X射线衍射实验样品制备要求

合集下载

x射线物相分析实验报告

x射线物相分析实验报告

x射线物相分析实验报告X射线物相分析实验报告引言:X射线物相分析是一种常用的实验方法,用于研究材料的晶体结构和组成。

通过观察和分析X射线的衍射图案,我们可以得到材料的晶体结构、晶格参数以及晶体中原子的排列方式等重要信息。

本实验旨在通过X射线物相分析技术,对给定的材料样品进行结构分析,并探索其性质和应用。

实验方法:1. 样品制备:首先,我们选择了一种具有特定晶体结构的材料作为研究对象。

然后,将样品制备成粉末状,以便于进行X射线衍射实验。

制备过程中需要注意避免杂质的混入,以保证实验结果的准确性。

2. X射线衍射实验:将制备好的样品放置在X射线衍射仪器中,调整仪器参数,如入射角度、扫描范围等。

通过控制X射线的入射角度和扫描范围,我们可以获取不同角度下的衍射图案。

实验过程中需要保证仪器的稳定性和准确性,以获得可靠的实验结果。

结果与讨论:通过X射线衍射实验,我们获得了样品在不同角度下的衍射图案。

根据这些衍射图案,我们可以进行结构分析和晶格参数计算。

1. 结构分析:通过对衍射图案的观察和分析,我们可以确定样品的晶体结构。

根据布拉格方程和衍射峰的位置、强度等信息,我们可以推断出晶体中原子的排列方式和晶胞结构。

这对于研究材料的性质和应用具有重要意义。

2. 晶格参数计算:通过测量衍射图案中的衍射角度和计算相关的几何参数,我们可以得到样品的晶格参数。

晶格参数是描述晶体结构的重要参数,它们的大小和比例关系直接影响材料的性质和行为。

通过计算晶格参数,我们可以进一步了解样品的结构特征和晶体生长方式。

结论:通过X射线物相分析实验,我们成功地对给定的材料样品进行了结构分析和晶格参数计算。

通过观察和分析衍射图案,我们得到了样品的晶体结构和晶格参数等重要信息。

这些结果对于研究材料的性质和应用具有重要意义,为进一步深入研究和应用提供了基础。

总结:X射线物相分析是一种重要的实验方法,通过观察和分析X射线的衍射图案,可以获得材料的晶体结构和组成等关键信息。

XRD制样需要注意几点?

XRD制样需要注意几点?

Xrd可以测量块状和粉末状的样品,对于不同的样品尺寸和样品性质有不同的要求,下面对分别对其作简要的介绍。

XRD样品制样要求XRD可以测量块状和粉末状的样品,对于不同的样品尺寸和样品性质有不同的要求,下面对分别对其作简要的介绍:XRD样品制备(a)块状样品的要求及制备•对于非断口的金属块状试样,需要了解金属自身的相组成、结构参数时,应该尽可能的磨成平面,并进行简单的抛光,这样不但可以去除金属表面的氧化膜,也可以消除表面应变层。

然后再用超声波清洗去除表面的杂质,但要保证试样的面积应大于10mm*10mm,因为xrd是扫过一个区域得到衍射峰,对试样需要一定的尺寸要求。

•对于薄膜试样,其厚度应大于20nm,并在做测试前检验确定基片的取向,如果表面十分不平整,根据实际情况可以用导电胶或者橡皮泥对样本进行固定,并使样品表面尽可能的平整。

•对于片状、圆柱状的试样会存在严重的择优取向,造成衍射强度异常,此时在测试时应合理的选择响应方向平面。

•对于断口、裂纹的表面衍射分子,要求端口尽可能的平整并提供断口所含元素。

(b)粉末样品的要求及制备颗粒度的要求:对粉末样品进行X射线粉末衍射仪分析时,适宜的晶粒大小应在320目粒度(约40um)的数量级内,这样可以避免衍射线的宽化,得到良好的衍射线。

样品试片平面的准备:在X射线衍射时,虽然样品平面不与衍射仪轴重合、聚焦圆相切会引起衍射线的宽化、位移及强度发生复杂的变化,但在实际试验中,如要求准确测量强度时,一般首先考虑如何避免择优取向的产生而不是平整度。

(避免择优取向的措施:•使样品粉末尽可能的细,装样时用筛子筛入,先用小抹刀刀口剁实并尽可能轻压等等。

•把样品粉末筛落在倾斜放置的粘有胶的平面上通常也能减少择优取向,但是得到的样品表面较粗糙。

•通过加入各向同性物质(如 MgO,CaF2等)与样品混合均匀,混入物还能起到内标的作用。

•对于具有十分细小晶粒的金属样品,采用形变的方法(碾、压等等)把样品制成平板使用时也常常会导致择优取向的织构,需要考虑适当的退火处理。

九..X-射线衍射微纤丝角

九..X-射线衍射微纤丝角

实验报告五X-射线衍射实验一、实验目的掌握X-射线衍射仪的操作方法二、实验材料木片:杉木三、实验条件采用逐步扫描法,X-射线(Cu):电压40Kv,电流30Ma;角度:分离度1.00000deg,扫描度1.00000deg,接受度0.30000mm;扫描:驱动轴1Theta-2Theta 联动,扫描范围10.000-40.000,扫描方式连续扫描,扫描速度2.0000deg/min,样品倾斜0.0200deg;调整时间0.60sec。

四、实验步骤(一)、操作1、样品制备:将木材沿弦切面切成0.6mm左右厚度,20mm长度,5mm宽度的木片作为样品。

2、在X射线衍射仪的旋转靶台上安装好样品。

3、装上样品,先进行X射线衍射测试,绘出图线,进行初步数据处理,取衍射峰最高处的衍射强度,记录下对应的2θ值。

然后选定2θ,使入射X射线垂直样品。

绕转试样,使角度从0°转动到360°,扫描时间3min左右,同时在记录仪上记录强度分布曲线。

仪器具体使用方法如下:a、开启冷却水b、开启XRD电源c、启动计算机,在XRD稳定两分钟左右后,进入桌面Pmgr系统,将被测样品放置在测试架上。

d、点击画面上Display&Setup,点击Close出现对话框后,在点击确认e、点击画面上Right Conio condition,双击空白处,出现Standard Condition Edit对话框,进行实验条件设定及对样品取名;同时点击上RightConio Analysis。

f、实验条件设定以后,点击Append、start。

进入Right Conio Analysis 画面,点击start,XRD开始测试。

g、点击画面上Basic Process,进行数据处理,选取峰值4、按0.4T法,根据衍射曲线,算出木材样品的平均微纤丝角θ。

(二)、数据处理1、点击画面上Search Match,进行定性分析。

XRD制样的方法及注意事项

XRD制样的方法及注意事项

XRD制样的方法及注意事项如何制备XRD样品?字体:小中大 |打印发表于: -10-25 09:55 作者: wtz010 来源: 分析测试百科网查看完整版本请点击这里:如何制备XRD样品?对于样品的准备工作,必须有足够的重视。

常常由于急于要看到衍射图,或舍不得花必要的功夫而马虎地准备样品,这样常会给实验数据带入显著的误差甚至无法解释,造成混乱。

准备衍射仪用的样品试片一般包括两个步骤:首先,需把样品研磨成适合衍射实验用的粉末;然后,把样品粉末制成有一个十分平整平面的试片。

整个过程以及之后安装试片、记录衍射谱图的整个过程,都不允许样品的组成及其物理化学性质有所变化。

确保采样的代表性和样品成分的可靠性,衍射数据才有意义。

1.1 对样品粉末粒度的要求任何一种粉末衍射技术都要求样品是十分细小的粉末颗粒,使试样在受光照的体积中有足够多数目的晶粒。

因为只有这样,才能满足获得正确的粉末衍射图谱数据的条件:即试样受光照体积中晶粒的取向是完全机遇的。

这样才能保证用照相法获得相片上的衍射环是连续的线条;或者,才能保证用衍射仪法获得的衍射强度值有很好的重现性。

另外,将样品制成很细的粉末颗粒,还有利于抑制由于晶癖带来的择优取向;而且在定量解析多相样品的衍射强度时,能够忽略消光和微吸收效应对衍射强度的影响。

因此在精确测定衍射强度的工作中(例如相定量测定)十分强调样品的颗粒度问题。

对于衍射仪(以及聚焦照相法),实验时试样实际上是不动的。

即使使用样品旋转器,由于只能使样品在自身的平面内旋转,并不能很有效的增加样品中晶粒取向的随机性,因此衍射仪对样品粉末颗粒尺寸的要求比粉末照相法的要求高得多,有时甚至那些能够经过360目(38μm)粉末颗粒都不能符合要求。

对于高吸收的或者颗粒基本是个单晶体颗粒的样品,其颗粒大小要求更为严格。

例如,石英粉末的颗粒大小至少小于5μm,同一样品不同样片强度测量的平均偏差才能达到1%,颗粒大小若在10μm以内,则误差在2~3%左右。

x射线衍射分析实验报告

x射线衍射分析实验报告

x射线衍射分析实验报告X射线衍射分析实验报告。

实验目的:本实验旨在通过X射线衍射技术对晶体结构进行分析,以了解晶体的结构和性质,并掌握X射线衍射技术的基本原理和操作方法。

实验仪器与设备:1. X射线衍射仪,用于产生X射线,并测量样品对X射线的衍射情况。

2. 样品,需要进行分析的晶体样品。

3. 数据处理软件,用于处理和分析实验得到的数据。

实验步骤:1. 样品制备,取得晶体样品,进行必要的处理和制备。

2. 实验仪器准备,打开X射线衍射仪,调试仪器参数,确保仪器正常工作。

3. 进行X射线衍射,将样品放置在X射线衍射仪中,进行X射线衍射实验。

4. 数据处理与分析,使用数据处理软件对实验得到的数据进行处理和分析,得出样品的晶体结构信息。

实验结果与分析:通过本次实验,我们成功得到了样品的X射线衍射图谱,并进行了数据处理和分析。

根据X射线衍射图谱的特征峰值和衍射角度,我们确定了样品的晶体结构信息,包括晶格常数、晶胞结构等。

通过对实验数据的分析,我们得出了样品的晶体结构参数,并对样品的性质进行了初步了解。

实验结论:本次实验通过X射线衍射技术对样品的晶体结构进行了分析,得出了样品的晶体结构信息,并初步了解了样品的性质。

实验结果表明,X射线衍射技术是一种有效的手段,可用于分析晶体结构和性质。

通过本次实验,我们对X射线衍射技术有了更深入的了解,并掌握了X射线衍射技术的基本原理和操作方法。

实验总结:本次实验对我们了解晶体结构分析技术具有重要意义,通过实际操作,我们深入掌握了X射线衍射技术的原理和方法。

同时,本次实验也为我们今后的科研工作奠定了基础,为我们进一步深入研究晶体结构和性质打下了良好的基础。

希望通过今后的努力,能够更深入地探索X射线衍射技术在晶体结构分析中的应用,为科学研究做出更大的贡献。

通过本次实验,我们不仅学习到了X射线衍射技术的基本原理和操作方法,还对晶体结构分析有了更深入的了解。

我们相信,通过不断的学习和实践,我们一定能够运用所学知识,取得更加丰硕的科研成果。

xrd制样要求

xrd制样要求

“涂片法”所需的样品量最少。把粉末撒在一片大小约 25×35×1mm3的显微镜载片上(撒粉的位置要相当于制样框窗孔位置),然后加上足够量的丙酮或酒精(假如样品在其中不溶解),使粉末成为薄层浆液状,均匀地涂布开来,粉末的量只需能够形成一个单颗粒层的厚度就可以,待丙酮蒸发后,粉末粘附在玻璃片上,可供衍射仪使用,若样品试片需要永久保存,可滴上一滴稀的胶粘剂。
对于样品的准备工作,必须有足够的重视。常常由于急于要看到衍射图,或舍不得花必要的功夫而马虎地准备样品,这样常会给实验数据带入显著的误差甚至无法解释,造成混乱。
准备衍射仪用的样品试片一般包括两个步骤:
首先,需把样品研磨成适合衍射实验用的粉末;
然后,把样品粉末制成有一个十分平整平面的试片。
然而,如果为了研究样品的某一特征衍射,择优取向却是十分有用的,此时,制样将力求使晶粒高度取向,以得到某一晶面的最大强度,例如在粘土矿物的鉴定与研究中,001衍射具有特别的价值,故它们的X射线衍射分析常在样品晶粒的定向集合体上进行,需要制作所谓“定向试片”。
1.3 关于样品试片的厚度
样品对X射线透明度的影响,跟样品表面对衍射仪轴的偏离所产生的影响类似,会引起衍射峰的位移和不对称的宽化,此误差使衍射峰位移向较低的角度,特别是对线吸收系数μ值小的样品,在低角度区域引起的位移Δ(2θ)会很显著。
此外,将样品制成很细的粉末颗粒,还有利于抑制由于晶癖带来的择优取向;而且在定量解析多相样品的衍射强度时,可以忽略消光和微吸收效应对衍射强度的影响。所以在精确测定衍射强度的工作中(例如相定量测定)十分强调样品的颗粒度问题。
对于衍射仪(以及聚焦照相法),实验时试样实际上是不动的。即使使用样品旋转器,由于只能使样品在自身的平面内旋转,并不能很有效的增加样品中晶粒取向的随机性,因此衍射仪对样品粉末颗粒尺寸的要求比粉末照相法的要求高得多,有时甚至那些可以通过360目(38μm)粉末颗粒都不能符合要求。对于高吸收的或者颗粒基本是个单晶体颗粒的样品,其颗粒大小要求更为严格。

X 射线衍射测试样品制备方法

X 射线衍射测试样品制备方法

X 射线衍射仪(XRD)
(1)
在1D XRD测试中,样品的制备方法主要有两种:(1)将固体粉末铺洒在干净的硅片基底上,加热至熔融态以消除样品的热历史,以0.5 °C/min 速率缓慢降至室温,提供足够长的退火时间使得样品结构充分地发育,该方法操作简单,适用于热稳定性好的样品;(2)将固体样品溶于有机溶剂(沸点通常低于100 °C,挥发性视样品性质而定),配制成~20 mg/mL的浓溶液,将其在硅片基底上浇膜。

在合适温度(通常为室温)下将溶剂挥发完全,然后升温高于溶剂沸点,真空干燥12 h后测试。

该方法需要避免薄膜中存在气泡,溶剂需要挥发完全,适用于热稳定性较差的样品。

(2)
在2D XRD测试中,样品的常规制备方法为:将样品加热至各向同性态,然后降温到液晶相温度区间,在刮刀与样品共同恒温一段时间后,使用刮刀迅速剪切样品取向。

样品剪切取向后,或淬冷至室温,或恒温退火一段时间后缓慢降至室温,视样品情况而定。

另外,样品还可拉伸制成纤维进行取向:将样品加热至各向同性态,然后降温到液晶相温度区间,在镊子与样品共同恒温一段时间后,使用镊子迅速夹住样品拉起,淬冷至室温。

(3)
在变温小角X射线散射测试中,样品用铝箔包裹,达到每个温度后需要稳定15分钟,然后进行测试,曝光时间为25 min。

热台控温范围为室温至300 °C,精度为±0.1 °C。

多晶材料x射线衍射 实验原理 方法与应用

多晶材料x射线衍射 实验原理 方法与应用

多晶材料x射线衍射实验原理方法与应用多晶材料x射线衍射是一种非常重要的材料结构表征方法,可以用来确定晶体结构、晶格常数、晶面间距、晶胞参数等信息。

本文将介绍多晶材料x射线衍射的实验原理、方法和应用。

实验原理
多晶材料x射线衍射法是利用x射线与晶体中的原子作用而产生衍射现象的一种方法。

当x射线入射晶体后,会与晶体中的原子发生作用,形成散射波,这些散射波在晶体中的原子排列方式的影响下,会发生干涉,最终形成衍射花样。

通过分析衍射花样,可以获得晶体的结构信息。

方法
多晶材料x射线衍射的实验步骤主要包括样品制备、x射线衍射仪调试、数据采集和数据处理等环节。

样品制备:样品需要磨成粉末或者切成薄片,以便x射线可以穿透并与其发生作用。

x射线衍射仪调试:确定适当的x射线波长、角度等参数,保证x射线能够穿透样品并产生足够的衍射强度。

数据采集:将x射线衍射仪测得的衍射花样数据记录下来,通常是以衍射强度随衍射角度的变化曲线的形式呈现。

数据处理:通过计算和分析衍射曲线,可以得到晶体的结构信息。

应用
多晶材料x射线衍射法在材料科学、地质学、化学等领域得到了
广泛应用。

其中,材料科学领域是其最主要的应用领域之一。

该方法可以用于研究材料的结构、相变、缺陷、应力等问题,对于新材料的设计、合成和改进具有重要意义。

此外,多晶材料x射线衍射法也可以用于分析矿物、岩石等地质样品的结构特征,为地质学研究提供了有力的工具。

xrd的操作规程及注意事项

xrd的操作规程及注意事项

xrd的操作规程及注意事项X射线衍射(XRD)是一种常用的材料分析技术,可以用于分析材料的物相组成、结构信息以及晶体品质。

这篇文章将介绍X射线衍射的操作规程及注意事项,帮助读者正确进行XRD实验。

一、XRD的操作规程:1. 实验前准备:在进行XRD实验之前,需要对样品进行适当的制备。

样品应尽可能地细粉,并保持干燥。

如果样品是多晶粉末,可以直接进行测试。

如果样品是单晶,需要进行切片或折射衍射实验。

此外,还需要对X射线源和探测器进行适度的准备和检查,确保它们的工作状态良好。

2. 实验仪器设置:根据样品的性质和研究目的,选择合适的仪器参数进行设置。

这些参数包括入射角、旋转范围、扫描速度等。

3. 样品安置:将样品放置于仪器的样品台上,并使用夹具固定好。

应尽量使得样品均匀分布在样品台上,并避免遮挡X射线束的区域。

4. X射线衍射测量:根据设定的参数,通过仪器软件启动测量程序。

仪器会自动旋转样品台,记录X射线在不同角度下的衍射图样。

5. 数据处理和分析:通过仪器软件或专用的数据处理软件对测得的衍射数据进行处理和分析。

常见的处理方法包括峰识别、峰位测量、峰宽分析等。

二、XRD的注意事项:1. 实验室安全:在进行XRD实验时,应遵守实验室的安全规范,佩戴个人防护装备,如实验手套、护目镜等。

避免直接暴露于X射线源下方。

2. 样品处理:在处理样品时,应避免接触皮肤和口鼻,以免吸入或摄入有害物质。

在使用化学药品时,应注意防护和储存。

3. 仪器操作:在使用X射线衍射仪器时,应仔细阅读仪器操作手册,并按照要求正确操作。

遵守指示灯和警示标志的提示。

4. 样品准备与放置:样品制备需避免出现杂质,并尽量使其粒度均匀。

在放置样品时,要确保样品稳定,避免晃动或掉落。

5. 参数设置:正确选择仪器参数十分重要。

不同样品可能需要不同的参数,例如入射角、旋转范围和扫描速度等。

确保参数的准确性和合理性。

6. 结果解读:在进行数据处理和分析时,需要注意对结果的准确解读。

实验:X射线衍射法进行物相定性分析1

实验:X射线衍射法进行物相定性分析1

实验:X射线衍射法进行物相定性分析1
X射线衍射法是物相分析的一种重要手段,通过衍射图谱的分析可以确定样品的晶体结构和物相组成。

本实验选用了Cu管作为X射线管,通过旋转样品和测量X射线衍射的强度来获取样品的衍射图谱,并对其进行分析。

实验步骤:
1.制备样品:选用了两种不同晶体结构的样品,分别是纯Fe和无序的Fe-10Ni合金。

将样品研磨成细粉末,用细铜网包裹成小束,保持紧密。

2.测量样品的X射线衍射图谱:将Cu管电压设置为40kV,电流为30mA,使其发射X 射线,并将样品放置在样品台上,保持样品细铜网与X射线的垂直方向。

利用物理学中的蒙蒂卡洛法,通过许多随机数据点在样品和探测器间隔中计算出每个角度的强度数据。

在一定角度范围内旋转样品,利用计算机将每个角度的数据转化为强度数据,并绘制出样品的X射线衍射图谱。

分析结果:
分析纯Fe的衍射图谱,可以发现其峰位与标准铁的衍射图谱一致,证明其组成为纯Fe的晶体结构。

分析Fe-10Ni的衍射图谱,发现其具有明显的衍射峰,但是衍射峰的位置与标准Fe和Ni的衍射图谱均不一致,说明该样品为Fe-10Ni的无序合金,其晶体结构无规则分布。

总结:
本实验选用X射线衍射法对纯Fe和Fe-10Ni的样品进行了物相分析,并成功地确定了它们的晶体结构和物相组分。

X射线衍射法具有非破坏性、精度高、可重复性好等优点,是物相分析中重要的手段之一。

XRD物相分析实验报告

XRD物相分析实验报告

XRD物相分析实验报告X射线衍射(XRD)是一种常用的物相分析技术,通过分析物质的衍射图谱,可以确定样品的晶体结构、晶粒尺寸、晶体取向等信息。

本实验旨在利用XRD技术对一系列样品进行物相分析,并对实验结果进行分析和讨论。

实验仪器及试剂:1.X射线衍射仪:用于测量样品的XRD图谱。

2.样品:包括无定形材料、多晶材料和单晶材料等。

实验步骤:1.准备样品:将样品制备成均匀颗粒,并保持表面平整。

2.调节仪器参数:根据实际需要,选择适当的X射线波长和扫描范围,并调节其他参数如扫描速度、脉冲时间等。

3.测量样品的XRD图谱:将样品放置在X射线衍射仪的样品台上,通过扫描仪器开始测量。

4.数据处理:将测得的强度-2θ数据转换为曲线图,并对图谱进行标定和解析。

实验结果:[插入XRD图谱]通过比对已知标准样品的XRD图谱数据库,确定了样品的物相成分。

同时,可以利用XRD图谱确定样品的相对晶胞参数和晶体取向信息。

实验讨论:根据实验结果,我们可以得出如下结论:1.样品A的XRD图谱显示出峰位集中、峰型尖锐的特点,表明样品A是单晶材料。

进一步分析发现,样品A的晶体结构为立方晶系,晶胞参数为a=5Å。

2.样品B的XRD图谱呈现出多个峰位的广谱特征,表明样品B是多晶材料。

进一步分析发现,样品B的晶体结构为正交晶系,晶胞参数为a=4Å,b=6Å。

3.样品C的XRD图谱呈现出连续且平坦的背景特征,表明样品C为无定形材料。

由于无定形材料不具备明确的晶胞参数和晶体结构,因此无法进一步分析。

实验总结:XRD技术是一种广泛应用于物相分析的方法,在材料科学、地球科学、化学等领域均有重要应用。

通过XRD实验,我们能够确定样品的晶体结构和成分,为进一步的材料研究提供重要信息。

在实验中,我们需要合理选择X射线波长和仪器参数,确保获得准确可靠的实验结果。

在实验结果的分析中,还需要参考已知标准样品库,结合实验条件和样品特性,进行准确的物相分析。

X射线衍射实验样品制备要求

X射线衍射实验样品制备要求

X射线衍射实验样品制备要求1.金属样品如块状、板状、圆拄状要求磨成一个平面,面积不小于10X10毫米,如果面积太小可以用几块粘贴一起。

对于片状、圆拄状样品会存在严重的择优取向,衍射强度异常.因此要求测试时合理选择响应的方向平面。

对于测量金属样品的微观应力(晶格畸变),测量残余奥氏体,要求样品不能简单粗磨,要求制备成金相样品,并进行普通抛光或电解抛光,消除表面应变层。

2.粉末样品要求磨成320目的粒度,约40微米.粒度粗大衍射强度底,峰形不好,分辨率低。

要了解样品的物理化学性质,如是否易燃,易潮解,易腐蚀、有毒、易挥发. 粉末样品要求在3克左右,如果太少也需5毫克。

样品可以是金属、非金属、有机、无机材料粉末。

X射线光电子能谱1。

样品的大小块状样品和薄膜样品,其长宽最好小于10mm, 高度小于5 mm。

对于体积较大的样品则必须通过适当方法制备成合适大小的样品。

但在制备过程中,必须考虑处理过程可能对表面成分和状态的影响.2。

粉体样品对于粉体样品有两种常用的制样方法。

一种是用双面胶带直接把粉体固定在样品台上,另一种是把粉体样品压成薄片,然后再固定在样品台上。

前者的优点是制样方便,样品用量少,预抽到高真空的时间较短,缺点是可能会引进胶带的成分。

后者的优点是可以在真空中对样品进行处理,如加热,表面反应等,其信号强度也要比胶带法高得多。

缺点是样品用量太大,抽到超高真空的时间太长.在普通的实验过程中,一般采用胶带法制样。

3。

含有有挥发性物质的样品对于含有挥发性物质的样品,在样品进入真空系统前必须清除掉挥发性物质。

一般可以通过对样品加热或用溶剂清洗等方法。

4. 带有微弱磁性的样品由于光电子带有负电荷,在微弱的磁场作用下,也可以发生偏转.当样品具有磁性时,由样品表面出射的光电子就会在磁场的作用下偏离接收角,最后不能到达分析器,因此,得不到正确的XPS谱。

此外,当样品的磁性很强时,还有可能使分析器头及样品架磁化的危险,因此,绝对禁止带有磁性的样品进入分析室。

x射线 衍射实验报告

x射线 衍射实验报告

x射线衍射实验报告X射线衍射实验报告引言:X射线衍射是一种重要的实验方法,通过观察X射线在晶体中的衍射现象,可以得到晶体的结构信息。

本实验旨在通过测量X射线的衍射图样,分析晶体的晶格常数和晶体结构。

实验步骤:1. 实验仪器准备:实验中我们使用了一台X射线衍射仪,该仪器由X射线源、样品台和衍射屏组成。

在实验开始前,我们首先调整好仪器的位置和角度,确保X射线源正对着样品台,并使得衍射屏处于最佳观察位置。

2. 样品制备:为了进行衍射实验,我们需要制备一些晶体样品。

在本实验中,我们选择了晶体A和晶体B作为样品。

首先,我们将晶体A和晶体B分别放置在样品台上,并调整好其位置,使得晶体表面垂直于入射X射线。

3. 测量衍射图样:当样品台上的晶体A和晶体B受到X射线照射时,会产生衍射现象。

我们将观察衍射屏上的图样,并使用标尺测量不同衍射斑的位置和强度。

通过记录不同衍射斑的位置和强度,我们可以得到晶体的衍射图样。

结果与分析:通过实验测量得到的衍射图样,我们可以观察到明显的衍射斑。

根据这些衍射斑的位置和强度,我们可以计算出晶体的晶格常数和晶体结构。

首先,我们通过测量不同衍射斑的位置,可以利用布拉格方程计算晶体的晶格常数。

布拉格方程表示为:nλ = 2dsinθ,其中n为衍射阶数,λ为入射X射线的波长,d为晶格常数,θ为衍射角。

通过测量不同衍射斑的位置并代入布拉格方程,我们可以得到晶体的晶格常数。

其次,通过观察衍射斑的强度分布,我们可以推断出晶体的结构信息。

不同的晶体结构会导致不同的衍射斑强度分布。

通过与已知晶体结构的对比,我们可以确定晶体的结构类型。

讨论与结论:在本实验中,我们成功地进行了X射线衍射实验,并通过测量衍射图样得到了晶体的晶格常数和结构信息。

通过这些结果,我们可以进一步了解晶体的性质和结构。

然而,需要注意的是,X射线衍射实验只能提供晶体结构的一些基本信息,对于复杂的晶体结构,可能需要结合其他实验方法进行进一步研究。

x射线样品制备

x射线样品制备

x射线样品制备X射线样品制备是为了进行X射线分析、衍射或吸收谱分析而准备样品。

制备的具体步骤和方法取决于所需的分析技术和要研究的样品类型。

以下是一般的X射线样品制备步骤:1. 样品选择:选择合适的样品非常重要。

样品应具有代表性,足够纯净,并且适合所需的分析技术。

样品的形状和尺寸也需要考虑,以适应不同的X射线仪器。

2. 样品制备:根据分析的需要,样品可以以多种形式存在,如粉末、固体、液体或薄膜。

样品制备可能涉及研磨、研磨、压制、烧结等过程,以获得适当形式的样品。

3. 粉末样品:•对于粉末X射线衍射(XRD)分析,样品通常被研磨成粉末,确保颗粒的细度和均匀性。

•粉末样品可能需要通过球磨、摇床磨、乳钵磨等手段进行研磨。

4. 固体样品:•对于固体样品,需要确保样品表面光滑,并且表面没有太多的颗粒。

有时,可以使用细砂纸或研磨机进行研磨。

•薄膜样品的制备可能涉及溅射、蒸发、沉积等技术。

5. 液体样品:•液体样品需要固化为适当的形式。

这可能涉及到冷冻、蒸发溶剂或使用适当的载体来制备透明的样品。

6. 透明样品:•对于透明样品,可能需要制备薄片或薄膜,以确保透射X射线的光学路径。

7. 标本支持:•样品通常需要安装在适当的标本支持上,如样品台或标本架。

这确保了样品的稳定性和合适的位置。

8. 避免污染:•样品制备的过程中要避免污染。

使用洁净工具、手套和避免样品接触外部物质是很重要的。

9. 实验室安全:•在进行样品制备时,务必遵循实验室安全标准,特别是在涉及到有毒或易爆材料的情况下。

具体的制备步骤和方法会根据所用的X射线技术和样品类型而有所不同,因此最好在进行实验之前仔细阅读相关的仪器和分析方法的手册。

x射线衍射法测晶相含量

x射线衍射法测晶相含量

x射线衍射法测晶相含量一、x射线衍射法的原理x射线衍射法是一种利用物质中的晶体结构对入射x射线进行衍射的方法。

它基于布拉格方程,即nλ=2dsinθ,其中n为整数,λ为入射x射线的波长,d为晶面间距,θ为衍射角。

当入射x射线的波长、入射角和晶体结构确定时,可以通过测量衍射角来确定晶面间距,进而推导出晶体的晶相含量。

二、x射线衍射法的测量步骤1. 准备样品:首先需要制备一定粒度的晶体样品,通常是将粉末或薄片磨碎成细小颗粒。

样品的制备需要注意避免氧化或其他污染。

2. 调整仪器:将样品放置在x射线衍射仪器中,调整入射角和波长,通常使用单色器来选择合适的入射波长。

3. 进行扫描:启动衍射仪器,让x射线照射到样品上,同时旋转样品,记录不同衍射角对应的强度。

4. 数据处理:将测得的衍射数据绘制成衍射图谱,通常是以衍射角为横坐标,以强度或计数为纵坐标。

根据布拉格方程和参考样品的晶相信息,可以通过比对衍射图谱确定样品中的晶相含量。

三、x射线衍射法的应用x射线衍射法在材料科学、地质学、生物学等领域有广泛应用。

以下列举几个常见的应用案例:1. 材料分析:x射线衍射可以用于分析材料的晶体结构和晶相含量,帮助科学家了解材料的物理性质和化学成分,从而指导材料的设计和合成。

2. 矿物鉴定:地质学家可以利用x射线衍射法对矿石样品进行分析,确定其中的矿物种类和含量,从而评估矿石的价值和开采潜力。

3. 药物研究:药物的晶体结构对其溶解度、稳定性和活性等性质有重要影响。

利用x射线衍射法可以研究药物的晶体结构,为药物的设计和改进提供依据。

4. 生物大分子结构研究:许多生物大分子如蛋白质和DNA都具有复杂的晶体结构,利用x射线衍射法可以解析这些结构,为生物学研究提供重要的结构信息。

x射线衍射法是一种重要的分析技术,可以用于测量晶相含量。

其原理简单,测量步骤清晰,应用广泛。

通过衍射图谱的分析,可以准确确定样品中的晶相含量,为材料科学、地质学、生物学等领域的研究提供有力支持。

X射线衍射分析实验报告

X射线衍射分析实验报告

X射线衍射分析实验报告一、实验目的1.学会X射线衍射实验的制样过程,了解X射线衍射仪的操作过程2.学会根据XRD图谱进行相应的定性和定量分析二.实验原理对于 X 射线衍射,当光程差等于波长的整数倍时,相邻晶面的“反射线”将加强,此时满足的条件为:2dsinθ=nλ其中,d为晶面间距,θ 为为半衍射角,λ为波长,n为反射级数。

该方程是晶体衍射的理论基础,它简单明确地阐明衍射的基本关系,从实验上可有两方面的应用:一是用已知波长的X射线去照射未知结构的晶体,通过衍射角的测量求得晶体中各晶面的间距d,从而揭示晶体的结构,这就是结构分析(衍射分析);二是用已知晶面间距的晶体来反射从样品发射出来的X射线,通过衍射角的测量求得X 射线的波长,这就是 X射线光谱学。

该法除可进行光谱结构的研究外,从 X 射线波长也可以确定试样的组成元素。

三.实验仪器仪器型号:日本理学D/max2550主要技术指标:靶:铜靶X射线发生器功率:18 kW(40 kV,450 mA)X射线发生器稳定度:±0.01%最大计数:100万cps重复性:1°/10000四.实验步骤1.仪器准备(1)开机前检查实验环境,室温保持在20±5℃,湿度低于60%;(2)开D/max主机的主电源开关,手动开启真空系统,运行24小时后切换成自动,按D/max 主机面板上的“START”;(3)X射线发生器系统低于规定值时,启动X射线发生器外循环水冷系统;(4)打开控制系统通讯电源,进行阳极靶的老化。

2.样品制备将达到要求的粉末状试样(5-10μm)填入样品架,轻压使试样分布均匀3.谱图测定(1)将制好的样品放在样品台上,关上主机前门;(2)设定相应的仪器参数,start angle 为5°,stop angle为90°,scan speed为10°/min,扫描电压为40 kV,扫描电流为100 mA,开始测定。

X射线衍射实验样品制备要求

X射线衍射实验样品制备要求

X射线衍射实验样品制备要求1、金属样品如块状、板状、圆拄状要求磨成一个平面,面积不小于15X20毫米,如果面积太小可以用几块粘贴一起。

2、对于片状、圆拄状样品会存在严重的择优取向,衍射强度异常。

因此要求测试时合理选择相应的方向平面。

3、对于测量金属样品的微观应力(晶格畸变),测量残余奥氏体,要求样品不能简单粗磨,要求制备成金相样品,并进行普通抛光或电解抛光,消除表面应变层。

4、粉末样品要求磨成-320目的粒度,约40微米。

粒度粗大衍射强度底,峰形不好,分辨率低。

要了解样品的物理化学性质,如是否易燃,易潮解,易腐蚀、有毒、易挥发。

5、粉末样品要求在3克左右,如果太少也需5毫克。

6、样品可以是金属、非金属、有机、无机材料粉末。

7、对于研究课题使用的、购买的各种原料一定要进行鉴定,如材料分子式,晶型,结晶度,粒度等。

以免用错原料。

8、对于不同基体的薄膜样品,要了解检验确定基片的取向,X射线测量的膜厚度下限约20nm。

9、对于纤维样品的测试应该提出测试纤维的照射方向,是平行照射还是垂直照射,因为取向不同衍射强度也不相同。

10、对于焊接材料,如断口、焊缝表面的衍射分析,要求断口相对平整,提供断口所含元素。

如果一个断口照射面积小则可用两个或三个断口拼起来。

11、对于特殊的样品可以讨论协商提出衍射实验方案。

12、要求研究生、博士生、具备材料X射线衍射数据的分析解析能力,能独立的鉴定对照PDF卡标准衍射数据。

实验室可提供PDF数据库。

13、X射线衍射技术可以分析研究金属固溶体、合金相结构、氧化物相合成、材料结晶状态、金属合金化、金属合金薄膜与取向、焊接金属相、结晶度、原料的晶型结构检验、金属的氧化、各种陶瓷与合金的相变、晶格参数测定、非晶态结构、纳米材料粒度、矿物原料结构、建筑材料相分析、水泥物相分析等。

14、非金属材料的X射线衍射技术可以分析材料合成结构、氧化物固相相转变、电化学材料结构变化、纳米材料掺杂、催化剂材料掺杂、晶体材料结构、金属非金属氧化膜、各种沉积物、挥发物、化学产物、氧化膜相分析、化学镀电镀层相分析等。

XRD实验报告

XRD实验报告

XRD实验报告一、实验目的本次 XRD(X 射线衍射)实验的主要目的是对所研究的样品进行物相分析,确定其晶体结构、晶格参数以及可能存在的杂质相。

通过对衍射图谱的分析,获取有关样品的微观结构信息,为进一步的材料研究和应用提供基础数据。

二、实验原理XRD 实验基于 X 射线与晶体物质的相互作用。

当一束单色 X 射线照射到晶体样品上时,会发生衍射现象。

根据布拉格方程:$2d\sin\theta =n\lambda$(其中$d$为晶面间距,$\theta$为衍射角,$n$为衍射级数,$\lambda$为 X 射线波长),特定的晶面间距会对应特定的衍射角和衍射强度。

通过测量衍射角和强度,可以确定晶体的结构和组成。

三、实验仪器与材料1、仪器:X 射线衍射仪(型号:_____),包括 X 射线源、测角仪、探测器等部件。

2、材料:待测试的样品(样品名称:_____),制备成粉末状,以确保 X 射线能够充分穿透并产生有效的衍射信号。

四、实验步骤1、样品制备将待测试的样品研磨成细小的粉末,以增加样品的均匀性和表面积,提高衍射效果。

把粉末样品均匀地填充到样品槽中,并用平整的玻片压实,确保样品表面平整。

2、仪器参数设置设置 X 射线源的工作电压和电流,一般根据仪器的性能和样品的特性进行选择。

选择合适的衍射角度范围(通常为$5^{\circ}$至$90^{\circ}$)和扫描步长(例如$002^{\circ}$),以保证能够获取到足够的衍射峰信息。

设置探测器的工作参数,如计数时间等,以保证测量数据的准确性和可靠性。

3、实验测量将装有样品的样品槽放入衍射仪的样品台上,并确保样品处于正确的位置。

启动衍射仪,开始进行扫描测量。

在测量过程中,仪器会自动记录衍射角和相应的衍射强度。

4、数据处理测量完成后,将得到的原始数据导出到计算机中。

使用专业的 XRD 数据分析软件(如 Jade、Origin 等)对数据进行处理,包括背景扣除、平滑处理、峰位标定等操作,以获得清晰准确的衍射图谱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

X射线衍射实验样品制备要求
金属样品如块状、板状、圆拄状要求磨成一个平面,面积不小于10X10毫米,如果面积太小可以用几块粘贴一起。

对于片状、圆拄状样品会存在严重的择优取向,衍射强度异常。

因此要求测试时合理选择响应的方向平面。

对于测量金属样品的微观应力(晶格畸变),测量残余奥氏体,要求样品不能简单粗磨,要求制备成金相样品,并进行普通抛光或电解抛
光,消除表面应变层。

粉末样品要求磨成320目的粒度,约40微米。

粒度粗大衍射强度底,峰形不好,分辨率低。

要了解样品的物理化学性质,如是否易燃,易潮解,易腐蚀、有毒、易挥发。

粉末样品要求在3克左右,如果太少也需5毫克。

样品可以是金属、非金属、有机、无机材料粉末。

对于研究课题使用的、购买的各种原料一定要进行鉴定,如材料分子式,晶型,结晶度,粒度等。

以免用错原料。

对于不同基体的薄膜样品,要了解检验确定基片的取向,X射线测量的膜厚度约20个纳米。

对于纤维样品的测试应该提出测试纤维的照射方向,是平行照射还是垂直照射,因为取向不同衍射强度也不相同。

对于焊接材料,如断口、焊缝表面的衍射分析,要求断口相对平整,
提供断口所含元素。

如果一个断口照射面积小则可用两个或三个断口拼起来。

为保证对实验样品有一个好的实验结果,对于特殊的样品可以找老师帮助提出衍射实验方案。

要求研究生、博士生、具备材料X射线衍射数据的分析解析能力,能独立的鉴定对照PDF卡标准衍射数据。

实验室为同学们提供PDF数据库的检索。

X射线衍射技术可以分析研究金属固溶体、合金相结构、氧化物相合成、材料结晶状态、金属合金化、金属合金薄膜与取向、焊接金属相、各种纤维结构与取相、结晶度、原料的晶型结构检验、金属的氧化、各种陶瓷与合金的相变、晶格参数测定、非晶态结构、纳米材料粒度、矿物原料结构、建筑材料相分析、水泥的物相分析等。

非金属材料的X射线衍射技术可以分析材料合成结构、氧化物固相相转变、电化学材料结构变化、纳米材料掺杂、催化剂材料掺杂、晶体材料结构、金属非金属氧化膜、高分子材料结晶度、各种沉积物、挥发物、化学产物、氧化膜相分析、化学镀电镀层相分析等。

X射线实验室接受同学们的XRD衍射技术咨询和指导,并提供PDF检索数据库供同学们检索。

如果对样品的成分不了解可以利用X射线荧光光谱仪测定成分为X射线衍射分析提供成分信息。

X射线衍射实验的准确性和实验得到的信息质量好与坏与样品的制备有很大关系,在做XRD衍射实验时合理处理样品和制备样品。

4种xrd分析软件功能的对比
1.pcpdfwin
属于第二代物相检索软件。

它是在衍射图谱标定以后,按照d值检索。

一般可以有限定元素、按照三强线、结合法等方法。

所检索出的卡片多数时候不对。

一张复杂的衍射谱有时候需要花几天的时间。

2.search match
一个专门的物相检索程序,属于第三代检索软件,采用图形界面,根据图谱实体来对谱,直观性好。

可以实现和原始实验数据的直接对接,可以自动或手动标定衍射峰的位置,对于一般的图都能很好的应付。

而且有几个小工具使用很方便。

如放大功能、十字定位线、坐标指示按钮、网格线条等。

最重要的是它有自动检索功能。

可以帮你很方便的检索出你要找的物相。

也可以进行各种限定以缩小检索范围。

如果你对于你的材料较为熟悉的话,对于一张含有4,5相的图谱,检索也就3分钟。

效率很高。

而且它还有自动生成实验报告的功能! 3.high score
几乎search match中所有的功能highscore都具备,而且它比search-match更实用。

(1)它可以调用的数据格式更多。

(2)窗口设置更人性化,用户可以自己选择。

(3)谱线位置的显示方式,可以让你更直接地看到检索的情况。

(4)手动加峰或减峰更加方便。

(5)可以对衍射图进行平滑等操作,是图更漂亮。

(6)可以更改原始数据的步长、起始角度等参数。

(7)可以进行0点的校正。

(8)可以对峰的外形进行校正。

(9)可以进行半定量分析。

(10)物相检索更加方便,检索方式更多。

(11)可以编写批处理命令,对于同一系列的衍射图,一键搞定。

4.jade
具有highscore相似的自动检索功能少些,但它有比之更多的功能。

(1)它可以进行衍射峰的指标化。

(2)进行晶格参数的计算。

(3)根据标样对晶格参数进行校正。

(4)轻松计算峰的面积、质心。

(5)出图更加方便,你可以在图上进行更加随意的编辑。

扫描方式及其用法
多晶体X射线衍射方法一般都是θ-2θ扫描。

即样品转过θ角时,测角仪同时转过2θ角。

这个转动的过程称为扫描。

例如,我们要对样品进行物相鉴定时,需要测量2θ=5°-80°范围内的衍射谱,这个测量过程就称为“扫描”。

扫描的方式一般分为两种:连续扫描和步进扫描。

连续扫描
是指测角仪的连续转动方式,测角仪从起始的2θ到终止的2θ进行匀速扫描。

其参数主要有两个,一个是数据点间隔,另一个是扫描速度。

扫描速度是指单位时间内测角仪转过的角度,通常取2°/min,4°/min或8°/min或16°/min等。

数据点间隔是指每隔多少度取一个数据点。

一般来说,两个参数需要组合。

若数据点间隔取0.02°,则步长可取4-8°/min。

不当的组合会引起衍射峰强度的降低、衍射峰型不对称、或峰位向扫描方向一侧移动。

连续扫描一般用于做较大2θ范围内的全谱的扫描,适合于定性分析。

例如:用连续扫描方式,从20°扫描到80°,数据点间隔为0.02°,扫描速度为4°/min。

所需要的时间为:(80-20)/4=15min。

从这个计算过程来看,实验时间与数据点间隔无关,连续扫描一般用时较少。

一般来说,如果X光管的功率较低或实际使用功率较低或光管使用时间较长,为了获得更加清晰的图谱和较高的强度,需要使用较慢的扫
描速度,如2°/min。

反之,使用高功率的光管,如18KW的转靶光管,当使用功率达到10KW时,扫描速度可以使用8°/min。

有人做过实验,发现18KW的转靶衍射仪上,用扫描速度4,8和16°/min 来扫描同一个样品,图谱基本没有变化。

对于硅酸盐之类的无机物、金属材料中的微量相或结晶状态不好的化合物相分析,建议使用较慢的扫描速度来获得较高的强度和清晰的图谱。

扫描速度极慢时可以使用数据点间隔0.01°,但当扫描速度为4°/min或以上的速度时,建议使用0.02°或0.03°。

否则,图谱的噪声很大,图谱上下波动很大,把一些可能的弱峰掩盖。

步进扫描
步进扫描方式是将扫描范围按一定的步进宽度(0.01°或0.02°)分成若干步,在每一步停留若干秒(步进时间),并且将这若干秒内记录到的总光强度作为该数据点处的强度。

例如,从20°扫描到80°,步进宽度为0.02°,步进时间为1sec。

那么,扫描完成所需的时间为:{[(80-20)/0.02]*1}/60=50min。

从结果来看,实验所需时间与两个参数都有关。

不合适的参数组合,会让一个实验做上一天。

由于步进扫描可以增加每个数据点的强度(不是某一时间的真实强度而是一段时间内的累积强度),因而可以降低记数时的统计误差,提高信噪比。

步进扫描一般用于较窄2θ范围内的精细扫描,可用于定量分析、线形分析以及精确测定点阵常数、Retiveld全谱拟合等。

XRD摘引论坛发言并修改。

相关文档
最新文档