勾股定理练习题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理练习题

C

勾股定理练习题

一、选择题(每小题3分,共30分)

1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ).

(A )30 (B )28 (C )56 (D )不能确定

2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长( )

(A )4 cm (B )8 cm (C )10 cm (D )12 cm 3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( )

(A )25 (B )14 (C )7 (D )7或25 4. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )64

5. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )

7

15

24

25

207

1520

2425

15

7

2520

24

257

202415

(A)

(B)

(C)

(D)

6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是

( )

(A ) 钝角三角形 (B ) 锐角三角形 (C ) 直角三角形 (D ) 等腰三角形.

7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( )

(A ) 25 (B ) 12.5 (C ) 9 (D ) 8.5 8. 三角形的三边长为ab

c b a 2)

(22

+=+,则这个三角形是( )

(A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形.

9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ). (A )50a 元 (B )600a 元 (C )1200a 元

(D )1500a 元

10.如图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ). (A )12 (B )7 (C )5

(D )13

5米

3米

(第10题) (第11题)

(第14题)

二、填空题(每小题3分,24分)

E A B

C D

11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米. 12. 在直角三角形ABC 中,斜边AB =2,则2

22

AB

AC BC ++=______.

13. 直角三角形的三边长为连续偶数,则其周长为 . 14.

如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是____________.

(第15题) (第16题)

(第17题)

15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵

树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米.

16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D 若BC =8,

AD =5,则AC 等于______________. 17. 如图,四边形ABCD 是正方形,AE 垂直于BE 且AE =3,BE =4,阴影部分的面积是______. 18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2.

B

D

E A

B

C

D

第18

7cm

三、解答题(每小题8分,共40分)

19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:

“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?

20.如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.

21.如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请

你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?

22. 如图所示的一块地,∠ADC=90°,AD=12m ,CD=9m ,AB=39m ,BC=36m ,求这块地的面积。

C

A

D

B

23. 如图,一架2.5米长的梯子AB ,斜靠在一竖直的墙AC 上,这时梯足B 到墙底端C 的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?

A 1

B A

A B

C

D

L

第21题图

四、综合探索(共26分)

24.(12分)如图,某沿海开放城市A 接到台风警报,在该市正南方向100km 的B 处有一台风中心,沿BC 方向以20km/h 的速度向D 移动,已知城市A 到BC 的距离AD=60km ,那么台风中心经过多长时间从B 点移到D 点?如果在距台风中心30km 的圆形区域内都将有受到台风的破坏的危险,正在D 点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?

25.(14分)△ABC 中,BC a =,AC b =,AB c =,若∠C=90°,如图(1),根据勾股定理,则2

22

c b a =+,若△ABC 不是直角三角形,

如图(2)和图(3),请你类比勾股定理,试猜想2

2

b a

+与2

c 的关

系,并证明你的结论.

A

B C

D 第24

相关文档
最新文档