树和叉树(数据结构)
数据结构与算法系列研究五——树、二叉树、三叉树、平衡排序二叉树AVL
数据结构与算法系列研究五——树、⼆叉树、三叉树、平衡排序⼆叉树AVL树、⼆叉树、三叉树、平衡排序⼆叉树AVL⼀、树的定义树是计算机算法最重要的⾮线性结构。
树中每个数据元素⾄多有⼀个直接前驱,但可以有多个直接后继。
树是⼀种以分⽀关系定义的层次结构。
a.树是n(≥0)结点组成的有限集合。
{N.沃恩}(树是n(n≥1)个结点组成的有限集合。
{D.E.Knuth})在任意⼀棵⾮空树中:⑴有且仅有⼀个没有前驱的结点----根(root)。
⑵当n>1时,其余结点有且仅有⼀个直接前驱。
⑶所有结点都可以有0个或多个后继。
b. 树是n(n≥0)个结点组成的有限集合。
在任意⼀棵⾮空树中:⑴有⼀个特定的称为根(root)的结点。
⑵当n>1时,其余结点分为m(m≥0)个互不相交的⼦集T1,T2,…,Tm。
每个集合本⾝⼜是⼀棵树,并且称为根的⼦树(subtree)树的固有特性---递归性。
即⾮空树是由若⼲棵⼦树组成,⽽⼦树⼜可以由若⼲棵更⼩的⼦树组成。
树的基本操作1、InitTree(&T) 初始化2、DestroyTree(&T) 撤消树3、CreatTree(&T,F) 按F的定义⽣成树4、ClearTree(&T) 清除5、TreeEmpty(T) 判树空6、TreeDepth(T) 求树的深度7、Root(T) 返回根结点8、Parent(T,x) 返回结点 x 的双亲9、Child(T,x,i) 返回结点 x 的第i 个孩⼦10、InsertChild(&T,&p,i,x) 把 x 插⼊到 P的第i棵⼦树处11、DeleteChild(&T,&p,i) 删除结点P的第i棵⼦树12、traverse(T) 遍历树的结点:包含⼀个数据元素及若⼲指向⼦树的分⽀。
●结点的度: 结点拥有⼦树的数⽬●叶结点: 度为零的结点●分枝结点: 度⾮零的结点●树的度: 树中各结点度的最⼤值●孩⼦: 树中某个结点的⼦树的根●双亲: 结点的直接前驱●兄弟: 同⼀双亲的孩⼦互称兄弟●祖先: 从根结点到某结点j 路径上的所有结点(不包括指定结点)。
数据结构-C语言-树和二叉树
练习
一棵完全二叉树有5000个结点,可以计算出其
叶结点的个数是( 2500)。
二叉树的性质和存储结构
性质4: 具有n个结点的完全二叉树的深度必为[log2n]+1
k-1层 k层
2k−1−1<n≤2k−1 或 2k−1≤n<2k n k−1≤log2n<k,因为k是整数
所以k = log2n + 1
遍历二叉树和线索二叉树
遍历定义
指按某条搜索路线遍访每个结点且不重复(又称周游)。
遍历用途
它是树结构插入、删除、修改、查找和排序运算的前提, 是二叉树一切运算的基础和核心。
遍历规则 D
先左后右
L
R
DLR LDR LRD DRL RDL RLD
遍历规则
A BC DE
先序遍历:A B D E C 中序遍历:D B E A C 后序遍历:D E B C A
练习 具有3个结点的二叉树可能有几种不同形态?普通树呢?
5种/2种
目 录 导 航 Contents
5.1 树和二叉树的定义 5.2 案例引入 5.3 树和二叉树的抽象数据类型定义 5.4 二叉树的性质和存储结构 5.5 遍历二叉树和线索二叉树 5.6 树和森林 5.7 哈夫曼树及其应用 5.8 案例分析与实现
(a + b *(c-d)-e/f)的二叉树
目 录 导 航 Contents
5.1 树和二叉树的定义 5.2 案例引入 5.3 树和二叉树的抽象数据类型定义 5.4 二叉树的性质和存储结构 5.5 遍历二叉树和线索二叉树 5.6 树和森林 5.7 哈夫曼树及其应用 5.8 案例分析与实现
二叉树的抽象数据类型定义
特殊形态的二叉树
只有最后一层叶子不满,且全部集中在左边
数据结构PPT树和二叉树
(c)
L
R
R
(d)
(e)
(a) 空树
(b) 只含根结点
(d) 左右子树均不为空树
(c) 右子树为空树 (e) 左子树为空树
安
徽 理
6.2.2 二叉树的性质
工
大 学
性质1 在二叉树的第 i 层上至多有 2i - 1个结点。(i ≥ 1)
[证明用归纳法]
证明:当i=1时,只有根结点,2 i-1=2 0=1。
一般树和森林与二叉树的转换关系,最后介绍树的应用实
例。
安
徽 理
6.1 树的定义和基本术语
工
大 学
❖ 什么是树?树是由 n (n ≥ 0) 个结点的有限集合。如果 n
= 0,称为空树;如果 n > 0,则
▪ 有且仅有一个特定的称之为根(Root)的结点,它只有直
接后继,但没有直接前驱;
▪ 当n > 1,除根以外的其它结点划分为 m (m >0) 个互不
树构成(即不存在度大于2的结点),并且左、右子树本身也
是二叉树。 说明: 1. 二叉树中每个结点最多有两棵子 树,二叉树每个结点度小于等于2;
A
B
D
E
C F
2. 左、右子树不能颠倒——有序树;
G
3. 二叉树是递归结构,在二叉树的定
义中又用到了二叉树的概念。
安
徽 理
二叉树的形态
工
大
学
φ
L
(a)
(b)
例1. 家族族谱
设某家庭有13个成员A、B、C、D、E、F、G、H、I、J
、K、L、M,他们之间的关系可如图所示的树表示。
例2. 单位行政机构的组织关系
数据结构(树和二叉树)练习题与答案1
1、树最适合用来表示()。
A.元素之间无联系的数据B.元素之间具有层次关系的数据C.无序数据元素D.有序数据元素正确答案:B2、现有一“遗传”关系,设x是y的父亲,则x可以把他的属性遗传给y。
表示该遗传关系最适合的数据结构为()。
A.线性表B.树C.数组D.图正确答案:B3、一棵节点个数为n、高度为h的m(m≥3)次树中,其分支数是()。
A.n+hB.h-1C.n-1D.nh正确答案:C4、若一棵3次树中有2个度为3的节点,1个度为2的节点,2个度为1的节点,该树一共有()个节点。
A.11B.5C.8D.10正确答案:A解析: A、对于该3次树,其中有n3=2,n2=1,n1=2,总分支数=总度数=n-1,总度数=1×n1+2×n2+3×n3=10,则n=总度数+1=11。
5、设树T的度为4,其中度为1、2、3、4的节点个数分别为4、2、1、1,则T中的叶子节点个数是()。
A.6B.8C.7D.5正确答案:B解析: B、这里n1=4,n2=2,n3=1,n4=1,度之和=n-1=n1+2n2+3n3+4n4=15,所以n=16,则n0=n-n1-n2-n3-n4=16-8=8。
6、有一棵三次树,其中n3=2,n2=1,n0=6,则该树的节点个数为()。
A.9B.12C.大于等于9的任意整数D.10正确答案:C解析: C、n=n0+n1+n2+n3=6+n1+1+2=9+n1。
7、假设每个节点值为单个字符,而一棵树的后根遍历序列为ABCDEFGHIJ,则其根节点值是()。
A.JB.BC.以上都不对D.A正确答案:A8、一棵度为5、节点个数为n的树采用孩子链存储结构时,其中空指针域的个数是()。
A.4nB.4n-1C.4n+1D.5n正确答案:C解析: C、总指针数=5n,非空总指针数=分支数=n-1,空指针域的个数=5n-(n-1)=4n+1。
9、有一棵三次树,其中n3=2,n2=2,n1=1,该树采用孩子兄弟链存储结构时,则总的指针域数为()。
数据结构详细教案——树与二叉树
数据结构详细教案——树与二叉树一、教学目标1.了解树和二叉树的基本概念和特点;2.掌握树和二叉树的基本操作;3.能够通过递归遍历树和二叉树。
二、教学重难点1.树和二叉树的基本概念和特点;2.递归遍历树和二叉树。
三、教学内容1.树的概念和特点1.1树的定义树是n(n>=0)个节点的有限集。
当n=0时,称为空树;如果不为空树,则1. 树有且仅有一个特殊节点被称为根(Root);2.其余节点可分为m(m>0)个互不相交的有限集T1,T2,...,Tm,其中每个集合又是一棵树。
1.2节点间的关系- 父节点(parent)是当前节点的直接上级节点;- 子节点(child)是当前节点的直接下级节点;- 兄弟节点(sibling)是具有同一父节点的节点;- 祖先节点(ancestor)是通过从当前节点到根的任意路径可以到达的节点;- 子孙节点(descendant)是通过从该节点到子树的任意节点可以到达的节点。
1.3树的特点-树是一个有层次的结构,可以看作是一个鱼骨图;-树中的每个节点都可以有多个子节点,但只有一个父节点;-树中的节点之间是唯一的,不存在重复节点;-树中的任意两个节点之间都有且仅有一条路径连接。
2.二叉树的概念和特点2.1二叉树的定义二叉树是一种特殊的树结构,它的每个节点最多只能有两个子节点,分别称为左子节点和右子节点。
2.2二叉树的特点-二叉树的度最大为2,即每个节点最多有两个子节点;-二叉树的第i层最多有2^(i-1)个节点;-对于任意一颗二叉树,如果其叶子节点数为n0,度为2的节点数为n2,则有n0=n2+1;-完全二叉树是一种特殊的二叉树,除了最后一层的叶子节点外,每一层的节点都是满的。
四、教学过程1.讲解树和二叉树的基本概念和特点,引导学生理解树和二叉树的定义和节点间的关系。
2.分析树和二叉树的基本操作,并通过实例演示操作过程,让学生掌握操作的步骤和方法。
3.运用递归算法遍历树和二叉树的过程,详细讲解前序遍历、中序遍历和后序遍历的定义和实现方法。
数据结构(树与二叉树)习题与答案
一、单选题1、已知一算术表达式的中缀形式为 A-B/C+D*E,前缀形式为+-A/BC*DE,其后缀形式为( )。
A.ABC/-DE*+B.AB/C-D*E+C. A-BC/DE*+D. ABCDE/-*+正确答案:A2、有关二叉树下列说法正确的是()。
A.二叉树中任何一个结点的度都为2B.一棵二叉树的度可以小于2C.二叉树中每个结点的度都为2D.二叉树中至少有一个结点的度为2正确答案:B3、在一棵高度为k的满二叉树中,结点总数为()。
A.2k-1B. 2k-1C. 2k-1+1D.2k正确答案:B4、某二叉树中有60个叶子结点,则该二叉树中度为2的结点个数为()。
A.不确定B.60C.59D.61正确答案:C解析:任意二叉树中,n0=n2+15、高度为7的完全二叉树,最少有()个结点。
A.127B.128C.63D.64正确答案:D解析:前6层都是满的,最后一层(第7层)近1个结点。
可保证题目条件。
6、高度为7的二叉树,最少有()个结点。
A.7B.127C.13D.64正确答案:A解析:每层只有1个结点。
共7个即可构成一个高度为7的二叉树。
7、对任意一棵有n个结点的树,这n个结点的度之和为( )。
A.n-1B.2*nC.n+2D.n正确答案:A解析:所有结点的度之和为分支个数,分支个数即为结点个数-18、在下列存储形式中,()不是树的存储形式。
A.双亲表示法B.孩子-兄弟表示法C.孩子链表表示法D.顺序存储表示法正确答案:D9、对二叉树中的结点进行编号,要求根结点的编号最小,左孩子结点编号比右孩子结点编号小。
则应该采用()遍历方法对其进行编号。
A.层次B.先序C.后序D.中序正确答案:B10、某二叉树中有60个叶子结点,则该二叉树中度为2的结点个数为()。
A. 59B.61C.60D.不一定正确答案:A11、树的后根遍历,相当于对应二叉树的()遍历。
A.中序B.后序C.层次D.先序正确答案:A二、判断题1、完全二叉树一定存在度为1的结点。
云大《数据结构》课程教学课件-第6章 树和二叉树(147P)_OK
^d ^ ^ e ^ 三叉链表
3)二叉链表是二叉树最常用的存储结构。还有其它链接方 法,采用何种方法,主要取决于所要实施的各种运算频度。
例:若经常要在二叉树中寻找某结点的双亲时,可在每个结 点上再加一个指向其双亲的指针域parent,称为三叉链表。
lchild data parent rchild
2021/8/16
2021/8/16
9
6.2 二 叉 树
6.2.1 二叉树的概念
一、二叉树的定义: 二叉树(Binary Tree)是n(n>=0)个结点的有限集,它或者是 空集(n=0)或者由一个根结点和两棵互不相交的,分别称 为根的左子树和右子树的二叉树组成。 可以看出,二叉树的定义和树的定义一样,均为递归定 义。
A
集合3
集合1
BCD
EF
G
集合2
2021/8/16
3
2、树的表示方法 1)树形图法
A
BCD
EF
G
2)嵌套集合法
3)广义表形式 ( A(B, C(E,F), D(G) )
4)凹入表示法
2021/8/16
A B
D
CG
EF
A B C E DF G
4
3、 树结构的基本术语
1)结点的度(Degree):为该结点的子树的个数。 2)树的度:为该树中结点的最大度数。
7)路径(Path):若树中存在一个结点序列k1,k2,…,kj,使得ki是 ki+1的双亲(1<=i<j),则称该结点序列是从ki到kj一条路径 (Path)
路径长度:路径的长度为j-1,其为该路径所经过的边的数 目。
A
BCD
EF
G
数据结构树和二叉树知识点总结
数据结构树和二叉树知识点总结
1.树的概念:树是一种非线性的数据结构,由节点和边构成,每个节点只能有一个父节点,但可以有多个子节点。
2. 二叉树的概念:二叉树是一种特殊的树结构,每个节点最多只有两个子节点,一个是左子节点,一个是右子节点。
3. 二叉树的遍历:二叉树的遍历分为前序遍历、中序遍历和后序遍历三种方式。
前序遍历是先访问根节点,再访问左子树,最后访问右子树;中序遍历是先访问左子树,再访问根节点,最后访问右子树;后序遍历是先访问左子树,再访问右子树,最后访问根节点。
4. 二叉搜索树:二叉搜索树是一种特殊的二叉树,它满足左子树中所有节点的值均小于根节点的值,右子树中所有节点的值均大于根节点的值。
因此,二叉搜索树的中序遍历是一个有序序列。
5. 平衡二叉树:平衡二叉树是一种特殊的二叉搜索树,它的左子树和右子树的高度差不超过1。
平衡二叉树的插入和删除操作可以保证树的平衡性,从而提高树的查询效率。
6. 堆:堆是一种特殊的树结构,它分为最大堆和最小堆两种。
最大堆的每个节点的值都大于等于其子节点的值,最小堆的每个节点的值都小于等于其子节点的值。
堆常用于排序和优先队列。
7. Trie树:Trie树是一种特殊的树结构,它用于字符串的匹配和检索。
Trie树的每个节点代表一个字符串的前缀,从根节点到叶子节点的路径组成一个完整的字符串。
以上是数据结构树和二叉树的一些基本知识点总结,对于深入学
习数据结构和算法有很大的帮助。
常见基本数据结构——树,二叉树,二叉查找树,AVL树
常见基本数据结构——树,⼆叉树,⼆叉查找树,AVL树常见数据结构——树处理⼤量的数据时,链表的线性时间太慢了,不宜使⽤。
在树的数据结构中,其⼤部分的运⾏时间平均为O(logN)。
并且通过对树结构的修改,我们能够保证它的最坏情形下上述的时间界。
树的定义有很多种⽅式。
定义树的⾃然的⽅式是递归的⽅式。
⼀棵树是⼀些节点的集合,这个集合可以是空集,若⾮空集,则⼀棵树是由根节点r以及0个或多个⾮空⼦树T1,T2,T3,......,Tk组成,这些⼦树中每⼀棵的根都有来⾃根r的⼀条有向的边所连接。
从递归的定义中,我们发现⼀棵树是N个节点和N-1条边组成的,每⼀个节点都有⼀条边连接⽗节点,但是根节点除外。
具有相同⽗亲的节点为兄弟,类似的⽅法可以定义祖⽗和孙⼦的关系。
从节点n1到nk的路径定义为节点n1,n2,...,nk的⼀个序列,并且ni是ni+1的⽗亲。
这个路径的长是路径上的边数,即k-1。
每个节点到⾃⼰有⼀条长为0的路径。
⼀棵树从根到叶⼦节点恰好存在⼀条路径。
对于任意的节点ni,ni的深度为从根到ni的唯⼀路径长。
ni的⾼是从ni到⼀⽚叶⼦的最长路径的长。
因此,所有的树叶的⾼度都是0,⼀棵树的⾼等于它的根节点的⾼。
⼀棵树的深度总是等于它最深叶⼦的深度;该深度等于这棵树的⾼度。
树的实现实现树的⼀种⽅法可以是在每⼀个节点除数据外还要有⼀些指针,使得该节点的每⼀个⼉⼦都有⼀个指针指向它。
但是由于每个节点的⼉⼦树可以变化很⼤⽽且事先不知道,故在各个节点建⽴⼦节点的链接是不可⾏的,这样将会浪费⼤量的空间。
实际的做法很简单:将每个节点的所有⼉⼦都放在树节点的链表中。
下⾯是典型的声明:typedef struct TreeNode *PtrToNodestruct TreeNode{ ElementType Element; PtrToNode FirstChild; PtrToNode NextSibling}下⾯是⼉⼦兄弟表⽰法的图⽰:树的遍历及应⽤⼀个常见的使⽤是操作系统中的⽬录结构。
数据结构C语言版第二版第5章树和二叉树答案
第5章 树和二叉树1.选择题(1)把一棵树转换为二叉树后,这棵二叉树的形态是( )。
A .唯一的 B.有多种C .有多种,但根结点都没有左孩子 D.有多种,但根结点都没有右孩子 答案:A解释:因为二叉树有左孩子、右孩子之分,故一棵树转换为二叉树后,这棵二叉树的形态是唯一的。
(2)由3个结点可以构造出多少种不同的二叉树?( ) A .2 B .3 C .4 D .5 答案:D解释:五种情况如下:A CBACBA CBACBACB(3)一棵完全二叉树上有1001个结点,其中叶子结点的个数是( )。
A .250 B . 500 C .254 D .501 答案:D解释:设度为0结点(叶子结点)个数为A ,度为1的结点个数为B ,度为2的结点个数为C ,有A=C+1,A+B+C=1001,可得2C+B=1000,由完全二叉树的性质可得B=0或1,又因为C 为整数,所以B=0,C=500,A=501,即有501个叶子结点。
(4)一个具有1025个结点的二叉树的高h 为( )。
A .11B .10C .11至1025之间D .10至1024之间 答案:C解释:若每层仅有一个结点,则树高h 为1025;且其最小树高为 log 21025 + 1=11,即h 在11至1025之间。
(5)深度为h 的满m 叉树的第k 层有( )个结点。
(1=<k=<h) A .mk-1B .m k -1C .m h-1D .m h-1答案:A解释:深度为h 的满m 叉树共有m h-1个结点,第k 层有m k-1个结点。
(6)利用二叉链表存储树,则根结点的右指针是( )。
A .指向最左孩子B .指向最右孩子C .空D .非空 答案:C解释:利用二叉链表存储树时,右指针指向兄弟结点,因为根节点没有兄弟结点,故根节点的右指针指向空。
(7)对二叉树的结点从1开始进行连续编号,要求每个结点的编号大于其左、右孩子的编号,同一结点的左右孩子中,其左孩子的编号小于其右孩子的编号,可采用( )遍历实现编号。
数据结构详细教案——树与二叉树
数据结构教案第六章树与二叉树目录6.1树的定义和基本术语 (1)6.2二叉树 (2)6.2.1 二叉树的定义 (2)6.2.2 二叉树的性质 (4)6.2.3 二叉树的存储结构 (5)6.3树和森林 (6)6.4二叉树的先|中|后序遍历算法 (7)6.5先|后|中序遍历的应用扩展 (9)6.5.1 基于先序遍历的二叉树(二叉链)的创建 (9)6.5.2 统计二叉树中叶子结点的数目 (9)6.5.3 求二叉树的高度 (10)6.5.4 释放二叉树的所有结点空间 (11)6.5.5 删除并释放二叉树中以元素值为x的结点作为根的各子树 (12)6.5.6 求位于二叉树先序序列中第k个位置的结点的值 (12)6.5.7 线索二叉树 (13)6.5.8 树和森林的遍历 (14)6.6二叉树的层次遍历 (16)6.7判断一棵二叉树是否为完全二叉树 (16)6.8哈夫曼树及其应用 (18)6.8.1 最优二叉树(哈夫曼树) (18)6.8.2 哈夫曼编码 (19)6.9遍历二叉树的非递归算法 (19)6.9.1 先序非递归算法 (19)6.9.2 中序非递归算法 (20)6.9.3 后序非递归算法 (21)第6章二叉树和树6.1 树的定义和基本术语1、树的递归定义1)结点数n=0时,是空树2)结点数n>0时有且仅有一个根结点、m个互不相交的有限结点集——m棵子树2、基本术语结点:叶子(终端结点)、根、内部结点(非终端结点、分支结点);树的规模:结点的度、树的度、结点的层次、树的高度(深度)结点间的关系:双亲(1)—孩子(m),祖先—子孙,兄弟,堂兄弟兄弟间是否存在次序:无序树、有序树去掉根结点非空树森林引入一个根结点3、树的抽象数据类型定义树特有的操作:查找:双亲、最左的孩子、右兄弟结点的度不定,给出这两种操作可以查找到一个结点的全部孩子插入、删除:孩子遍历:存在一对多的关系,给出一种有规律的方法遍历(有且仅访问一次)树中的结点ADT Tree{数据对象:D={a i | a i∈ElemSet, i=1,2,…,n, n≥0}数据关系:若D为空集,则称为空树;若D仅含一个数据元素,则R为空集,否则R={H},H是如下二元关系:(1) 在D中存在唯一的称为根的数据元素root,它在关系H下无前驱;(2) 若D-{root}≠Ф,则存在D-{root}的一个划分D1, D2, …, D m (m>0)(D i 表示构成第i棵子树的结点集),对任意j≠k (1≤j, k≤m) 有D j∩D k=Ф,且对任意的i (1≤i≤m),唯一存在数据元素x i∈D i, 有<root,x i>∈H(H表示结点之间的父子关系);(3) 对应于D-{root}的划分,H-{<root, x1>,…, <root, x m>}有唯一的一个划分H1, H2, …, H m(m>0)(H i表示第i棵子树中的父子关系),对任意j≠k(1≤j,k≤m)有H j∩H k=Ф,且对任意i(1≤i≤m),H i是D i上的二元关系,(D i, {H i})是一棵符合本定义的树,称为根root的子树。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章树和二叉树 6.1树(tree)的概念在日常生活中,可以见到很多情形可以归结为树结构。
如:家族谱系、行政管理机构、DOS和Windows 磁盘文件管理系统等。
我们讨论的树和自然界的树在生长方向上正好相反,它是倒长的树,即根朝上,枝干和叶子朝下。
例1:某家族谱系的一部分例2:国家行政管理机构的一部分例3:DOS和Windows磁盘文件的一部分C:\TC20VC6.0数据结构课件数据结构讲稿第一章第二章……MyTc程序Tc1Tc2……MyVc程序Vc1Vc2……树是一种层次结构,属于非线性结构。
我们学过的线性表可以灵活组织数据,但它受到线性结构的限制,表达层次结构不太方便。
6.1.1树的定义·树T是n(n≥0)个结点的有限集合。
它满足:(1)仅有一个特定的结点,称为根(root)结点;(2)其余结点分为m(m≥0)个互不相交的非空有限集合T,1,T2,……,T m,其中每个集合自身又是一棵树,称为根的子树(subtree)。
·为了表述方便,把没有结点的树称为空树。
·树的定义具有递归性:即一棵树是由根及若干棵子树构成的,而子树又是由根及若干棵子树构成的,……。
表达树的方法通常有4种:树形、凹入、集合和广义表(1) 树形表示法AB C DE F G H(2)凹入表示法ABCEFDGH(3)集合嵌套表示法A○E C○F○G D○H B(4)广义表表示法T(A(B,C(E,F),D(G,H)))6.1.3 树的基本术语为了对树的形态表述清楚和形象,通常引用树和人的特征及术语来描述。
(1)结点和树的度(degree)结点所拥有的子树的个数称为该结点的度,而树中各结点的度的最大值称为该树的度。
AB C DE F G H如:·结点B、E、F、G和H的度数是0·结点C和D的度数都是2·结点A的度数是3;显然3也是树的度数(2)叶子(leaf)结点和分支结点度为0的结点称为叶子结点(终端结点);度不为0的结点称为分支结点(非终端结点)。
一棵树除了叶子结点就是分支节点。
AB C DE F G H如:·结点B、E、F、G和H是叶子结点·结点A、C和D是分支结点(3)孩子(child)结点、双亲(parents又称父亲)结点、兄弟(brother)及堂兄弟结点树中一个结点的子树的根称为该结点的孩子,该结点称为其孩子结点的双亲结点。
同一个双亲的孩子结点互称为兄弟。
双亲在同一层的结点互为堂兄弟。
AB C DE F G H如:·结点B、C和D均为结点A的孩子结点;A是B、C和D的双亲结点·结点E和F为孩子C的结点;C是E和F的双亲结点·结点G和H为孩子D的结点;D是G和H的双亲结点·显然结点A没有双亲结点(因为A不是子树的根)·结点B、C和D互为兄弟;结点E和F互为兄弟;结点G和H互为兄弟。
但结点E、F为一方和G、H 为另一方互为堂兄弟(4)祖先(ancestor)和子孙(descendant)结点的祖先是从根到该所经分支上的所有结点。
反之,以某结点为根的子树中的任一结点称为该结点的子孙。
显然祖先和子孙关系是父子关系的延伸。
AB C DE F G H如:·结点A是结点B、C、D、E、F、G和H的祖先;反之,结点B、C、D、E、F、G和H是的结点A的子孙(5)结点的层数(level)和树的深度(depth,或称高度height)结点的层次从根结点开始算起,根结点的层数为1,其余结点的层数等于其双亲结点的层数加1。
比如,如果某个结点的层数为h,则其子树就在第h+1层。
树中各个结点层数的最大值称为树的深度(高度)。
AB C DE F G H如:·结点A的层数为1;结点B、C和D的层数为2;结点E、F、G和H的层数为3·树的深度(高度)为3。
(6)有序树(orderedtree)和无序树(unorderedtree)若一棵树中结点的各子树从左到右是有次序的,即若交换了某结点各子树的相对位置就构成不同的树,则称这棵树为有序树,否则称为无序树。
(7)路径(path)从树中的一个结点到另一个结点的路途AB C DE F G H如:A-C-E,A-D-H等但B-A-D-G不是路径,因为树不能这样遍历。
(8)森林(forest):m(m≥0)棵互不相交的树的集合AB C DE F G HAB C D树的逻辑关系:(1)树的任一结点都可以有0个或多个直接的后继结点(孩子,这也是非线性的原因),但至多只能有一个直接的前驱结点(双亲结点);(2)只有根结点没有前驱,叶子结点(终端结点)没有后继;(3)祖先与子孙关系是父子关系的延伸,它定义了树中各结点之间的纵向次序;(4)在有向树中,同一组兄弟结点从左至右有长幼之分。
它定义了树中各结点之间的横向次序。
6.1.4树的基本操作常见的操作:建立、遍历、查询、求深度、求结点的双亲和孩子、求树的深度、求结点的层数和判空等。
6.2 二叉树一般的树规律性差,二叉树结构简单,存储和处理相对容易,而且一般的树可以转化为二叉树处理。
6.2.1二叉树的定义·二叉树是n (n ≥0)个结点的有限集合,除了空树(n=0)之外,由一个根结点及两棵不相交的左子树和右子树组成;·二叉树每个结点的度数≤2;·二叉树的定义是一个递归定义。
二叉树有5种基本形态:❶空树 Φ❷只有根结点 ○A❸只有右子树○A ○C❹只有左子树○A○B❺完整二叉树○A○B ○C6.2.2 二叉树的性质性质1:二叉树的第i 层的结点数量最多为)1(21≥-i i 。
证明:第1层的结点数目最多为1(20),第2层的结点数目最多为2(21),……,则第i 层的结点数目最多为21-i 。
性质2:深度为k 的二叉树结点数目最多为)1(12≥-k k。
证明:当其每层的结点数达到最大值时,该二叉树的结点数最多,由性质1可知,深度为k 的二叉树结点数是:122222121......-=++++-kk 。
性质3:在任意二叉树中,若叶子(终端)结点的个数为n 0,度为2的结点数为n 2,则有12+=n n 。
证明:设n 为结点总数,n 1为1度的结点数,则n n n n 21++=(公式1)先分析二叉树的结点度数和分支数的关系: 由于度数为2的结点有两个分支,度数为1的结点有一个分支,度数为0的结点没有分支,所以总的分支数为n n 212+;AB CD E F G此外,再分析二叉树的双亲结点和分支数的关系: 除根结点之外的每个结点都是其双亲结点的一个分支,所以总分支数为1-n ,可得关系式1212-=+n n n ,即1212++=n n n (公式2); 由公式1和2,可得120+=n n ,证毕。
如:叶子数为3(C ,E ,F ),度数为2的结点数为2(A ,B ), 满足性质3。
又如:叶子数为2(F ,G ),度数为2的结点数为1(A ),满足性质3。
●满二叉树的定义:深度为k (k ≥1)且结点数为12k的二叉树。
满二叉树的结点数达到最大值。
如:深度为3的满二叉树结点达到7个●完全二叉树的定义:对于满二叉树的结点,按下列规则编号:❶从根结点开始,自上而下;A1B2 C3D4 E5 F6 G7❷同一层自左至右。
满二叉树的结点编号后,任意取满二叉树的前若干个连续的结点所对应的二叉树,称为完全二叉树。
完全二叉树中,除最后一层外,其余各层均是满的,最后一层,结点连续出现在左边。
如:深度为4的完全二叉树又如:第2层结点不是连续出现在左侧,所以不是完全二叉树再如:第3层未满,所以不是完全二叉树性质4:具有n 个结点的完全二叉树的深度为:1+n log 2(int)。
证明:由完全二叉树和满二叉树的关系可知,一棵深度为k 的完全二叉树的结点数必介于深度为k-1和深度为k 的满二叉树的结点数之间,则有12121-≤<--kk n (取等号的情况是:完全二叉树是深度为k 的满二叉树),由此推出21221kk k n <-≤≤-,即kn k <≤-log 21,所以n k log 2(int)1+=性质5:如果一棵完全二叉树有n 个结点,对所有结点按层次编号(即从上到下),每层从左到右从1开始编号,则对任意结点i (1≤i ≤n ),有: ❶若i=1,则其为根,没有双亲。
若i>1,则其双亲为(int)(i/2);❷若2i ≤n (即它有左子树),则其左子树编号为2i;若2i>n ,则其无左子树。
若2i+1≤n (即它有右子树),则其右子树的编号为2i+1; 若2i+1>n ,则其无右子树。
分析:编号为i=4的结点D,该树的结点数n=10;因i>1,所以其双亲结点是(int)(i/2)=2(即B);又因2i=2*4≤10,所以该结点有左子树,左孩子编号为2i=8(即H);再因2i+1=9≤10,所以该结点有右子树,右孩子编号为2i+1=9(即I)再分析:编号为i=5的结点E,因i>1,所以其双亲结点是(int)(i/2)=2(即B);又因2i=2*5≤10,所以该结点有左子树,左孩子编号为2i=10(即J);再因2i+1=11>10,所以该结点没有右子树。
6.3 二叉树的存储结构常用顺序存储结构和链式存储结构。
6.3.1 二叉树的顺序存储结构·对于完全二叉树进行结点编号后,编号可以反映结点的分支和从属关系,可以将这些结点存入一维数组,编号和数组下标可以对应起来。
·对于一般的二叉树,不易直接采用顺序存储,可以补成完全二叉树后再用顺序存储的方法存储。
以上两点是定义完全二叉树的原因之一。
如:一棵普通二叉树由上图用虚结点(@)补成的完全二叉树再顺序存储位置[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]结点 A B C @ D E @ @ @ F @ @ G定义:#define MAXSIZE 100typedef char DataType;typedef struct{DataType bt[MAXSIZE+1];int num;}SeqBTree;·顺序存储结构比较适合于完全全二叉树,对于一般的二叉树需要引进虚结点,补成完全二叉树后再顺序存储。
6.3.2 二叉树的链式存储结构结点模式:root定义:typedef struct node A^ B C ^D ^ ^ E^ F ^ ^ G ^lchild data rchild{DataType data;struct node *lchild,*rchild;}BTree;此种定义称为二叉树的二叉链表。