Matlab上机实验题及参考解答

合集下载

matlab上机习题详细讲解-试题答案解析

matlab上机习题详细讲解-试题答案解析

学习指导参考P 第一次实验答案1. 设要求以0.01秒为间隔,求出y 的151个点,并求出其导数的值和曲线。

clc clearx=0:0.01:1.5;y=sqrt(3)/2*exp(-4*x).*sin(4*sqrt(3)*x+pi/3) y1=diff(y) subplot(2,1,1) plot(x,y)subplot(2,1,2) plot(x(1:150),y1)2绘制极坐标系下曲线(a,b,n 自定数据)clc clear a=10; b=pi/2; n=5;theta=0:pi/100:2*pi; rho=a*cos(b+n*theta); polar(theta,rho)3. 列出求下列空间曲面交线的程序clc clearx=[-5:0.5:5];[X,Y]=meshgrid(x); z1=X.^2-2*Y.^2;z2=X.*2-Y.*3; xlabel('x') ylabel('y') zlabel('z') surf(X,Y,z1) hold onsurf(X,Y,z2)k=find(abs(z1-z2)<0.5); x1=X(k) y1=Y(k)z3=x1.^2-2*y1.^2 hold onplot3(x1,y1,z3,'*')4、设 ⎥⎦⎤⎢⎣⎡++=)1(sin 35.0cos 2x x x y 把x=0~2π间分为101点,画出以x 为横坐标,y 为纵坐标的曲线,要求有图形标注。

clc clearx=-2*pi:0.1: 2*pi;y=cos(x).*(0.5+sin(x)*3./(1+x.^2)); plot(x,y,'b*-'); title('绘图'); xlabel('x 坐标'); ylabel('y 坐标'); legend('原函数')gtext('y=cos(x)(0.5+3*sin(x)/(1+x^2))')5、求下列联立方程的解 81025695832475412743-=+-+-=-+-=++-=--+w z y x w z x w z y x w z y xclc cleara=[3,4,-7,-12;5,-7,4,2;1,0,8,-5;-6,5,-2,10]; b=[4,-3,9,-8]; c=b/a; x=c(1,1) y=c(1,2) z=c(1,3) w=c(1,4)6. 假设一曲线数据点为x = 0:2:4*pi;y = sin(x).*exp(-x/5);试将x 的间距调成 0.1,采用不同插值方法进行插值,并通过子图的形式将不同插值结果和原始数据点绘制在同一图形窗口。

Matlab编程与应用习题和一些参考答案

Matlab编程与应用习题和一些参考答案

Matlab编程与应用习题和一些参考答案Matlab 上机实验一、二3.求下列联立方程的解⎪⎪⎩⎪⎪⎨⎧=+-+-=-+=++-=--+41025695842475412743w z y x w z x w z y x w z y x >> a=[3 4 -7 -12;5 -7 4 2;1 0 8 -5;-6 5 -2 10];>> b=[4;4;9;4];>> c=a\b4.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=81272956313841A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=793183262345B ,求C1=A*B’;C2=A’*B;C3=A.*B,并求上述所有方阵的逆阵。

>> A=[1 4 8 13;-3 6 -5 -9;2 -7 -12 -8];>> B=[5 4 3 -2;6 -2 3 -8;-1 3 -9 7];>> C1=A*B'>> C2=A'*B>> C3=A.*B>> inv(C1)>> inv(C2)>> inv(C3)5.设 ⎥⎦⎤⎢⎣⎡++=)1(sin 35.0cos 2x x x y ,把x=0~2π间分为101点,画出以x 为横坐标,y 为纵坐标的曲线。

>> x=linspace(0,2*pi,101);>> y=cos(x)*(0.5+(1+x.^2)\3*sin(x));>> plot(x,y,'r')6.产生8×6阶的正态分布随机数矩阵R1, 求其各列的平均值和均方差。

并求该矩阵全体数的平均值和均方差。

(mean var )a=randn(8,6)mean(a)var(a)k=mean(a)k1=mean(k)i=ones(8,6)i1=i*k1i2=a-i1i3=i2.*i2g=mean(i3)g2=mean(g)10.利用帮助查找limit 函数的用法,并自己编写,验证几个函数极限的例子。

matlab上机实验答案

matlab上机实验答案

三、假设已知矩阵A ,试给出相应的MATLAB 命令,将其全部偶数行提取出来,赋给B 矩阵,用magic(8)A =命令生成A 矩阵,用上述命令检验一下结果是不是正确。

>> A=magic(8) A =64 2 3 61 60 6 7 57 9 55 54 12 13 51 50 16 17 47 46 20 21 43 42 24 40 26 27 37 36 30 31 33 32 34 35 29 28 38 39 25 41 23 22 44 45 19 18 48 49 15 14 52 53 11 10 56 8 58 59 5 4 62 63 1 >> B=A(2:2:end,:)B =9 55 54 12 13 51 50 16 40 26 27 37 36 30 31 33 41 23 22 44 45 19 18 48 8 58 59 5 4 62 63 1五、选择合适的步距绘制出下面的图形。

(1))/1sin(t ,其中)1,1(-∈t ; (2))tan(sin )sin(tan t t -,其中),(ππ-∈t 。

1.>> t=[-1:0.0001:1];y=sin(1./t);plot(t,y) Warning: Divide by zero. >>2.>> t=[-pi:0.001:pi];y=sin(tan(t))-tan(sin(t));plot(t,y) >>七、试求出如下极限。

(1)x xx x 1)93(lim +∞→; (2)11lim00-+→→xy xy y x ; (3)22)()cos(1lim222200yx y x ey x y x +→→++-。

(1)>> syms x;f=(3^x+9^x)^(1/x);limit(f,x,inf)ans =9(2)>> syms x y;f=x*y/(sqrt(x*y+1)-1);limit(limit(f,x,0),y,0) ans =2(3)>> syms x y;f=(1-cos(x^2+y^2))/(x^2+y^2)*exp(x^2+y^2);limit(limit(f,x,0),y,0) ans =0九、假设⎰-=xytt ey x f 0d ),(2,试求222222yf yx f xf y x ∂∂+∂∂∂-∂∂。

MATLAB上机实验练习题及答案

MATLAB上机实验练习题及答案

MATLAB上机实验练习题及答案09级MATLAB上机实验练习题1、给出一个系数矩阵A[2 3 4;5 4 1;1 3 2],U=[1 2 3],求出线性方程组的一个精确解。

2、给出两组数据x=[0 0.3 0.8 1.1 1.6 2.3]’y=[0.82 0.72 0.63 0.60 0.55 0.50]’,我们可以简单的认为这组数据在一条衰减的指数函数曲线上,y=C1+C2e-t通过曲线拟合求出这条衰减曲线的表达式,并且在图形窗口画出这条曲线,已知的点用*表示。

3、解线性方程4、通过测量得到一组数据:5、已知一组测量值6、从某一个过程中通过测量得到:分别采用多项式和指数函数进行曲线拟合。

7、将一个窗口分成四个子窗口,分别用四种方法做出多峰函数的表面图(原始数据法,临近插值法,双线性插值法,二重三次方插值法)8、在同一窗口使用函数作图的方法绘出正弦、余弦、双曲正弦、双曲余弦。

分别使用不同的颜色,线形和标识符。

9、下面的矩阵X表示三种产品五年内的销售额,用函数pie显示每种产品在五年内的销售额占总销售额的比例,并分离第三种产品的切片。

X= 19.3 22.1 51.634.2 70.3 82.4 61.4 82.9 90.8 50.5 54.9 59.1 29.4 36.3 47.010、对应时间矢量t ,测得一组矢量y采用一个带有线性参数的指数函数进行拟合,y=a 0+a 1e -t +a 2te -t ,利用回归方法求出拟合函数,并画出拟合曲线,已知点用圆点表示。

11、请创建如图所示的结构数组(9分)12、创建如图所示的元胞数组。

(9分)13、某钢材厂从1990年到2010年的产量如下表所示,请利用三次样条插值的方法计算1999年该钢材厂的产量,并画出曲线,已知数据用‘*’表示。

要求写出达到题目要求的MATLAB 操作过程,不要求计算结果。

14、在一次化学动力学实验中,在某温度下乙醇溶液中,两种化合物反应的产物浓度与反应时间关系的原始数据如下,请对这组数据进行三次多项式拟合,并画出拟合曲线,已知数据如下。

河南城建学院MATLAB上机实验答案

河南城建学院MATLAB上机实验答案

一熟悉Matlab工作环境1、熟悉Matlab的5个基本窗口思考题:(1)变量如何声明,变量名须遵守什么规则、是否区分大小写。

答:变量一般不需事先对变量的数据类型进行声明,系统会依据变量被赋值的类型自动进行类型识别,也就是说变量可以直接赋值而不用提前声明。

变量名要遵守以下几条规则:➢变量名必须以字母开头,只能由字母、数字或下划线组成。

➢变量名区分大小写。

➢变量名不能超过63个字符。

➢关键字不能作为变量名。

➢最好不要用特殊常量作为变量名。

(2)试说明分号、逗号、冒号的用法。

分号:分隔不想显示计算结果的各语句;矩阵行与行的分隔符。

逗号:分隔欲显示计算结果的各语句;变量分隔符;矩阵一行中各元素间的分隔符。

冒号:用于生成一维数值数组;表示一维数组的全部元素或多维数组某一维的全部元素。

(3)linspace()称为“线性等分”函数,说明它的用法。

LINSPACE Linearly spaced vector. 线性等分函数LINSPACE(X1, X2) generates a row vector of 100 linearlyequally spaced points between X1 and X2.以X1为首元素,X2为末元素平均生成100个元素的行向量。

LINSPACE(X1, X2, N) generates N points between X1 and X2.For N < 2, LINSPACE returns X2.以X1为首元素,X2为末元素平均生成n个元素的行向量。

如果n<2,返回X2。

Class support for inputs X1,X2:float: double, single数据类型:单精度、双精度浮点型。

(4)说明函数ones()、zeros()、eye()的用法。

ones()生成全1矩阵。

zeros()生成全0矩阵。

eye()生成单位矩阵。

2、Matlab的数值显示格式思考题:(1)3次执行exist(’pi’)的结果一样吗?如果不一样,试解释为什么?>> pians =3.1416 >> sin(pi); >> exist('pi') ans =5 >> pi=0;>> exist('pi')ans =1>> pipi =>> clear>> exist('pi')ans =5>> pians =3.1416答:3次执行的结果不一样。

Matlab上机实验答案

Matlab上机实验答案

4. 完成下列操作: (1) 求[100,999]之间能被21整除的数的个数。 (2) 建立一个字符串向量,删除其中的大写字母。 >> n=100:999; >> l=find(rem(n,21)==0); >> length(l)
ans =
43
>> ch='aegbBOIEG0je23RGnc';
150 335 520 705 890
77 237 397 557 717
>> D=C(3:5,2:3)
D=
520 705 890 >> whos Name
397 557 717
Size
Bytes Class
Attributes
A B C D
5x5 5x3 5x3 3x2
200 double 120 double 120 double 48 double
(2) >> A*B ans =
68 309 154 >> A.*B ans =
44 -72 -5
62 596 241
(3) >> A^3 ans =
12 102 68 0 9 -130
4 261 49
37226 247370 78688
233824 149188 454142
48604 600766 118820
>> A.^3 ans = 1728 39304 27 39304 343 274625 -64 658503 343
(4) >> A/B ans =
16.4000 -13.6000 35.8000 -76.2000 67.0000 -134.0000 >> B\A ans =

MATLAB上机练习一参考解答

MATLAB上机练习一参考解答

上机练习一参考解答一、实验目的1、 熟悉Matlab 编程2、 体会数学上恒等,算法上不一定恒等二、实验内容1. Using the Taylor polynomial of degree nine and three-digit rounding arithmetic to find an approximationto 5-e by each of the following methods.(A) ∑=--≈905!)5(n n n e , (B) ∑=-≈=9055!5/11n nn e e An approximate value of 5-e correct to three digits is 31074.6-⨯. Which formula, (A) or (B), gives the most accuracy, and why?1) 算法基础利用x e 的Taylor 公式00!!n nk x n n x x e n n ∞===≈∑∑,x -∞<<+∞ (1)及001/1/1/!!n nk x x n n x x e e n n ∞-====≈∑∑,x -∞<<+∞, (2)其中k 是根据精度要求给定的一个参数。

在本题中将k 取为9, x 取为-5或5即可由公式(1)或(2)得到5-e 的近似计算方法(A )或(B )。

2) 程序下述程序用公式(A )及(B )分别在Matlab 许可精度下及限定在字长为3的算术运算情况下给出5-e的近似计算结果,其中results_1, results_2为用方法(A )在上述两种情况下的计算结果,err_1, err_2为相应的绝对误差;类似的,results_3, results_4为用方法(B )在上述两种情况下的计算结果,err_3, err_4为相应的绝对误差;具体程序如下:% Numerical Experiment 1.1 % by Xu Minghua, May 17, 2008 clc; %Initialize the data x=-5; k=9; m=3; %three-digit rounding arithmetic %------------------------------------ % Compute exp(x) by using Method (A) % with the computer precision results_1=1; power_x=1; for i=1:k factor_x=x/i; power_x=power_x*factor_x; results_1=results_1+power_x; end results_1 err_1=abs(exp(x)-results_1)%------------------------------------% Compute exp(x) by using Method (A) % with the 3-digits precisionresults_2=1;power_x=1;for i=1:kfactor_x=digit(x/i,m);power_x=digit(power_x*factor_x,m); results_2=digit(results_2+power_x,m); endresults_2err_2=abs(exp(x)-results_2)%------------------------------------% Compute exp(x) by using Method (B) % with the computer precisiont=-x;results_3=1;power_x=1;for i=1:kfactor_x=t/i;power_x=power_x*factor_x;results_3=results_3+power_x; endresults_3=1/results_3err_3=abs(exp(x)-results_3)%------------------------------------% Compute exp(x) by using Method (B) % with the 3-digits precisiont=-x; results_4=1;power_x=1;for i=1:kfactor_x=digit(t/i,m);power_x=digit(power_x*factor_x,m);results_4=digit(results_4+power_x,m); endresults_4=digit(1/results_4,m)err_4=abs(exp(x)-results_4)%------------------------------------上述主程序用到一个子程序digit.m, digit(x,m)的作用是将x四舍五入成m位数。

Matlab上机题库及详细答案_Tonyxie

Matlab上机题库及详细答案_Tonyxie

ax 2 + bx + c 0.5 ≤ x < 1.5 = y a sin c b + x 1.5 ≤ x < 3.5 c ln b + 3.5 ≤ x < 5.5 x
clc;clear; a=input('Please input a= '); b=input('Please input b= '); c=input('Please input c= '); x=input('Please input x= '); disp('#if#'); if x>=0.5&x<1.5 y=a*x^2+b*x+c elseif x<3.5&x>=1.5 y=a*sin(b)^c+x elseif x>=3.5&x<5.5 y=log(abs(b+(c./x))) else y='ERROR!' end disp('#switch#') switch(x*10/5) case {1 2} y=a*x^2+b*x+c case {3 4 5 6} y=a*sin(b)^c+x case {7 8 9 10} y=log(abs(b+(c./x))) otherwise y='ERROR!' end
பைடு நூலகம்
8、数值与符号计算
ex (1)求极限 lim x →+∞ a + be x
(3)已知线性方程组 Ax=b,其中
(2)求不定积分
∫ xe
ax

MATLAB上机实验1答案

MATLAB上机实验1答案

实验1 Matlab 初步一、问题已知矩阵A 、B 、b 如下:⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-------------=031948118763812654286174116470561091143A ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡------=503642237253619129113281510551201187851697236421B []1187531=b应用Matlab 软件进行矩阵输入及各种基本运算。

二、实验目的学会使用Matlab 软件构作已知矩阵对应的行(列)向量组、子矩阵及扩展矩阵,实施矩阵的初等变换及线性无关向量组的正交规范化,确定线性相关相关向量组的一个极大线性无关向量组,且将其余向量用极大线性无关向量组线性表示,并能编辑M 文件来完成所有的实验目的。

三、预备知识1、 线性代数中的矩阵及其初等变换、向量组的线性相关性等知识。

2、 Matlab 软件的相关命令提示如下;(1) 选择A 的第i 行做一个行向量:ai=A(i,:);(2) 选择A 的第j 行做一个列向量:ai=A(j,:);(3) 选择A 的某几行、某几列上的交叉元素做A 的子矩阵:A([行号],[列号]);(4) n 阶单位阵:eye(n);n 阶零矩阵:zeros(n);(5) 做一个n 维以0或1为元素的索引向量L ,然后取A(:,L),L 中值为1的对应的列将被取到。

(6) 将非奇异矩阵A 正交规范化,orth(A) ;验证矩阵A 是否为正交阵,只需做A*A'看是否得到单位阵E 。

(7) 两个行向量a1和a2的内积:a1*a2'。

(8) 让A 的第i 行与第j 列互换可用赋值语句:A([i,j],:)=A([j,i],:);(9)让K乘以A的第i行可用赋值语句:A(i,:)=K*A(i,:);(10)让A的第i行加上第j行的K倍可用赋值语句:A(i,:)=A(i,:)+K*A(j,:);(11)求列向量组的A的一个极大线性无关向量组可用命令:rref(A)将A化成阶梯形行的最简形式,其中单位向量对应的列向量即为极大线性无关向量组所含的向量,其它列向量的坐标即为其对应向量用极大线性无关组线性表示的系数。

Matlab上机题库及详细答案

Matlab上机题库及详细答案
例17:输入一个字符,若为大写字母,则输出其对应的小写字母;若为小写字母,则输出其对应的大写字母;若为数字字符则输出其对应的数值,若为其他字符则原样输出。
解:c=input('请输入一个字符','s');
if c>='A' & c<='Z'
disp(setstr(abs(c)+abs('a')-abs('A')));
elseif c>='a'& c<='z'
disp(setstr(abs(c)- abs('a')+abs('A')));
(2)均值为0.6方差为0.1的5阶正态分布随机矩阵
解:>>x=20+(50-20)*rand(5);
>>y=0.6+sqrt(0.1)*randn(5)
例13:将101~125等25个数填入一个5行5列的表格中,使其每行每列及对角线的和均为565。
解:M=100+magic(5)
M =117 124 101 108 115
-0.4606
0.3848
例2、用简短命令计算并绘制在0x6范围内的sin(2x)、sinx2、sin2x。
解:x=linspace(0,6)
y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2;
plot(x,y1,x, y2,x, y3)
例3:画出指数衰减曲线y1=exp(-t/3)*sin(3*t)和它的包络y2=exp(-t/3),t的取值范围是(0,4pi)。

matlab上机考试题及答案

matlab上机考试题及答案

matlab上机考试题及答案1. 题目:编写一个MATLAB函数,计算并返回一个向量中所有元素的平方和。

答案:函数定义如下:```matlabfunction sumOfSquares = calculateSumOfSquares(vector)sumOfSquares = sum(vector.^2);end```2. 题目:使用MATLAB的内置函数,找出一个矩阵中的最大元素及其位置。

答案:可以使用`max`函数来找出矩阵中的最大元素,同时使用`find`函数来获取其位置。

示例代码如下:```matlabA = [1, 2, 3; 4, 5, 6; 7, 8, 9];[maxValue, linearIndex] = max(A(:));[row, col] = ind2sub(size(A), linearIndex);```3. 题目:给定一个向量,使用MATLAB编写代码,实现向量元素的逆序排列。

答案:可以使用`flip`函数来实现向量的逆序排列。

示例代码如下:```matlabvector = [1, 2, 3, 4, 5];reversedVector = flip(vector);```4. 题目:编写一个MATLAB脚本,计算并绘制一个正弦波的图像。

答案:可以使用`sin`函数生成正弦波数据,并使用`plot`函数绘制图像。

示例代码如下:```matlabx = linspace(0, 2*pi, 100);y = sin(x);plot(x, y);xlabel('x');ylabel('sin(x)');title('Sine Wave');```5. 题目:给定一个3x3的矩阵,使用MATLAB编写代码,计算其行列式。

答案:可以使用`det`函数来计算矩阵的行列式。

示例代码如下:```matlabmatrix = [1, 2, 3; 4, 5, 6; 7, 8, 9];determinant = det(matrix);```结束语:以上是MATLAB上机考试的题目及答案,希望能够帮助大家更好地掌握MATLAB的编程技巧和函数使用。

MATLAB上机实验(答案)

MATLAB上机实验(答案)

MATLAB工具软件实验(1)(1)生成一个4×4的随机矩阵,求该矩阵的特征值和特征向量。

程序:A=rand(4)[L,D]=eig(A)结果:A =0.9501 0.8913 0.8214 0.92180.2311 0.7621 0.4447 0.73820.6068 0.4565 0.6154 0.17630.4860 0.0185 0.7919 0.4057L =-0.7412 -0.2729 - 0.1338i -0.2729 + 0.1338i -0.5413 -0.3955 -0.2609 - 0.4421i -0.2609 + 0.4421i 0.5416 -0.4062 -0.0833 + 0.4672i -0.0833 - 0.4672i 0.4276 -0.3595 0.6472 0.6472 -0.4804 D =2.3230 0 0 0 0 0.0914 + 0.4586i 0 0 0 0 0.0914 - 0.4586i 0 0 0 0 0.2275(2)给出一系列的a值,采用函数2222125x ya a+=-画一组椭圆。

程序:a=0.5:0.5:4.5; % a的绝对值不能大于5t=[0:pi/50:2*pi]'; % 用参数t表示椭圆方程X=cos(t)*a;Y=sin(t)*sqrt(25-a.^2);plot(X,Y)结果:(3)X=[9,2,-3,-6,7,-2,1,7,4,-6,8,4,0,-2], (a)写出计算其负元素个数的程序。

程序:X=[9,2,-3,-6,7,-2,1,7,4,-6,8,4,0,-2];L=X<0;A=sum(L)结果:A =5(b ) 写出一段程序,使其能够找出向量x 中的最大、最小元素。

(不能使用min 和max 命令)程序:X=[9,2,-3,-6,7,-2,1,7,4,-6,8,4,0,-2];xmin=999;xmax=-999;for i=1:length(X)if xmin>X(i)xmin=X(i);endif xmax<X(i)xmax=X(i);endend[xmin,xmax]结果:ans =-6 9(4) 方波函数为f(t)=]0,[],0[11ππ-∉∈⎩⎨⎧-t t , 利用0sin(21)()21n n t f t n ∞=+=+∑,用MATLAB 编程和绘图说明方波是奇次谐波的叠加。

Matlab上机题库及详细答案

Matlab上机题库及详细答案
rate=8/100;
case num2cell(25:49) %价格大于等于2500但小于5000
Байду номын сангаасrate=10/100;
otherwise %价格大于等于5000
rate=14/100;
end
price=price*(1-rate) %输出商品实际销售价格
例19已知,当n=100时,求的值。
解:程序如下:
y=0;n=100;for i=1:n;y=y+1/(2*i-1);End
例20:一个三位整数各位数字的立方和等于该数本身则称该数为水仙花数。输出全部水仙花数
解:for m=100:999
m1=fix(m/100);m2=rem(fix(m/10),10);m3=rem(m,10);
if m==m1*m1*m1+m2*m2*m2+m3*m3*m3;disp(m);end
D=diag(1:5);D*A %用D左乘A,对A的每行乘以一个指定常数
例15:输入x,y的值,并将它们的值互换后输出。
程序如下:
x=input('Input x please.');y=input('Input y please.');z=x;x=y;y=z;
disp(x);disp(y);
例16::求一元二次方程ax2 +bx+c=0的根。
switch fix(price/100)
case {0,1} %价格小于200
rate=0;
case {2,3,4} %价格大于等于200但小于500
rate=3/100;
case num2cell(5:9) %价格大于等于500但小于1000

完整版本matlab上机练习试题含答案

完整版本matlab上机练习试题含答案

1.计算 a6 9 3 2 4 1 的数组乘积1 71618 82 7 与 b6 8 5 计算多项式除法 (3x 3+13 x 2+6x+8)/( x+4)54>> a=[6 9 3;2 7 5]; >> d=deconv([3 13 6 8],[1 4])>> b=[2 4 1;4 6 8]; d =>> a.*b 31 2ans =6 求欠定方程组2 4 7 4x 8 的最小范数解12 3639 35 6 584240>> a=[2 4 7 4;9 3 5 6];4 9 2 37>> b=[8 5]';>> x=pinv(a)*b2.对于 AXB ,假如 A7 6 4 ,B 26,求解 X 。

3 5 728x =-0.2151>> A=[4 9 2;7 6 4;3 5 7]; 0.4459 >> B=[37 26 28] ’;0.7949 >> X=A\B 0.2707X =7 用符号函数法求解方程 at 2+b* t+c=0-0.5118 >> r=solve('a*t^2+b*t+c=0','t') 4.0427 r =1.3318[ 1/2/a*(-b+(b^2-4*a*c)^(1/2))] 1 2 5 , b8 7 4 [ 1/2/a*(-b-(b^2-4*a*c)^(1/2))]3. a64 362 ,察看 a 与 b 之间的3a 11 a 12六种关系运算的结果8求矩阵 A的队列式值、逆和特点根a 21 a 22 >> a=[1 2 3;4 5 6];>> b=[8 –7 4;3 6 2]; >> syms a11 a12 a21 a22; >> a>b >> A=[a11,a12;a21,a22]ans =>> AD=det(A) % 队列式 0 1 0 >> AI=inv(A) % 逆 11>> AE=eig(A) % 特点值>> a>=b A =ans =[ a11, a12] 0 1 0 [ a21, a22] 11AD =>> a<b a11*a22-a12*a21 ans =AI =1 0 1 [ -a22/(-a11*a22+a12*a21), a12/(-a11*a22+a12*a21)]1[ a21/(-a11*a22+a12*a21), -a11/(-a11*a22+a12*a21)] >> a<=b AE =ans =1 0 1 [ 1/2*a11+1/2*a22+1/2*(a11^2-2*a11*a22+a22^2+4*a12*a21)^(1/2)]1>> a==b [ 1/2*a11+1/2*a22-1/2*(a11^2-2*a11*a22+a22^2+4*a12*a21)^(1/2)]ans =9 因式分解: x 45x 3 5 x 2 5x 60 0 0 >> syms x;>> f=x^4-5*x^3+5*x^2+5*x-6; >> a~=b >> factor(f) ans =ans =1 1 1 (x-1)*(x-2)*(x-3)*(x+1) 111ax 214 计算多项式乘法 (x 2+2x+2)(x 2+5x+4),用符号微分求 df/dx 。

Matlab上机题代码及结果4题

Matlab上机题代码及结果4题

例1下图描述了六个城市之间的航空航线图,其中1、2、......、6表示六个城市,带箭头线段表示两个城市之间的航线。

用MATLAB软件完成以下操作:(1)构造该图的邻接矩阵A;(2)若某人连续乘坐五次航班,那么他从哪一个城市出发到达哪一个城市的方法最多?(3)若某人可以乘坐一次、二次、三次或四次航班,那么他从哪一个城市出发总是不能达到哪一个城市?航空航线图(六城市)解:(1)构造邻接矩阵;(2)计算矩阵可达矩阵,找出该矩阵的最大元素,并确定它所在的位置;(3)计算可达矩阵,找出该矩阵中零元素的位置。

在MATLAB软件的M编辑器中编写m文件:% 图与矩阵clearA=[0,1,0,0,0,1;0,0,1,1,0,0;0,0,0,1,1,0;0,1,0,0,0,0;1,0,1,0,0,0;0,1,0,0,1,0]; % 构造邻接矩阵B=A^5;C=A+A^2+A^3+A^4;disp('邻接矩阵A为:');disp(A);disp('矩阵A^5为:');disp(B);m=max(max(B)); % 计算矩阵B的最大值[m_i,m_j]=find(B==m); % 寻找矩阵B中元素等于m的位置fprintf('矩阵A^5最大值%d的位置在:\n',m);disp([m_i,m_j]);disp('矩阵A+A^2+A^3+A^4为:');disp(C);[z_i,z_j]=find(C==0); % 寻找矩阵C中零元素的位置disp('矩阵A+A^2+A^3+A^4零元素的位置在:');disp([z_i,z_j]);在MATLAB命令窗口中输入m文件名称,计算结果为:邻接矩阵A为:0 1 0 0 0 10 0 1 1 0 00 0 0 1 1 00 1 0 0 0 01 0 1 0 0 00 1 0 0 1 0矩阵A^5为:2 5 5 53 12 4 43 2 02 3 5 5 2 10 2 1 3 2 12 6 4 5 4 11 4 4 7 4 2矩阵A^5最大值7的位置在:6 4矩阵A+A^2+A^3+A^4为:2 6 5 6 4 21 4 4 6 3 12 5 4 5 4 11 3 3 3 1 03 5 6 64 23 6 6 54 1矩阵A+A^2+A^3+A^4零元素的位置在:4 6从计算结果中可以看出,矩阵A^5最大值出现在矩阵的第六行第四列,说明:这个人如果从城市6出发连续乘坐五次航班后到达城市4,他可以选择的乘机路线最多,共有7种不同的方法。

Matlab实验题目与答案

Matlab实验题目与答案

(温馨提示:实验课结束后,请将所有作业(题目、代码、结果)利用word 整理成一个完整的实验报告,加上封面,打印,纸质档于18周周一交)第一次上机作业目的:1. 掌握MATLAB 各种表达式的书写规则2. 运行课堂上讲过的例子,熟悉矩阵、表达式的基本操作和运算。

作业:1. 熟悉matlab 集成环境界面。

回答以下问题,并操作相关的指令:(1) 分别写出清除命令窗口和清除变量的指令。

答: clc 和clear(2)在命令行输入命令后,matlab 的搜索过程是怎样的?答: (1)检查该命令对象是不是一个变量。

(2)检查该命令对象是不是一个内部函数。

(3)检查该命令对象是否为当前目录下的程序文件。

(4)检查该命令对象是否为MATLAB 搜索路径中其他目录下的M 文件。

(3)什么是matlab 的当前工作目录?写出两种设置当前工作目录的方法? 答: 就是matlab 当前文件读取和存储的默认路径(1)在当前目录窗口中更改(2)在MATLAB 桌面工具栏中更改(3)使用cd 命令:cd c:\mydir---将c :\mydir 设置为当前目录(4)什么是matlab 的搜索路径?写出两种设置搜索路径的方法?答: 指Matlab 运行文件时进行搜索的目录。

(1)用path 命令设置:(2)用Set Path 对话框设置(5)help 命令和doc 命令有什么作用,它们有什么区别?答: help 命令:最基本的帮助命令,查询信息直接显示在命令窗口。

doc 命令:在帮助窗口中显示HTML 帮助文档,显示函数的详细用法及 例子,比help 命令更详细。

2. 在matlab 中输入下列表达式,并求各表达式的值,显示MATLAB 工作空间的使用情况并用两种方式保存全部变量,变量保存的文件名必须包含自己的学号后四位数:(1))1034245.01(26-⨯+⨯=w w=sqrt(2)*(1+0.34245*10^-6)w =1.4142(2),)tan(22ac b e abc c b a x ++-+++=ππ 其中a=3.5,b=5,c=9.8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Matlab上机实验题及参考解答目录实验一Matlab初步实验 (2)一matlab基本功能介绍 (2)二Matlab扩展功能 (2)三练习 (2)四练习题参考解答 (3)实验二概率模型实验 (5)一复习 (5)二事件的响应 (5)三Matlab中随机数字的生成与处理 (5)四练习 (5)五练习题参考解答 (5)实验三插值与拟合 (7)实验四线性规划与非线性规划 (8)4.1 实验目的 (8)4.2 实验内容 (9)4.3 综合练习 (10)4.4 课外作业 (11)实验五数值计算 (12)5.1 实验目的 (12)5.2 实验内容 (12)4.3 综合练习 (15)4.4 课外作业 (15)实验六计算机图像处理 (16)6.1 实验目的 (16)6.2 实验内容 (16)6.3 综合练习 (17)6.4 课外作业 (19)实验七综合练习 (19)7.1 实验目的 (19)7.2 实验内容 (19)7.3 综合练习 (20)7.4 课外作业 (21)实验一 Matlab 初步实验 一 matlab 基本功能介绍1 编程环境2语法规范:for … end; if …else if …end; 3 矩阵运算 4 图形绘制二 Matlab 扩展功能1 编程练习:(1) 绘出序列kk x x r r 0(1),0.2083=+=;(2) 绘出曲线rtx t x e t 0(),0=>2 扩展功能(1) 矩阵中全部数据、部分数据的截取、更改; (2) 矩阵的初始化与赋值如:A=zeros(5,5); A(2:2:)=[1,2 3 4 5] 3 微积分基础(见实验4) 符号计算三 练习(课上编程完成下列练习,课后上机验证) 1 求和S=1+2+3+…+100; 2 求和e 1111!2!10!1...=++++3求和S 1112310!1...=++++4设A 234576138⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 求A 的逆、特征值和特征向量;验证Ax=λx 5 画函数图()011mrtm x x t x e x -=⎛⎫+- ⎪⎝⎭6 展开 (x-1)(x-2)…(x-100)7 因式分解 x 8—y 8; 因数分解200520068 求极限312lim +∞→⎪⎭⎫⎝⎛++n n n n9 )](sin[cos 22x x y += 求dxdy10 求积分x xdx 10ln ⎰11 求积分3⎰并且画出所求的平面区域12 设x+2y=1, 2x+3y=6, y=2x 2, 画出各个方程图形,求出曲线交点.四 练习题参考解答%MatlabTrain1.m clear all % 2nd e=1; temp=1; for I=1:1:10temp=temp*I; e=e+1/temp; end e%%%%%%%%%%% clear all % 3nd S=0; temp=1;for I=1:1:100temp=temp*I; endfor J=1:1:temp S=S+1/J; end S%%%%%%%%%%%%%% clear all % 11ndx=linspace(0,4); y=1./sqrt(x.^5+1); plot(x,y) for t=1:0.1:3yt=1./sqrt(t.^5+1);hold online([t,t],[0,yt]);end%fill(t,yt,'b') %%%%%%%%%%%%% clear all% 12ndx=linspace(-2,2);y=[0.5-0.5*x; 2-2/3.*x; 2*x.^2]; plot(x,y)grid实验二概率模型实验一复习1 小结上次编程练习中存在的问题,讲述部分习题答案2 画图命令介绍:line二事件的响应(1) 获取鼠标的位置%MatlabTrain2.mclear all% 鼠标响应p=ginput(3)plot(p(:,1),p(:,2),'r*')(2) 键盘输入相应t=input('How many apples? t=');m=t+3三Matlab中随机数字的生成与处理1 随机数的生成2 产生随机数字3 产生某区间的整数4 生日模拟问题的Montecaro法设计技术、思路学生尝试编程四练习(1) 编程验证人数在不同年龄段的生日的概率计算(2) 编程实现游戏”聪明伶俐100分”(3) 编程实现两家电影院的座位数问题(4) 编程实现某图形面积的计算五练习题参考解答(1) 生日问题程序示例:%birthPro.mn=0;nStudents=30;for I=1:1000 %how many times testy=0;x=1+floor(365*rand(1,nStudents));%get nStudents random numbersfor J=1:nStudents-1for K=J+1:nStudentsif x(J)==x(K)y=1;break;endendendn=n+y;%count, n times of that there are two people's dirthday in the same dayendfreq=n/I % caculating the frequently(2) 编程实现游戏”聪明伶俐100分”参考答案%MatlabTrain2.mclear all% 鼠标响应x=floor(10*rand(1,4))t=input('填入四个数字[n1 n2 n3 n4]=');flag=0;A=0;B=0;for I=1:1:8flag=flag+1;A=0;B=0;if t==xswitch flagcase 1disp('聪明绝顶!');case 2disp('聪明!');case 3disp('有点聪明!');case 4disp('还可以!');case 5disp('聪明伶俐100分!');case 6disp('聪明伶俐90分!');case 7disp('聪明伶俐85分!');case 8disp('聪明伶俐80分!');otherwisedisp('赫赫!');endbreak;endfor J=1:1:4for K=1:1:4if x(J)==t(K) & J==KA=A+1;else if x(J)==t(K) & J~=KB=B+1;endendendends='AABB';s(1)=INT2STR(A);s(3)=INT2STR(B);disp(s);t=input('不重复填入四个数字[n1 n2 n3 n4]=');endif flag>0disp('太烂了! 正确答案是:');xend实验三插值与拟合一复习讲述聪明伶俐100分的编程中的问题二插值三拟合课堂练习2 某之股票价格from 2003 09 01 to 2004 01 02,试进行插值、拟合%TimerS.m%from 2003 09 01 to 2003 01 02clear all;dataST=[15.09 14.7514.95 14.722.88 21.8619.82 19.09];plot(dataST)四课外练习112)进行多项式拟合,求出拟合多项式,并求出多项式在t=4, 5处的值.实验四线性规划与非线性规划4.1 实验目的1 用Matlab求解线性规划2 用Matlab求解非线性规划4.2 实验内容4.2.1 线性规划求解实用格式:x=lp(c, A, b, xLB,xUB,x0,nEq)可以求解下列线性规划模型:min f=c’xs.t. Ax=<=b(其中前nEq个约束为等式约束,即等式约束的个数,其余是不等式约束<=) xLB<=x<=xUB函数中x0参数是算法迭代的初始点,任意取值例1 求解下列线性规划1)123123123123min2..360210200,1,2,3jz x x xs t x x xx x xx x xx j=--+⎧⎪++≤⎪⎪-+≤⎨⎪+-≤⎪≥=⎪⎩,2)1235635623416367min..3621060,1,,7jz x x x x xs t x x xx x xx xx x xx j=-++-⎧⎪++=⎪⎪+-=⎪⎨-+=⎪⎪++=⎪≥=⎪⎩例1求解示例c=[-2 -1 1]';%book page 72 Number 16-1A=[3 1 1;1 -1 2;1 1 -1];b=[60 10 20]';xlb=[0 0 0]';xub=[inf inf inf]';x0=[0 0 0]'; x=lp(c,A,b,xlb,xub,x0,0)% x=(15 5 0)'例2 求解示例c2=[1 -1 1 0 1 -1 0]';%book page 72 Number 16-3A2=[0 0 3 0 1 1 0;...0 1 2 -1 0 0 0;...-1 0 0 0 0 1 0;...0 0 1 0 0 1 1];b2=[6 10 0 6]';xlb2=[0 0 0 0 0 0 0]';xub2=[inf inf inf inf inf inf inf]';x02=[0 0 0 0 0 0 0]';x2=lp(c2,A2,b2,xlb2,xub2,x02,4)% unbounded4.2.2 非线性规划1)命令格式1:[X, OPTIONS]=constr(‘FUN’, X, OPTIONS,VLB,VUB)2)命令格式2:X=FMINCON(FUN,X0,A,B,Aeq,Beq)% minimizes FUN subject to the linear equalities% Aeq*X = Beq as well as A*X <= B. (Set A=[] and B=[] if no inequalities exist.)例2 求解非线性规划y x x x x s t x3211221min22 ..1=++-≤-求解示例%unconop.mfunction y=unconop(x)y=x(1).^3+2*x(1).*x(2)+2*x(2).^2;%book page 148 ex.7-1 后建立调用函数xx=fmincon('unconop',[0 0]',[-1 0],-1,[],[])%book page 148 ex.7-1 4.3 综合练习学生独立编写程序,求解一个含有2个变量的线性规划问题,要求:1)编写程序,把可行域画上阴影;2)求出最优解,在可行域上标出最优解;3)求出基本解,并在上图中表示出来;4)求出基本可行解,观察单纯形方法迭代时,顶点的变化.可行域画图与表出阴影示例:syms x y[u(1),v(1)]=solve('y=x+2','y=2*x');%求出交点坐标[u(2),v(2)]=solve('y=-x+2','y=2*x');[u(3),v(3)]=solve('y=x+2','y=-x+2');x=linspace(0,3,5); %直线作图y=[2*x;-x+2;x+2];line(x,y); gridpatch(double(u),double(v),'b'); 运行结果:4.4 课外作业1 求解线性规划131223min ..250.530,1,2,3i x x s t x x x x x i +⎧⎪+≤⎪⎨+=⎪⎪≥=⎩ (1) 求解线性规划;x *=()(2) 目标函数中c 1由1变为(-1.25)时求最优解;(3) 目标函数中c 1由1变为(-1.25),c 3由1变为2时求最优解;(4) 约束条件中53b ⎛⎫= ⎪⎝⎭变为21b -⎛⎫'= ⎪⎝⎭时,求解;(5) 约束条件中53b ⎛⎫= ⎪⎝⎭变为23b ⎛⎫'= ⎪⎝⎭时,求解[刁在筠,运筹学(第二版),高等教育出版社,2004,01 p74第20题]2 求解非线性规划y x x x x x x x 3221122233min 2223=++++ 注:无约束非线性规划问题, 命令:fminunc子函数% unconop.mfunction y=unconop(x)y=x(1).^2+2*x(1).*x(2)+2*x(2).^2+2*x(2).*x(3)+3*x(3).^2;%book page 148 ex.7-1 主函数:xx=fminunc('unconop',[0.1 0.1 1]')思考:绘出两个变量的线性规划问题的可行域、标出可行的整数解和求出可行解;演示单纯形方法的迭代过程,如j z x x s t x x x x x j 121212min 2..360200,1,2=--⎧⎪+≤⎪⎪+≤⎨⎪⎪≥=⎪⎩实验五 数值计算5.1 实验目的1 掌握代数数值计算2 掌握常微分方程数值计算5.2 实验内容5.2.1 关于多项式设多项式1110()n n n n p x a x a x a x a --=++++表示为110[,,,,]n n p a a a a -=1)求多项式的根 roots(p) %求出p(x)=0的解。

相关文档
最新文档