图.一-艘渔船正以60海里/小时的速度向正东方向航行,在处测得岛礁在东北方向上,继续航行1.5小时后到达处此时测得岛礁在北偏东方向,同时测得岛礁正东方向上的避风港在北偏东方向为了在台风到来之前用最短时间到达处,渔船立刻加速以75海里/小时的速度继续航行________小时即可到达(结果保留根号)15.如图,正方形ABCD的边长为1,以AB为直径作半圆,点P是CD中点,BP与半圆交于点Q,连结DQ,给出如下结论:①DQ=1;②=;③S△PDQ=;④cos∠ADQ=,其中正确结论是________ (填写序号).16.二次函数y=x2的图象如图,点A0位于坐标原点,点A1,A2,A3…A n在y轴的正半轴上,点B1,B2,B3…B n在二次函数位于第一象限的图象上,点C1,C2,C3…C n在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形A n﹣1B n A n C n都是菱形,∠A0B1A1=∠A1B2A2=∠A2B3A3…=∠A n﹣1B n A n=60°,菱形A n﹣1B n A n C n的周长为________三、解答题(本大题共8小题,共80分)17.先化简,再求值:(x+y)(x﹣y)+2y2,其中x=,y=1.18.最短路径问题:例:如图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的点.应用:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(1)借助直角三角板在下图中找出符合条件的点B和C.(2)若∠MON=30°,OA=10,求三角形的最小周长。

【2020年】浙江省中考数学模拟试卷(含答案)

【2020年】浙江省中考数学模拟试卷(含答案)

2020年浙江省中考数学模拟试卷含答案一、选择题(本大题有10小题,每小题3分,共30分) 1.|-2|=( )A. 2B. 2-C. 2±D. 122.下列计算正确的是()A. 325()a a =B.632aa a ÷= C.()222ab a b =D.222()a b a b +=+ 3.支付宝与“滴滴打车”联合推出优惠,“滴滴打车”一夜之间红遍大江南北.据统计,2016年“的的打车”账户流水总金额达到4730000000元,用科学记数法表示数为( ) A.84.7310⨯ B.94.7310⨯ C.104.7310⨯ D.114.7310⨯ 4.如图,△ABC ,∠B=90°,AB=3,BC=4,则cosA 等于() A. 43B. 34C. 45D. 355. 不等式组⎩⎨⎧<-≥-05.0101x x 的最小整数解是( ) A.1 B.2 C.3 D.46. 如图,已知直线AB ∥CD ,∠GEB 的平分线EF 交CD 于点F ,∠1=60°,则∠2等于( )A. 130°B. 140°C. 150°D. 160°7. 如图所示的支架是由两个长方体构成的组合体,则它的主视图是( )8. 在某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:成 绩 45 46 47 48 49 50 人 数124251主视方向 A . B . C . D .这此测试成绩的中位数和众数分别为( )A. 47, 49B. 48, 49C. 47.5, 49D. 48, 509. 如图,矩形ABCD 中,AB =3,BC =5,点P 是BC 边上的一个动点(点P 不与点B 、C 重合),现将△PCD 沿直线PD 折叠,使点C 落到点C’处;作∠BPC’的角平分线交AB 于点E .设BP =x ,BE =y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D . 10. 如图所示,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数ky x =在第一象限的图像经过点B ,与OA 交于点P ,若OA 2-AB 2=18,则点P 的横坐标为( )A .9 B.6 C.3 D.32二、填空题(本大题有6小题,每小题4分,共24分)11.分解因式:x x 43-=_________.12. 二次根式12x -中,x 的取值范围是 . 13. 已知实数x ,y 满足,则以x ,y 的值为两边长的等腰三角形的周长是14.如图,在⊙O 中,CD 是直径,弦AB ⊥CD ,垂足为E ,若∠C=22.5°,AB =6 cm ,则阴影部分面积为__________cm 2。

2020年浙江省杭州市中考数学模拟试卷及答案解析

2020年浙江省杭州市中考数学模拟试卷及答案解析

2020年浙江省杭州市中考数学模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)小明测量身高后,用四舍五入法得知其身高约为1.71米,则他的身高测量值不可能是()A.1.705B.1.709C.1.713D.1.7182.(4分)下列语句写成数学式子正确的是()A.9是81的算术平方根:±=9B.5是(﹣5)2的算术平方根:±=5C.±6是36的平方根:=±6D.﹣2是4的负的平方根:﹣=﹣23.(4分)下列定理中,逆命题是假命题的是()A.在一个三角形中,等角对等边B.全等三角形对应角相等C.有一个角是60度的等腰三角形是等边三角形D.等腰三角形两个底角相等4.(4分)在一次数学竞赛中,竞赛题共有25道,每道题都给出4个答案,其中只有一个答案是正确的,选对得4分,不选或选错扣2分.规定得分不低于60分得奖,那么得奖者至少应选对()A.18道题B.19道题C.20道题D.21道题5.(4分)已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数B.一次函数C.反比例函数D.二次函数6.(4分)当k取不同的值时,y关于x的函数y=kx+2(k≠0)的图象为总是经过点(0,2)的直线,我们把所有这样的直线合起来,称为经过点(0,2)的“直线束”.那么,下面经过点(﹣1,2)的直线束的函数式是()A.y=kx﹣2(k≠0)B.y=kx+k+2(k≠0)C.y=kx﹣k+2(k≠0)D.y=kx+k﹣2(k≠0)7.(4分)在同一平面直角坐标系xOy中,函数y=kx+1与y=(k≠0)的图象可能是()A.B.C.D.8.(4分)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3.若S1+S2+S3=12,则下列关于S1、S2、S3的说法正确的是()A.S1=2B.S2=3C.S3=6D.S1+S3=89.(4分)如图,菱形ABCD的对角线AC与BD相交于O,∠ABC≠90°,则图中全等的三角形共有()。

2020年中考数学第二次模拟考试(浙江)-数学(参考答案)

2020年中考数学第二次模拟考试(浙江)-数学(参考答案)

2020届九年级第二次模拟考试【浙江卷】数学·参考答案11.()()ab a b a b +- 12.200° 13.甲 14.51m 15.3-16.8717.【解析】(1)()()-2201921-2 3.14---12π⎛⎫++ ⎪⎝⎭=414(1)++--- =2.(2)()2(5)(23)223+---+x x x x x232=231015246-+--+-x x x x x x 32=2615-++-x x x .18.【解析】(1)∵AB =AC ,∴∠B =∠ACF ,在△ABE 和△ACF 中,AB ACB ACF BE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACF (SAS );(2)∵△ABE ≌△ACF ,∠BAE =30°,∴∠CAF =∠BAE =30°, ∵AD =AC ,∴∠ADC =∠ACD , ∴∠ADC =280013︒-︒=75°,故答案为75. 19.【解析】(1)如图,△A 1B 1C 1为所作,线段BC 扫过的面积=7×4=28; (2)如图,△A 2B 2C 2为所作.20.【解析】(1)本次调查共随机抽取了:50÷25%=200(名)中学生,其中课外阅读时长“2~4小时”的有:200×20%=40(人),故答案为:200,40;(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为:360°×(1﹣30200﹣20%﹣25%)=144°,故答案为:144;(3)20000×(1﹣30200﹣20%)=13000(人),答:该地区中学生一周课外阅读时长不少于4小时的有13000人.21.【解析】证明:(1)∵点F,G,H分别是AD,AE,DE的中点,∴FH∥AE,GH∥AD,∴四边形AGHF是平行四边形;(2)当四边形EGFH是正方形时,连接EF,可得:EF⊥GH且EF=GH,∵在△BEC中,点,H分别是BE,CE的中点,∴GH=12BC=12AD=5cm,且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC,∴AB=EF=GH=5cm,∴矩形ABCD 的面积=211010502ABAD cm ⨯=⨯⨯=. 22.【解析】(1)由题意,得A 、B 两地间的距离为30km .故答案为30;(2)设乙前往A 地的距离y (km )与乙行驶时间x (h )之间的关系式为y 乙1=k 1x ,由题意,得30=k 1,∴y 乙1=30x ;设乙返回B 地距离B 地的距离y (km )与乙行驶时间x (h )之间的关系式为y 乙2=k 2x +b 2,由题意,得22223002k b k b =+⎧⎨=+⎩,解得:223060k b =-⎧⎨=⎩,∴y =–30x +60. (3)由函数图象,得(30+20)x =30,解得x =0.6. 故甲、乙第一次相遇是在出发后0.6小时;(4)设甲在修车前y 与x 之间的函数关系式为y 甲1=kx +b ,由题意得30150.75b k b =⎧⎨=+⎩,解得:k 20b 30=-⎧⎨=⎩,y 甲1=﹣20x +30,设甲在修车后y 与x 之间的函数关系式为y 甲2=k 3x +b 3,由题意,得333315 1.25k b 02k b =+⎧⎨=+⎩,解得:332040k b =-⎧⎨=⎩,∴y 甲2=﹣20x +40, 当20303010301510x x x -+-≤⎧⎨-⎩„时,∴25≤x ≤56;306015102x x -+-⎧⎨⎩„„,解得:76≤x ≤2.∴25≤x ≤56或76≤x ≤2.23.【解析】(1)由题意线段MN 关于点O 的关联点的是以线段MN 的中点为圆心,22为半径的圆上,所以点C 满足条件,故答案为C . (2)①如图3–1中,作NH ⊥x 轴于H .∵N(32,–12),∴tan∠NOH=33,∴∠NOH=30°,∠MON=90°+30°=120°,∵点D是线段MN关于点O的关联点,∴∠MDN+∠MON=180°,∴∠MDN=60°.故答案为60°.②如图3–2中,结论:△MNE是等边三角形.理由:作EK⊥x轴于K.∵E(3,1),∴tan∠EOK=3,∴∠EOK=30°,∴∠MOE=60°,∵∠MON+∠MEN=180°,∴M、O、N、E四点共圆,∴∠MNE=∠MOE=60°,∵∠MEN=60°,∴∠MEN=∠MNE=∠NME=60°,∴△MNE是等边三角形.③如图3–3中,由②可知,△MNE是等边三角形,作△MNE的外接圆⊙O′,易知E3,1),∴点E在直线y=–3x+2上,设直线交⊙O′于E、F,可得F(3,32),观察图象可知满足条件的点F的横坐标x的取值范围3≤x F≤3.24.【解析】(1)在抛物线y=239344x x--中,令x=0,得y=﹣3,∴C(0,﹣3),令y=0,得239x x3044--=,解得x1=﹣1,x2=4,∴A(﹣1,0),B(4,0),令x=163,得y=231691634343⎛⎫⨯-⨯-⎪⎝⎭=193,∴M(163,193),设直线AD的解析式为y=k1x+b1,将A(﹣1,0),M(163,193)代入得1111k b01619k b33-+=⎧⎪⎨+=⎪⎩,解得11k1b1=⎧⎨=⎩,∴直线AD的解析式为y=x+1.设直线BC的解析式为y=k2x+b2,将B(4,0),C(0,﹣3)代入,得2224k b0b3+=⎧⎨=-⎩,解得223k4b3⎧=⎪⎨⎪=-⎩,∴直线BC的解析式为y=34x﹣3;(2)如图2,过点E 作EH ∥y 轴交BC 于H ,设E (t ,239344t t --),H (t ,334t -), ∴HE =233933444t t t ⎛⎫---- ⎪⎝⎭=2334t t -+ ∴12BCE S OB HE =⨯V =2134324t t ⎛⎫⨯-+ ⎪⎝⎭=2362t t -+=23(2)62t --+∵32-<0, ∴当t =2时,S △BCE 的最大值=6,此时E (2,92-),作点B 关于直线y =x +1的对称点B 1,连接B 1G ,过点F 作B 2F ∥B 1G ,且B 2F =B 1G ,∴B 1(﹣1,5),∵FG 2FG 在直线y =x +1上,∴F 可以看作是G 向左平移4个单位,向下平移4个单位后的对应点, ∴B 2(﹣5,1),当B 2、F 、E 三点在同一直线上时,BEFG 周长最小,设直线B 2E 解析式为y =mx +n ,将B 2(﹣5,1),E (2,92-)分别代入,得5m n 192m n 2-+=⎧⎪⎨+=-⎪⎩,解得11144114 mn⎧=-⎪⎪⎨⎪=-⎪⎩,∴直线B2E解析式为y=11411414x--,联立方程组111411414y xy x=+⎧⎪⎨=-⎪⎩,解得11565xy⎧=-⎪⎪⎨⎪=⎪⎩.∴F(115-,65-).(3)如图,分三种情况:在1y x=+中,令0x=,则1y=(0,1)D∴(1,0),(4,0)(0,3)A B C--Q,1,4,1,3,4AD OB OD OC DC∴=====2210AC AO OC∴=+=,设AC边上的高为h,根据等面积法得,1122AC h CD AO⨯=⋅⋅210510AO DChAC⋅∴===4,3OB OC==Q且OB⊥OC,4tan3OBBCDOC∴∠==①CM =MN 时,如图,过点M 作MG ⊥OC ,过点D 作DP ⊥MN 于点P4tan 3BCD ∠=Q∴设3CG a =,则3,4NG a MG a ==, 由勾股定理得,5MN MC a ==,,MNO DNP DPN MGN ∠=∠∠=∠QMGN DPN ∴∠:VMG MN DP PN∴=,即45246105a aa =- 解得,81012a -=,0a =(舍去) 405105CM a -∴==②当MC CN =时,如图,过点M 作MG ⊥OC ,过点D 作DP ⊥MN 于点P4tan 3BCD ∠=Q 设3CG a =,则4MG a =5CM CN a ∴==2GN CN CG a ∴=-=25MN a ∴=45DN DC CN a ∴=-=-DPN MGN ∆QV :DP DNMG MN∴=210455425aa a-∴=,解得:0a=(舍去),425a-=,42CM=-Q;③当CN MN=时,如图,作CQ MN⊥,NG CM⊥,4tan3BCD∠=Q设3CG a=,则4,5NG a CN MN a===3,6MG a CM a∴==45DN a∴=-MN CQ CM NG⋅=⋅Q245CQ a∴=DPN CQN∆QV:DP DNQC CN∴=,即2104552455aaa-=,解得,0a=(舍去),4105a=-2410652CM a∴==-;④当CM CN=时,过M作MG DC⊥,过点D作DP⊥MN于点P4tan 3BCD ∠=Q 设3CG a =,则4,5MG a CM CN a ===45DN a ∴=+tan MG DPPND NG NP∴∠==4553a NP a a=+NP ∴=在Rt DPN ∆中,222DN DP NP =+222(45)a ∴+=+解得,a a ==(舍去)54CM a ∴==-+综上,CM ,4245或4.。

2020年浙江省杭州市中考数学一模试卷及答案解析

2020年浙江省杭州市中考数学一模试卷及答案解析

2020年浙江省杭州市中考数学一模试卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.(3分)﹣2的绝对值是( ) A .﹣2 B .2C .12D .−122.(3分)下列计算正确的是( )A .m 4+m 3=m 7B .(m 4) 3=m 7C .2m 5÷m 3=m 2D .m (m ﹣1)=m 2﹣m3.(3分)如图,P 为⊙O 外一点,PC 切⊙O 于C ,PB 与⊙O 交于A 、B 两点.若P A =1,PB =5,则PC =( )A .3B .√5C .4D .无法确定 4.(3分)为了解某班学生每天使用零花钱的情况,小敏随机调查了15名同学,结果如表:每天用零花钱(单位:元) 12345人数2 4 53 1则这15名同学每天使用零花钱的众数和中位数分别是( )A .3,3B .5,2C .3,2D .3,55.(3分)某工程甲单独完成要30天,乙单独完成要25天.若乙先单独干15天,剩下的由甲单独完成,设甲、乙一共用x 天完成,则可列方程为( )A .x+1525+1530=1 B .x+1530+1525=1 C .1530+x−1525=1D .x−1530+1525=16.(3分)如图,已知一组平行线a ∥b ∥c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =3,BC =4,EF =4.8,则DE =( )A .7.2B .6.4C .3.6D .2.47.(3分)如图,BD 是△ABC 的角平分线,AE ⊥BD ,垂足为F .若∠ABC =36°,∠C =44°,则∠EAC 的度数为( )A .18°B .28°C .36°D .38°8.(3分)直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是( )A .B .C .D .9.(3分)关于x 的二次函数y =x 2+2kx +k ﹣1,下列说法正确的是( ) A .对任意实数k ,函数图象与x 轴都没有交点B .对任意实数k ,函数图象没有唯一的定点C .对任意实数k ,函数图象的顶点在抛物线y =﹣x 2﹣x ﹣1上运动D .对任意实数k ,当x ≥﹣k ﹣1时,函数y 的值都随x 的增大而增大10.(3分)如图,在△ABC 中,∠C =90°,D 是BC 边上一点,∠ADC =3∠BAD ,BD =4,DC =3.则AB 的值为( )A .5+3√2B .2+2√15C .7√2D .√113二、填空题:本题有6个小题,每小题4分,共24分 11.(4分)分解因式:3x 2+6xy +3y 2= .12.(4分)一个袋子中有1个红球,2个黄球,每个球除颜色外都相同,从中摸出2个球,2个球颜色不同的概率为 . 13.(4分)分式方程2x−1=1x的解是 . 14.(4分)已知一个扇形的面积为12πcm 2,圆心角的度数为108°,则它的弧长为 .15.(4分)已知关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,则a 的取值范围是 .16.(4分)一张直角三角形纸片ABC ,∠ACB =90°,AB =13,AC =5,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,则CD 的长为 . 三、解答题:本大题有7个小题,共66分解答应写出文字说明、证明过程或演算步骤. 17.(6分)先化简再求值:(ab−b a)•aba+b,其中a =1,b =2. 18.(8分)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成统计图(不完整).根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有人,男生最喜欢“乒乓球“项目的有人.(2)请将条形统计图补充完整;(3)若该校有男生450人,女生400人,请估计该校喜欢“羽毛球”项目的学生总人数.19.(8分)如图,D、E是以AB为直径的⊙O上两点,且∠AED=45°.(1)过点D作DC∥AB,求证:直线CD与⊙O相切;(2)若⊙O的半径为12,sin∠ADE=3,求AE的长.420.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6√2,AF=4√2,求AE的长.21.(10分)已知Rt△ABC的斜边AB在平面直角坐标系的x轴上,点C(2,6)在反比例函数y1=k x的图象上,且sin∠BAC= 35(1)求k的值和边AC的长;(2)求点B的坐标;交于M与N点,求出x为何值时,y2≥y1.(3)有一直线y2=kx+10与y1=kx22.(12分)已知一次函数y1=2x+b的图象与二次函数y2=a(x2+bx+1)(a≠0,a、b为常数)的图象交于A、B两点,且A 的坐标为(0,1).(1)求出a、b的值,并写出y1,y2的表达式;(2)验证点B的坐标为(1,3),并写出当y1≥y2时,x的取值范围;(3)设u=y1+y2,v=y1﹣y2,若m≤x≤n时,u随着x的增大而增大,且v也随着x的增大而增大,求m的最小值和n的最大值.23.(12分)在△ABC 和△DBE 中,CA =CB ,EB =ED ,点D 在AC 上.(1)如图1,若∠ABC =∠DBE =60°,求证:∠ECB =∠A ;(2)如图2,设BC 与DE 交于点F .当∠ABC =∠DBE =45°时,求证:CE ∥AB ; (3)在(2)的条件下,若tan ∠DEC =12时,求EFDF的值.2020年浙江省杭州市中考数学一模试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.(3分)﹣2的绝对值是( ) A .﹣2B .2C .12D .−12【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2, 故选:B .【点评】本题考查了绝对值的定义,是中考的常见题型,比较简单,熟记绝对值的定义是本题的关键. 2.(3分)下列计算正确的是( ) A .m 4+m 3=m 7 B .(m 4) 3=m 7 C .2m 5÷m 3=m 2D .m (m ﹣1)=m 2﹣m【分析】直接利用整式的混合运算法则分别计算判断即可. 【解答】解:A 、m 4与m 3,无法合并,故此选项错误; B 、(m 4) 3=m 12,故此选项错误; C 、2m 5÷m 3=2m 2,故此选项错误; D 、m (m ﹣1)=m 2﹣m ,正确. 故选:D .【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.3.(3分)如图,P 为⊙O 外一点,PC 切⊙O 于C ,PB 与⊙O 交于A 、B 两点.若P A =1,PB =5,则PC =( )A .3B .√5C .4D .无法确定【分析】求出半径的长,求出PO 长,根据切线的性质求出∠PCO =90°,再根据勾股定理求出即可. 【解答】解:∵P A =1,PB =5, ∴AB =PB ﹣P A =4, ∴OC =OA =OB =2, ∴PO =1+2=3, ∵PC 切⊙O 于C , ∴∠PCO =90°,在Rt △PCO 中,由勾股定理得:PC =√PO 2−OC 2=√32−22=√5, 故选:B .【点评】本题考查了勾股定理和切线的性质,能熟记切线的性质的内容是解此题的关键,注意:圆的切线垂直于过切点的半径.4.(3分)为了解某班学生每天使用零花钱的情况,小敏随机调查了15名同学,结果如表:每天用零花钱(单位:元) 12345人数24531则这15名同学每天使用零花钱的众数和中位数分别是( )A .3,3B .5,2C .3,2D .3,5【分析】根据众数和中位数的定义分别进行解答即可.【解答】解:这15名同学每天使用零花钱的众数为3元,中位数为3元,故选:A.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)某工程甲单独完成要30天,乙单独完成要25天.若乙先单独干15天,剩下的由甲单独完成,设甲、乙一共用x 天完成,则可列方程为()A.x+1525+1530=1 B.x+1530+1525=1C.1530+x−1525=1 D.x−1530+1525=1【分析】根据题意列出方程求出答案.【解答】解:设甲、乙一共用x天完成,则可列方程为:x−15 30+1525=1.故选:D.【点评】本题考查由实际问题抽象出一元一次方程,解题的关键是找出等量关系,本题属于基础题型.6.(3分)如图,已知一组平行线a∥b∥c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB=3,BC=4,EF =4.8,则DE=()A.7.2 B.6.4 C.3.6 D.2.4【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案.【解答】解:∵a∥b∥c,∴DEEF=ABBC,即DE4.8=34,解得,DE=3.6,故选:C.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=36°,∠C=44°,则∠EAC的度数为()A.18°B.28°C.36°D.38°【分析】根据∠EAC=∠BAC﹣∠BAF,求出∠BAC,∠BAF即可解决问题.【解答】解:∵∠ABC=36°,∠C=44°,∴∠BAC=180°﹣36°﹣44°=100°,∵BD平分∠ABC,∴∠ABD=12∠ABC=18°,∵AE⊥BD,∴∠BF A=90°,∴∠BAF=90°﹣18°=72°,∴∠EAC =∠BAC ﹣∠BAF =100°﹣72°=28°, 故选:B .【点评】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 8.(3分)直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是( )A .B .C .D .【分析】根据一次函数的系数与图象的关系依次分析选项,找k 、b 取值范围相同的即得答案. 【解答】解:根据一次函数的系数与图象的关系依次分析选项可得:A 、由图可得,y 1=kx +b 中,k <0,b <0,y 2=bx +k 中,b >0,k <0,b 、k 的取值矛盾,故本选项错误;B 、由图可得,y 1=kx +b 中,k >0,b <0,y 2=bx +k 中,b >0,k >0,b 的取值相矛盾,故本选项错误;C 、由图可得,y 1=kx +b 中,k >0,b <0,y 2=bx +k 中,b <0,k >0,k 的取值相一致,故本选项正确;D 、由图可得,y 1=kx +b 中,k >0,b <0,y 2=bx +k 中,b <0,k <0,k 的取值相矛盾,故本选项错误; 故选:C .【点评】本题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.解答本题注意理解:直线y =kx +b 所在的位置与k 、b 的符号有直接的关系.9.(3分)关于x 的二次函数y =x 2+2kx +k ﹣1,下列说法正确的是( ) A .对任意实数k ,函数图象与x 轴都没有交点B .对任意实数k ,函数图象没有唯一的定点C .对任意实数k ,函数图象的顶点在抛物线y =﹣x 2﹣x ﹣1上运动D .对任意实数k ,当x ≥﹣k ﹣1时,函数y 的值都随x 的增大而增大【分析】利用△=(2k ﹣1)2+3>0可对A 进行判断;利用点(−12,−34)满足抛物线解析式可对B 进行判断;先求出抛物线顶点坐标为(﹣k ,﹣k 2+k ﹣1),则根据二次函数图象上点的坐标特征可对C 进行判断;先表示出抛物线的对称轴方程,然后利用二次函数的性质可对D 进行判断.【解答】解:A 、△=4k 2﹣4(k ﹣1)=(2k ﹣1)2+3>0,抛物线与x 轴有两个交点,所以A 选项错误;B 、k (2x +1)=y +1﹣x 2,k 为任意实数,则2x +1=0,y +1﹣x 2=0,所以抛物线经过定点(−12,−34),所以B 选项错误; C 、y =(x +k )2﹣k 2+k ﹣1,抛物线的顶点坐标为(﹣k ,﹣k 2+k ﹣1),则抛物线的顶点在抛物线y =﹣x 2﹣x ﹣1上运动,所以C 选项正确;D 、抛物线的对称轴为直线x =−2k2=−k ,抛物线开口向上,则x >﹣k 时,函数y 的值都随x 的增大而增大,所以D 选项错误. 故选:C .【点评】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.10.(3分)如图,在△ABC 中,∠C =90°,D 是BC 边上一点,∠ADC =3∠BAD ,BD =4,DC =3.则AB 的值为( )A.5+3√2B.2+2√15C.7√2D.√113【分析】延长CB到E,使得BE=BA.设BE=AB=a.利用相似三角形的性质,勾股定理构建方程即可解决问题.【解答】解:如图,延长CB到E,使得BE=BA.设BE=AB=a.∵BE=BA,∴∠E=∠BAE,∵∠ADC=∠ABD+∠BAD=2∠E+∠BAD=3∠BAD,∴∠BAD=∠E,∵∠ADB=∠EDA,∴△ADB∽△EDA,∴ADED=DBAD,∴AD2=4(4+a)=16+4a,∵AC2=AD2﹣CD2=AB2﹣BC2,∴16+4a﹣32=a2﹣72,解得a=2+2√15或2﹣2√15(舍弃).∴AB=2+2√15,故选:B.【点评】本题考查相似三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题:本题有6个小题,每小题4分,共24分11.(4分)分解因式:3x2+6xy+3y2=3(x+y)2.【分析】先利用提取公因式法提取数字3,再利用完全平方公式继续进行分解.【解答】解:3x2+6xy+3y2,=3(x2+2xy+y2),=3(x+y)2【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(4分)一个袋子中有1个红球,2个黄球,每个球除颜色外都相同,从中摸出2个球,2个球颜色不同的概率为23.【分析】画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:画树状图如下:由树状图知,共有6种等可能结果,其中2个球颜色不同的有4种结果, ∴2个球颜色不同的概率为46=23, 故答案为:23.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.13.(4分)分式方程2x−1=1x的解是 x =﹣1 . 【分析】观察分式方程得最简公分母为x (x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 【解答】解:方程的两边同乘x (x ﹣1),得 2x =x ﹣1, 解得x =﹣1.检验:把x =﹣1代入x (x ﹣1)=2≠0. ∴原方程的解为:x =﹣1. 故答案为:x =﹣1.【点评】本题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.14.(4分)已知一个扇形的面积为12πcm 2,圆心角的度数为108°,则它的弧长为6√105πcm . 【分析】先根据扇形的面积公式求出扇形的半径,再根据弧长公式求出弧长即可.【解答】解:设扇形的半径为Rcm ,∵扇形的面积为12πcm 2,圆心角的度数为108°, ∴108π×R 2360=12π,解得:R =2√10,∴弧长为108π×2√10180=6√105π(cm ),故答案为:6√105πcm .【点评】本题考查了扇形面积的计算和弧长的计算,能熟记公式是解此题的关键.15.(4分)已知关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,则a 的取值范围是 7≤a <9或﹣3≤a <﹣1 .【分析】先求出求出不等式组的解集,再根据已知得出关于a 的不等式组,求出不等式组的解集即可.【解答】解:{5x −a >3(x −1)①2x −1≤7②,∵解不等式①得:x >a−32, 解不等式②得:x ≤4, ∴不等式组的解集为a−32<x ≤4, ∵关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,∴当a−32>0时,这两个整数解一定是3和4,∴2≤a−32<3, ∴7≤a <9,当a−32<0时,﹣3≤a−32<−2, ∴﹣3≤a <﹣1,∴a 的取值范围是7≤a <9或﹣3≤a <﹣1. 故答案为:7≤a <9或﹣3≤a <﹣1.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能得出关于a 的不等式组是解此题的关键.16.(4分)一张直角三角形纸片ABC ,∠ACB =90°,AB =13,AC =5,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,则CD 的长为103或6017. 【分析】根据沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,分两种情况讨论:∠DEB =90°或∠BDE =90°,分别依据勾股定理或者相似三角形的性质,即可得到CD 的长. 【解答】解:∵∠ACB =90°,AB =13,AC =5, ∴BC =√AB 2−AC 2=12, 根据题意,分两种情况: ①如图,若∠DEB =90°,则∠AED =90°=∠C , CD =ED ,连接AD ,则Rt △ACD ≌Rt △AED (HL ), ∴AE =AC =5,BE =AB ﹣AE =13﹣5=8, 设CD =DE =x ,则BD =BC ﹣CD =12﹣x , 在Rt △BDE 中,DE 2+BE 2=BD 2, ∴x 2+82=(12﹣x )2解得x =103, ∴CD =103;②如图,若∠EDB =90°,则∠CDE =∠DEF =∠C =90°,CD =DE , ∴四边形CDEF 是正方形, ∴∠AFE =∠EDB =90°, ∠AEF =∠B , ∴△AEF ∽△EBD , ∴AF ED =EF BD ,6017设CD =x ,则EF =CF =x ,AF =5﹣x ,BD =12﹣x ,∴5−x x =x 12−x , 解得x =6017. ∴CD =6017. 综上所述,CD 的长为103或6017. 【点评】本题考查了翻折变换,综合运用勾股定理、相似三角形的判定与性质、正方形的判定与性质解答,解题关键是根据题意分两种情况讨论.三、解答题:本大题有7个小题,共66分解答应写出文字说明、证明过程或演算步骤.17.(6分)先化简再求值:(a b −b a )•ab a+b ,其中a =1,b =2. 【分析】先把分式化简后,再把a 、b 的值代入求出分式的值. 【解答】解:原式=a 2−b 2ab •ab a+b =(a+b)(a−b)ab ⋅ab a+b=a ﹣b ,当a =1,b =2时,原式=1﹣2=﹣1.【点评】本题考查了分式的化简求值,熟练化简分式是解题的关键.18.(8分)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成统计图(不完整).根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有 10 人,男生最喜欢“乒乓球“项目的有 20 人.(2)请将条形统计图补充完整;(3)若该校有男生450人,女生400人,请估计该校喜欢“羽毛球”项目的学生总人数.【分析】(1)根据题目中的数据和条形统计图中的数据,可以计算出女生最喜欢“踢毽子”项目的人数,然后根据扇形统计图中的数据,可以计算出男生最喜欢“乒乓球“项目的人数;(2)根据(1)中的结果,可以得到女生最喜欢“踢毽子”项目的有10人,从而可以将条形统计图补充完整;(3)根据统计图中的数据和该校有男生450人,女生400人,可以计算出该校喜欢“羽毛球”项目的学生总人数.【解答】解:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有:50﹣15﹣9﹣9﹣7=10(人),男生最喜欢“乒乓球“项目的有:50×(1﹣8%﹣10%﹣14%﹣28%)=50×40%=20(人),故答案为:10,20;(2)由(1)知,女生最喜欢“踢毽子”项目的有10人,补全完整的条形统计图如右图所示;(3)450×28%+400×950=126+72198(人),答:该校喜欢“羽毛球”项目的学生一共有198人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.19.(8分)如图,D、E是以AB为直径的⊙O上两点,且∠AED=45°.(1)过点D作DC∥AB,求证:直线CD与⊙O相切;,求AE的长.(2)若⊙O的半径为12,sin∠ADE=34【分析】(1)连接OD,根据圆周角定理求出∠AOD,根据平行线的性质求出∠ODC=90°,根据切线的判定得出即可;(2)连接BE,根据圆周角定理求出∠B=∠ADE,解直角三角形求出即可.【解答】(1)证明:连接OD,∵∠AED=45°,∴由圆周角定理得:∠AOD=2∠AED=90°,∵CD∥AB,∴∠CDO=∠AOD=90°,即OD⊥CD,∵OD过O,∴直线CD与⊙O相切;(2)解:连接BE,∵AB为⊙O的直径,∴∠AEB=90°,∵由圆周角定理得:∠B=∠ADE,sin∠ADE=3 4,∴sin∠ADE=sin B,∵sin B=AE AB ,∵⊙O的半径为12,∴AE24=34,解得:AE=18.【点评】本题考查了解直角三角形,圆周角定理,切线的判定,平行线的性质等知识点,能综合运用知识点进行推理是解此题的关键.20.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6√2,AF=4√2,求AE的长.【分析】(1)由平行四边形的性质和平行线的性质得出∠ADF=∠CED,∠B+∠C=180°;由∠AFE+∠AFD=180°,∠AFE =∠B,得出∠AFD=∠C,即可得出结论;(2)根据平行四边形的性质可得出CD=AB=8,根据相似三角形的性质可得出ADDE =AFDC,求出DE=12.证出AE⊥AD,由勾股定理即可得出答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠ADF=∠CED,∠B+∠C=180°;∵∠AFE+∠AFD=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)解:∵四边形ABCD是平行四边形,∴DC=AB=8.∵△ADF∽△DEC,∴ADDE=AFDC,即6√2DE=4√28,∴DE=12.∵AD∥BC,AE⊥BC,∴AE⊥AD.在Rt△ADE中,∠EAD=90°,DE=12,AD=6√2,∴AE =√DE 2−AD 2=√122−(6√2)2=6√2.【点评】此题主要考查的是平行四边形的性质、相似三角形的判定和性质以及勾股定理的运用,解题的关键判定三角形相似.21.(10分)已知Rt △ABC 的斜边AB 在平面直角坐标系的x 轴上,点C (2,6)在反比例函数y 1=k x的图象上,且sin ∠BAC =35 (1)求k 的值和边AC 的长;(2)求点B 的坐标;(3)有一直线y 2=kx +10与y 1=k x 交于M 与N 点,求出x 为何值时,y 2≥y 1.【分析】(1)本题需先根据C 点的坐标在反比例函数y 1=k x 的图象上,从而得出k 的值,再根据且sin ∠BAC =35,得出AC 的长;(2)本题需先根据已知条件,得出∠DAC =∠DCB ,从而得出CD 的长,根据点B 的位置即可求出正确答案;(3)解方程组即可得到结论.【解答】解:(1)∵点C (2,6)在反比例函数y =k x 的图象上,∴6=k 2,解得k =12,∵sin ∠BAC =35∴sin ∠BAC =6AC =35, ∴AC =10;∴k 的值和边AC 的长分别是:12,10;(2)①当点B 在点A 右边时,如图,作CD ⊥x 轴于D .∵△ABC 是直角三角形,∴∠DAC =∠DCB ,又∵sin ∠BAC =35,∴tan ∠DAC =34,∴BD CD =34, 又∵CD =6, ∴BD =92,∴OB =2+92=132, ∴B (132,0); ②当点B 在点A 左边时,如图,作CD ⊥x 轴于D .∵△ABC 是直角三角形, ∴∠B +∠A =90°,∠B +∠BCD =90°,∴∠DAC =∠DCB ,又∵sin ∠BAC =35,∴tan ∠DAC =34,∴BD CD =34, 又∵CD =6,∴BD =92,BO =BD ﹣2=52, ∴B (−52,0) ∴点B 的坐标是(−52,0),(132,0); (3)∵k =12,∴y 2=12x +10与y 1=12x , 解{y =12x +10y =12x得,{x =23y =18,{x =−32y =−8, ∴M (23,18),N 点(−32,﹣8),∴−32<x <0或x >23时,y 2≥y 1.【点评】本题考查了反比例函数与一次函数的交点问题,解直角三角形,正确的理解题意是解题的关键.22.(12分)已知一次函数y 1=2x +b 的图象与二次函数y 2=a (x 2+bx +1)(a ≠0,a 、b 为常数)的图象交于A 、B 两点,且A 的坐标为(0,1).(1)求出a 、b 的值,并写出y 1,y 2的表达式;(2)验证点B 的坐标为(1,3),并写出当y 1≥y 2时,x 的取值范围;(3)设u =y 1+y 2,v =y 1﹣y 2,若m ≤x ≤n 时,u 随着x 的增大而增大,且v 也随着x 的增大而增大,求m 的最小值和n 的最大值.【分析】(1)把A 点的坐标分别代入两个函数的解析式,便可求得a 与b 的值;(2)画出函数图象,根据函数图象作答;(3)求出出个函数的对称轴,根据函数的性质得出“u 随着x 的增大而增大,且v 也随着x 的增大而增大”时x 的取值范围,进而得m 的最小值和n 的最大值.【解答】解:(1)把A (0,1)代入y 1=2x +b 得b =1,把A (0,1)代入y 2=a (x 2+bx +1)得,a =1,∴y 1=2x +1,y 2=x 2+x +1;(2)作y 1=2x +1,y 2=x 2+x +1的图象如下:由函数图象可知,y 1=2x +1不在y 2=x 2+x +1下方时,0≤x ≤3,∴当y 1≥y 2时,x 的取值范围为0≤x ≤3;(3)∵u =y 1+y 2=2x +1+x 2+x +1=x 2+3x +2=(x +1.5)2﹣0.25,∴当x ≥﹣1.5时,u 随x 的增大而增大;v =y 1﹣y 2=(2x +1)﹣(x 2+x +1)=﹣x 2+x =﹣(x ﹣0.5)2+0.25,∴当x ≤0.5时,v 随x 的增大而增大,∴当﹣15≤x ≤0.5时,u 随着x 的增大而增大,且v 也随着x 的增大而增大,∵若m ≤x ≤n 时,u 随着x 的增大而增大,且v 也随着x 的增大而增大,∴m 的最小值为﹣1.5,n 的最大值为0.5.【点评】本题是二次函数的综合题,主要考查了函数的图象与性质,利用函数图象求不等式的解集,待定系数法,关键是熟练掌握二次函数的性质,灵活运用性质解题.23.(12分)在△ABC 和△DBE 中,CA =CB ,EB =ED ,点D 在AC 上.(1)如图1,若∠ABC =∠DBE =60°,求证:∠ECB =∠A ;(2)如图2,设BC 与DE 交于点F .当∠ABC =∠DBE =45°时,求证:CE ∥AB ;(3)在(2)的条件下,若tan ∠DEC =12时,求EF DF的值. 【分析】(1)根据SAS 可证明△ABD ≌△CBE .得出∠A =∠ECB ;(2)得出△ABC 和△DBE 都是等腰直角三角形,证明△ABD ∽△CBE ,则∠BAD =∠BCE =45°,可得出结论;(3)过点D 作DM ⊥CE 于点M ,过点D 作DN ∥AB 交CB 于点N ,设DM =MC =a ,得出DN =2a ,CE =a ,证明△CEF ∽△DNF ,可得出答案.【解答】(1)证明:∵CA =CB ,EB =ED ,∠ABC =∠DBE =60°,∴△ABC 和△DBE 都是等边三角形,∴AB =BC ,DB =BE ,∠A =60°.∵∠ABC =∠DBE =60°,∴∠ABD =∠CBE ,∴△ABD ≌△CBE (SAS ).∴∠A =∠ECB ;(2)证明:∵∠ABC=∠DBE=45°,CA=CB,EB=ED,∴△ABC和△DBE都是等腰直角三角形,∴∠CAB=45°,∴ABBC=√2,DB BE=√2,∴ABBC=DBBE,∵∠ABC=∠DBE,∴∠ABD=∠CBE,∴△ABD∽△CBE,∴∠BAD=∠BCE=45°,∵∠ABC=45°,∴∠ABC=∠BCE,∴CE∥AB;(3)解:过点D作DM⊥CE于点M,过点D作DN∥AB交CB于点N,∵∠ACB=90°,∠BCE=45°,∴∠DCM=45°,∴∠MDC=∠DCM=45°,∴DM=MC,设DM=MC=a,∴DC=√2a,∵DN∥AB,∴△DCN为等腰直角三角形,∴DN=√2DC=2a,∵tan∠DEC=DMME=12,∴ME=2DM,∴CE=a,∴CEDN=a2a=12,∵CE∥DN,∴△CEF∽△DNF,∴EFDF=CEDN=12.【点评】本题是三角形综合题,考查了等边三角形的判定与性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,相似三角形的判定与性质,锐角三角函数等知识,正确作出辅助线,熟练掌握基本图形的性质是解题的关键.。

2019-2020年浙江省中考数学模拟试卷(有答案)

2019-2020年浙江省中考数学模拟试卷(有答案)

2019-2020浙江省中考数学模拟试卷一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出正确的选项,注意可以用多种不同的方法来选取正确答案 1.实数﹣的相反数是( )A.-2B.21C. 2D.﹣|﹣0.5| 2.下列计算正确的是( )A .2)2(2-=- B.752a a a =+ C .1052)(a a = D.5125256=⨯ 3.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( )4.一组数据:76,90,64,100,84,64,73这组数据的众数和中位数分别是( ) A .64,100 B .64,76 C .76,64 D . 64,84 5.下列说法正确的是( )(1)整式y x y x xy 32882+-因式分解的结果是)441(22x x xy +- (2)要使xxy -=3有意义,则x 应该满足0<x≤3 (3) “x 的2倍与5的和”用代数式表示是一次式.(4)地球上的陆地面积约为149000000平方千米,用科学记数法表示为81049.1⨯平方千米.A.(1)(4)B.(1)(2)C.(2)(3)D.(3)(4) 6.将两个斜边长相等的三角形纸片如图①放置,其中∠ACB =∠CED =90°,∠A =45°,∠D =30°.把△DCE 绕点C 顺时针旋转15°得到△D 1CE 1,如图②,连接D 1B ,则∠E 1D 1B 的度数为( ) A .10°B .20°C .7.5°D . 15°7.对于一次函数y=kx+k ﹣1(k ≠0),下列叙述正确的是( ) A . 当0<k <1时,函数图象经过第一、二、三象限 B . 当k >0时,y 随x 的增大而减小C . 当k <1时,函数图象一定交于y 轴的负半轴D . 函数图象一定经过点(﹣1,﹣2)8.已知210<≤x ,那么函数y=﹣2x 2+8x ﹣6的最大值是( )A. ﹣6B. ﹣2.5C.2D.不能确定 9.下列命题正确的个数是( )① 一组对角相等,一组对边平行的四边形是平行四边形. ②有两条边和第三条边上的中线对应相等的两个三角形全等 ③对角线垂直相等的四边形是正方形 ④圆的切线垂直于圆的半径A .1个B .2个C .3个D .4个 10.如图,在ABC △中,6,12,56===BC AC AB ,经过点C 且与边AB 相切的动圆与CA CB ,分别相交于点P Q ,,则线段PQ 长度的最小值是( )A .6B . 12C .5512 D . 56 二、填空题(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案 11.计算:﹣25+()﹣1﹣|﹣8|+2cos60°=12.已知二次函数263y kx x =-+,若k 在数组{3211234}---,,,,,,中随机取一个,则所得抛物线的对称轴在直线1x =的左方时的概率为 13.在平面直角坐标系中,如果抛物线y =3x 2不动,而把x 轴、y 轴分别向上、向右平移3个单位,那么在新坐标系中此抛物线的解析式是14.等腰三角形有一个外角是100°,这个等腰三角形的底角是 15.如图,平行四边形AOBC 中,对角线交于点E,双曲线)0(>=k xky 经过A 、E 两点,若平行四边形AOBC 的面积为30,则k =______.16. 如图,PA ,PB 切⊙O 于A 、B 两点,CD 切⊙O 于点E ,交PA ,PB 于C ,D .若⊙O 的半径为r ,△PCD 的周长等于3r ,则tan∠APB 的值是 。

浙教版2020年中考数学模拟试卷(附答案)

浙教版2020年中考数学模拟试卷(附答案)

浙教版2020年中考数学模拟试卷(附答案)一、选择题1.一个数的倒数的绝对值是3,这个数是()A. 3B.C. 3或﹣3D. 或﹣2.下列计算正确的是()A. 2 +3 =5B. ()(1﹣)=1C. (xy)﹣1(xy)2= xyD. ﹣(﹣a)4÷a2=a23.如图,放置的一个机器零件(图1),若其主视图如(图2)所示,则其俯视图为()A. B. C. D.4.已知点C是AB的黄金分割点(AC>BC),若AB=4cm,则AC的长为()A. (2﹣2)cmB. (6﹣2)cmC. (﹣1)cmD. (3﹣)cm5.某校九年级(1)班全体学生进行体育测试的成绩(满分70分)统计如表:根据表中的信息判断,下列结论中错误的是()A. 该班一共有40名同学B. 该班学生这次测试成绩的众数是55分C. 该班学生这次测试成绩的中位数是60分D. 该班学生这次测试成绩的平均数是59分6.如图,矩形纸片ABCD中,AB=4,BC=8,将纸片折叠,使点C与点A重合,折痕为EF,点D的对应点为G,连接DG,则图中阴影部分面积是()A. 5B. 3C.D.7.在下列四个函数中,当x>0时,y随x的增大而减小的函数是A. y=2xB.C. y=3x-2D. y=x28.如图,将周长为5的△ABC沿BC方向平移了1个单位长度得到△DEF,连接AD,则四边形ABFD的周长为()A. 5B. 6C. 7D. 89.中,,则一定是()A. 锐角三角形B. 等腰三角形C. 等边三角形D. 等腰直角三角形10.若实数a,b满足ab<0,且a<b,则函数y=ax+b的图象可能是()A. B. C. D.二、填空题11.函数的自变量x的取值范围是________.12.当x=1时,分式无意义,当x=4分式的值为零,则=_________.13.已知菱形两条对角线的长分别为6cm和8cm,则这个菱形的面积是________.14.如图(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C′处,若∠ADB=46°,则∠DBE的度数为________°.(2)小明手中有一张矩形纸片ABCD,AB=4,AD=9.(画一画)如图2,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);(算一算)如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD上,折痕为GF,点A,B分别落在点A′,B′处,若AG= ,求B′D的长;(验一验)如图4,点K在这张矩形纸片的边AD上,DK=3,将纸片折叠,使AB落在CK所在直线上,折痕为HI,点A,B分别落在点A′,B′处,小明认为B′I所在直线恰好经过点D,他的判断是否正确,请说明理由.15.如图,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依次类推,图10中有10个直角三角形的内切圆,它们的面积分别记为, , ,…, ,则=________.16.如图,二次函数y=ax2+bx+c的图象,图象经过点(﹣1,2)和(1,0),给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1;⑤9a+6b+4c>0.其中正确结论的序号是________.三、解答题17.在关于x,y的方程组中,若未知数x,y满足x+y>0,求m的取值范围,并在数轴上表示出来.18.股民老黄上星期五买进某股票1000股,每股35元,下表为本周内每日该股票的涨跌情况(单位:元)(注:用正数记股价比前一日上升数,用负数记股价比前一日下降数)(1)星期四收盘时,每股是多少元?(2)本周内最高价每股多少元?最低价每股多少元?(3)根据交易规则,老黄买进股票时需付0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果老黄在星期五收盘前将全部股票卖出,他的收益情况如何?19.某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?20.如图,四边形ABCD是⊙O的内接四边形,AD的延长线与BC的延长线相交于点E,DC=DE.(1)求证:∠A=∠AEB;(2)如果DC⊥OE,求证:△ABE是等边三角形.21.为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?22.如图,已知△ABC是边长为6cm的等边三角形,动点P,Q同时从B,A两点出发,分别沿BA,AC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P,Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)如图①,当t为何值时,AP=3AQ;(2)如图②,当t为何值时,△APQ为直角三角形;(3)如图③,作QD∥AB交BC于点D,连接PD,当t为何值时,△BDP与△PDQ相似23.如图,一次函数y1=-x+2的图象与反比例函数y2= 的图象相交于A,B两点,点B的坐标为(2m,-m).(1)求出m值并确定反比例函数的表达式;(2)请直接写出当x<2m时,y2的取值范围.24.如图,抛物线y=ax2﹣(a+1)x﹣3与x轴交于点A、B,与y轴交于点C,∠BCO=45°,点M为线段BC 上异于B、C的一动点,过点M与y轴平行的直线交抛物线于点Q,点R为线段QM上一动点,RP⊥QM 交直线BC于点P.设点M的横坐标为m.(1)求抛物线的表达式;(2)当m=2时,△PQR为等腰直角三角形,求点P的坐标;(3)①求PR+QR的最大值;②求△PQR面积的最大值.答案一、选择题1. D2. C3. D4. A5.D6.D7. B8. C9. B 10. A二、填空题11.x≤ 12.-1 13. 24cm214. (1)23(2)解:画一画:如图2中,算一算:如图3中,∵AG= ,AD=9,∴GD=9﹣= ,∵四边形ABCD是矩形,∴AD∥BC,∴∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,∴∠DFG=∠DGF,∴DF=DG= ,∵CD=AB=4,∠C=90°,∴在Rt△CDF中,CF= = ,∴BF=BC﹣CF= ,由翻折不变性可知,FB=FB′= ,∴DB′=DF﹣FB′= ﹣=3;验一验:如图4中,小明的判断不正确,理由:连接ID,在Rt△CDK中,∵DK=3,CD=4,∴CK= =5,∵AD∥BC,∴∠DKC=∠ICK,由折叠可知,∠A′B′I=∠B=90°,∴∠IB′C=90°=∠D,∴△CDK∽△IB′C,∴,即,设CB′=3k,IB′=4k,IC=5k,由折叠可知,IB=IB′=4k,∴BC=BI+IC=4k+5k=9,∴k=1,∴IC=5,IB′=4,B′C=3,在Rt△ICB′中,tan∠B′IC= ,连接ID,在Rt△ICD中,tan∠DIC= ,∴tan∠B′IC≠tan∠DIC,∴B′I所在的直线不经过点D.15.π16.②③④三、解答题(本大题共8小题,共80分)17. 解:,∵由①+②,得3x+3y=3﹣m,∴x+y=1﹣,∵x+y>0,∴1﹣>0,∴m<3,在数轴上表示如下:18. (1)解:依题可得:星期四收盘时每股是:35+(+2.4)+(-0.8)+(-2.9)+(+0.5)=34.2(元);答:星期四收盘时每股是34.2元.(2)解:如图:∴本周内最高价是每股37.5元,最低价每股33.8元.答:本周内最高价是每股37.5元,最低价每股33.8元.(3)解:依题可得:∴买入总金额:1000×35=35000 (元);买入手续费:35000×0.15%=52.5(元);卖出总金额:1000×36.4=36400(元);卖出手续费:36400×0.15%=54.6 (元);卖出交易税:=36400×0.1%=36.4 (元);∴收益:36400−(35000+52.5+54.6+36.4)=36400−35143.5=1256.5 (元).答:他的收益情况是1256.5元.19. (1)解:设第一批购进书包的单价是x元.则:×3= .解得:x=80.经检验:x=80是原方程的根.答:第一批购进书包的单价是80元(2)解:×(120﹣80)+ ×(120﹣84)=3700(元).答:商店共盈利3700元20. (1)证明:∵四边形ABCD是⊙O的内接四边形,∴∠A=∠DCE,∵DC=DE,∴∠DCE=∠DEC,∴∠A=∠AEB(2)证明:∵DC⊥OE,∴DF=CF,∴OE是CD的垂直平分线,∴ED=EC,又DE=DC,∴△DEC为等边三角形,∴∠AEB=60°,又∠A=∠AEB,∴△ABE是等边三角形.21. (1)解:被随机抽取的学生共有14÷28%=50(人)(2)解:活动数为3项的学生所对应的扇形圆心角= ×360°=72°,活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,如图所示:(3)解:参与了4项或5项活动的学生共有×2000=720(人).22. (1)解:由题意知,AQ=2t,BP=t,∵△ABC是边长为6cm的等边三角形,∴∠A=60°,AB=6,∴AP=AB﹣BP=6﹣t,∵AP=3AQ,∴6﹣t=3×2t,∴t=,即:t=秒时,AP=3AQ(2)解:由(1)知,∠A=60°,AQ=2t,AP=6﹣t,∵△APQ为直角三角形,①当∠APQ=90°时,AQ=2AP,∴2t=2(6﹣t),∴t=3秒,②当∠AQP=90°时,AP=2AQ,∴6﹣t=2×2t,∴t=秒,即:t=3秒或秒时,△APQ是直角三角形(3)解:由题意知,AQ=2t,BP=t,∴AP=6﹣t,∵△ABC是等边三角形,∴∠A=∠C=60°,∵QD∥AB,∴∠PDQ=∠BPD,∠QDB=∠A=60°,∴△CDQ是等边三角形,∴CD=CQ,∴BD=AQ=2t,∵△BDP与△PDQ相似,∴①当△BPD∽△PDQ时,∴∠B=∠DPQ=60°,∴∠APQ=∠BDP,∵∠A=∠B,∴△APQ∽△BDP,∴,∴,∴t=秒,②当△BPQ∽△QDP时,∴∠B=∠DQP=60°,∵DQ∥AB,∴∠APQ=DQP=60°,∵∠A=60°,∴△APQ是等边三角形,∴AP=AQ,∴6﹣t=2t,∴t=2秒,即:t=秒或2秒时,△BDP与△PDQ相似23. (1)解:∵据题意,点B的坐标为(2m,-m)且在一次函数y1=-x+2的图象上,代入得-m=-2m+2.∴m=2.∴B点坐标为(4,-2),把B(4,-2)代入y2= 得k=4×(-2)=-8,∴反比例函数表达式为y2=-(2)解:当x<4,y2的取值范围为y2>0或y2<-2.24. (1)解:在y=ax2﹣(a+1)x﹣3中,令x=0可得y=﹣3,∴C(0,﹣3),即OC=3,∵∠BCO=45°,∴OB=OC=3,∴B(3,0),把B点坐标代入抛物线解析式可得9a﹣3(a+1)﹣3=0,求得a=1,∴抛物线的表达式为y=x2﹣2x﹣3 (2)解:当m=2时,则M(2,0),把x=2代入抛物线解析式可得y=﹣3,∴Q(2,﹣3),∵B(3,0),C(0,﹣3),∴直线BC表达式为y=x﹣3,∴可设P(p,p﹣3),则PR=2﹣p,QR=p﹣3﹣(﹣3)=p,∵PR=QR,∴2﹣p=p,解得p=1,∴P(1,﹣2)(3)解:①由(2)可知M(m,m﹣3),Q(m,m2﹣2m﹣3),∵PR⊥MQ,∴∠MPR=45°,∴MR=PR,∴PR+QR=PR+MR=QM=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m=﹣(m﹣)2+ ,∵﹣1<0,∴当m= 时,PR+QR取最大值;②∵PR+QR的最大值为,∴S△PQR= PR•QR≤ PR(﹣PR)=﹣(PR﹣)2+ ,∵<0,∴当PR= 时,△PQR的面积取得最大值.。

浙教版2020年中考数学模拟试卷三(附答案)

浙教版2020年中考数学模拟试卷三(附答案)

浙教版2020年中考数学模拟试卷三(附答案)一、选择题:本大题10小题,每小题3分,共30分。

(共10题;共30分)1.下列各式计算正确的是()A. + =B. 4 -3 =1C. 2 ×3 =6D. ÷ =32.下列各式中,不能用平方差公式计算的是()A. (﹣4x+3y)(4x+3y)B. (4x﹣3y)(3y﹣4x)C. (﹣4x+3y)(﹣4x﹣3y)D. (4x+3y)(4x﹣3y)3.学校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家的北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置是()A. 在家B. 在学校C. 在书店D. 在路上4.如图,在△ABC中,AC=3,BC=4,AB=5,则tanB的值是()A. B. C. D.5 .已知a,b均为实数,且a﹣1>b﹣1,下列不等式中一定成立的是()A. a<bB. 3a<3bC. ﹣a>﹣bD. a﹣2>b﹣26.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是()A. B. C. D.7.已知一组数据:20、30、40、50、50、50、60、70、80,其中平均数、中位数、众数的大小关系是()A. 平均数>中位数>众数B. 平均数<中位数<众数C. 中位数<众数<平均数D. 平均数=中位数=众数8.若二次函数y=2x2-3的图象上有两个点当x=1时,y=m;当x=2时,y=n,则m与n的关系正确的是( )A. m≥nB. m≤nC. m>nD. m<n9.如图,AB和CD都是⊙O的直径,∠AOC=52°,则∠C的度数是()A. 22°B. 26°C. 38°D. 48°10.若二次函数y=x2﹣mx的对称轴是x=﹣3,则关于x的方程x2+mx=7的解是()A. x1=0,x2=6B. x1=1,x2=7C. x1=1,x2=﹣7D. x1=﹣1,x2=7二、填空题:本题有6个小题,每题4分,共24分.(共6题;共24分)11.当________时,关于的分式方程无解12.如图,在四边形ABCD中,连接AC,BD,AC和BD相交于点E.若AD∥BC,BD⊥AD,2DE=BE,AD =BD,则∠BAC+∠BCA的度数为________.13.若x﹣y=3,xy=1,则x2+y2=________.14.如图,正方形网格中每个小正方形的边长都是1,若点A、B、C都在格点上,则tan∠BAC的值是________.15.袋中有三个小球,分别为1个红球和2个黄球,它们除颜色外完全相同.随机取出一个小球然后放回,再随机取出一个小球,则两次取出的小球颜色相同的概率为________.16.如图,在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,若AE=2,△ADE的面积为4,四边形BCED 的面积为5,则AB的长为________。

2020年浙江省中考数学名校模拟试卷附解析

2020年浙江省中考数学名校模拟试卷附解析

2020年浙江省中考数学名校模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图①,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图②摆放,从中任意翻开一张是汉字“自”的概率是( )A .21B .31C .32D .61 2.如图所示放置的正三棱柱的三视图是( )A .B .C .D . 3.已知关于x 的一元二次方程221()04x R r x d -++=无实数根,其中 R 、r 分别是⊙O 1、⊙O 2的半径,d 为两圆的圆心距,则⊙O 1、⊙O 2的位置关系为( )A .外切B .内切C .外离D .外切或内切4.在半径为50cm 的图形铁片上剪去一块扇形铁皮,用剩余部分制做成一个底面直径为80cm ,母线长为50cm 的圆锥形烟囱帽,则剪去的扇形的圆心角的度数为( )A .288°B .144°C .72°D .36° 5.若x 为任意实数时,二次三项式26x x c -+的值都不小于0,则常数c 满足的条件是( ) A .c ≥0 B . c ≥9 C . c >0 D . c >96.有下列方程:①24810x -=;②230m m +=;③2(23)4y -=;④21(3)273x -=.其中能用直接开平方法解的是 ( )A .①②③B .①③C .①③④D .①③③④7.下列命题中错误的是( )A . 25x =,则5x =B . 若a (0a ≥a 是它的算术平方根C . 2(3)π-3π-D . 在直角三角形中,若两条直角边分别是5,25,则斜边长为 5 8.直线2y x =-+和直线2y x =-的交点 P 的坐标是( )A . P (2, 0)B . P (-2,0)C . P (0,2)D . P (0, -2)9.若3520x x -≤+,则( )A .x 有最大的整数解一6B .x 有最小的整数解一5C .x 有最大的整数解 6D .x 有最大的整数解 510.下列多项式中,不能用提取公因式法分解因式的是( )A .()()p q p q p q -++B .2()2()p q p q +-+C .2()()p q q p ---D .3()p q p q +--11.α、β都是钝角,甲、乙、丙、丁计算1()6αβ+的结果依次为50°、26°、72°、90°,其中有正确的结果,则计算正确的是( )A .甲B .乙C .丙D .丁12.如图,M N P R ,,,分别是数轴上四个整数所对应的点,其中有一点是原点,并且1MN NP PR ===.数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若3a b +=,则原点是( )A .M 或RB .N 或PC .M 或ND .P 或R二、填空题13.如图, 如果函数y=-x 与y=x4-的图像交于A 、B 两点, 过点A 作AC 垂直于y 轴, 垂足为点C, 则△BOC 的面积为___________.14. 掷一枚质地均匀的小正方体,它的六个面上分别标有数宇 1、2、3、4、5、6,则朝上一面的数字是小于 6 的概率是 .15.△AOB 和它缩小后得到的△COD 的位置如图所示,则原图形与像相似比为 .16.命题“角平分线上的点到角两边的距离相等”的题设是 , 结论是 .17.点M 、N 分别是正八边形相邻的边AB 、BC 上的点,且AM =BN ,点O 是正八边形的中心,则∠MON = 度.18.如图,在正方形ABCD 中,以对角线AC 为一边作菱形AEFC ,则∠FAB= .19.如图所示,AD 是△ABC 的中线,延长AD 到点E ,使DE=AD ,连结EB ,EC ,则四边形ABEC 是平行四边形.这是根据 .20.如图,小李准备建造一个蔬菜大棚,棚宽4m ,高3m ,长20m ,棚的斜面用塑料布遮盖,不计墙的厚度,那么阳光透过的最大面积为 m 2.21. 某举办班徽设计比赛,全班50名同学,计划每位同学交设计方案一份,拟评选出 10份作为一等奖,则该班小明同学获一等奖的概率为 .22.如图,将一副三角板折叠放在一起,使直角的顶点重合于点O ,则AOC DOB ∠+∠= .23.已知关于x 的分式方程4333k x x x-+=--有增根,则k 的值是 . 24.国家规定存款利息的纳税办法是:利息税=利息×20,银行一年定期储蓄的年利率为 1. 98,今年小刚取出一年到期的本金及利息时,缴纳了 3. 96 元利息税,则小刚一年前存入银行的钱为 .25.若2(4)|2|0a b -+-=,则b a = ;2a b a b+-= . 三、解答题26.如图,放在直角坐标系中的正方形ABCD 的边长为4.现做如下实验:转盘被划分成4个相同的小扇形,并分别标上数字1,2,3.4,分别转动两次转盘,转盘停止后,指针所指向的数字作为直角坐标系中M 点的坐标(第一次作横坐标,第二次作纵坐标),指针如果指向分界线上,则重新转动转盘.(1)请你用树状图或列表的方法,求M 点落在正方形ABCD 面上(含内部与边界)的概率;(2)将正方形ABCD 平移整数个单位,则是否存在某种平移,使点M 落在正方形ABCD 面上的概率为34?若存在,指出一种具体的平移过程?若不存在,请说明理由.27.下面几个立体图形,请将它们加以分类.28.如图是由 16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑. 请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑;使它们成为轴对称图形.29.某高校共有 5 个同规格的大餐厅和 2 个同规格的小餐厅,经过测试:同时开放 1 个大餐厅,2 个小餐厅,可供 1680 名学生就餐;同时开放 2 个大餐厅, 1 个小餐厅,可供2280 名学生就餐.(1)求 1 个大餐厅,1个小餐厅分别可供多少名学生就餐;(2)若 7 个餐厅同时开放,能否供全校的5300 名学生就餐?请说明理由.30.杭州世博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施,若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第1个月到第x个月的维修保养费用累计..为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元),g也是关于x的解析式;(1)若维修保养费用第1个月为2万元,第2个月为4万元,求y关于x的解析式;(2)求纯收益g关于x的解析式;(3)问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.C4.C5.B6.C7.A8.A9.B10.A11.AA二、填空题13.214.5615. 2:116.一个点在角的平分线上,这个点到角两边的距离相等17.4518.22.5°19.对角线互相平分的四边形是平行四边形20.10021.1522. 180°23.124.1000元25.16,1三、解答题26.(1)41164==P ;(2)先向右平移1个单位,再向上平移2个单位(答案不唯一).棱锥:①③,直棱柱:②④,圆柱体:⑤28.29.( 1) 1 个大餐厅可供 960 名学生就餐, 1 个小餐厅可供360 人就餐;(2)5300 人30.(1)由题意,x=1时,y=2;x=2时,y=2+4=6.代入y=ax2+bx,解得a=b=1,所以y=x2+x;(2)纯收益g=33x-150-(x2+x)=-x2+32x-150;(3)g=-(x-16)2+106,即设施开放16个月后,游乐场的纯收益达到最大;又在0<x≤16时,g随着x的增大而增大,当x≤5时,g<0;而x=6时,g>0.所以6个月后能收回投资.。

2020年浙教版九年级数学中考模拟试卷含解析

2020年浙教版九年级数学中考模拟试卷含解析

浙教版2020年九年级数学中考模拟试卷含解析一.选择题(共10小题,满分30分,每小题3分)1.下列实数,0,,0.1,﹣0.010010001…,,其中无理数共有()A.2个B.3个C.4个D.5个2.关于“线段、角、正方形、平行四边形、圆”这些图形中,其中是轴对称图形的个数为()A.2 B.3 C.4 D.53.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A.2 B.3 C.4 D.54.下列运算正确的是()A.5ab﹣ab=4 B.a6÷a2=a4C.+=D.(a2b)3=a5b35.如图,直线a,b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠56.有四张背面完全相同的扑克牌,牌面数字分别是2,3,4,5,将四张牌背面朝上放置并搅匀后,从中任意摸出一张,不放回,再任意摸出一张,摸到的两张牌的牌面数字都是奇数的概率是()A.B.C.D.7.如图,在⊙O中,已知OA⊥BC,∠AOB=58°,则∠ADC的度数为()A.29°B.58°C.87°D.32°8.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x人,女孩有y人,则下列方程组正确的是()A.B.C.D.9.一次函数y=kx+k与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.10.如图,在平面直角坐标系中,点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),按A→B→C→D→A…排列,则第2018个点所在的坐标是()A.(1,1)B.(﹣1,1) C.(﹣1,﹣2)D.(1,﹣2)二.填空题(共6小题,满分18分,每小题3分)11.我们定义:关于x的函数y=ax2+bx与y=bx2+ax(其中a≠b)叫做互为交换函数.如y=3x2+4x与y=4x2+3x是互为交换函数.如果函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,那么b= .12.在同一时刻太阳光线与水平线的夹角是一定的.如图,有一垂直于地面的物体AB.在某一时刻太阳光线与水平线的夹角为30°时,物体AB的影长BC为4米;在另一个时刻太阳光线与水平线的夹角为45°时,则物体AB的影长BD为米.(结果保留根号)13.已知关于x的方程x+=a+的解是x1=a,x2=,应用此结论可以得到方程x+=[x]+的非整数解为([x]表示不大于x的最大整数).14.如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E为AD 中点,点P在x轴上移动,小明同学写出了两个使△POE为等腰三角形的P点坐标(﹣5,0)和(5,0).请你写出其余所有符合这个条件的P点坐标.15.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是.16.如图,在边长为2的正方形ABCD中,P是BC边上一动点(点P不与B、C重合),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP 翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA、NA,则以下结论:①△CMP∽△BPA;②四边形AMCB的面积最大值为2.5;③△ADN≌△AEN;④线段AM 的最小值为2.5;⑤当P为BC中点时,AE为线段NP的中垂线.正确的有(只填序号)三.解答题(共9小题,满分102分)17.(9分)解不等式组:18.(9分)如图,E,C是线段BF上的两点,BE=FC,AB∥DE,∠A=∠D,AC=6,求DF的长.19.(10分)先化简,再求值:,其中.20.(10分)中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1)写出扇形图中a= %,并补全条形图;(2)在这次抽测中,测试成绩的众数和中位数分别是个、个.(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?21.(12分)一玩具工厂用于生产的全部劳力为450个工时,原料为400个单位.生产一个小熊要使用15个工时、20个单位的原料,售价为80元;生产一个小猫要使用10个工时、5个单位的原料,售价为45元.在劳力和原料的限制下合理安排生产小熊、小猫的个数,可以使小熊和小猫的总售价尽可能高.请用你所学过的数学知识分析,总售价是否可能达到2200元?22.(12分)函数y=是反比例函数.(1)求m的值;(2)指出该函数图象所在的象限,在每个象限内,y随x的增大如何变化?(3)判断点(,2)是否在这个函数的图象上.23.(12分)如图,在直角坐标系中,先描出点A(1,3),点B(4,1)(1)用尺规在x轴上找一点C,使AC+BC的值最小(保留作图痕迹);(2)用尺规在x轴上找一点P,使PA=PB(保留作图痕迹).24.(14分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.25.(14分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C 重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.下列实数,0,,0.1,﹣0.010010001…,,其中无理数共有()A.2个B.3个C.4个D.5个【分析】根据无理数的定义解答即可.【解答】解:实数,0,,0.1,﹣0.010010001…,中无理数有,﹣0.010010001…,这3个,故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样无线不循环的数.2.关于“线段、角、正方形、平行四边形、圆”这些图形中,其中是轴对称图形的个数为()A.2 B.3 C.4 D.5【分析】根据轴对称图形的概念求解.【解答】解:线段、角、正方形、平行四边形、圆,其中是轴对称图形的有:线段、角、正方形、圆,共四个.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A.2 B.3 C.4 D.5【分析】若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,据此可得.【解答】解:若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选:C.【点评】本题考查简单组合体的三视图的画法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.4.下列运算正确的是()A.5ab﹣ab=4 B.a6÷a2=a4C.+=D.(a2b)3=a5b3【分析】根据合并同类项法则、同底数幂的除法、分式的加法及积的乘方与幂的乘方逐一计算可得.【解答】解:A、5ab﹣ab=4ab,此选项错误;B、a6÷a2=a4,此选项正确;C、+=,选项错误;D、(a2b)3=a6b3,此选项错误;故选:B.【点评】本题主要考查整式和分式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、分式的加法及积的乘方与幂的乘方.5.如图,直线a,b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠5【分析】根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角解答即可.【解答】解:由同位角的定义可知,∠1的同位角是∠4,故选:C.【点评】此题考查同位角问题,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解.6.有四张背面完全相同的扑克牌,牌面数字分别是2,3,4,5,将四张牌背面朝上放置并搅匀后,从中任意摸出一张,不放回,再任意摸出一张,摸到的两张牌的牌面数字都是奇数的概率是()A.B.C.D.【分析】根据题意先画出树状图,得出所有等可能的结果数和摸到的两张牌的牌面数字都是奇数的可能结果数,再根据概率公式求解即可求得答案.【解答】解:根据题意画图如下:∵共有12种等可能的结果数,摸到的两张牌的牌面数字都是奇数的有2种情况,∴摸到的两张牌的牌面数字都是奇数的概率是=;故选:D.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.7.如图,在⊙O中,已知OA⊥BC,∠AOB=58°,则∠ADC的度数为()A.29° B.58° C.87° D.32°【分析】根据垂径定理得到=,根据圆周角定理解答即可.【解答】解:∵OA⊥BC,∴=,∴∠ADC=∠AOB=29°,故选:A.【点评】本题考查的是垂径定理和圆周角定理,掌握同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.8.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x人,女孩有y人,则下列方程组正确的是()A. B.C.D.【分析】利用每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色游泳帽比红色的多1倍,进而分别得出等式即可.【解答】解:设男孩x人,女孩有y人,根据题意得出:,解得:,故选:C.【点评】此题主要考查了二元一次方程组的应用,根据题意利用已知得出正确等量关系是解题关键.9.一次函数y=kx+k与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.【分析】分别根据反比例函数及一次函数图象的特点对各选项进行逐一分析即可.【解答】解:A、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象与y轴交点在y轴的正半轴可知k>0,两结论相矛盾,故本选项错误;B、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象过一、二、三象限可知k>0,两结论一致,故本选项正确;C、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象过二、四象限可知k<0,两结论相矛盾,故本选项错误;D、由反比例函数的图象在二、四象限知k<0,由一次函数图象与y轴的交点在正半轴知k >0,两结论相矛盾,故本选项错误;故选:B.【点评】本题考查的是一次函数与反比例函数图象的特点,熟知一次函数与反比例函数的性质是解答此题的关键.10.如图,在平面直角坐标系中,点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),按A→B→C→D→A…排列,则第2018个点所在的坐标是()A.(1,1)B.(﹣1,1) C.(﹣1,﹣2)D.(1,﹣2)【分析】根据每四个点为一周期循环,由2018÷4=504…2知第2018个点所在的坐标与第2个点所在的坐标相同,据此可得.【解答】解:由题意知每四个点为一周期循环,∵2018÷4=504…2,∴第2018个点所在的坐标与第2个点所在的坐标相同,即第2018个点所在的坐标是(﹣1,1),故选:B.【点评】本题主要考查点的坐标的变化规律,解题的关键是根据题意得出每四个点为一周期循环.二.填空题(共6小题,满分18分,每小题3分)11.我们定义:关于x的函数y=ax2+bx与y=bx2+ax(其中a≠b)叫做互为交换函数.如y=3x2+4x与y=4x2+3x是互为交换函数.如果函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,那么b= ﹣2 .【分析】根据题意可以得到交换函数,由顶点关于x轴对称,从而得到关于b的方程,可以解答本题.【解答】解:∵由题意函数y=2x2+bx的交换函数为y=bx2+2x,∵函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,两个函数的对称轴相同,∴﹣=﹣,解得b=﹣2或2,∵互为交换函数a≠b,故答案为:﹣2.【点评】本题考查了二次函数的性质.理解交换函数的意义是解题的关键.12.在同一时刻太阳光线与水平线的夹角是一定的.如图,有一垂直于地面的物体AB.在某一时刻太阳光线与水平线的夹角为30°时,物体AB的影长BC为4米;在另一个时刻太阳光线与水平线的夹角为45°时,则物体AB的影长BD为米.(结果保留根号)【分析】根据锐角三角函数可以求得AB的长,从而可以求得BD的长,本题得以解决.【解答】解:由题意可得,∠B=90°,BC=4,∠C=30°,∴tan30°=,∴AB=,∵∠B=90°,∠ADB=45°,∴AB=BD,∴BD=,故答案为:.【点评】本题考查解直角三角形的应用、平行投影,解题的关键是明确题意,找出所求问题需要的条件.13.已知关于x的方程x+=a+的解是x1=a,x2=,应用此结论可以得到方程x+=[x]+的非整数解为x=([x]表示不大于x的最大整数).【分析】利用新定义判断出[x]=3,再根据关于x的方程x+=a+的解是x1=a,x2=即可确定出方程的解.【解答】解:根据题意x=,即x[x]=11,可以知道x在1~2,2~3之间都不可能,在3~4之间,则[x]=3,∵x为非整数解,∴x=.故答案为:x=.【点评】此题考查了解分式方程,解题的关键是确定[x]=3.14.如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E为AD 中点,点P在x轴上移动,小明同学写出了两个使△POE为等腰三角形的P点坐标(﹣5,0)和(5,0).请你写出其余所有符合这个条件的P点坐标(8,0)或(,0).【分析】由在菱形ABCD中,AC=12,BD=16,E为AD中点,根据菱形的性质与直角三角形的性质,易求得OE的长,然后分别从①当OP=OE时,②当OE=PE时,③当OP=EP 时去分析求解即可求得答案.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×12=6,OD=BD=×16=8,∴在Rt△AOD中,AD==10,∵E为AD中点,∴OE=AD=×10=5,①当OP=OE时,P点坐标(﹣5,0)和(5,0);②当OE=PE时,此时点P与D点重合,即P点坐标为(8,0);③如图,当OP=EP时,过点E作EK⊥BD于K,作OE的垂直平分线PF,交OE于点F,交x轴于点P,∴EK∥OA,∴EK:OA=ED:AD=1:2,∴EK=OA=3,∴OK==4,∵∠PFO=∠EKO=90°,∠POF=∠EOK,∴△POF∽△EOK,∴OP:OE=OF:OK,即OP:5=:4,解得:OP=,∴P点坐标为(,0).∴其余所有符合这个条件的P点坐标为:(8,0)或(,0).故答案为:(8,0)或(,0).【点评】此题考查了菱形的性质、勾股定理、直角三角形的性质以及等腰三角形的性质.此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.15.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是b﹣2a .【分析】直接利用数轴得出a<0,a﹣b<0,进而化简得出答案.【解答】解:由数轴可得:a<0,a﹣b<0,则原式=﹣a﹣(a﹣b)=b﹣2a.故答案为:b﹣2a.【点评】此题主要考查了二次根式的性质与化简,正确得出各项符号是解题关键.16.如图,在边长为2的正方形ABCD中,P是BC边上一动点(点P不与B、C重合),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP 翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA、NA,则以下结论:①△CMP∽△BPA;②四边形AMCB的面积最大值为2.5;③△ADN≌△AEN;④线段AM 的最小值为2.5;⑤当P为BC中点时,AE为线段NP的中垂线.正确的有①②③④(只填序号)【分析】①正确.只要证明∠CPM=∠PAB,∠C=∠B=90°,即可;②正确,设PB=x,构建二次函数,利用二次函数性质解决问题即可;③正确.根据HL即可证明;④正确,作MG⊥AB于G,因为AM==,所以AG最小时AM最小,构建二次函数,求得AG的最小值为,AM的最小值为.⑤错误,设ND=NE=y,在Rt△PCN中,利用勾股定理求出y即可解决问题.【解答】解:①由翻折可知,∠APE=∠APB,∠MPC=∠MPN,∴∠APE+∠MPF=∠CPN+∠BPE=90°,∴∠CPM+∠APB=90°,∵∠APB+∠PAB=90°,∴∠CPM=∠PAB,∵∠C=∠B=90°,∴△CMP∽△BPA.故①正确;②设PB=x,则CP=2﹣x,∵△CMP∽△BPA,∴=,∴CM=x(2﹣x),∴S四边形AMCB=[2+x(2﹣x)]×2=﹣x2+x+2=﹣(x﹣1)2+2.5,∴x=1时,四边形AMCB面积最大值为2.5,故②正确;③在Rt△ADN和Rt△AEN中,,∴△ADN≌△AEN.故③正确;④作MG⊥AB于G,∵AM==,∴AG最小时AM最小,∵AG=AB﹣BG=AB﹣CM=2﹣x(2﹣x)=(x﹣1)2+,∴x=1时,AG最小值=,∴AM的最小值==,故④正确.⑤当PB=PC=PE=1时,由折叠知,ND=NE,设ND=NE=y,在Rt△PCN中,(y+1)2=(2﹣y)2+12解得y=,∴NE=,∴NE≠EP,故⑤错误,【点评】此题是四边形综合题主要考查了正方形的性质、相似三角形的判定和性质、全等三角形的性质、勾股定理等知识,解题的关键是学会构建二次函数解决最值问题,学会添加常用辅助线,属于中考压轴题.三.解答题(共9小题,满分102分)17.(9分)解不等式组:【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3(x﹣1)<2x,得:x<3,解不等式﹣<1,得:x>﹣9,则原不等式组的解集为﹣9<x<3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(9分)如图,E,C是线段BF上的两点,BE=FC,AB∥DE,∠A=∠D,AC=6,求DF的长.【分析】根据“AAS”可判断△ABC≌△DEF即可解决问题;【解答】解:∵BE=CF,∴BC=EF,∵AB∥DE,∴∠B=∠DEF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴AC=DF,∵AC=6,∴DF=6.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.19.(10分)先化简,再求值:,其中.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=•=•=,当a=﹣1时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(10分)中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1)写出扇形图中a= 25 %,并补全条形图;(2)在这次抽测中,测试成绩的众数和中位数分别是 5 个、 5 个.(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?【分析】(1)用1减去其他天数所占的百分比即可得到a的值,用360°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;(2)根据众数与中位数的定义求解即可;(3)先求出样本中得满分的学生所占的百分比,再乘以1800即可.【解答】解:(1)扇形统计图中a=1﹣30%﹣15%﹣10%﹣20%=25%,设引体向上6个的学生有x人,由题意得=,解得x=50.条形统计图补充如下:(2)由条形图可知,引体向上5个的学生有60人,人数最多,所以众数是5;共200名同学,排序后第100名与第101名同学的成绩都是5个,故中位数为(5+5)÷2=5(3)×1800=810(名).答:估计该区体育中考选报引体向上的男生能获得满分的同学有810名.故答案为:25;5,5.【点评】本题为统计题,考查众数与中位数的意义.一组数据中出现次数最多的数据叫做众数;将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数.也考查了条形统计图、扇形统计图与用样本估计总体.21.(12分)一玩具工厂用于生产的全部劳力为450个工时,原料为400个单位.生产一个小熊要使用15个工时、20个单位的原料,售价为80元;生产一个小猫要使用10个工时、5个单位的原料,售价为45元.在劳力和原料的限制下合理安排生产小熊、小猫的个数,可以使小熊和小猫的总售价尽可能高.请用你所学过的数学知识分析,总售价是否可能达到2200元?【分析】本题在劳力和原料两个限制条件下,设出生产小熊小猫的个数分别为x和y,可列出关于x和y的两个不等式,由总售价为2200元还可以列出关于x和y的一个等式,三个式子结合就可以求出x和y看符合不符合条件,求出答案.【解答】解:设小熊和小猫的个数分别为x和y,总售价为z,则z=80x+45y=5(16x+9y)①根据劳力和原材料的限制,x和y应满足15x+10y≤450,20x+5y≤400化简3x+2y≤90(1)及4x+y≤80(2)当总售价z=2200时,由①得16x+9y=440(3)(2)•9得36x+9y≤720(4)(4)﹣(3)得20x≤720﹣440=280,即x≤14(A)得(5)(3)﹣(5)得,即x≥14(B)综合(A)、(B)可得x=14,代入(3)求得y=24当x=14,y=24时,有3x+2y=90,4x+y=80满足工时和原料的约束条件,此时恰有总售价z=80×14+45×24=2200(元)答:只需安排生产小熊14个、小猫24个,就可达到总售价为2200元.【点评】本题考查理解题意能力以及对于多个量进行分析根据数据列出不等式以及等式.本题要根据劳力和原料列出不等式,根据要达到的售价可列出等式.22.(12分)函数y=是反比例函数.(1)求m的值;(2)指出该函数图象所在的象限,在每个象限内,y随x的增大如何变化?(3)判断点(,2)是否在这个函数的图象上.【分析】(1)根据反比例函数的定义可得,解得m=0.(2)利用反比例函数的性质即可解决问题;(3)利用待定系数法即可解决问题;【解答】解:(1)由题意:,解得m=0.(2)∵反比例函数的解析式为y=﹣,∴函数图象在二四象限,在每个象限内,y随x的增大而增大.(3)当x=时,y=﹣2≠2,∴点(,2)不在这个函数的图象上.【点评】本题考查反比例函数图象上的点的特征,反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(12分)如图,在直角坐标系中,先描出点A(1,3),点B(4,1)(1)用尺规在x轴上找一点C,使AC+BC的值最小(保留作图痕迹);(2)用尺规在x轴上找一点P,使PA=PB(保留作图痕迹).【分析】(1)作出其中一点关于x轴的对称点,对称点与另一点的连线与x轴的交点就是所要找的点.(2)垂直平分线上任意一点,到线段两端点的距离相等.作出线段AB的垂直平分线,与x轴的交点就是所要找的点.【解答】解:(1)如图所示,点C即为所求;(2)如图所示,点P即为所求.【点评】本题主要考查了最短路线问题以及距离相等问题,解题时注意:凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.24.(14分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.【分析】(1)先求得点C(0,3)的坐标,然后设抛物线的解析式为y=a(x+1)(x﹣),最后,将点C的坐标代入求得a的值即可;(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.先求得AC的解析式,然后再求得BM的解析式,从而可求得点M的坐标,依据两点间的距离公式可求得MC=BM,最后,依据等腰直角三角形的性质可得到∠ACB的度数;(3)如图2所示:延长CD,交x轴与点E.依据题意可得到∠ECD>45°,然后依据相似三角形的性质可得到∠CAO=∠ECD,则CE=AE,设点E的坐标为(a,0),依据两点间的距离公式可得到(a+1)2=32+a2,从而可得到点E的坐标,然后再求得CE的解析式,最后求得CE与抛物线的交点坐标即可.【解答】解:(1)当x=0,y=3,∴C(0,3).设抛物线的解析式为y=a(x+1)(x﹣).将C(0,3)代入得:﹣a=3,解得:a=﹣2,∴抛物线的解析式为y=﹣2x2+x+3.(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.∵OC=3,AO=1,∴tan∠CAO=3.∴直线AC的解析式为y=3x+3.∵AC⊥BM,∴BM的一次项系数为﹣.设BM的解析式为y=﹣x+b,将点B的坐标代入得:﹣×+b=0,解得b=.∴BM的解析式为y=﹣x+.将y=3x+3与y=﹣x+联立解得:x=﹣,y=.∴MC=BM═=.∴△MCB为等腰直角三角形.∴∠ACB=45°.(3)如图2所示:延长CD,交x轴与点F.∵∠ACB=45°,点D是第一象限抛物线上一点,∴∠ECD>45°.又∵△DCE与△AOC相似,∠AOC=∠DEC=90°,∴∠CAO=∠ECD.∴CF=AF.设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.∴F(4,0).设CF的解析式为y=kx+3,将F(4,0)代入得:4k+3=0,解得:k=﹣.∴CF的解析式为y=﹣x+3.将y=﹣x+3与y=﹣2x2+x+3联立:解得:x=0(舍去)或x=.将x=代入y=﹣x+3得:y=.∴D(,).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、两点间距离公式的应用、相似三角形的性质、等腰三角形的判定,依据相似三角形的性质、等腰三角形的判定定理得到AF=CF是解题的关键.25.(14分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C 重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.【分析】(1)依据AE=EF,∠DEC=∠AEF=90°,即可证明△AEF是等腰直角三角形;(2)连接EF,DF交BC于K,先证明△EKF≌△EDA,再证明△AEF是等腰直角三角形即可得出结论;(3)当AD=AC=AB时,四边形ABFD是菱形,先求得EH=DH=CH=,Rt△ACH中,AH=3,即可得到AE=AH+EH=4.【解答】解:(1)如图1,∵四边形ABFD是平行四边形,∴AB=DF,∵AB=AC,∴AC=DF,∵DE=EC,∴AE=EF,∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形;(2)如图2,连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE,∵∠DKC=∠C,∴DK=DC,∵DF=AB=AC,∴KF=AD,在△EKF和△EDA中,,∴△EKF≌△EDA(SAS),∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.(3)如图3,当AD=AC=AB时,四边形ABFD是菱形,设AE交CD于H,依据AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,∴EH=DH=CH=,Rt△ACH中,AH==3,∴AE=AH+EH=4.【点评】本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.。

浙教版2020年中考数学模拟试题及答案(含详解) (3)

浙教版2020年中考数学模拟试题及答案(含详解) (3)

中考数学模拟试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>03.(2.00分)方程组的解为()A.B.C.D.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m25.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.47.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC∠DAE.(填“>”,“=”或“<”)10.(2.00分)若在实数范围内有意义,则实数x的取值范围是.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=,b=,c=.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数30≤t≤3535<t≤4040<t≤4545<t≤50合计线路A59151166124500 B5050122278500 C4526516723500早高峰期间,乘坐(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=,CB=,∴PQ∥l()(填推理的依据).18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|19.(5.00分)解不等式组:20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB 上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.76 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为cm.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是(填“A“或“B“),理由是,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.26.(6.00分)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.27.(7.00分)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B 重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.28.(7.00分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.【分析】根据立体图形的定义及其命名规则逐一判断即可.【解答】解:A、此几何体是圆柱体;B、此几何体是圆锥体;C、此几何体是正方体;D、此几何体是四棱锥;故选:A.【点评】本题主要考查立体图形,解题的关键是认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:∵﹣4<a<﹣3∴|a|<4∴A不正确;又∵a<0 c>0∴ac<0∴C不正确;又∵a<﹣3 c<3∴a+c<0∴D不正确;又∵c>0 b<0∴c﹣b>0∴B正确;故选:B.【点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负.3.(2.00分)方程组的解为()A.B.C.D.【分析】方程组利用加减消元法求出解即可;【解答】解:,①×3﹣②得:5y=﹣5,即y=﹣1,将y=﹣1代入①得:x=2,则方程组的解为;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m2【分析】先计算FAST的反射面总面积,再根据科学记数法表示出来,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.确定n的值是易错点,由于249900≈250000有6位,所以可以确定n=6﹣1=5.【解答】解:根据题意得:7140×35=249900≈2.5×105(m2)故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°【分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.4【分析】先将括号内通分,再计算括号内的减法、同时将分子因式分解,最后计算乘法,继而代入计算可得.【解答】解:原式=(﹣)•=•=,当a﹣b=2时,原式==,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m【分析】将点(0,54.0)、(40,46.2)、(20,57.9)分半代入函数解析式,求得系数的值;然后由抛物线的对称轴公式可以得到答案.【解答】解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m).故选:B.【点评】考查了二次函数的应用,此题也可以将所求得的抛物线解析式利用配方法求得顶点式方程,然后直接得到抛物线顶点坐标,由顶点坐标推知该运动员起跳后飞行到最高点时,水平距离.8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④【分析】由天安门和广安门的坐标确定出每格表示的长度,再进一步得出左安门的坐标即可判断.【解答】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12),此结论正确;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(11,﹣11),此结论正确;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:C.【点评】本题主要考查坐标确定位置,解题的关键是确定原点位置及各点的横纵坐标.二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC>∠DAE.(填“>”,“=”或“<”)【分析】作辅助线,构建三角形及高线NP,先利用面积法求高线PN=,再分别求∠BAC、∠DAE的正弦,根据正弦值随着角度的增大而增大,作判断.【解答】解:连接NH,BC,过N作NP⊥AD于P,S△ANH=2×2﹣﹣×1×1=AH•NP,=PN,PN=,Rt△ANP中,sin∠NAP====0.6,Rt△ABC中,sin∠BAC===>0.6,∵正弦值随着角度的增大而增大,∴∠BAC>∠DAE,故答案为:>.【点评】本题考查了锐角三角函数的增减性,构建直角三角形求角的三角函数值进行判断,熟练掌握锐角三角函数的增减性是关键.10.(2.00分)若在实数范围内有意义,则实数x的取值范围是x≥0.【分析】根据二次根式有意义的条件可求出x的取值范围.【解答】解:由题意可知:x≥0.故答案为:x≥0.【点评】本题考查二次根式有意义,解题的关键正确理解二次根式有意义的条件,本题属于基础题型.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=1,b=2,c=﹣1.【分析】根据题意选择a、b、c的值即可.【解答】解:当a=1,b=2,c=﹣2时,1<2,而1×(﹣1)>2×(﹣1),∴命题“若a<b,则ac<bc”是错误的,故答案为:1;2;﹣1.【点评】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=70°.【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC,进而得出答案.【解答】解:∵=,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故答案为:70°.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.【分析】根据矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF=•AC,即可求出CF的长.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.【点评】本题考查了相似三角形的判定与性质、矩形的性质以及勾股定理,利用相似三角形的性质找出CF=2AF是解题的关键.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路30≤t≤3535<t≤4040<t≤4545<t≤50合计A59151166124500B5050122278500C4526516723500早高峰期间,乘坐C(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.【分析】分别计算出用时不超过45分钟的可能性大小即可得.【解答】解:∵A线路公交车用时不超过45分钟的可能性为=0.752,B线路公交车用时不超过45分钟的可能性为=0.444,C线路公交车用时不超过45分钟的可能性为=0.954,∴C线路上公交车用时不超过45分钟的可能性最大,故答案为:C.【点评】本题主要考查可能性的大小,解题的关键是掌握频数估计概率思想的运用.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为380元.【分析】分四类情况,分别计算即可得出结论.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,当租1艘四人船,1艘6人船,1一艘8人船,100+130+150=380元∴租船费用为150×2+90=390元,而810>490>390>380,∴租3艘六人船或2艘八人船1艘两人船费用最低是380元,故答案为:380.【点评】此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第3.【分析】两个排名表相互结合即可得到答案.【解答】解:根据中国创新综合排名全球第22,在坐标系中找到对应的中国创新产出排名为第11,再根据中国创新产出排名为第11在另一排名中找到创新效率排名为第3故答案为:3【点评】本题考查平面直角坐标系中点的坐标确定问题,解答时注意根据具体题意确定点的位置和坐标.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理)(填推理的依据).【分析】(1)根据题目要求作出图形即可;(2)利用三角形中位线定理证明即可;【解答】(1)解:直线PQ如图所示;(2)证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理).故答案为:AP,CQ,三角形中位线定理;【点评】本题考查作图﹣复杂作图,平行线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|【分析】直接利用特殊角的三角函数值以及零指数幂的性质和二次根式的性质分别化简得出答案.【解答】解:原式=4×+1﹣3+1=﹣+2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(5.00分)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<3,∴不等式组的解集为﹣2<x<3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【解答】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.【点评】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【分析】(1)先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【解答】解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.【点评】此题主要考查了等腰三角形的性质,切线的性质,全等三角形的判定和性质,锐角三角函数,正确作出辅助线是解本题的关键.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.【分析】(1)把A(4,1)代入y=中可得k的值;(2)直线OA的解析式为:y=x,可知直线l与OA平行,①将b=﹣1时代入可得:直线解析式为y=x﹣1,画图可得整点的个数;②分两种情况:直线l在OA的下方和上方,画图计算边界时点b的值,可得b的取值.【解答】解:(1)把A(4,1)代入y=得k=4×1=4;(2)①当b=﹣1时,直线解析式为y=x﹣1,解方程=x﹣1得x1=2﹣2(舍去),x2=2+2,则B(2+2,),而C(0,﹣1),如图1所示,区域W内的整点有(1,0),(2,0),(3,0),有3个;②如图2,直线l在OA的下方时,当直线l:y=+b过(1,﹣1)时,b=﹣,且经过(5,0),∴区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1.如图3,直线l在OA的上方时,∵点(2,2)在函数y=(x>0)的图象G,当直线l:y=+b过(1,2)时,b=,当直线l:y=+b过(1,3)时,b=,∴区域W内恰有4个整点,b的取值范围是<b≤.综上所述,区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.【点评】本题考查了新定义和反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,本题理解整点的定义是关键,并利用数形结合的思想.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x 的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.763 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为3或4.91或5.77cm.【分析】(1)利用圆的半径相等即可解决问题;(2)利用描点法画出图象即可.(3)图中寻找直线y=x与两个函数的交点的横坐标以及y1与y2的交点的横坐标即可;【解答】解:(1)当x=3时,PA=PB=PC=3,∴y1=3,故答案为3.(2)函数图象如图所示:(3)观察图象可知:当x=y,即当PA=PC或PA=AC时,x=3或4.91,当y1=y2时,即PC=AC时,x=5.77,综上所述,满足条件的x的值为3或4.91或5.77.故答案为3或4.91或5.77.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是B(填“A“或“B“),理由是该学生的成绩小于A课程的中位数,而大于B课程的中位数,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.【分析】(1)先确定A课程的中位数落在第4小组,再由此分组具体数据得出第30、31个数据的平均数即可;(2)根据两个课程的中位数定义解答可得;(3)用总人数乘以样本中超过75.8分的人数所占比例可得.【解答】解:(1)∵A课程总人数为2+6+12+14+18+8=60,∴中位数为第30、31个数据的平均数,而第30、31个数据均在70≤x<80这一组,∴中位数在70≤x<80这一组,∵70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5,∴A课程的中位数为=78.75,即m=78.75;(2)∵该学生的成绩小于A课程的中位数,而大于B课程的中位数,∴这名学生成绩排名更靠前的课程是B,故答案为:B、该学生的成绩小于A课程的中位数,而大于B课程的中位数.。

2020年浙江省中考数学名师模拟试卷附解析

2020年浙江省中考数学名师模拟试卷附解析

2020年浙江省中考数学名师模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.点P (a ,2)与Q (-1,b )关于坐标原点对称,则b a +的值为( )A .1B .-1C .3D .-32.如图,已知在△ABC 中,AB=BC ,BD 是角平分线,DE ⊥AB 于点E ,DF ⊥BC 于点F ,则下列四个结论中正确的个数有 ( )①BD 上任意一点到点A 和点C 的距离相等;②BD 上任一点到AB 和BC 的距离相等;③AD=CD ,BD ⊥AC ;④∠ADE=∠CDF .A .1个B .2个C .3个D .4个3.某学习小组7个男同学的身高(单位:米)为:l .66,1.65,1.72.1.58.1.64,1.66.1.70.那么这组数据的众数是( )A .1.65米B .1.66米C . 1.67米D .1.70米 4.已知关于x 的方程3x +2a =2的解是a -1,则a 的值是( ) A .1B .53C .51D .-1 5.下列等式中是一元一次方程的是( )A .31x y =-B .11x x =+C .312(1)4x x +=--+D .23213x -=6.与23a b 是同类项的是( )A .2aB .2abC .23abD .24ba二、填空题7.“太阳每天从东方升起”,这是一个 事件(填“确定”或“不确定”).8.如图,在这三张扑克牌中任意抽取一张,抽到“黑红桃7”的概率是 .9.把40表示成两个正数的和,使这两个正数的乘积最大,则最大乘积是 . 40010.抛物线23y x =-的开口向 ,除了它的顶点,抛物线上的点都在x 轴的 下方,它的顶点是图象的最 高点.11.如图,点A ,C 在EF 上,AD=BC ,AD ∥BC ,AE=CF .求证:BF=DE .分析:要证BF=DE ,只要证△ ≌△ ,已有条件AD=BC ,AE=CF ,只需证∠ =∠ ,只需证∠ =∠ , 而这可由 证得.12.等腰三角形ABC 中,BC=8,AB ,AC 的长是关于x 的方程2100x x m -+=的两根,则m 的值是 .13.一元二次方程29x =的跟是 .14.若不等式组2123x a x b -<⎧⎨->⎩的解为22x -<<,则(1)(1)a b +-的值等于 . 15.如图,某同学不小心把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全 一样的玻璃,那么最省事的办法是带 去玻璃店.16.在事件A 和事件B 中,事件A 发生时,事件B 不发生;事件 B 发生时,事件A 不发生,假若事件A 发生的概率为14,则事件B 发生的概率是 .17.相似变换不改变图形的 ;图形中每条线段都 .18.若整式A 与23a b -的积等于(224a 6b ab -),则A= . 三、解答题19.如图,屋顶上有一只小猫,院子里有一只小老鼠,若让小猫看见了小老鼠,老鼠就会有危险,因此小老鼠应躲在小猫视线的盲区才安全,请你画出小老鼠的 安全区域.墙20.将分别标有数字 1、2、3 的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求 P(奇数);(2)随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?恰好是“32”的概率为多少?21.已知函数y=y1-y2,其中y1与x成正比例,y2与x-2成反比例,且当x=1时y=1;当x=3时y=5.求当x=4时,y的值.y=32 x+12x-4,y=614.22.如图,在矩形ABCD中,AB=4 cm,BC=8 cm,将图形折叠,使点C与点A重合,折痕为EF.判断四边形AECF的形状,并说明理由.23.某班参加体育考核,其中立定跳远项目的男女生成绩分别如以下两个频数分布表:男生立定跳远成绩频数分布表组别(m)组中值(m)频数2.105~2.20532.205~2.305102.305~2.40562.405~2.5055组别(m)组中值(m)频数1.605~1.70551.705~1.80581.805~1.905121.905~2.0051(1)在同一坐标系内画出男、女生立定跳远成绩的频数分布折线图.(2)若男生成绩不低于2.21 m算合格,女生成绩不低于l.71 m算合格,则男、女生该项目成绩合格的频数、频率分别为多少?(3)根据所画的频数分布折线图,分析比较男、女生该项目成绩的差异(至少写出2个差异).24.如图所示,在△ABC中,∠BAC的平分线AD平分BC,DE⊥AB,DF⊥AC,垂足分别是E,F.求证:AB=AC.25.如图,在□ABCD中,AC,BD交于点0,E,F分别是OA,OC的中点.求证:BE∥DF.26.把不等式组21xx≥-⎧⎨<⎩的解集表示在下面的数轴上:27.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.28.有10 张相同的卡片上写的数字如下:卡片任意搅乱后,一个人随机抽取一张,卡片上的数字是下列情况的概率是多少?(1)2;(2)大于2;(3)8;(4)一个偶数;(5)一个奇数.29.在100名学生中,会打乒乓球的有83人,会打排球的有75人,这两项都不会的有10人,问这两项都会的有多少人?30.下面是小马虎解的一道数学题.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.B4.A5.C6.D二、填空题7.确定8.31 9. 10.下,下,高11.DEA ,BFC ,EAD ,FCB ,DAF ,BCE ,AD ∥BC25 或 1613.3x =±14.-1415.③16.3417. 每一个角的大小,扩大(或缩小)相同的倍数18.2ab三、解答题19.如图: 20.(1)()23P =奇数 (2)所组成两位数有6 个:12,13,21,23 ,31,32. ∴组成 32 的概率为1621.22.四边形AECF 是菱形23.(1)略;(2)男生合格的频数为21,频率为0.875;女生合格的频数为21,频率为0.808;(3)答案不唯一24.证明△BDE ≌△CDF(HL),则∠B=∠C ,所以AB=AC25.证△BOE ≌△DOF(SAS)26.略墙安全区域(3a+b)(2a+b)-(a+b)2=5a2+3ab(平方米);•当a=3,b=2时,5a2+3ab=63(平方米).28.(1)110;(2)910;(3)12;(4)1;(5)029.68人30.题目:在同一平面内,若∠BOA=70°,∠BOC =150°,求∠AOC的度数.解:根据题意可作出如图所示的图形.因为∠AOC =∠BOA-∠BOC=70°- 15°=55°,所以∠AOC=55°.若你是老师,会给小马虎满分吗?若会,说明理由;若不会,请你指出小马虎的错误,并给出你认为正确的解法.不会给小马虎满分.小马虎只考虑了∠BOC在∠BOA 的内部一种情况,其实∠BOC也可以在∠BOA 的外部(如图所示). 所以本题的正确解法为:若∠BOC在∠BOA 的内部,则∠AOC=∠BOA- ∠BOC=70° -15°= 55°;若∠LBOC在∠BOA的外部,则∠AOC=∠BOA+∠BOC=70°+15°=85°即∠AOC的度数为 55°或 85°。

2020年浙江省中考数学摸底测试试卷附解析

2020年浙江省中考数学摸底测试试卷附解析

2020年浙江省中考数学摸底测试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,点 P在⊙O上,下列各条件中能判定直线 PT与⊙O相切的是()①tan3O=,3tan3T=;②OP=2,PT=4,OT=5;③305oO'∠=,059.5T∠=;④OP=1,2PT=,3OT=A.①B.①③C.①④D.①③④2.若圆的一条弦把圆周角分度数的比为1:3的两条弧,则劣弧所对的圆周角等于()A.45°B.90°C.135°D.270°3.下列四个点中,可能在反比例函数y=kx(k>0)的图象上的点是()A.(2,-3)B.(-4,-5)C.(-3,2)D.(2,0)4.如图,已知AB=AD,BC=CD,AC,BD相交于点E,下列结论中错误..的是()A.AC⊥BD B.AC平分BD C.AC平分∠DCB D.BD平分∠ABC5.根据右边流程图中的程序,当输入数值x为2-时,输出数值y为()A.4 B.6 C.8 D.106.圆的切线()A.垂直于半径B.平行于半径C.垂直于经过切点的半径D.以上都不对7.不等式4(2)2(35)x x-≥-的正整数解的个数为()A.0个B.1个C.2 个D.3 个8.暗箱中有大小质量都相同的红色、黑色小球若干个,随机摸出一个球是红球的概率是0.6,已知黑色小球有12个,则红球的数量为()A .30B .20C .18D .109.某市气象预报称:“明天本市的降水概率为70%”,这句话指的是( )A .明天本市70%的时间下雨,30%的时间不下雨B .明天本市70%的地区下雨,30%的地区不下雨C .明天本市一定下雨D .明天本市下雨的可能性是70%10.如图,在ABC ∆中,AB=AC=10,AB 的垂直平分线交AC 于G ,BC=7,则GBC ∆的周长是( )A .10B .20C .17D .1311.给出下述几种说法,其中正确的说法有( )①763万精确到万位;②1.2亿精确到0.1;③8067保留2个有效数字的近似值是8.1 ×103;④22.20精确到0.01.A .3个B .2个C .1个D .0个12.中央电视台“幸福52”栏目中“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张笑脸,若某人前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是( )A .14B .15C .16D .320二、填空题13.如图所示,函数y kx =-(k ≠0)与4y x=-的图象交于A 、B 两点,过点A 作AC ⊥y 轴,垂足为 C ,则△BOC 的面积为 .14. 在□ABCD 中,若添加一个条件 , 则四边形ABCD 是矩形;若添加一个条件 , 则四边形ABCD 是菱形.15.写出一个判断角相等的定理: .16.把命题“直角都相等”,改写成“如果……那么……”的形式: .17.等角的余角相等,改写成“如果……那么……”的形式: ,该命题是 (填“真”或“假”)命题.18.如图,AB ∥CD ,∠1=50°,∠2=110°,则∠3= .19.a 是数据l ,2,3,4,5的中位数,b 是数据2,3,3,4的方差,则点P (a ,b )关于x 轴的对称点的坐标为 .20.对于平面内任意一个凸四边形ABCD ,现从以下四个关系式①AB=CD ;②AD=BC ;③AB∥CD;④∠A=∠C 中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是.21.一个口袋中装有 4个白球,2 个红球,6 个黄球,摇匀后随机从中摸出一个球是白球的概率是.22.如图所示,△ABC中,D,E是BC边上的两点,且BD=DE=EC,则AD是三角形的中线,AE是三角形的中线.23.若∠1的对顶角是∠2,∠2的补角是∠3,且∠3=54°,则∠l= .24.如图是悉尼奥运会金牌分布的扇形统计图,由图可知,美国的金牌数约占总数的%,已知中国获得金牌28枚,由此估计美国的金牌数是枚.25.小明今年x岁,那么代数式x+3 的意义可以解释为.三、解答题26.如图,某幢大楼顶部有一块广告牌CD,甲乙两人分别在相距8米的A、B两处测得D点和C点的仰角分别为45°°和60°,且A、B、E三点在一条直线上,若BE=15米,求这块广告牌的高度.(取3≈1.73,计算结果保留整数)27.用反证法证明“三角形三内角中,至少有一个内角小于或等于60°”.已知:∠A,∠B,∠C是△ABC的内角.求证:∠A,∠B,∠C中至少有一个小于或等于60°.证明:假设求证的结论不成立,即 .∴∠A+∠B+∠C> ,这与相矛盾,∴假设不成立,∴ .28.“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做些力所能及的家务.王刚同学对部分同学暑假在家做家务的时问进了抽样调查(时间取整上数),所得数据统计如表2:表2时间分组/时0.5~20.520.5~40.540.5~60.560.5~80.580.5~100.5人数20253015lO抽取样本的容量是;(2)样本的中位数所在时间段的范围是;(3)若该学校有学生1260人,那么大约有多少学生在暑假做家务的时间在40.5~100.5小时之间?29.已知115x y-=,求2423x xy yx xy y+---的值.3430.为了保护野生动物,某中学在全校所有学生中,对四种国家一级保护动物的喜爱情况进行问卷调查.要求每位学生只选一种自己最喜爱的动物,调查结果绘制成如下未完整的统计表和统计图,请你根据图表中提供的信息,解答以下问题:动物名称频数(学生人数)频率(1)请给表达式的空格填上数据,并把统计图补充完整;(2)从图表中你发现最喜爱哪种动物的学生人数最多?(3)为了更好地保护野生动物,请你提出一条合理的建议.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.B4.D5.B6.C7.B8.C9.D10.C11.A12.C二、填空题13.214.如AC=BD等;如AB=BC等15.全等三角形的对应角相等;在一个三角形中,等边对等角等等16.如果两个角都是直角,那么这两个角相等17.如果两个角是另两个相等的角的余角,那么这两个角相等;真18.60°19.(3,1 2 )20.1221.1322.ABE,ACD23.126°24.12.95,3925.小明今年x岁,再过 3 年小明的年龄为(x+3)岁三、解答题26.解:∵AB=8,BE=15,∴AE=23,在Rt△AED中,∠DAE=45°∴DE =AE =23.在Rt △BEC 中,∠CBE =60°,∴CE =BE ·tan60°=∴CD =CE -DE =23≈2.95≈3即这块广告牌的高度约为3米.27.没有一个内角小于或等于60°,180°,三角形的内角和为 180°,三角形三内角中至少有一个小于或等于60°28.(1)100;(2)40.5~60.5小时;(3)∵3015101260693100++⨯=,∴大约有693名学生在暑假做家务的时间在40.5~100.5小时之间.29.3430. 解:(1)(2)大熊猫.(3)如:①禁止乱捕滥杀野生动物.②禁止人为破坏野生动物的生存环境.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年浙江省中考数学模拟试卷含答案一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3.故选A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)如图,直线a,b被直线c所截,那么∠1的同位角是()A.∠2B.∠3C.∠4D.∠5【分析】根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角解答即可.【解答】解:由同位角的定义可知,∠1的同位角是∠4.故选C.【点评】本题考查了同位角问题,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解.3.(3分)根据衢州市统计局发布的统计数据显示,衢州市2017年全市生产总值为138000000000元,按可比价格计算,比上年增长7.3%,数据138000000000元用科学记数法表示为()A.1.38×1010元B.1.38×1011元C.1.38×1012元D.0.138×1012元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将138000000000用科学记数法表示为:1.38×1011.故选B.【点评】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)由五个大小相同的正方体组成的几何体如图所示,那么它的主视图是()A.B.C.D.【分析】得到从几何体正面看得到的平面图形即可.【解答】解:从正面看得到3列正方形的个数依次为2,1,1.故选C.【点评】考查三视图的相关知识;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.5.(3分)如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是()A.75°B.70°C.65°D.35°【分析】直接根据圆周角定理求解.【解答】解:∵∠ACB=35°,∴∠AOB=2∠ACB=70°.故选B.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.(3分)某班共有42名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是()A.0B.C.D.1【分析】直接利用概率公式计算得出答案.【解答】解:∵某班共有42名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,∴老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是:=.故选B.【点评】本题主要考查了概率公式,利用符合题意数据与总数的比值=概率求出是解题的关键.7.(3分)不等式3x+2≥5的解集是()A.x≥1B.x≥C.x≤1D.x≤﹣1【分析】根据一元一次不等式的解法即可求出答案.【解答】解:3x≥3x≥1故选A.【点评】本题考查了一元一次不等式的解法,解题的关键是熟练运用一元一次不等式的解法,本题属于基础题型.8.(3分)如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°【分析】由折叠可得:∠DGH=∠DGE=74°,再根据AD∥BC,即可得到∠GHC=180°﹣∠DGH=106°.【解答】解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得:∠DGH=∠DGE=74°.∵AD∥BC,∴∠GHC=180°﹣∠DGH=106°.故选D.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.9.(3分)如图,AB是圆锥的母线,BC为底面半径,已知BC=6cm,圆锥的侧面积为15πcm2,则sin∠ABC的值为()A.B.C.D.【分析】先根据扇形的面积公式S=L•R求出母线长,再根据锐角三角函数的定义解答即可.【解答】解:设圆锥的母线长为R,由题意得15π=π×3×R,解得R=5,∴圆锥的高为4,∴sin∠ABC=.故选B.【点评】本题考查了圆锥侧面积公式的运用,注意一个角的正弦值等于这个角的对边与斜边之比.10.(3分)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.cm C.2.5cm D.cm【分析】根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.【解答】解:连接OB,∵AC是⊙O的直径,弦BD⊥AO于E,BD=8cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=8.在Rt△EBC中,BC=.∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=.故选D.【点评】本题考查了垂径定理,关键是根据垂径定理得出OE的长.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:x2﹣9=(x+3)(x﹣3).【分析】本题中两个平方项的符号相反,直接运用平方差公式分解因式.【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).【点评】主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.12.(4分)数据5,5,4,2,3,7,6的中位数是5.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:从小到大排列此数据为:2、3、4、5、5、6、7,一共7个数据,其中5处在第4位为中位数.故答案为:5.【点评】考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.13.(4分)如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AB=ED(只需写一个,不添加辅助线).【分析】根据等式的性质可得BC=EF,根据平行线的性质可得∠B=∠E,再添加AB=ED可利用SAS判定△ABC≌△DEF.【解答】解:添加AB=ED.∵BF=CE,∴BF+FC=CE+FC,即BC=EF.∵AB∥DE,∴∠B=∠E.在△ABC和△DEF中,∴△ABC≌△DEF(SAS).故答案为:AB=ED.【点评】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.(4分)星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是1.5千米.【分析】首先设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b,然后再把(40,2)(60,0)代入可得关于k|B的方程组,解出k、b的值,进而可得函数解析式,再把t=45代入即可.【解答】解:设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b.∵图象经过(40,2)(60,0),∴,解得:,∴y与t的函数关系式为y=﹣x+6,当t=45时,y=﹣×45+6=1.5.故答案为:1.5.【点评】本题主要考查了一次函数的应用,关键是正确理解题意,掌握待定系数法求出函数解析式.15.(4分)如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC ⊥x轴于点C,BD⊥x轴于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD=3,则S△AOC= 5.【分析】由三角形BCD为直角三角形,根据已知面积与BD的长求出CD的长,由OC+CD求出OD的长,确定出B的坐标,代入反比例解析式求出k的值,利用反比例函数k的几何意义求出三角形AOC面积即可.【解答】解:∵BD⊥CD,BD=2,∴S△BCD=BD•CD=3,即CD=3.∵C(2,0),即OC=2,∴OD=OC+CD=2+3=5,∴B(5,2),代入反比例解析式得:k=10,即y=,则S△AOC=5.故答案为:5.【点评】本题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解答本题的关键.16.(4分)定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.如图,等边△ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……△A n﹣1B n﹣1C n﹣1经γ(n,180°)变换后得△A n B n C n,则点A1的坐标是(﹣,﹣),点A2018的坐标是(﹣,).【分析】分析图形的γ(a,θ)变换的定义可知:对图形γ(n,180°)变换,就是先进行向右平移n个单位变换,再进行关于原点作中心对称变换.向右平移n个单位变换就是横坐标加n,纵坐标不变,关于原点作中心对称变换就是横纵坐标都变为相反数.写出几次变换后的坐标可以发现其中规律.【解答】解:根据图形的γ(a,θ)变换的定义可知:对图形γ(n,180°)变换,就是先进行向右平移n个单位变换,再进行关于原点作中心对称变换.△ABC经γ(1,180°)变换后得△A1B1C1,A1 坐标(﹣,﹣)△A1B1C1经γ(2,180°)变换后得△A2B2C2,A2坐标(﹣,)△A2B2C2经γ(3,180°)变换后得△A3B3C3,A3坐标(﹣,﹣)△A3B3C3经γ(3,180°)变换后得△A4B4C4,A4坐标(﹣,)依此类推……可以发现规律:A n横坐标存在周期性,每3次变换为一个周期,纵坐标为当n=2018时,有2018÷3=672余2所以,A2018横坐标是﹣,纵坐标为故答案为:(﹣,﹣),(﹣,).【点评】本题是规律探究题,又是材料阅读理解题,关键是能正确理解图形的γ(a,θ)变换的定义后运用,关键是能发现连续变换后出现的规律,该题难点在于点的横纵坐标各自存在不同的规律,需要分别来研究.三、解答题(本大题共8小题,第17-19小题每小题6分,第20-21小题每小题6分,第22-23小题每小题6分,第24小题12分,共66分)17.(6分)计算:|﹣2|﹣+23﹣(1﹣π)0.【分析】本题涉及绝对值、零指数幂、乘方、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2﹣3+8﹣1=6.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)如图,在▱ABCD中,AC是对角线,BE⊥AC,DF⊥AC,垂足分别为点E,F,求证:AE=CF.【分析】由全等三角形的判定定理AAS证得△ABE≌△CDF,则对应边相等:AE=CF.【解答】证明:如图,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF.又BE⊥AC,DF⊥AC,∴∠AEB=∠CFD=90°.在△ABE与△CDF中,,∴得△ABE≌△CDF(AAS),∴AE=CF.【点评】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的判定方法并准确识图是解题的关键.19.(6分)有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【分析】根据题目中的图形可以分别写出方案二和方案三的推导过程,本题得以解决.【解答】解:由题意可得:方案二:a2+ab+(a+b)b=a2+ab+ab+b2=a2+2ab+b2=(a+b)2,方案三:a2+==a2+2ab+b2=(a+b)2.【点评】本题考查了完全平方公式的几何背景,解答本题的关键是明确题意,写出相应的推导过程.20.(8分)“五•一”期间,小明到小陈家所在的美丽乡村游玩,在村头A处小明接到小陈发来的定位,发现小陈家C在自己的北偏东45°方向,于是沿河边笔直的绿道l步行200米到达B处,这时定位显示小陈家C在自己的北偏东30°方向,如图所示,根据以上信息和下面的对话,请你帮小明算一算他还需沿绿道继续直走多少米才能到达桥头D处(精确到1米)(备用数据:≈1.414,≈1.732)【分析】根据题意表示出AD,DC的长,进而得出等式求出答案.【解答】解:如图所示:可得:∠CAD=45°,∠CBD=60°,AB=200m,则设BD=x,故DC=x.∵AD=DC,∴200+x=x,解得:x=100(﹣1)≈73,答:小明还需沿绿道继续直走73米才能到达桥头D处.【点评】本题主要考查了解直角三角形的应用,正确得出AD=DC是解题的关键.21.(8分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?【分析】(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数;(2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;(3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数.【解答】解:(1)被随机抽取的学生共有14÷28%=50(人);(2)活动数为3项的学生所对应的扇形圆心角=×360°=72°,活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,如图所示:(3)参与了4项或5项活动的学生共有×2000=720(人).【点评】本题主要考查折线统计图与扇形统计图及概率公式,根据折线统计图和扇形统计图得出解题所需的数据是解题的关键.22.(10分)如图,已知AB为⊙O直径,AC是⊙O的切线,连接BC交⊙O于点F,取的中点D,连接AD交BC于点E,过点E作EH⊥AB于H.(1)求证:△HBE∽△ABC;(2)若CF=4,BF=5,求AC和EH的长.【分析】(1)根据切线的性质即可证明:∠CAB=∠EHB,由此即可解决问题;(2)连接AF.由△CAF∽△CBA,推出CA2=CF•CB=36,推出CA=6,AB==3,AF==2,由Rt△AEF≌Rt△AEH,推出AF=AH=2,设EF=EH=x.在Rt△EHB 中,可得(5﹣x)2=x2+()2,解方程即可解决问题;【解答】解:(1)∵AC是⊙O的切线,∴CA⊥AB.∵EH⊥AB,∴∠EHB=∠CAB.∵∠EBH=∠CBA,∴△HBE∽△ABC.(2)连接AF.∵AB是直径,∴∠AFB=90°.∵∠C=∠C,∠CAB=∠AFC,∴△CAF∽△CBA,∴CA2=CF•CB=36,∴CA=6,AB==3,AF==2.∵=,∴∠EAF=∠EAH.∵EF⊥AF,EH⊥AB,∴EF=EH.∵AE=AE,∴Rt△AEF≌Rt△AEH,∴AF=AH=2,设EF=EH=x.在Rt△EHB中,(5﹣x)2=x2+()2,∴x=2,∴EH=2.【点评】本题考查了相似三角形的判定和性质、圆周角定理、切线的性质、角平分线的性质等知识,解题的关键是学会添加常用辅助线,正确寻找相似三角形解决问题.23.(10分)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.【分析】(1)根据顶点坐标可设二次函数的顶点式,代入点(8,0),求出a值,此题得解;(2)利用二次函数图象上点的坐标特征,求出当y=1.8时x的值,由此即可得出结论;(3)利用二次函数图象上点的坐标特征可求出抛物线与y轴的交点坐标,由抛物线的形状不变可设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+,代入点(16,0)可求出b值,再利用配方法将二次函数表达式变形为顶点式,即可得出结论.【解答】解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y=a(x﹣3)2+5(a ≠0),将(8,0)代入y=a(x﹣3)2+5,得:25a+5=0,解得:a=﹣,∴水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣3)2+5(0<x<8).(2)当y=1.8时,有﹣(x﹣3)2+5=1.8,解得:x1=﹣1,x2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.(3)当x=0时,y=﹣(x﹣3)2+5=.设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+.∵该函数图象过点(16,0),∴0=﹣×162+16b+,解得:b=3,∴改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+3x+=﹣(x﹣)2+,∴扩建改造后喷水池水柱的最大高度为米.【点评】本题考查了待定系数法求二次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)利用二次函数图象上点的坐标特征求出当y=1.8时x的值;(3)根据点的坐标,利用待定系数法求出二次函数表达式.24.(12分)如图,Rt△OAB的直角边OA在x轴上,顶点B的坐标为(6,8),直线CD交AB于点D(6,3),交x轴于点C(12,0).(1)求直线CD的函数表达式;(2)动点P在x轴上从点(﹣10,0)出发,以每秒1个单位的速度向x轴正方向运动,过点P作直线l垂直于x轴,设运动时间为t.①点P在运动过程中,是否存在某个位置,使得∠PDA=∠B?若存在,请求出点P的坐标;若不存在,请说明理由;②请探索当t为何值时,在直线l上存在点M,在直线CD上存在点Q,使得以OB为一边,O,B,M,Q为顶点的四边形为菱形,并求出此时t的值.【分析】(1)利用待定系数法即可解决问题;(2)①如图1中,作DP∥OB,则∠PDA=∠B.利用平行线分线段成比例定理,计算即可,再根据对称性求出P′;②分两种情形分别求解即可解决问题:如图2中,当OP=OB=10时,作PQ∥OB交CD于Q.如图3中,当OQ=OB时,设Q(m,﹣m+6),构建方程求出点Q坐标即可解决问题;【解答】解:(1)设直线CD的解析式为y=kx+b,则有,解得,∴直线CD的解析式为y=﹣x+6.(2)①如图1中,作DP∥OB,则∠PDA=∠B.∵DP∥OB,∴=,∴=,∴PA=,∴OP=6﹣=,∴P(,0),根据对称性可知,当AP=AP′时,P′(,0),∴满足条件的点P坐标为(,0)或(,0).②如图2中,当OP=OB=10时,作PQ∥OB交CD于Q.∵直线OB的解析式为y=x,∴直线PQ的解析式为y=x+,由,解得,∴Q(﹣4,8),∴PQ==10,∴PQ=OB.∵PQ∥OB,∴四边形OBQP是平行四边形.∵OB=OP,∴四边形OBQP是菱形,此时点M与的Q重合,满足条件,t=0.如图3中,当OQ=OB时,设Q(m,﹣m+6),则有m2+(﹣m+6)2=102,解得m=,∴点Q 的横坐标为或,设点M的横坐标为a,则有:=或=,∴a=或,∴满足条件的t的值为或.【点评】本题考查了一次函数综合题、待定系数法、菱形的判定、平行线分线段成比例定理等知识,解题的关键是学会由分类讨论的思想思考问题,学会构建一次函数,利用方程组确定两个函数的交点坐标,所以中考压轴题.。

相关文档
最新文档