数学美欣赏数学的简洁性
数学中的简洁美
(3)简洁的奇异美
1、(蒲丰实验)取一张大纸,再取一根针,在纸上画出 一系列相距为两根针长的平行线,你随意把针投向纸 上,记下投的次数与针和平行线相交的次数,你能想 象,当投针的次数越来越大时,这两个数的比值有何 奇异变化;
---- 比值竟与圆周率 接近
(3)简洁的奇异美
数学中的简洁美
(1)数学的语言美
1、二次函数: f (x) ax2 bx c (a 0)
①自由落体运动: S 1 gt2 2
②斜抛运动:
y
2v0
g
cos2
x2
x tan
③圆的面积: S r2
④非常数的等差数列前 n
项和: Sn
na1
n(n-1) 2
d
⑤爱因斯坦的质能公式: E mc2
间的角距(即观察点到每对两颗星之间的夹角)
你能想象计算又有何惊奇且神秘结果;
---- 计算结果竟又与圆周率 接近
结束语:
任何领域都有美存在,
只要你能用心挖掘到美,
你就有可能攀登科学的
高峰
--- 杨振宁
(2)创造数学美
讨论题 3、解方程:
3x(3 9x2 1) (x 4)(3 (x 4)2 1) 0
2、黄金数 0.618
将一条单位长的线段分成两段,使 大段 全段
小段 大段
(
宽
①最美的矩形: 长 0.618
5 1 0.618) 2
②最美的人体:人的上身段与下身段的比值 0.618
2、黄金数 0.618
将一条单位长的线段分成两段,使 大段 全段
小段 大段
(
宽
①最美的矩形: 长 0.618
举例说明数学美的特征
举例说明数学美的特征
数学美是指数学中和视觉美有关的概念,它蕴藏着一种优美的结构美。
在数学领域中,它既有理性,也有审美意义。
在一些研究中,人们认为在形式化的数学系统中,优秀的数学概念构成了一种美的架构,而数学美是指这种美的架构的形式。
一般来说,数学美的特征主要有以下几个方面:
首先,数学美体现出一定的组织性和对称性。
组织性和对称性是数学美的重要特征,它使得数学概念变得规律,抽象和构建结构更加容易。
例如,在图形学中,几何图形的结构美和其内部面积成比例的情况,使得这种复杂的几何图形具有很强的视觉美。
其次,数学美体现出一定的简洁性和完善性。
简洁性是指一个形式化的数学系统构成的模型具有较低的复杂性,使得可以在较短的时间内完成复杂的数学计算,而完善性是指一个形式化的数学系统构成的模型要求满足所有的条件,以实现更严谨的验证结果。
例如,用运筹学中的最优化理论来解决一个组合问题,需要使用一定的数学模型来表达这个问题,而这个模型要求简洁而且完善,以实现最优化的结果。
此外,数学美还体现出一定的精确性和应用性。
精确性是指一个形式化的数学模型要求能够准确地表达数学问题,以及给出精确的解决方案。
而应用性是指一个形式化的数学模型要求能够自然和规律地应用于实际的数学问题中,以及给出合理的结果。
例如,在统计分析中,如果使用正确的数学模型,就可以精确地描述数据并获得合理的
结果,同时又可以自然地应用于实际问题中。
总之,数学美体现出规律性、组织性、对称性、简洁性、完善性、精确性和应用性,把数学概念变得规律,抽象和构建结构更加容易,因此,它为数学研究提供了重要的参考。
浅谈数学之美
浅谈数学之美【摘要】数学美是自然美的客观反映,是科学美的核心。
“那里有数学,哪里就有美”,数学美不是什么虚无缥缈、不可捉摸的东西,而是有其确定的客观内容.数学美的内容是丰富的,如数学概念的简单性、统一性,结构系统的协调性、对称性,数学命题与数学模型的概括性、典型性和普遍性,还有数学中的奇异性等,都是数学美的具体内容。
本文主要围绕数学美的三个特征:简洁性、和谐性和奇异性进行阐述。
【关键词】数学,数学美,美学特征数学美的表现形式是多种多样的,从外在形象上看:她有体系之美、概念之美、公式之美;从思维方式上看:她有简约之美、无限之美、抽象之美、类比之美;从美学原理上看:她有对称之美、和谐之美、奇异之美等.此外,数学还有着完美的符号语言、特有的抽象艺术、严密的逻辑体系、永恒的创新动力等特点。
但这些都离不开数学美的三大特征,即:简洁性、和谐性和奇异性。
1简洁性是数学美的首要特点爱因斯坦说:“美,本质上终究是简单性",“只有既朴实清秀,又底蕴深厚,才称得上至美”。
简洁本身就是一种美,而数学的首要特点在于它的简洁性.数学中的基本概念、理论和公式所呈现的简单性就是一种实实在在的简洁美。
数学家莫德尔说过:“在数学里美的各个属性中,首先要推崇的大概是简单性了”.数学的简洁性在人们生活中屡见不鲜:钱币只须有一分、二分、五分、一角、二角、五角、一元、二元、五元、十元……就可简单的构成任何数目的款项;圆的周长公式:C=2πR,就是“简洁美”的典范,它概括了所有圆形的共同特性;把一亿写成l08,把千万分之一写成10—7;二进制在计算机领域的应用……化繁为简,化难为易,力求简洁、直观。
数学不仅仅是在运算上要求这样,论证说明也更是如此。
显然,数学的公式与公理就是简洁美的最佳证据之一.1.1简洁性之一:符号美实现数学的简洁性的重要手段是使用了数学符号.符号对于数学的发展来讲是极为重要的,它可使人们摆脱数学自身的抽象与约束,集中精力于主要环节,没有符号去表示数及其运算,数学的发展是不可想象的。
论数学中的简洁对称美
论数学中的美数学这门学科是充满美的,数学美的魅力是诱人的,数学美的力量是巨大的。
只要你愿意去感受,数学随时都能给师生带来一种美好的享受。
正如高斯所说的:“给我最大快乐的,不是已懂得的知识,而是不断的学习;不是已有的东西,而是不断的获取;不是已达到的高度,而是继续不断的攀登。
”(一)数学的简洁美数学知识之所以强烈地吸引人们去研究,去探索,去追求,其中的原因之一便是它能对纷乱繁杂的数学现象进行高度的概括,使学习者能从中感受它概括的简洁美。
在数学语言的研究中,通常按数学语言所使用的主要词汇,将数学语言分为三种:文字语言、符号语言、图形语言。
品味简洁的数学美。
表示椭圆的三种语言都体现了简洁美。
椭圆的符号语言简洁、明了。
如椭圆概念的符号表示P={M|∣MF1∣+|MF2||=2a,2a>|F1F2|},关系紧凑,言简意赅;椭圆的两个标准方程具有简单整齐之美;离心率cea易记,充分体现了数学语言干练、简洁的特有美感。
椭圆的文字语言通俗易懂。
用到椭圆定义中“到平面内两个定点F1、F2的距离之和”这个常数;而将关系式转化成数学代数式用到两个定点F1、F2的坐标。
这就需要将“到平面内两个定点F1、F2的距离之和”和| F1F2|用字母表示。
建系后,将条件转化成关系式。
椭圆的图形语言形象生动。
以经过焦点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴建立直角坐标系(如图1),设M(x,y)是椭圆上的任意一点,焦距是2c(c>0),M与F1,F2两点距离之和绝对值等于常数2a。
(二)数学的对称美对称在我们生活中随处可见,图形的对称往往以及其直观的形式呈现在人们的眼前,展现对称性的根本就是点的对称、线的对称。
在此基础上衍生出线段的平分,角的平分线;平面图形:等腰三角形、等边三角形、等腰梯形、菱形、矩图1形、正方形、正多边形、圆。
立体图形:长方体、正方体、圆台、正棱锥、正棱柱等。
其中都有对称性的具体表现,轴对称和点对称赋予了它们美观,所以数学是壮丽多彩,千姿百态,引人入胜的。
数学之美内容
“数学之美”的内容
以下是关于“数学之美”内容的描述:
1.数学的对称之美。
在数学中存在着各种形式的对称性,这种对称性可以体现在数学对象
的结构、性质和关系中。
数学中的对称美具体体现为:数学的几何对称美、数学的代数对称美和数学的组合对称美。
这些对称之美不仅有助于我们解决问题,还能够揭示数学对象之间的联系和结构。
2.数学的简洁之美。
数学的简洁之美来源于其简洁而优雅的表达方式、精炼的推理和符号
表示。
数学的简洁美不仅使得数学理论更加易于理解和应用,也给人一种审美上的享受。
如数学中的公式和方程往往以简洁明了的形式来表达复杂的数学关系;数学中的定理和证明也往往具有简洁而优雅的特点。
3.数学的抽象之美。
数学的抽象之美源于其超越具体对象和情境的能力,以及抽象化的思
维和符号系统。
如数学中的概念和理论往往能够超越特定的对象和情境,通过引入符号和符号系统,将复杂的数学概念和关系抽象化,使得数学思维更加灵活和高效。
数学的抽象之美常常会启发人们对世界的深入思考,推动人类创造力的发展。
数学的简洁美论文
数学的简洁美论文数学美是一种完美和谐的、抽象形式的艺术美,是自然美在数学中的反映。
接下来店铺为你整理了数学的简洁美论文,一起来看看吧。
数学的简洁美论文篇一教学情境有两大功能,一是为学生的学习提供认知,二是激发学生的学习兴趣.课堂教学是一种有目的的、讲求效益的活动,所以要求教学情境真实形象而又不臃肿繁琐.下面就谈谈在课堂教学中如何创设简洁的数学教学情境.案例一“正弦定理”“正弦定理”是全日制普通高级中学教科书(试验修订本)数学第一册(下)的教学内容之一,既是初中“解直角三角形”内容的直接延伸,也是三角函数一般知识和平面向量知识在三角形中的具体运用,是解决可转化为三角形计算问题的其他数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值.所以我就创设了一个现实问题情境.利用投影展示:如图1,一条河的两岸平行,河宽d=1 ?km,?因上游突发洪水,在洪峰到来之前,急需将码头A处囤积的重要物资及人员用船转运到正对岸的码头B处或其下游1 ?km?的码头C处.已知船在静水中的速度∣vl∣= 5 ?km∕h?,水流速度∣v2∣=3 ?km∕h?.同时提出以下几个问题:为了确定转运方案,请学生设身处地地考虑一下有关的问题,将各自的问题经小组(前后4人为一小组)汇总整理后交给我.待各小组将题纸交给教师后,教师筛选几张有代表性的题纸通过投影向全班展示,经大家归纳整理后得到如下的5个问题:(l)船应开往B处还是C处?(2)船从A开到B、C分别需要多少时间?(3)船从A到B、C的距离分别是多少?(4)船从A到B、C时的速度大小分别是多少?(5)船应向什么方向开,才能保证沿直线到达B、C?师:大家讨论一下,应该怎样解决上述问题?在本课的教学中,我立足于所创设的情境,通过学生自主探索、合作交流,亲身经历了提出问题、解决问题、应用反思的过程,学生成为正弦定理的“发现者”和“创造者”,切身感受了创造的苦和乐,知识目标、能力目标、情感目标均得到了较好的实现.案例二“基本不等式”基本不等式中出现了a+b2,ab这两个式子,怎样比较这两个式子的大小呢?此时,学生还没有学习不等式的证明方法,所以很难想到方法来比较它们的大小.我设计了这样一个教学情境:用天平分别称出四组物体的重量,每组两个,得到四组数据,分别计算出它们的算术平均数和几何平均数,找出算术平均数和几何平均数的大小关系.然后加以证明.在创设教学情境时,不能只凭教师的眼光来设计,而应该在充分把握教学内容的基础上,以学生的原有知识和经验做“根”,对学生的认知心理和认知结构进行分析,寻找学习内容与学生认知规律的结合点,用最符合学生认知心理的外部情境去促进他们对新知识的同化和顺应,从而完成新知的建构.用天平称东西学生都会,这个情境比较贴近学生的生活经验.案例三“可能性大小” 春节快到了,小兔、小羊和小猴三家书店为了招生意,各自推出了节日摸奖活动.三家店门口都写着:凡是到本店购书的小朋友都有一次摸奖的机会,摸中红球的奖励一支铅笔.你喜欢到哪家书店去购书并摸奖呢?你们认为在春节哪家书店的生意会最差呢?反思:在我班试教时没有发现任何问题,所有学生都认为小朋友们喜欢到小兔家购书,因为在小兔家摸奖中奖的可能性最大.然而在另外一个班正式上课时,问题出现了,一个学生站起来问:“教师,我觉得有问题,球都在箱子里,摸球的人怎么知道哪个店盒子里的红球最多呢?”面对学生突如其来的问题,我愣了一会儿说:“是啊,商家就是为了告诉大家盒子里装了什么球,他们将不同颜色的球都画到盒子上了.”“啊!那么小猴子不是太笨了?”虽然教师化解了这个尴尬的局面,但这个情境是与生活实际相悖的,对于事件的真实性,学生仍是采取怀疑态度的.所以,我们平时在创设情境时为了使教学引人入胜而生拉硬拽,绞尽脑汁设计一些脱离生活实际的情境.从这个案例我们可以看出,这种不符合生活逻辑的情境不但没有引发学生的学习兴趣,反而激起了学生的疑惑,这不是我们教师所想看到的.因此数学课堂不能盲目追求现代化,而应追求简约,应思考如何把简单有效的手段用在其时、用在其地,去繁就简,丰富凝练,发挥教学的最大效益.数学的简洁美论文篇二恩格斯给数学下了一个相对确切的定义:“数学是研究数量关系和空间形式的一门科学。
数学中蕴含的美
数学中蕴含的美众所周知,数学在我们的基础教育中占有很大的份量,是我们的文化中极为重要的组成部分。
她不但有智育的功能,也有其美育的功能。
数学美深深地感染着人们的心灵,激起人们对她的欣赏。
下面从几个方面来欣赏数学美。
一、简洁美爱因期坦说过:“美,本质上终究是简单性。
”他还认为,只有借助数学,才能达到简单性的美学准则。
朴素,简单,是其外在形式。
只有既朴实清秀,又底蕴深厚,才称得上至美。
欧拉给出的公式:V-E+F=2,堪称“简单美”的典范。
世间的多面体有多少?没有人能说清楚。
但它们的顶点数V、棱数E、面数F,都必须服从欧拉给出的公式,一个如此简单的公式,概括了无数种多面体的共同特性,能不令人惊叹不已?由她还可派生出许多同样美妙的东西。
如:平面图的点数V、边数E、区域数F满足V-E+F=2,这个公式成了近代数学两个重要分支——拓扑学与图论的基本公式。
由这个公式可以得到许多深刻的结论,对拓扑学与图论的发展起了很大的作用。
在数学中,像欧拉公式这样形式简洁、内容深刻、作用很大的定理还有许多。
比如:圆的周长公式:C=2πR勾股定理:直角三角形两直角边的平方和等于斜边平方。
数学的这种简洁美,用几个定理是不足以说清的,数学历史中每一次进步都使已有的定理更简洁。
正如伟大的希而伯特曾说过:“数学中每一步真正的进展都与更有力的工具和更简单的方法的发现密切联系着”。
二、和谐美数论大师赛尔伯格曾经说,他喜欢数学的一个动机是以下的公式:这个公式实在美极了,奇数1、3、5、…这样的组合可以给出,对于一个数学家来说,此公式正如一幅美丽图画或风景。
欧拉公式:曾获得“最美的数学定理”称号。
欧拉建立了在他那个时代,数学中最重要的几个常数之间的绝妙的有趣的联系,包容得如此协调、有序。
与欧拉公式有关的棣美弗-欧拉公式是这个公式把人们以为没有什么共同性的两大类函数――三角函数与指数函数紧密地结合起来了。
对他们的结合,人们始则惊诧,继而赞叹――确是“天作之合”,因为,由他们的结合能派生出许多美的,有用的结论来。
浅窥数学解题中的简洁美
浅窥数学解题中的简洁美由于数学反映的是自然的本质,因此,数学美本质上是自然美的抽象画,既有结论之美,也有方法之美,还有结构之美.与普通的自然美一样,归纳起来,数学美体现为以下几个特征:简洁性、和谐性、奇异性.数学的美妙之处在于能把混乱化为和谐,纷杂化为对称,繁复变为简单,还在于能将一个陌生的问题利用熟知的"相似问题"进行类比,使其得以解决.1.数学美的简洁性,包括符号美、抽象美、统一美、常数美.数学理论的过人之处之一就在于她能用简洁的方式揭示复杂的现象.数学美的简洁性是数学美的重要标志,它是指数学的证明方法、表达形式和理论体系结构的简单性.主要包括符号美、抽象美、统一美和常数美等.有人说,文学家能将一句话拓展成一本书,数学家则把一句话缩为一个符号,其简洁性无与伦比,体现为符号美;数学家关注万事万物的共同特质数与形,忽略其具体物质属性,高度的抽象性使数学内涵丰富、寓意深刻、应用广泛,展示着抽象美;数学家建立不同事物之间的联系,发现其相同点,表现为统一美;数学家寻求变化中的永恒,动态中的静止,用常数或不变量描述事物本质,带给人们常数美.比如,著名的欧拉恒等式,把自然界中5个最重要的常数0,1,i,eπ,通过数学的3个最基本的运算:加、乘、指数运算有机地联系起来,体现了数学的符号美、抽象美、统一美和常数美;反映多面体的顶点数v,棱数e、面数f关系的欧拉公式f-e+v=2体现了数学的统一美和常数美;全部二次曲线(椭圆、抛物线、双曲线)可以统一为圆锥曲线,而它们又分别表达了三种宇宙速度下物体运动的轨迹;笛卡尔通过坐标方法,用方程表示图形,用计算代替推理,实现几何、代数、逻辑的统一;高斯从曲率的观点把欧几里得几何、罗巴切夫斯基几何和黎曼几何统一;克莱因用变换群的观点统一了19世纪发展起来的各种几何学,认为不同的几何只不过是在相应的变换群下不变性质的科学,这些都反映了数学的统一美.简洁性的另一个值得强调的是常数美中的不变量问题,数学所关注的本质、共性、联系、规律等,归根结底都是某种不变性,而不变性的一个重要表现就是不变量,这种不变量是数学简洁美的一个重要体现.2.数学美的和谐性,包括对称美、序列美、节奏美、协调美.和谐即雅致、严谨或形式结构的无矛盾性.数学美的和谐性也是数学结构美的重要标志,数学的整体与部分、部分与部分之间的和谐协调性,具体体现为对称美、序列美、节奏美、协调美等.其中对称美反映的是万事万物变化中的某种不变性,它包含着匀称、平衡与稳定;序列美、节奏美和协调美反映的是万事万物变化中的某种秩序、联系和规律,它包含着有序(单调)、递归、循环(周期)、整齐与层次.和谐性是自然的本质反映,自然界本身是和谐的统一体;和谐性也是真理的客观表现——真的东西是美丽的,正如爱因斯坦所说:“形式上的美丽,意味着理论上的正确.”数学中的和谐美俯拾即是.比如:杨辉三角;几何学中的黄金分割比;反映角度函数值关系的各种三角恒等式等.3.数学美的奇异性.包括奇异美、有限美、神秘美、对比美等.数学美的奇异性是指研究对象不能用任何现成的理论解释的特殊性质.奇异是一种美,奇异到极致更是一种美.数学的奇异美包括有限美、神秘美、对比美.有限美是指以有限认识、表达与研究无限,具有神奇之功;神秘美是指某些结论不可思议、甚至无法验证,但却绝对正确无疑;对比美主要指数学中的突变现象形成巨大的反差,令人惊叹.比如,二进制中0与1的丰富含义,正多面体的个数有限性,数学归纳法的两步证明等都体现了有限美;抽屉原理证明的各种存在性,超越数、幻方等都体现了神秘美;所有分形图形的复杂与美丽,勾股定理产生的勾股方程与费马猜想的反差等都反映了对比美.在某种意义上,数学美的简洁性是数学抽象的体现,数学美的和谐性与奇异性是现实世界的统一性与多样性在数学中的反映.数学总被人们误以为是枯燥乏味的学科,让人提不起兴趣。
数学美的简洁性
数学美的简洁性数学简化了思维过程并使之更可*。
(弗赖伊T.C.Fry)算学中所谓美的问题,是指一个难以解决的问题;而所谓美的解答,则是指对于困难和复杂问题的简单回答。
(狄德罗D.Diderot)在数学里美的各个属性中,首先要推崇的大概是简单性了。
(莫德尔L.J.Mordell)1.符号美数学符号节省了人们的思维。
(莱布尼兹)符号常常比发明它们的数学家更能推理。
(克莱茵F.Klein)数学也是一种语言,且是现存的结构与内容方面最完美的语言……可以说,自然用这个语言讲话;造世主已用它说过话,而世界的保护者继续用它讲话。
(戴尔曼C.Dillmann)数学语言是困难的,但又是永恒的。
(纽曼M.H.A.Newman)2.抽象美就其本质而质而言,数学是抽象的;实际上它的抽象比逻辑的抽象更高一阶。
(克里斯塔尔G.Chrystal)数学家因为对发现的纯粹爱好和其对脑力劳动产品的美的欣赏,创造了抽象和理想化的真理。
(卡迈查尔R.D.Carmicheal)自然几乎不可能不对数学推理的美抱有偏爱。
(杨格C.N.Yang)数学虽不研究事物的质,但作一事物必有量和形,这样两种事物如有相同的量和形,便可用相同的数学方法,因而数学必然也必须抽象。
在数学的创造性工作中,抽象分析是一种常用的重要方法,这是基于数学本身的特点??抽象性。
数学中不少新的概念、新的学科、新的分支的产生,是通过“抽象分析”得到的。
数学的简捷性在很大的程度上是源自数学的抽象性,换句话说:数学概念正是从众多事物共同属性中抽象出来的,而在对日益扩展的数学知识总体进行简化、廓清和统一化时,抽象更是必有可少的。
3.统一美天得一以清;地得一以宁;万物得一以生。
(中国古代道家语)数学科学是统一的一体,其组织的活力依赖于其各部分之间的联系。
(希尔伯特)某些典型数学思维的美,实际上容易被人欣赏,例如一个干净利落的证明,比一个笨拙费力的证明要美,一个能代替许多特例的简明推广式更为从们所喜欢。
数学之美在于简洁和逻辑之美
数学之美:简洁与逻辑的力量在人类的科学探索之旅中,数学以其独特的美感、简洁和逻辑的逻辑魅力,深深地吸引了无数的探索者。
数学的简洁性使得问题变得明了,而逻辑的力量则让我们得以透过表象,看到问题的本质。
这篇文章旨在阐述数学之美的两个核心元素——简洁和逻辑,并阐述这两个元素如何塑造了数学的世界。
首先,让我们看看数学的简洁之美。
数学中的简洁并非简单的“简陋”,而是经过无数次的提炼和精简,最终达到的至简境界。
例如,勾股定理,即直角三角形斜边长的平方等于两直角边平方之和,这一简洁的公式却涵盖了无数复杂的形状和结构。
再比如费马大定理,即n大于2的自然数幂的乘积等于1当且仅当所有乘数都是整数。
这个定理的证明过程虽然复杂,但其简洁的形式和明了的逻辑却让人印象深刻。
这些例子都展示了数学家们追求简洁的决心和智慧,以及这种追求如何推动数学的发展。
其次,数学的逻辑之美也是其魅力所在。
数学中的每一个结论都是基于严格的逻辑推理得出的,这种逻辑的严谨性使得数学结论具有无可辩驳的可靠性。
例如,欧几里得几何中的公理和定理就是通过逻辑推理建立起来的,这些公理虽然看似简单,但却是无数几何学研究的基石。
再比如微积分的创立,从基本概念出发,通过一系列严密的逻辑推理,最终得到了描述运动和变化的数学模型,这种逻辑的力量使得微积分成为了描述自然现象的重要工具。
这些例子都展示了数学家们对逻辑的执着追求,以及这种追求如何推动数学的发展。
简洁和逻辑是数学的两大核心元素,它们共同塑造了数学的世界。
数学的简洁性使得我们能够更好地理解和应用数学理论,而逻辑的严谨性则保证了数学结论的可靠性。
正是由于这两者的完美结合,数学才得以成为一门科学,成为人类探索世界的重要工具。
此外,数学的简洁和逻辑之美还体现在数学的应用上。
无论是物理、化学、工程、经济等各个领域,数学都发挥着重要的作用。
正是由于数学的简洁和逻辑的力量,我们才能更好地理解和预测自然现象和社会现象。
例如,通过概率论和统计学的应用,我们可以更好地理解和预测风险和不确定性;通过微积分和线性代数等工具,我们可以更好地解决工程和科学问题。
论数学美的基本特征及其作用
论数学美的基本特征及其作用作者:杨波来源:《陕西教育·高教版》2008年第04期研究数学美,并且应用其研究成果来为数学以及数学教育服务,也就自然而然成为一件很有意义的事情。
数学美的特征数学美的主要特征是:简洁性、对称性、统一性和奇异性,这四种特征的表现以及给人所带来的愉悦感受就是它们在各个领域中给人所呈现的四种美:简洁美、对称美、统一美和奇异美。
1.简洁性。
数学美其简洁性的表现及其给人所带来的愉悦感受即为简洁美,它是经过了数学家高度抽象化之后所形成的数学语言、数学符号以及数学逻辑中所呈现出来的。
美国数学家柏克霍夫在其著作《审美量度》一书中提出了一个审美公式:,式中的“O”为秩序,“C”为复杂性,审美度为“M”,即艺术作品的美与它的秩序感成正比。
也就是说,按审美度要求,数学的表现形式越简单就越美。
而在符号上,数学的简洁美就体现得更加透彻。
克莱茵(F.Klein)指出,“符号常常比发明它们的数学家更能推理。
”回顾数学发展的历史,我们可以看到,数学的发展与数学形式简单化息息相关。
举例来说,阿拉伯数字记号的诞生,+、、€住髟怂惴诺氖褂茫际沟檬弑噶思蚪喽稚羁痰奶卣鳎行矶喙礁钦庵痔卣鞯耐昝捞逑郑汗垂啥ɡ碚飧鍪旨虻ザ终氲墓剑宄夭隽怂兄苯侨切稳叱ぶ涞墓叵担坏愕街毕叩木嗬胧牵问绞终爰蚪啵辉驳闹艹す接朊婊剑沟谩捌矫嫱夹沃凶蠲赖耐夹巍病敝械闹艹ぁ⒚婊妥陨戆刖叮桓錾衿娴奈蘩沓J艚舻亓翟谝黄穑欢飧龇疟旧淼氖褂茫质墙桓鲂雌鹄春苈榉车氖涤靡桓鍪旨蚪嗝髁说姆疟硎境隼矗坏貌蝗萌嗽尢炯蚪啻吹拿栏校?2.对称性。
谈到数学的对称性所给人的美感,最典型的莫过于几何图形中的对称图形了。
自然界中对称图形比比皆是:树叶、花瓣、蜂巢……都给人以美的享受。
而在几何图形中,对称图形更是数不胜数。
解析几何中,方程及,及所表示的曲线,都是典型的对称图形。
人们分别给这两类曲线冠以三叶玫瑰与四叶玫瑰的美称。
又如,二项展开式+的系数具有对称性。
3.统一性。
数学欣赏数学中的美
数学欣赏数学中的美数学欣赏:数学中的美数学,这个看似枯燥无味的学科,实则隐藏着无尽的美丽。
它是一种语言,一种逻辑,一种艺术,更是一种深刻的哲学。
它以简洁、对称、和谐与深邃的内涵吸引着我们去探索,去欣赏。
数学的简洁美是显而易见的。
诸如几何中的黄金分割,代数中的对数运算,微积分中的极限定义等,都以简洁的形式揭示了自然规律的深层结构。
在数学的简洁美中,我们看到了宇宙的秩序和智慧。
数学的对称美也无处不在。
从宏观的天体运动到微观的粒子运动,从建筑的均衡设计到艺术的图案绘制,对称性在数学中有着重要的地位。
这种对称美不仅赋予了数学本身的艺术价值,也为我们理解和描述世界提供了有力的工具。
再者,数学的和谐美体现在各个领域。
在物理学中,爱因斯坦的相对论揭示了空间、时间和重力的和谐;在化学中,元素的周期表体现了元素性质与原子序数的和谐;在生物学中,DNA的结构和生命的循环都体现了数学的和谐。
这种和谐美展示了数学在自然科学中的普遍性和基础性。
数学的深邃美引发我们对宇宙、生命和人类存在的深思。
从康德的《纯粹理性批判》到庞加莱的《科学与假设》,数学家们通过深邃的思考和探索,揭示了世界的奥秘。
这种深邃美使数学成为了一种哲学,一种思考世界的方式。
数学是一种美丽的科学。
无论简洁、对称、和谐还是深邃,这种美都使数学成为了人类文明的重要组成部分。
因此,我们应该欣赏数学,尊重数学,追求数学,让这种美照亮我们的生活。
数学欣赏建筑中的数学美建筑是艺术的一种表现形式,而数学则是建筑中不可或缺的一部分。
在建筑中,数学不仅是一种科学,更是一种美学。
从古至今,建筑师们运用数学知识,创造出令人惊叹的建筑作品,展现了数学与建筑的完美结合。
一、黄金分割比的美黄金分割比是一种被广泛运用于建筑的数学比例。
它的美学价值在于,当一个物体被分割成两个部分时,如果其中一部分与另一部分的比值等于整体与较大部分的比值,那么这个比例就被称为黄金分割比。
在建筑中,黄金分割比被用于确定建筑物的尺寸和形状,如帕台农神庙、罗马斗兽场等经典建筑就采用了这种比例。
数学中的美
数学中美的欣赏摘要:数学美,是一种科学美,它有着丰富多采的美的因素,许多数学图形、数学表达式给人以美的享受。
数学方法美如同数学图形、公式一样,之所以给人以美的享受,是因为数学方法美中存在着其固有的美因。
而黄金分割无论是在理论上,,还是实际生活中都有着极其广泛而又非常简单的应用,对后来形式美学与实验美学产生了巨大影响,从而在历史上产生了巨大的影响。
本文结合实例,论述数学方法美的美因有简洁性、对称性、抽象性、谐调性、新颖性等,欣赏数学的美, 提高人们的数学素质,从而创造更美的数学解题方法。
关键词:数学方法数学方法美黄金分割1、简洁美简洁美是指各种数学事实都具有简单明了的表述,它是数学事实统一的简化形式的外在表现。
与数学概念、数学定理等相比, 数学方法的简洁美更多地表现在运用数学方法的过程和结果的简洁形式等方面,同时用以表述这种方法的语言也是简洁的、精炼的。
例 1 试证素数有无穷多个。
证:假设P1、P2、…Pn是仅有的有限个素数,n∈N,作自然数g=1+ P1P2…Pn则g也是素数,(否则,必有Pi Ⅰ1即Pi=1矛盾)从而素数个数多于n个与假设矛盾,故,素数有无穷多个。
对于论证与“无穷多”有关的这样一个复杂的命题, 能用如此简洁的方法证明, 不能不令人赞叹不已!这种思想方法如同维纳期塑像一样具有丰富的内在美。
例2某六位数首位是2,乘以3得到的新数恰是把2移至末位,其余数码不变的六位数,求这个六位数。
解设这个六位数是200000+x,则3﹙200000+x﹚=10x+2则x=85714,所求的六位数是285714。
例1证法体现了局部构造及思路的简洁美,例2体现了整体结构的简洁美。
公理法则体现其构建知识系统的简洁美。
如近代数学家皮亚诺仅用“自然数”、“后继”、“1”三个基本概念和五个基本命题,便刻划出整个算术统,体现出自然数结构的有序和完美,更体现出公理化方法的简洁美。
2、对称美“美和对称紧密相连”, 许多重要的数学方法总是成对偶状出现, 表现出数学方法整体结构的对称美。
欣赏数学之美
欣赏数学之美当你倘佯在音乐的殿堂,聆听优美动听的乐曲时,你会体会到音乐带给你的“美”的享受;当你漫步在文学的天地,欣赏着那“惊天地泣鬼神”的绝妙语句,一定能够领悟文学带给你的“美”……。
美的事物,总是被人们乐意醉心地追求着。
那数学呢?自古以来,数学就以其高度的抽象性、严密的逻辑性令许多人望而生畏。
但是,没有一门学科像数学那样,在大家的心目中其重要性和亲近性竟产生这么大的分歧:一方面:全世界所有国家的中小学生都把数学作为一门重要的基础课程学习着; 另一方面:大家却是对数学望而却步。
大部分学生学习数学是为了分数,是不得已,没有乐趣,没有得到享受,那数学真的就那么冰冷、枯燥、乏味吗?其实,并非如此。
前苏联国家元首加里宁说过:“数学是思维的体操。
”数学家克莱因说过“音乐能激发或抚慰情怀,绘画是人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。
”我国数学家华罗庚曾经说过:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学”。
还有人将数学比喻为吻醒经济学这个睡美人的白马王子,等等。
数学存在于我们的生活中,它无时无刻不在围绕着我们。
数学有其冰冷的美丽,也有其火热的情怀,今天让我们共同欣赏数学的美丽风采。
一、数学的简洁美(ppt)反映多面体的(顶)点、棱、面的数量关系的欧拉公式F –E+V=2数学美的简洁性是数学结构美的重要标志,它是指数学的表达形式和数学理论体系结构的简单性。
圆的周长公式:C=2πR,堪称“简单美”的典范。
1. 数学的简洁之美1. 数学的简洁之美二次曲线(椭圆、抛物线、双曲线)=圆锥曲线=三种宇宙速度下物体运动的轨迹1. 数学的简洁之美1. 数学的简洁之美1. 数学的简洁之美1. 数学的简洁之美二、数学的和谐美形式美一元二次方程20,(0)ax bx c a ++=≠的两个根是1x =, 2x =, 如果单独看这两根,有一种“孤立、游子”的感觉,但把它们合在一起来看:12b x x a +=-, 12c x x a=这样便有一种“珠联璧合、比翼双飞、连理枝”的感觉了。
小学数学教学中数学美的体现与欣赏
小学数学教学中数学美的体现与欣赏小学数学教学中数学美的体现与欣赏是数学教育的重要组成部分。
数学美是指数学中所蕴含的美的元素和特质,包括简洁美、对称美、和谐美、奇异美等。
在小学数学教学中,教师可以通过引导学生发现数学美、欣赏数学美,培养学生对数学的兴趣和热爱,提高他们的数学素养和审美能力。
一、简洁美数学的简洁美体现在其简洁明了的表述和推理过程中。
在小学数学教学中,教师可以通过展示数学公式、定理的简洁形式,让学生感受到数学的简洁美。
例如,加减法的交换律、结合律等,都是简洁明了的数学规律,教师可以通过举例和演示,让学生感受到这些规律的简洁美。
二、对称美数学的对称美表现在其图形和结构的对称性上。
在小学数学教学中,教师可以通过展示对称的图形和结构,让学生感受到数学的对称美。
例如,正方形、圆形等都是对称的图形,教师可以通过让学生观察和绘制这些图形,让他们感受到对称美的魅力。
三、和谐美数学的和谐美体现在其内部结构的协调性和统一性上。
在小学数学教学中,教师可以通过引导学生发现数学规律之间的内在联系和共性,让他们感受到数学的和谐美。
例如,加减法和乘除法之间的关系、分数的加减法和整数的加减法之间的关系等,都是数学内部结构的和谐美的体现。
四、奇异美数学的奇异美表现在其出乎意料的结论和反直觉的性质上。
在小学数学教学中,教师可以通过介绍一些有趣的数学问题和结论,让学生感受到数学的奇异美。
例如,斐波那契数列、黄金分割等,都是具有奇异美的数学概念和性质。
为了培养学生的数学美的欣赏能力,教师可以采取以下措施:引导学生发现数学美:教师可以通过展示数学美的例子,引导学生发现数学中的美的元素和特质,让他们感受到数学的魅力。
鼓励学生欣赏数学美:教师可以鼓励学生在学习中欣赏数学美,让他们从数学的角度去发现和欣赏生活中的美。
培养学生的审美能力:教师可以通过培养学生的审美能力,让他们更好地欣赏数学美。
例如,可以引导学生欣赏数学图形的对称性和美感,让他们感受到数学的美感和艺术性。
数学美欣赏第1章数学的简洁性
数学美欣赏(内容选自《数学美拾趣》、《数学聊斋》和《直观几何》)课程简介了解数学的趣味性,初步懂得数学在理论和实际中的应用,欣赏数学的绚丽多彩的艺术世界.学习要求1. 用U盘复制电子讲稿,并打印.2. 课后认真阅读讲稿.3. 适当安排若干次课堂独立作业. 做课堂作业时, 允许参考本讲稿, 可以摘录讲稿内容.考核要求1. 进行期中考试和期末考试,均为开卷.2. 期末总评成绩=期中考试成绩×50%+期末考试成绩×50%.3. 期中考试、期末考试和课堂独立作业中没有任何计算题和证明题,也没有填空题和选择题, 题型均为问答题.第1讲第1章数学的简洁性序言著名科学家伽利略说过:“数学是上帝用来书写宇宙的文字”.简洁本身就是一种美,而数学的首要特点在于它的简洁.数学家莫德尔说:在数学美的各个属性中,首先要推崇的大概是简单性了.自然界原本就是简洁的:光是沿直线方向传播的——这是光传播的最捷路线.植物的叶序排布是植物叶子通风、采光最佳的布局.某些攀缘植物如藤类,它们绕着攀依物螺旋式的向上生长,它们所选的螺线形状对于植物上攀路径来讲是最节省的.大雁迁徙时排成的人字形,一边与其飞行方向夹角是54448''',从空气动力学角度看,这个角度对于大雁队伍飞行是最佳的,即阻力最小(顺便一提:金刚石晶体中也蕴含这种角度).,这种比值在人体中,人的粗细血管直径之比总是的分支导流系统经流体动力学研究表明,它在输导液体时能量消耗最少.生物学家和数学家们(如著名科学家开普勒、数学家列厄木、柯尼希等)在研究蜂房构造时发现:在体积一定的条件下,蜂房的构造是最省材料的.这些最佳、最好、最省、……的事实,来自生物的进化与自然选择,然而它同时展现了自然界的简洁,而且也展现了自然界的和谐. 宇宙万物如此,数学,它作为用来描述宇宙的文字和工具也应当是简洁与和谐的.诗人但丁曾赞美道:“圆是最美的图形”.太阳是圆的、满月是圆的、水珠看上去(投影)是圆的、……,圆的线条明快、简练、对称.近代数学研究还发现圆的等周极值性质:在周长给定的封闭图形中,圆所围的面积最大.无论是古人,还是今人,人们对圆有着特殊亲切的情感,都因为圆的简洁美.数学中人们对于简洁的追求是永无止境的:建立公理体系时,人们试图找出最少的几条(抛弃任何多余的赘物);对命题的证明,人们力求严谨、简练(因而人们对某些命题的证明在不断地改进);对计算的方法,人们要求尽量便捷、明快(因而人们不断地在探索计算方法的创新),……,数学拒绝繁冗.正如牛顿所说:数学家不但更容易接受漂亮的结果,不喜欢丑陋的结论,而且他们也非常推崇优美与雅致的证明,而不喜欢笨拙与繁复的推理.数学大师欧拉曾研究过天平砝码最优(少)配置问题,并且证明了:若有1,2,22,32, (2)克的砝码,只允许其放在天平的一端,利用它们可称出1——()1122122221n n n +--=+++++之间的任何整数克重物体的重量.例如,当3n =时,我们有4个砝码:1克,2克,22克和32克,即1克,2克,4克和8克. 利用它们,我们可称出1克——3121+-克(即15克)之间的任何整数克重物体的重量, 即可称出1克,2克, 3克, …, 15克的重量. 这由下表可以明白.这个问题其实与数的二进制有关. 进而,欧拉还证明了(它与数的三进制有关):有1,3,23,33, (3)克重的砝码,允许其放在天平两端, 利用它们可以称出1----()11231333312n n n +--=+++++之间任何整数克重物体的重量.例如,当2n =时,我们有3个砝码:1克,3克和23克,即1克,3克和9克. 利用它们,我们可称出1克——21312+-克(即13克)之间的任何整数克重物体的重量, 即可称出1克, 2克, 3克, …,13克的重量. 这由下表可以明白.以上两个事实是“以少应付多”的典范,这也是数学简洁性使然. 下面的所谓“省刻度尺问题”, 尽管人们尚未对此得出一般结论,但目前仅有的结果也足以使人倍感兴趣:一根6cm 长的尺子,只须刻上两个刻度(在1cm 和4cm 处),就可量出1cm ——6cm 之间任何整数厘米长的物体长,即可量出1cm ,2cm ,3cm ,4cm ,5cm 和6cm 的长度(下简称“完全度量”).若用a b →表示从a 量到b 的话,那么具体度量如下:1(01→),2(46→),3(14→),4(04→),5(16→),6(06→).一根13cm 的尺子,只须在1cm ,4cm ,5cm 和11cm 四处刻上刻度,便可完成1——13cm 的完全度量. 具体度量如下:1(01→), 2(1113→), 3(14→), 4(04→), 5(05→), 6(511→), 7(411→), 8(513→), 9(413→), 10(111→), 11(011→), 12(113→), 13(013→).对于22cm的尺子,只须刻上六个刻度,即在:1cm,2cm,3cm,8cm,13cm和18cm;或者1cm,4cm,5cm,12cm,14cm 和20cm处刻上刻度,可完成1——22cm的完全度量.对于23cm的尺子来讲,也只须六个刻度:1cm,4cm,10cm,16cm,18cm和21cm,便可完成1——23cm的完全度量.一根36cm的尺子,只须在1cm,3cm,6cm,13cm,20cm,27cm,31cm和35cm处刻上八个刻度,便可完成1cm——36cm 的完全度量.对于40cm的尺子,刻上九个刻度:1cm,2cm,3cm,4cm,10cm,17cm,24cm,29cm和35cm,即可完成1——40cm 的完全度量.这类问题与应用数学中所谓最优化方法有关,这门学科的核心是最省、最好(对效益讲是最大).用“少”去表现“多”,或者求极大、极小等,均是数学简洁性的另类表现. 比如“植树问题”. 英国数学家、物理学家牛顿曾经很喜欢下面一类题目:9棵树栽9行,每行栽3棵,如何栽? 乍看此题似乎无解,其实不然,看了左下图(图中黑点表示树的位置,下同),你会恍然大悟!牛顿还发现:9棵树每行栽3棵,可栽行数的最大值不是9,而是10,见右上图. 左下图给出10棵树,栽10行,每行栽3棵的栽法.其实,10棵树,每行栽3棵,可栽的最多行数也不是10,而是12,见右上图.英国数学家、逻辑学家道奇生在其童话名著《艾丽丝漫游仙境》中也提出下面一道植树问题:10棵树,栽成5行,每行栽4棵,如何栽? 此题答案据说有300种之多,下面诸图给出了其中的几种.十九世纪末,英国的数学游戏大师杜登尼在其所著《520个趣味数学难题》中也提出了下面的问题:16棵树,栽成15行,每行栽4棵,如何栽? 杜登尼的答案见左下图.美国趣味数学大师山姆·洛伊德曾花费大量精力研究“20棵树,每行栽4棵,至多可栽多少行”,他给出了可栽18行的答案,见右下图.几年前人们借助于电子计算机给出了上述问题可栽20行的最佳方案,见左下图.稍后曾见报载,国内有人给出可栽21行的方案(右上图),然而严格的验证工作恐非易事——这些点是否真的共线?既便结论无误,但它是否是可栽的最多行数,人们尚不得而知.在英国数学家薛尔维斯特在临终前几年(1893年)提出了一个貌似简单的问题:对于在平面上不全共线的任意n个点,总可以找到一条直线,使其仅过其中的两个点.直到1933年,人们才找到一个繁琐的证明. 此后,1944年、1948年又先后有人给出了证明. 1980年前后,《美国科学新闻》杂志重提旧事时,又一次向人们介绍了薛尔维斯特问题和凯利于1948年给出的证明.我们很容易体会到:一个定理(或习题)证明(或解法)的简化,将认为是做了一件漂亮的工作,即它是美妙的. 由于简洁,数学语言(包括图形)不仅能描述世界上的万物,而且也能为世界上所有文明社会所接受和理解,甚至还将成为与其它星球上的居民(如果存在的话)交流思想的工具.在为美国发射的在茫茫太空中去寻觅地球外文明的“先驱者号飞船”(探测器)征集所携带的礼物时,我国已故著名数学家华罗庚曾建议带上数学中用以表示勾股定理(毕达哥拉斯定理)的简单、明快的数形图,它似乎应为宇宙所有文明生物所理解.22245+=2221517+=数学中的简洁性的例子是不胜枚举的:比如三角形,尽管它有千姿百态,但人们却可用12S ah =(a 为底边长,h 为该边上高)或海伦公式S =为三角形半周长)去表达所有三角形的面积.数学的简洁性系指其抽象性、概括性和统一性. 正是因为数学具有抽象性和统一性,因而其形式应当是简单的. 实现数学的简单性(抽象、统一)的重要手段是使用数学符号.附录 有趣的数制十进制数54321809306810000001000091000310001061810010910310010610.=⨯+⨯+⨯+⨯+⨯+⨯=⨯+⨯+⨯+⨯+⨯+⨯210123562.4083510610210410010810310.----=⨯+⨯+⨯+⨯+⨯+⨯+⨯特点: 十进制数由十个数字0 1 2 3 4 5 6 7 8 9,,,,,,,,,组成. 二进制数43210110111212021212=⨯+⨯+⨯+⨯+⨯.321012341110.11011212120212120212----=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯,特点: 二进制数由两个数字0和1组成. 三进制数4321012312101.2211323130313232313---=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯.特点: 三进制数由两个数字0,1和2组成. 前面讲过, 利用四个砝码: 1g , 2g,4g, 8g , 可以称出1g ——15g 的整数克重量. 把重量用二进制表示, 可以得到相应的砝码组合方式.用四个砝码1g ,2g, 4g , 8g 可以称出1g ——15g 的整数克重量前面还讲过, 利用三个砝码: 1g, 3g, 9g, 可以称出1g——13g的整数克重量(允许砝码放在天平的两个托盘中). 把重量用三进制表示, 可以得到相应的砝码组合方式. 下表中加下标3的数(如101)表示三进制数, 不加下标3的数为十进制数.3用三个砝码1g, 3g, 9g可以称出1g——13g的整数克重量1.1 数学符号人总想给客观事物赋予某种意义和价值,利用符号认识新事物,研究新问题,从而使客观世界秩序化,这便创造了科学、技术、文化、艺术、……. 符号就是某种事物的代号,人们总是探索用简单的记号去表现复杂的事物,符号也正是这样产生的. 文字是表达事物的符号,一个语种就是一个“符号系统”. 这些符号的组合便是语言. 人们试图用“精密”的方法研究艺术,这在很大程度上依靠符号.符号对于数学的发展来讲更是极为重要的,它可使人们摆脱数学自身的抽象与约束,集中精力于主要环节,这在事实上增加了人们的思维能力. 没有符号去表示数及其运算,数学的发展是不可想象的.数学语言是困难的,但又是永恒的(纽曼语). 数是数学乃至科学的语言,符号则是记录、表达这些语言的文字. 正如没有文字,语言也难以发展一样,几乎每一个数学分支都是靠一种符号语言而生存,数学符号是贯穿于数学全部的支柱.古代数学的漫长历程, 今日数学的飞速发展,十七世纪、十八世纪欧洲数学的兴起, 我国几千年数学发展进程的缓慢,这些在某种程度上都归咎于数学符号的运用得当与否. 简练、方便的数学符号对于书写、运算、推理来讲,是何等重要! 反之,没有符号或符号不恰当、不简练,势必影响到数学的推理和演算. 然而,数学符号的产生、使用和流传却经历了一个十分漫长的过程. 在这个过程中,始终贯穿着人们对于自然、和谐与美的追求.古埃及和我国一样,是世界上四大文明古国之一. 早在四千多年以前,埃及人已懂得了数学,在数的计算方面还会使用分数,不过, 他们用的是“单位分数”(分子是1的分数). 此外,他们还能计算直线形和圆的面积. 他们知道了圆周率约为3.16,同时也懂得了棱台和球的体积计算等. 可是,他们却是用下面的符号记数的:这样书写和运算起来都不方便,比如写数2314,就要用符号表示. 后来他们把符号作了简化而成为古代巴比伦人(巴比伦即当今希腊一带地方)计数使用的是六十进制,当然它也有其优点,因为60有约数2,3,4,5,6,10,12,15,30,60等,这样,在计算分数时会带来某种方便(现在时间上的小时、分、秒制及角度制,仍是六十进制).巴比伦人已经研究了二次方程和某些三次方程的解法,他们在公元前2000年就开始将楔形线条组成符号(称为楔形文字),且将它们刻在泥板上,然后放到烈日下晒干以备保存.同样,他们也是用楔形文字来表示数,无论是用来记录还是运算,都相对来说方便了许多.我国在纸张没有发明以前,已经开始用算筹进行记数和运算了. 算筹是指计算时使用的小竹棍(或木棍、骨棍),这也是世界上最早的计算工具. 用算筹表示数的方法是:记数时, 个位用纵式,其余位纵横相间,故有“一纵十横,百立千僵”之说. 数字中有0时,将其位置空出,比如86021可表示为:在甲骨文中,数字是用下面的符号表示的(形象、自如):码”的记数方法(方便、明快):在计数上欧洲人开始使用的是罗马数字:阿拉伯数字据说是印度人发明的,后传入阿拉伯国家,经阿拉伯人改进、使用,因其简便性而传遍整个世界,成为通用的记数符号.我们再来看看方程用符号表示的历史(代数学的产生与方程研究关系甚密) . 在埃及出土的3600年前的莱因特纸草上有下面一串符号:它既不是什么绘画艺术,也不是什么装饰图案,它表达的是一个代数方程式,用今天的符号表示,即211137327x ⎛⎫+++= ⎪⎝⎭. 宋、元时期我国也开始了相当于现代方程论的研究,当时记 数仍使用算筹. 在那时出现的数学著作中,就是用下图中的记号来表示二次三项式2412136x x -+的, 其中,x 的系数旁边注以“元”字,常数项注以“太”字,筹上画斜线表示“负数”.到了十六世纪,数学家卡尔达诺、韦达等人对方程符号有了改进. 直到笛卡儿才第一个提倡用x、y和z表示未知数,他曾用--+--∝xxx xx x926240表示32926240-+-=, 这与现在的方程写法几乎一致.x x x其实,数学表达式的演变正是人们追求数学的和谐、简洁、方便和明晰的审美过程. 笛卡儿的符号已接近现代通用的记号, 直到1693年, 沃利斯创造了现在人们仍在使用的记号:4320++++=.x bx cx dx e韦达是第一个引进字母系数的人,但他仍用希腊人的齐次原则、拉丁记号plano和solido分别表示平面数和立体数;用aequtur表示等于,in表示乘号,quad和cub分别表示平方和立方,这显然不简便. 笛卡儿的符号已有较大程度的简化.我们还想指出一点:数及其运算只有用符号去表示,才能更加确切和明了. 随着数学的发展,随着人们对于数的认识的深化,用原有符号去表示新的概念,有时竟会感到无能为力(没有根号如何表示某些无理数?),这需要创新.圆周率(圆的周长与直径的比)是一个常数,但它又是无限不循环小数. 1737年欧拉首先倡导用希腊字母π来表示它(早在1600年英国数学家奥特雷德曾用π作为圆周长的符号),且通用于全世界.用e 表示特殊的无理常数(也是超越数)——欧拉常数1lim 1 2.718281828459045n n n →∞⎛⎫+= ⎪⎝⎭的也是欧拉. 我们知道,要具体写出圆周率或欧拉常数,这是根本不可能的(它们无限且不循环),然而用数学符号却可精确地表示它们(1.41421356=表达一样).i 表示,还是数学家欧拉于1777年首创的(这也使我们想到:欧拉的成就与他对数学符号的创造不无关系). 在奇妙的等式10i e π+=中,所出现的五个数中的三个符号都是出自数学大师欧拉之手!从上面的例子我们可以看到:数学符号的重要在于它有无限的力量和手段来协助直觉,把社会和自然乃至宇宙中的数学关系联系起来,去解答一些已知或未知的问题,去创造更深、更新的思维形式.说到数学符号, 我们当然还不应忘记图形. 点、线、面、体的产生正是人们对客观事物的抽象和概括,欧几里得几何、非欧几何、解析几何正是研究这些图形的分支. 除此之外,还有许多精彩的例子. 首先我们会想到“哥尼斯堡七桥问题”.布勒格尔河流经哥尼斯堡市区,河中有两个河心岛,它们之间以及它们与河岸之间共有七座桥连接. 当地居民曾被一个问题搞得百思不得其解,这个问题是:你能否无遗漏又不重复地走遍七座桥而回到出发地?人们在不停地走着、试着,却无一人成功.数学大师欧拉接触此问题后,他巧妙地用数学手段将问题转化、化简,并成功地解决了这个难题. 首先,他将问题抽象成图形:用点代表河岸和小岛,用线代表桥(注意上面两个图中的A,B,C,D的对应),于是得到右上图这个简单的图形,同时问题相应地改为:能否一笔画出这个图形?为了解决这个问题,我们首先明确:一笔画就是从图形上某点出发,笔不离开纸,并且每条线都只画一次不重复.其次,我们定义:若从图中某点出发的线的条数是偶数,则称该点为偶点; 若从图中某点出发的线的条数是奇数,则称该点为奇点.在左图中,从每一点出发都有两条线. 因此,这四个点都是偶点. 在右图中有4个点,从③、④两点出发的线有2条,故③、④是偶点;从①、②两点出发的线有3条,故这两个点是奇点.一个图形能否一笔画成,关键在于图中的奇点的个数. 欧拉发现了一个图形可以一笔画成的判定准则:一个图形能一笔画成 图中的奇点的个数为0或2.奇点在一笔画中只能作为起点或终点. 在上述哥尼斯堡七桥问题中,所有的点都是奇点,因此,要想一笔画出下图是不可能的,也就是说,要想不重复地走过哥尼斯堡的七座桥,那是不可能的.欧拉的这项研究导致了拓扑学这门数学分支的诞生(在很大程度上讲,这也促进了图论这门学科的创立).例下面的图形能一笔画成吗?答第1图可以一笔画成.在第2图中,E点是偶点,其它点是奇点,所以第2图不能一笔画成. 第3图可以一笔画成.很难想象,如果欧拉不是运用了图形符号而是用河、桥去探讨这个问题,结果将会是怎样? 那样的话,解决问题的难度要变得很大,更谈不上新的数学分支的诞生.运用类似的方法,欧拉还证明了著名的关于多面体的顶点数V、棱数E和面数F之间的关系式——欧拉公式:由此人们发现了正多面体仅有五种:正四面体、正六面体(立方体)、正八面体、正十二面体和正二十面体.关于欧拉公式,我们可以用四面体和六面体来验证.六人相识问题:在任何6个人中, 必可从中找出3个人,使得他们要么彼此都相识,要么彼此都不相识.把这个抽象的问题转化成“点”与“染色直线”,从而巧妙地解答它,这不能不说是符号的一大功劳(要知道, 6人之间的相互关系的可能情况有26152232768C ==种).把六个人用点A 、B 、C 、D 、E 和F 表示. 若两个人相识,则用红线连接相应的点,若两人不相识, 则用黑线连接相应的点. 点A 与B 、C 、D 、E 和F 的连线(5条)中,必有三条线的颜色相同, 不妨设AB 、AC 和AD 为红色.再考虑B 、C 、D 三点间的连线. 若它们全为黑色,则B 、C 、D 三点为所求(左上图,它们代表的三个人彼此都不相识);若三点间的连线至少有一条为红色,设它为BC ,这时A 、B 、C三点为所求(右上图,它们代表的三个人彼此都相识). 我们还可以有进一步的结论:上述(彼此都相识或都不相识的)“三人组”在六个人中至少存在两组(证明见本节末附录).顺便讲一句:若要求彼此相识或不相识的人数是4,则总人数要增至18;若要求彼此相识或不相识的人数是5(这时有20010种组合方式),则总人数要增至43人——49人之间(具体人数至今不详);若要求彼此相识或不相识的人数是6,则总人数要增至102——165之间,确定它们是人们目前尚不可及的事.上面的事实,再次证明了数学符号的威力. 没有它, 至少问题的叙述会变得复杂而困难,或者根本无法表达清楚.世界原本是简洁的, 数学也是.没有数学语言(符号)的帮助,许多科学、技术的发展会变得迟缓,甚至停滞,这决非耸人听闻.我们说过:数、字母、代数式是符号,图同样也是符号,它们(数与形)之间的彼此借鉴与相互的通融,使得数学符号被赋予新意且更具魅力和美感. 为了更好地研究数学,人们必须创造且使用数学符号.如今,我们简直难以想象:如果没有现今的数学符号,数学乃至整个科学的面貌将会是何种模样!附录证明: 上述(彼此都相识或都不相识的)“三人组”在六个人中至少存在两组.证明为证该结论, 我们注意到, 在本节的证明中, 我们实际上已证了下列命题若从某点向其余三点所引线段同色, 则在上述四点中, 必有某三点, 使得以其为顶点的三角形的三边同色(为方便, 以下称三边同色的三角形为同色三角形).只需考虑下列两图所对应的情形.在左图中...., 若BE、BF同为红色,则在A、B、E、F中,可产生同色三角形(上述命题), 且它异于BCD∆. 所以结论成立. 若BE、BF同为黑色,则在B、D、E、F中,也可产生同色三角形, 且它异于BCD∆. 所以结论仍真. 若BE、BF一红一黑, 不妨设BE为红, BF为黑.设CF为红(否则, 有黑BCF BCD∆≠∆, 得证), AE为黑(否则, 有红ABE BCD∆≠∆, 得证), AF ∆≠∆, 得证), DF为红(否则, 有黑BDF BCD为黑(否则, 有红ACF BCD∆≠∆, 得证), EF为红(否则, 有红∆≠∆, 得证), DE为黑(否则, 有红DEF BCD∆≠∆, 得证), CE为AEF BCD红(否则, 有黑CDE BCD∆为红三角形. 故∆≠∆, 得证). 此时, CEF结论成立.在上面的..., 设CD为黑(否则, ABC....右图中∆均为红三∆和ACD角形, 结论成立).若CE、CF均为黑,则在C、D、E、F中,可产生同色三角形,且该三角形异于ABC∆. 所以结论成立. 若CE、CF均为红,则同理可证结论成立. 若CE、CF一红一黑,不妨设CE红, CF黑.设BE黑(否则, 有红BCE ABC∆≠∆, 得证), BD黑(否则, 有红∆≠∆, 得证), DF红(否∆≠∆, 得证), DE红(否则, 有黑BDE ABCABD ABC则, 有黑CDF ABC∆≠∆, 得证). 此时, 在A、D、E、F中,可产生同色三角形,且它异于ABC∆. 所以结论成立.31。
数学之美:培养学生对数学美感和审美能力的教学设计
学生审美能力的培养和提升
数学之美在教学 设计中的应用: 通过展示数学中 的对称、比例、 黄金分割等美学 元素,培养学生
的审美意识。
数学之美的培养 与提升:通过引 导学生发现数学 中的美学元素, 激发学生对数学 的兴趣和热爱, 进而提升学生的
审美能力。
数学之美的培养 与教学实践:结 合具体的教学实 践,探讨如何将 数学之美融入教 学中,提升学生
推动数学教育改革和发展
创新教学方式:采 用探究式、项目式、 合作学习等多样化 教学方式,激发学 生学习兴趣和主动 性。
跨学科整合:将数 学与其他学科进行 整合,拓宽学生视 野,培养综合素质。
引入现代技术:利 用信息技术手段, 如数学软件、在线 教育平台等,提高 教学效率和学生学 习效果。
注重实践应用:引 导学生将数学知识 应用于实际问题中 ,培养解决实际问 题的能力。
选择合适的教学方法
确定教学目标:明确培养数学之美 的目标,确保教学设计有针对性。
教学方法的选择:根据教学目标和 学生特点,选择启发式、探究式、 案例分析等教学方法,以引导学生 主动探索数学之美。
添加标题
添加标题
添加标题
添加标题
分析学生特点:了解学生的数学基 础、学习风格和兴趣,以便选择适 合的教学方法。
添加标题
添加标题
添加标题
添加标题
分析学生情况:了解学生的学习基 础、学习风格和兴趣爱好等方面的 特点。
设计教学活动:根据教学计划,设 计丰富多样的教学活动,如小组讨 论、数学游戏、数学实验等,以激 发学生的学习兴趣和主动性。
制定教学评价标准和方法
确定评价目标:明确评价的具体内容和标准,以便指导教学设计 设计评价方法:选择合适的评价工具和手段,如测试、观察、作品评估等 制定评价计划:确定评价的时间、频率和实施方式,确保评价的有效性和可靠性 评价结果分析:对收集到的评价数据进行整理、分析和解释,为教学设计的改进提供依据
数学美在数学教学中的作用
美在数学教学中的作用数学美源于人们的生产与生活中,是自然美的客观反应。
《数学课程标准》指出课程目标之一是“开阔数学视野,认识数学的科学价值、应用价值和文化价值,体会数学的美学意义”。
数学是人类文化的重要组成部分,数学素质是公民所备必的一种基本素质,对数学的进一步认识和了解,可以使人获得美的感受,数学的美不仅有生活中的美,更有思维领域的美,它体现在数学的简洁性、和谐性、称性性、奇异性等方面。
一、新教材中的美学因素新教材中有丰富多彩的数学美学因素,下面主要从四个方面来挖掘教材中的美学内容。
1、简洁性数学知识的简练美是数学的主要艺术特色,简洁性是数学美的一个基本特征。
它反映出自然的简单性,是自然内在的属性,而不是人为的简单规定。
数学的简洁性并不是指数学内容本身简单,而主要表现在数学的逻辑结构、方法和表达式的简单性。
如:5个2相加,可以写为2+2+2+2+2+2但是2×5的表示方法却要简单得多了,并以简洁表示了更复杂内容;勾股定理,正弦正理,余弦定理等这些定理形式简洁、内容深刻、作用很大;在证明与自然数有关的问题时,数学归纳法不失为一种简洁的方法。
2、对称性对称性是数学美的主要表现形式之一。
数学中的中心对称、轴对称和镜面对称,都给人以美感,这就是数学中的对称美,方程中的等号左右两边相;几何中的圆、球、圆柱、圆锥、长方体、圆锥曲线等都体现了对称美。
3、和谐性数学知识的和谐美是数学的普遍形式。
数学的和谐性是指数学中部分与部分,部分与整体之间的和谐平衡与一致。
通常表现为数学概念、规律、方法的统一,数学与其它学科的统一。
例如:平面几何中梯形、三角形、平行四边、长方形、正方形形的面积公式,可以统一为。
S =a.b4、奇异性数学的奇异性是指数学结论或解决问题方法的新颖、奇巧、出乎意料,往往勾起思想上的震动,引起人们的赞赏与叹服。
如数学教学中的“鸡兔同笼”问3、两重性。
这两重性可简单地概括为:一是数学知识,二是数学思想方法。
数学欣赏数学中的美
数学欣赏数学中的美当我们提到数学,很多人的第一反应可能是复杂的公式、枯燥的计算和让人头疼的难题。
然而,数学并非仅仅如此,它蕴含着一种独特而深邃的美。
这种美并非浮于表面,而是需要我们用心去欣赏、去发现。
数学之美,首先体现在它的简洁性。
一个简洁的数学公式或定理,往往能够概括出复杂的现象和规律。
比如,勾股定理“a² + b²=c²”,仅仅用几个符号和数字,就描述了直角三角形三边之间的关系。
这种简洁并非是简单的删减,而是经过无数次的思考、推导和提炼后的精华。
它如同一件精心雕琢的艺术品,去除了多余的部分,留下的是最核心、最本质的内容。
数学的美还在于它的对称性。
在几何图形中,我们常常能看到对称的美。
圆形、正方形、等边三角形等,它们的对称性质让人赏心悦目。
这种对称性不仅存在于图形中,在数学的运算和公式中也同样存在。
例如,乘法的交换律 a×b = b×a,加法的交换律 a + b = b + a,无论元素的顺序如何改变,结果始终保持不变。
这种对称性给人一种平衡、和谐的感觉,仿佛宇宙万物都遵循着某种既定的秩序。
数学中的逻辑美更是让人着迷。
从一个基本的定义和公理出发,通过严谨的推理和证明,逐步得出一系列的定理和结论。
这种逻辑的链条紧密相连,环环相扣,没有丝毫的漏洞和瑕疵。
就像建造一座大厦,每一块基石都稳固可靠,每一根梁柱都精准到位,最终构建出一个宏伟而坚固的知识体系。
这种逻辑的严密性让人感受到一种理性的力量,让人相信通过数学,我们可以揭示事物的本质和真相。
数学在自然界中的呈现也是美的。
比如,斐波那契数列在植物的生长中经常出现。
向日葵的花盘上,种子的排列遵循着斐波那契数列的规律;菠萝表面的鳞片也是按照斐波那契数列的方式分布。
这些自然现象中的数学规律,让我们感受到数学与生命、与大自然的紧密联系。
数学仿佛是大自然的语言,它用一种神秘而美妙的方式诠释着世界的运行。
数学的美还体现在它的无限性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学美欣赏(内容选自《数学美拾趣》、《数学聊斋》和《直观几何》)课程简介了解数学的趣味性,初步懂得数学在理论和实际中的应用,欣赏数学的绚丽多彩的艺术世界.学习要求1. 用U盘复制电子讲稿,并打印.2. 课后认真阅读讲稿.3. 适当安排若干次课堂独立作业. 做课堂作业时, 允许参考本讲稿, 可以摘录讲稿内容.考核要求1. 进行期中考试和期末考试,均为开卷.2. 期末总评成绩=期中考试成绩×50%+期末考试成绩×50%.3. 期中考试、期末考试和课堂独立作业中没有任何计算题和证明题,也没有填空题和选择题, 题型均为问答题.第1讲第1章数学的简洁性序言著名科学家伽利略说过:“数学是上帝用来书写宇宙的文字”.简洁本身就是一种美,而数学的首要特点在于它的简洁.数学家莫德尔说:在数学美的各个属性中,首先要推崇的大概是简单性了.自然界原本就是简洁的:光是沿直线方向传播的——这是光传播的最捷路线.植物的叶序排布是植物叶子通风、采光最佳的布局.某些攀缘植物如藤类,它们绕着攀依物螺旋式的向上生长,它们所选的螺线形状对于植物上攀路径来讲是最节省的.大雁迁徙时排成的人字形,一边与其飞行方向夹角是54448''',从空气动力学角度看,这个角度对于大雁队伍飞行是最佳的,即阻力最小(顺便一提:金刚石晶体中也蕴含这种角度).,这种比值在人体中,人的粗细血管直径之比总是的分支导流系统经流体动力学研究表明,它在输导液体时能量消耗最少.生物学家和数学家们(如著名科学家开普勒、数学家列厄木、柯尼希等)在研究蜂房构造时发现:在体积一定的条件下,蜂房的构造是最省材料的.这些最佳、最好、最省、……的事实,来自生物的进化与自然选择,然而它同时展现了自然界的简洁,而且也展现了自然界的和谐. 宇宙万物如此,数学,它作为用来描述宇宙的文字和工具也应当是简洁与和谐的.诗人但丁曾赞美道:“圆是最美的图形”.太阳是圆的、满月是圆的、水珠看上去(投影)是圆的、……,圆的线条明快、简练、对称.近代数学研究还发现圆的等周极值性质:在周长给定的封闭图形中,圆所围的面积最大.无论是古人,还是今人,人们对圆有着特殊亲切的情感,都因为圆的简洁美.数学中人们对于简洁的追求是永无止境的:建立公理体系时,人们试图找出最少的几条(抛弃任何多余的赘物);对命题的证明,人们力求严谨、简练(因而人们对某些命题的证明在不断地改进);对计算的方法,人们要求尽量便捷、明快(因而人们不断地在探索计算方法的创新),……,数学拒绝繁冗.正如牛顿所说:数学家不但更容易接受漂亮的结果,不喜欢丑陋的结论,而且他们也非常推崇优美与雅致的证明,而不喜欢笨拙与繁复的推理.数学大师欧拉曾研究过天平砝码最优(少)配置问题,并且证明了:若有1,2,22,32, (2)克的砝码,只允许其放在天平的一端,利用它们可称出1——()1122122221n n n +--=+++++之间的任何整数克重物体的重量.例如,当3n =时,我们有4个砝码:1克,2克,22克和32克,即1克,2克,4克和8克. 利用它们,我们可称出1克——3121+-克(即15克)之间的任何整数克重物体的重量, 即可称出1克,2克,3克, …, 15克的重量. 这由下表可以明白.这个问题其实与数的二进制有关. 进而,欧拉还证明了(它与数的三进制有关):有1,3,23,33, (3)克重的砝码,允许其放在天平两端, 利用它们可以称出1----()11231333312n n n +--=+++++之间任何整数克重物体的重量.例如,当2n =时,我们有3个砝码:1克,3克和23克,即1克,3克和9克. 利用它们,我们可称出1克——21312+-克(即13克)之间的任何整数克重物体的重量, 即可称出1克, 2克, 3克, …,13克的重量. 这由下表可以明白.以上两个事实是“以少应付多”的典范,这也是数学简洁性使然. 下面的所谓“省刻度尺问题”, 尽管人们尚未对此得出一般结论,但目前仅有的结果也足以使人倍感兴趣:一根6cm 长的尺子,只须刻上两个刻度(在1cm 和4cm 处),就可量出1cm ——6cm 之间任何整数厘米长的物体长,即可量出1cm ,2cm ,3cm ,4cm ,5cm 和6cm 的长度(下简称“完全度量”).若用a b →表示从a 量到b 的话,那么具体度量如下:1(01→),2(46→),3(14→),4(04→),5(16→),6(06→).一根13cm 的尺子,只须在1cm ,4cm ,5cm 和11cm 四处刻上刻度,便可完成1——13cm 的完全度量. 具体度量如下:1(01→), 2(1113→), 3(14→), 4(04→), 5(05→), 6(511→), 7(411→), 8(513→), 9(413→), 10(111→), 11(011→), 12(113→), 13(013→).对于22cm 的尺子,只须刻上六个刻度,即在:1cm ,2cm ,3cm,8cm,13cm和18cm;或者1cm,4cm,5cm,12cm,14cm 和20cm处刻上刻度,可完成1——22cm的完全度量.对于23cm的尺子来讲,也只须六个刻度:1cm,4cm,10cm,16cm,18cm和21cm,便可完成1——23cm的完全度量.一根36cm的尺子,只须在1cm,3cm,6cm,13cm,20cm,27cm,31cm和35cm处刻上八个刻度,便可完成1cm——36cm 的完全度量.对于40cm的尺子,刻上九个刻度:1cm,2cm,3cm,4cm,10cm,17cm,24cm,29cm和35cm,即可完成1——40cm 的完全度量.这类问题与应用数学中所谓最优化方法有关,这门学科的核心是最省、最好(对效益讲是最大).用“少”去表现“多”,或者求极大、极小等,均是数学简洁性的另类表现. 比如“植树问题”. 英国数学家、物理学家牛顿曾经很喜欢下面一类题目:9棵树栽9行,每行栽3棵,如何栽? 乍看此题似乎无解,其实不然,看了左下图(图中黑点表示树的位置,下同),你会恍然大悟!牛顿还发现:9棵树每行栽3棵,可栽行数的最大值不是9,而是10,见右上图. 左下图给出10棵树,栽10行,每行栽3棵的栽法.其实,10棵树,每行栽3棵,可栽的最多行数也不是10,而是12,见右上图.英国数学家、逻辑学家道奇生在其童话名著《艾丽丝漫游仙境》中也提出下面一道植树问题:10棵树,栽成5行,每行栽4棵,如何栽? 此题答案据说有300种之多,下面诸图给出了其中的几种.十九世纪末,英国的数学游戏大师杜登尼在其所著《520个趣味数学难题》中也提出了下面的问题:16棵树,栽成15行,每行栽4棵,如何栽? 杜登尼的答案见左下图.美国趣味数学大师山姆·洛伊德曾花费大量精力研究“20棵树,每行栽4棵,至多可栽多少行”,他给出了可栽18行的答案,见右下图.几年前人们借助于电子计算机给出了上述问题可栽20行的最佳方案,见左下图.稍后曾见报载,国内有人给出可栽21行的方案(右上图),然而严格的验证工作恐非易事——这些点是否真的共线?既便结论无误,但它是否是可栽的最多行数,人们尚不得而知.在英国数学家薛尔维斯特在临终前几年(1893年)提出了一个貌似简单的问题:对于在平面上不全共线的任意n个点,总可以找到一条直线,使其仅过其中的两个点.直到1933年,人们才找到一个繁琐的证明. 此后,1944年、1948年又先后有人给出了证明. 1980年前后,《美国科学新闻》杂志重提旧事时,又一次向人们介绍了薛尔维斯特问题和凯利于1948年给出的证明.我们很容易体会到:一个定理(或习题)证明(或解法)的简化,将认为是做了一件漂亮的工作,即它是美妙的. 由于简洁,数学语言(包括图形)不仅能描述世界上的万物,而且也能为世界上所有文明社会所接受和理解,甚至还将成为与其它星球上的居民(如果存在的话)交流思想的工具.在为美国发射的在茫茫太空中去寻觅地球外文明的“先驱者号飞船”(探测器)征集所携带的礼物时,我国已故著名数学家华罗庚曾建议带上数学中用以表示勾股定理(毕达哥拉斯定理)的简单、明快的数形图,它似乎应为宇宙所有文明生物所理解.22245+=2221517+=数学中的简洁性的例子是不胜枚举的:比如三角形,尽管它有千姿百态,但人们却可用12S ah =(a 为底边长,h 为该边上高)或海伦公式S =为三角形半周长)去表达所有三角形的面积.数学的简洁性系指其抽象性、概括性和统一性. 正是因为数学具有抽象性和统一性,因而其形式应当是简单的. 实现数学的简单性(抽象、统一)的重要手段是使用数学符号.附录 有趣的数制十进制数54321809306810000001000091000310001061810010910310010610.=⨯+⨯+⨯+⨯+⨯+⨯=⨯+⨯+⨯+⨯+⨯+⨯210123562.4083510610210410010810310.----=⨯+⨯+⨯+⨯+⨯+⨯+⨯特点: 十进制数由十个数字0 1 2 3 4 5 6 7 8 9,,,,,,,,,组成. 二进制数43210110111212021212=⨯+⨯+⨯+⨯+⨯.321012341110.11011212120212120212----=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯,特点: 二进制数由两个数字0和1组成. 三进制数4321012312101.2211323130313232313---=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯.特点: 三进制数由两个数字0,1和2组成. 前面讲过, 利用四个砝码: 1g , 2g,4g, 8g , 可以称出1g ——15g 的整数克重量. 把重量用二进制表示, 可以得到相应的砝码组合方式.用四个砝码1g ,2g, 4g , 8g 可以称出1g ——15g 的整数克重量前面还讲过, 利用三个砝码: 1g, 3g, 9g, 可以称出1g——13g的整数克重量(允许砝码放在天平的两个托盘中). 把重量用三进制表示, 可以得到相应的砝码组合方式. 下表中加下标3的数(如3101)表示三进制数, 不加下标3的数为十进制数.用三个砝码1g, 3g, 9g可以称出1g——13g的整数克重量1.1 数学符号人总想给客观事物赋予某种意义和价值,利用符号认识新事物,研究新问题,从而使客观世界秩序化,这便创造了科学、技术、文化、艺术、……. 符号就是某种事物的代号,人们总是探索用简单的记号去表现复杂的事物,符号也正是这样产生的. 文字是表达事物的符号,一个语种就是一个“符号系统”. 这些符号的组合便是语言. 人们试图用“精密”的方法研究艺术,这在很大程度上依靠符号.符号对于数学的发展来讲更是极为重要的,它可使人们摆脱数学自身的抽象与约束,集中精力于主要环节,这在事实上增加了人们的思维能力. 没有符号去表示数及其运算,数学的发展是不可想象的.数学语言是困难的,但又是永恒的(纽曼语). 数是数学乃至科学的语言,符号则是记录、表达这些语言的文字. 正如没有文字,语言也难以发展一样,几乎每一个数学分支都是靠一种符号语言而生存,数学符号是贯穿于数学全部的支柱.古代数学的漫长历程, 今日数学的飞速发展,十七世纪、十八世纪欧洲数学的兴起, 我国几千年数学发展进程的缓慢,这些在某种程度上都归咎于数学符号的运用得当与否. 简练、方便的数学符号对于书写、运算、推理来讲,是何等重要! 反之,没有符号或符号不恰当、不简练,势必影响到数学的推理和演算. 然而,数学符号的产生、使用和流传却经历了一个十分漫长的过程. 在这个过程中,始终贯穿着人们对于自然、和谐与美的追求.古埃及和我国一样,是世界上四大文明古国之一. 早在四千多年以前,埃及人已懂得了数学,在数的计算方面还会使用分数,不过, 他们用的是“单位分数”(分子是1的分数). 此外,他们还能计算直线形和圆的面积. 他们知道了圆周率约为3.16,同时也懂得了棱台和球的体积计算等. 可是,他们却是用下面的符号记数的:这样书写和运算起来都不方便,比如写数2314,就要用符号表示. 后来他们把符号作了简化而成为古代巴比伦人(巴比伦即当今希腊一带地方)计数使用的是六十进制,当然它也有其优点,因为60有约数2,3,4,5,6,10,12,15,30,60等,这样,在计算分数时会带来某种方便(现在时间上的小时、分、秒制及角度制,仍是六十进制).巴比伦人已经研究了二次方程和某些三次方程的解法,他们在公元前2000年就开始将楔形线条组成符号(称为楔形文字),且将它们刻在泥板上,然后放到烈日下晒干以备保存.同样,他们也是用楔形文字来表示数,无论是用来记录还是运算,都相对来说方便了许多.我国在纸张没有发明以前,已经开始用算筹进行记数和运算了. 算筹是指计算时使用的小竹棍(或木棍、骨棍),这也是世界上最早的计算工具. 用算筹表示数的方法是:记数时, 个位用纵式,其余位纵横相间,故有“一纵十横,百立千僵”之说. 数字中有0时,将其位置空出,比如86021可表示为:在甲骨文中,数字是用下面的符号表示的(形象、自如):阿拉伯数字未流行之前,我国商业上还通用所谓“苏州码”的记数方法(方便、明快):它在计数和运算上已带来较大方便.在计数上欧洲人开始使用的是罗马数字:阿拉伯数字据说是印度人发明的,后传入阿拉伯国家,经阿拉伯人改进、使用,因其简便性而传遍整个世界,成为通用的记数符号.我们再来看看方程用符号表示的历史(代数学的产生与方程研究关系甚密) . 在埃及出土的3600年前的莱因特纸草上有下面一串符号:它既不是什么绘画艺术,也不是什么装饰图案,它表达的是一个代数方程式,用今天的符号表示,即211137327x ⎛⎫+++= ⎪⎝⎭. 宋、元时期我国也开始了相当于现代方程论的研究,当时记 数仍使用算筹. 在那时出现的数学著作中,就是用下图中的记号来表示二次三项式2412136x x -+的, 其中,x 的系数旁边注以“元”字,常数项注以“太”字,筹上画斜线表示“负数”.到了十六世纪,数学家卡尔达诺、韦达等人对方程符号有了改进. 直到笛卡儿才第一个提倡用x 、y 和z 表示未知数,他曾用 926240xxx xx x --+--∝表示32926240x xx -+-=, 这与现在的方程写法几乎一致.其实,数学表达式的演变正是人们追求数学的和谐、简洁、方便和明晰的审美过程. 笛卡儿的符号已接近现代通用的记号, 直到1693年, 沃利斯创造了现在人们仍在使用的记号:4320x bx cx dx e ++++=. 韦达是第一个引进字母系数的人,但他仍用希腊人的齐次原则、拉丁记号plano 和solido 分别表示平面数和立体数;用aequtur 表示等于,in 表示乘号,quad 和cub 分别表示平方和立方,这显然不简便. 笛卡儿的符号已有较大程度的简化.我们还想指出一点:数及其运算只有用符号去表示,才能更加确切和明了. 随着数学的发展,随着人们对于数的认识的深化,用原有符号去表示新的概念,有时竟会感到无能为力(没有根号如何表示某些无理数?),这需要创新.圆周率(圆的周长与直径的比)是一个常数,但它又是无限不循环小数. 1737年欧拉首先倡导用希腊字母π来表示它(早在1600年英国数学家奥特雷德曾用π作为圆周长的符号),且通用于全世界.用e 表示特殊的无理常数(也是超越数)——欧拉常数1lim 1 2.718281828459045n n n →∞⎛⎫+= ⎪⎝⎭的也是欧拉. 我们知道,要具体写出圆周率或欧拉常数,这是根本不可能的(它们无限且不循环),然而用数学符号却可精确地表示它们(=1.41421356表达一样).i表示,还是数学家欧拉于1777年首创的(这也使我们想到:欧拉的成就与他对数学符号的创造不无关系). 在奇妙的等式10ieπ+=中,所出现的五个数中的三个符号都是出自数学大师欧拉之手!从上面的例子我们可以看到:数学符号的重要在于它有无限的力量和手段来协助直觉,把社会和自然乃至宇宙中的数学关系联系起来,去解答一些已知或未知的问题,去创造更深、更新的思维形式.说到数学符号, 我们当然还不应忘记图形. 点、线、面、体的产生正是人们对客观事物的抽象和概括,欧几里得几何、非欧几何、解析几何正是研究这些图形的分支. 除此之外,还有许多精彩的例子. 首先我们会想到“哥尼斯堡七桥问题”.布勒格尔河流经哥尼斯堡市区,河中有两个河心岛,它们之间以及它们与河岸之间共有七座桥连接. 当地居民曾被一个问题搞得百思不得其解,这个问题是:你能否无遗漏又不重复地走遍七座桥而回到出发地?人们在不停地走着、试着,却无一人成功.数学大师欧拉接触此问题后,他巧妙地用数学手段将问题转化、化简,并成功地解决了这个难题. 首先,他将问题抽象成图形:用点代表河岸和小岛,用线代表桥(注意上面两个图中的A,B,C,D的对应),于是得到右上图这个简单的图形,同时问题相应地改为:能否一笔画出这个图形?为了解决这个问题,我们首先明确:一笔画就是从图形上某点出发,笔不离开纸,并且每条线都只画一次不重复.其次,我们定义:若从图中某点出发的线的条数是偶数,则称该点为偶点; 若从图中某点出发的线的条数是奇数,则称该点为奇点.在左图中,从每一点出发都有两条线. 因此,这四个点都是偶点. 在右图中有4个点,从③、④两点出发的线有2条,故③、④是偶点;从①、②两点出发的线有3条,故这两个点是奇点.一个图形能否一笔画成,关键在于图中的奇点的个数. 欧拉发现了一个图形可以一笔画成的判定准则:奇点在一笔画中只能作为起点或终点. 在上述哥尼斯堡七桥问题中,所有的点都是奇点,因此,要想一笔画出下图是不可能的,也就是说,要想不重复地走过哥尼斯堡的七座桥,那是不可能的.欧拉的这项研究导致了拓扑学这门数学分支的诞生(在很大程度上讲,这也促进了图论这门学科的创立).例下面的图形能一笔画成吗?答第1图可以一笔画成.在第2图中,E点是偶点,其它点是奇点,所以第2图不能一笔画成. 第3图可以一笔画成.很难想象,如果欧拉不是运用了图形符号而是用河、桥去探讨这个问题,结果将会是怎样? 那样的话,解决问题的难度要变得很大,更谈不上新的数学分支的诞生.运用类似的方法,欧拉还证明了著名的关于多面体的顶点数V、棱数E和面数F之间的关系式——欧拉公式:由此人们发现了正多面体仅有五种:正四面体、正六面体(立方体)、正八面体、正十二面体和正二十面体.关于欧拉公式,我们可以用四面体和六面体来验证.六人相识问题:在任何6个人中, 必可从中找出3个人,使得他们要么彼此都相识,要么彼此都不相识.把这个抽象的问题转化成“点”与“染色直线”,从而巧妙地解答它,这不能不说是符号的一大功劳(要知道, 6人之间的相互关系的可能情况有26152232768C ==种).把六个人用点A 、B 、C 、D 、E 和F 表示. 若两个人相识,则用红线连接相应的点,若两人不相识,则用黑线连接相应的点. 点A与B、C、D、E和F的连线(5条)中,必有三条线的颜色相同, 不妨设AB、AC和AD为红色.再考虑B、C、D三点间的连线. 若它们全为黑色,则B、C、D三点为所求(左上图,它们代表的三个人彼此都不相识);若三点间的连线至少有一条为红色,设它为BC,这时A、B、C三点为所求(右上图,它们代表的三个人彼此都相识).我们还可以有进一步的结论:上述(彼此都相识或都不相识的)“三人组”在六个人中至少存在两组(证明见本节末附录).顺便讲一句:若要求彼此相识或不相识的人数是4,则总人数要增至18;若要求彼此相识或不相识的人数是5(这时有20010种组合方式),则总人数要增至43人——49人之间(具体人数至今不详);若要求彼此相识或不相识的人数是6,则总人数要增至102——165之间,确定它们是人们目前尚不可及的事.上面的事实,再次证明了数学符号的威力. 没有它, 至少问题的叙述会变得复杂而困难,或者根本无法表达清楚.世界原本是简洁的, 数学也是.没有数学语言(符号)的帮助,许多科学、技术的发展会变得迟缓,甚至停滞,这决非耸人听闻.我们说过:数、字母、代数式是符号,图同样也是符号,它们(数与形)之间的彼此借鉴与相互的通融,使得数学符号被赋予新意且更具魅力和美感. 为了更好地研究数学,人们必须创造且使用数学符号.如今,我们简直难以想象:如果没有现今的数学符号,数学乃至整个科学的面貌将会是何种模样!附录证明: 上述(彼此都相识或都不相识的)“三人组”在六个人中至少存在两组.证明为证该结论, 我们注意到, 在本节的证明中, 我们实际上已证了下列命题若从某点向其余三点所引线段同色, 则在上述四点中, 必有某三点, 使得以其为顶点的三角形的三边同色(为方便, 以下称三边同色的三角形为同色三角形).只需考虑下列两图所对应的情形.在左图中...., 若BE、BF同为红色,则在A、B、E、F中,可产生同色三角形(上述命题), 且它异于BCD∆. 所以结论成立. 若BE、BF同为黑色,则在B、D、E、F中,也可产生同色三角形, 且它异于BCD∆. 所以结论仍真. 若BE、BF一红一黑, 不妨设BE为红, BF为黑.设CF为红(否则, 有黑BCF BCD∆≠∆, 得证), AE为黑(否则, 有红ABE BCD∆≠∆, 得证), AF ∆≠∆, 得证), DF为红(否则, 有黑BDF BCD为黑(否则, 有红ACF BCD∆≠∆, 得证), EF为红(否则, 有红∆≠∆, 得证), CE为∆≠∆, 得证), DE为黑(否则, 有红DEF BCDAEF BCD红(否则, 有黑CDE BCD∆为红三角形. 故∆≠∆, 得证). 此时, CEF结论成立.在上面的右图中......., 设CD为黑(否则, ABC∆均为红三∆和ACD角形, 结论成立).若CE、CF均为黑,则在C、D、E、F中,可产生同色三角形,且该三角形异于ABC∆. 所以结论成立. 若CE、CF均为红,则同理可证结论成立. 若CE、CF一红一黑,不妨设CE红, CF黑.设BE黑(否则, 有红BCE ABC∆≠∆, 得证), BD黑(否则, 有红∆≠∆, 得证), DE红(否则, 有黑BDE ABC∆≠∆, 得证), DF红(否ABD ABC则, 有黑CDF ABC∆≠∆, 得证). 此时, 在A、D、E、F中,可产生同色三角形,且它异于ABC∆. 所以结论成立.。