串联谐振与并联谐振

合集下载

论串联谐振与并联谐振区别

论串联谐振与并联谐振区别

论串联谐振与并联谐振区别在电阻、电容、电感串联电路中,出现电源、电压、电流同相位现象、叫做串联谐振,其特点是:电路呈纯电阻性,电源、电压和电流同相位,电抗X等于O,抗阻Z等于电阻R。

此时电路的阻抗最小,电流最大,在电感和电容上可能产生比电源电压大很多倍的高电压,因此串联谐振也称为电压谐振。

谐振电压与原电压叠加,并联谐振:在电阻、电容、电感并联电路中,出现电路端电压和总电流同相位的现象,叫做并联谐振,其特点是:并联谐振时一种完全的补偿,电源无需提供无功功率,只提供电阻所需要的有功功率,谐振时,电路的总电流最小,而支路电流往往大于电路中的总电流,因此,并联谐振也叫电流谐振。

串联谐振和并联谐振区别一1. 从负载谐振方式划分,可以为并联逆变器和串联逆变器两大类型,下面列出串联逆变器和并联逆变器的主要技术特点及其比较:串联逆变器和并联逆变器的差别,源于它们所用的振荡电路不同,前者是用L、R和C串联,后者是L、R和C并联。

(1)串联逆变器的负载电路对电源呈现低阻抗,要求由电压源供电。

因此,经整流和滤波的直流电源末端,必须并接大的滤波电容器。

当逆变失败时,浪涌电流大,保护困难。

并联逆变器的负载电路对电源呈现高阻抗,要求由电流源供电,需在直流电源末端串接大电抗器。

但在逆变失败时,由于电流受大电抗限制,冲击不大,较易保护。

串联谐振和并联谐振区别二(2)串联逆变器的输入电压恒定,输出电压为矩形波,输出电流近似正弦波,换流是在晶闸管上电流过零以后进行,因而电流总是超前电压一φ角。

并联逆变器的输入电流恒定,输出电压近似正弦波,输出电流为矩形波,换流是在谐振电容器上电压过零以前进行,负载电流也总是越前于电压一φ角。

这就是说,两者都是工作在容性负载状态。

(3)串联逆变器是恒压源供电,为避免逆变器的上、下桥臂晶闸管同时导通,造成电源短路,换流时,必须保证先关断,后开通。

即应有一段时间(t )使所有晶闸管(其它电力电子器件)都处于关断状态。

串联谐振和并联谐振的10大区别

串联谐振和并联谐振的10大区别

谐振的定义:谐振是在由电容器和电感器组成的电路中发生的现象。

当电路的电容性阻抗等于电感性阻抗时,就会发生谐振。

根据电容器,电感器和电阻器的布置,实现谐振的条件在不同类型的电路之间变化。

串联谐振(也叫变频谐振)是指在电容器和电感器串联连接的电路中发生的谐振,而并联谐振是指在电容器和电感器并联连接的电路中发生的谐振。

串联谐振与并联谐振之间的关系是,当元件的排列产生最小阻抗时发生串联谐振,而当元件的排列产生最大阻抗时发生并联谐振。

谐振是在由电容器和电感器组成的电路中发生的现象。

当电路的电容性阻抗等于电感性阻抗时,就会发生谐振。

根据电容器,电感器和电阻器的布置,实现谐振的条件在不同类型的电路之间变化。

串联谐振:1.串联谐振的介绍串联谐振(也叫变频谐振)是指在电容器和电感器串联连接的电路中发生的谐振。

在回路频率时,回路产生谐振,此时试品上的电压是励磁变高压端输出电压的Q倍。

Q为系统品质因素,即电压谐振倍数,一般为几十到一百以上。

先通过调节变频电源的输出频率使回路发生串联谐振,再在回路谐振的条件下调节变频电源输出电压使试品电压达到试验值。

由于回路的谐振,变频电源较小的输出电压就可在试品CX上产生较高的试验电压。

采用变频串联谐振的方法进行耐压试验,用多级叠加的方式,多台电抗器可并联、串联使用,分压器既用来测量试验电压。

2.串联谐振的计算公式串联谐振时电路的阻抗虚部等于0,Z=R+jX,X=0,Z=R所以I=U/Z=U/R。

a、谐振定义:电路中L、C两组件之能量相等,当能量由电路中某一电抗组件释出时,且另一电抗组件必吸收相同之能量,即此两电抗组件间会产生一能量脉动。

b、电路欲产生谐振,应当具备有电感器L及电容器C两组件。

c、谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以fr表示之。

d、串联谐振电路之条件如下:I2XL=I2XC也就是XL=XC时,为R-L-C串联电路产生谐振之条件。

e、无论是串联还是并联谐振,在谐振发生时,L、C之间都实现了完全的能量交换。

串联谐振和并联谐振的特征

串联谐振和并联谐振的特征

串联谐振和并联谐振的特征
振动中的串联谐振和并联谐振是振动学中的一个重要组成部分,具有不同的特征。

串联谐振是指将两个或多个振动系统串联起来的过程,形成一个新的协同振动系统,新系统的振动特性与原系统的振动特性不同。

而并联谐振是指将两个或多个振动系统并联起来的过程,形成一个新的协同振动系统,新系统的振动特性也与原系统的振动特性不同。

串联谐振的特征是,由于原振动系统之间的相互关系,新的振动系统的驱动力增大,其振幅增大,频率可能会降低,或者不变。

当振动力线性独立存在时,新的系统的振动特性和原系统的振动特性一样,但是振幅却有可能会增大或减小。

并联谐振的特征是,由于原振动系统之间的相互关系,新的振动系统的驱动力减小,其振幅减小,频率可能会升高,或者不变。

当振动力线性独立存在时,新的系统的振动特性和原系统的振动特性一样,但是振幅却有可能会增大或减小。

串联谐振和并联谐振都是有用的,它们可以改变振动系统的特性,以匹配特定应用要求,提供更好的性能。

例如,在悬臂梁系统中,可以通过串联谐振技术来改变梁的振动特性,使得振动力变得更强,更稳定;在某些情况下,可以通过并联谐振技术来改变振动特性,以减弱振动力,减少振动的影响。

总之,不同的振动系统可以通过串联谐振和并联谐振技术来调整并优化它们的振动特性,以适应不同的应用要求,从而提高系统的性能。

串联谐振与并联谐振原理以及并联谐振电流大的原因

串联谐振与并联谐振原理以及并联谐振电流大的原因

串联谐振与并联谐振原理以及并联谐振电流大的原因华天电力专业生产串联谐振,下面为大家介绍串联谐振与并联谐振原理以及并联谐振电流大的原因。

串联谐振与并联谐振原理
在电阻、电感和电容的串联电路中,出现电路的端电压和电路总电流同相位的现象,叫做串联谐振。

串联谐振电路呈纯电阻性,端电压和总电流同相,此时阻抗较小,电流较大,在电感和电容上可能产生比电源电压大很多倍的高电压,因此串联谐振也称电压谐振。

在电感线圈与电容器并联的电路中,出现并联电路的端电压与电路总电流同相位的现象,叫做并联谐振。

并联谐振电路总阻抗较大,因而电路总电流变得较小,但对每一支路而言,其电流都可能比总电流大得多,因此电流谐振又称电流谐振。

并联谐振电流大的原因
并联谐振是串联谐振试验装置的一个结构分支,用于对电气设备的绝缘性能检测,“并联”是一种连接的方法,谐振时的电路感抗和电路容抗相等而对消,电路呈纯电阻负荷状态,此时电路中的电阻最小所以电流最大。

根据欧姆定律U=IR可以得出,串联谐振电路并联时,电路中的电阻最小,电压不变,电流最大。

串联谐振主要组成部分是由:变频控制器、励磁变压器、组合式电抗器、补偿电容器和电容分压器,适用于高电压的电容性试品的交接和预防性试验。

串联谐振和并联谐振的用途

串联谐振和并联谐振的用途

串联谐振和并联谐振的用途首先来看串联谐振。

串联谐振是指电路中电感、电容和电阻连接成串联电路时,在特定频率下电压最大、电流最小的现象。

串联谐振的应用十分广泛,主要集中在以下几个方面:1.无线通信:在无线通信中,由于传输信号的频率往往会发生变化,需要根据信号频率选择相应的天线来进行接收或发送。

而串联谐振电路可以通过调节电感和电容的数值来实现特定频率的选择性放大或滤波,从而提高无线通信的接收信号质量和传输效率。

2.电子滤波器:串联谐振电路常常被用作电子滤波器的核心部件。

通过调节电感和电容的数值,可以实现对不同频率信号的选择性放大或削弱,从而实现对特定频率信号的滤波作用。

例如,在音频放大器中,串联谐振电路被用来滤除杂音,提高放大器的音质。

3.光学器件:串联谐振电路在光学器件中也有广泛的应用。

例如,振荡镜片和滤光片常常通过串联谐振电路的调节实现对特定波长的透射和反射,从而实现光学设备的功率分配和滤波控制。

接下来是并联谐振。

并联谐振是指电路中电感、电容和电阻连接成并联电路时,在特定频率下电流最大、电压最小的现象。

并联谐振的应用如下:1.电源滤波:在电源中,由于交流电的存在,会引入噪声干扰,如纹波。

而并联谐振电路可以作为电源或电路的滤波器,通过调节电感和电容的数值,滤掉输入电源中特定频率的噪声,从而提高电源的纹波系数,保证电路的正常工作。

2.瞬态抑制:在电路中,会由于外来电压的干扰导致瞬态过电压的出现,例如雷击、电源开关等。

而并联谐振电路可以通过调节电感和电容的数值,将瞬态过电压导向谐振电路,从而减少对电路的影响,保护电子设备的正常运行。

3.感应加热:并联谐振电路中的电感可以将电能转化为磁能,利用磁能引起电流在电感中流动,而电流通过电感时会产生热量。

因此,并联谐振电路可以应用于感应加热设备,如感应炉、感应焊机等领域。

总而言之,串联谐振和并联谐振是电路中常用的谐振现象,它们在电子技术、通信技术、声学技术等领域都有广泛的应用。

并联谐振串联谐振计算

并联谐振串联谐振计算

L是电感,C是电容在含有电容和电感的电路中,如果电容和电感并联,可能出现在某个很小的时间段内:电容的电压逐渐升高,而电流却逐渐减少;与此同时电感的电流却逐渐增加,电感的电压却逐渐降低。

而在另一个很小的时间段内:电容的电压逐渐降低,而电流却逐渐增加;与此同时电感的电流却逐渐减少,电感的电压却逐渐升高.电压的增加可以达到一个正的最大值,电压的降低也可达到一个负的最大值,同样电流的方向在这个过程中也会发生正负方向的变化,此时我们称为电路发生电的振荡。

电容和电感串联,电容器放电,电感开始有有一个逆向的反冲电流,电感充电;当电感的电压达到最大时,电容放电完毕,之后电感开始放电,电容开始充电,这样的往复运作,称为谐振。

而在此过程中电感由于不断的充放电,于是就产生了电磁波.电路振荡现象可能逐渐消失,也可能持续不变地维持着。

当震荡持续维持时,我们称之为等幅振荡,也称为谐振。

谐振时间电容或电感两锻电压变化一个周期的时间称为谐振周期,谐振周期的倒数称为谐振频率.所谓谐振频率就是这样定义的.它与电容C和电感L的参数有关,即:f=1/√LC.在研究各种谐振电路时,常常涉及到电路的品质因素Q值的问题,那末什么是Q 值呢?下面我们作详细的论述。

1是一串联谐振电路,它由电容C、电感L和由电容的漏电阻与电感的线电阻R所组成。

此电路的复数阻抗Z为三个元件的复数阻抗之和。

Z=R+jωL+(—j/ωC)=R+j(ωL—1/ωC) ⑴上式电阻R是复数的实部,感抗与容抗之差是复数的虚部,虚部我们称之为电抗用X表示, ω是外加信号的角频率。

当X=0时,电路处于谐振状态,此时感抗和容抗相互抵消了,即式⑴中的虚部为零,于是电路中的阻抗最小.因此电流最大,电路此时是一个纯电阻性负载电路,电路中的电压与电流同相。

电路在谐振时容抗等于感抗,所以电容和电感上两端的电压有效值必然相等,电容上的电压有效值UC=I*1/ωC=U/ωCR=QU 品质因素Q=1/ωCR,这里I 是电路的总电流。

串联谐振和并联谐振

串联谐振和并联谐振

电路中,所接受的电磁信号频率与电路本身的固有频率相同,从而电路产生的振荡电流达到最大,即电学中的共振现象!谐振,E文叫Resonance,就是在电路中,Z=R+j(Xl-Xc),当XL==Xc 了,Z呈现纯电阻性,我们就认为发生了谐振。

串联谐振产生过电压,并联谐振产生大电流。

谐振分串联谐振和并联谐振。

1.串联谐振正弦电压加在理想的(无寄生电阻)电感和电容串联电路上,当正弦频率为某一值时,容抗与感抗相待,电路的阻抗为零,电路电流达无穷大,此电路称为串联谐振;若纯电感L、纯电容C和纯电阻R串连,所加交流电压U(有效值)的圆频率为w。

则电路的复阻抗为:(3.1)复阻抗的模:(3.2)复阻抗的幅角:(3.3)即该电路电流滞后于总电压的位相差。

回路中的电流I(有效值)为:(3.4)上面三式中Z、φ、I均为频率f (或圆频率ω,ω=2πf )的函数。

当时,知φ=0,表明电路中电流I和电压U同位相,整个电路呈现纯电阻性,这就是串联谐振现象。

此时电路总阻抗的模Z=R为最小,如U不随f变化,电流I=U/R则达到极大值。

易知,只要调节f、L、C中的任意一个量,电路都能达到谐振。

2.并联谐振如果正弦电压加在电感和电容并联电路上,当正弦电压频率为某一值时,电路的总导纳为零,电感、电容元件上电压为无穷大,此电路称为并联谐振。

若纯电感L与纯电阻R串连再和纯电容C串连,该电路复阻抗的模为:(3.5)幅角为:(3.6)式中Z、φ均随电源频率f变化。

改变频率f,当ωL-ωC(R L2+ω2L2)=0时,φ=0,表明电路总电压和总电流同位相,电路总阻抗呈现纯电阻性,这就是并联谐振现象。

谐振频率可由谐振条件ωL-ωC(R L2+ω2L2)=0求出:(3.7)2,则上式近似为:一般情况下L/C>>RL(3.8)式中ω0、f0为串联谐振时的圆频率和频率。

可见在满足上述条件下,串并联电路的谐振频率是相同的。

由(3.5)式可知并联谐振时,Z近似为极大值。

串联谐振与并联谐振的电路特点及产生条件详解

串联谐振与并联谐振的电路特点及产生条件详解

串联谐振与并联谐振的电路特点及产生条件详解一、串联电路和并联电路的定义1、路中的各元件是逐个顺次连接来的,则电路为串联电路。

特点是:流过一个元件的电流同时也流过另一个。

在串联电路中,由于电流的路径只有一条,所以,从电源正极流出的电流将依次逐个流过各个用电器,后回到电源负极。

因此在串联电路中,如果有一个用电器损坏或某一处断开,整个电路将变成断路,电路就会无电流,所有用电器都将停止工作,所以在串联电路中,各个用电器互相牵连,要么全工作,要么全部停止工作。

2、元件“首首相接,尾尾相连”并列地连在电源之间,则电路就是并联电路。

特点是:干路的电流在分支处分成几部分,分别流过几个支路中的各个元件。

在并联电路中,从电源正极流出的电流在分支处要分为几路,每一路都有电流流过,因此即使某一支路断开,但另一支路仍会与干路构成通路。

由此可见,在并联电路中,各个支路之间互不牵连。

二、实例分析串联电路和并联电路的特点1、串联电路用电器各元件逐个顺次连接起来,接入电路就组成了串联电路。

我们常见的装饰用的“满天星”小彩灯,常常就是串联的。

串联电路有以下一些特点:A、电路连接特点:串联的整个电路是一个回路,各用电器依次相连,没有“分支点”。

B、用电器工作特点:各用电器相互影响,电路中一个用电器不工作,其余的用电器就无法工作。

C、开关控制特点:串联电路中的开关控制整个电路,开关位置变了,对电路的控制作用没有影响。

即串联电路中开关的控制作用与其在电路中的位置无关。

2、并联电路用电器各元件并列连接在电路的两点间,就组成了并联电路。

家庭中的电灯、电风扇、电冰箱、电视机等用电器都是并联在电路中的。

并联电路有以下特点:A、电路连接特点:并联电路由干路和若干条支路组成,有“分支点”。

每条支路各自和干路形成回路,有几条支路,就有几个回路。

B、用电器工作特点:并联电路中,一条支路中的用电器若不工作,其他支路的用电器仍能工作。

C、开关控制特点:并联电路中,干路开关的作用与支路开关的作用不同。

并联谐振和串联谐振

并联谐振和串联谐振

并联谐振和串联谐振一、概述谐振电路是一种能够在特定频率下实现高效能量传输的电路。

谐振电路分为并联谐振和串联谐振两类,它们的共同点是在特定频率下具有较大的阻抗,从而实现了高效能量传输。

本文将详细介绍并联谐振和串联谐振的原理、特点、应用等方面。

二、并联谐振1. 原理并联谐振电路由一个电感L和一个电容C组成,如图1所示。

当交流信号通过该电路时,如果信号频率与电感和电容的共振频率相同,则会在该频率下形成高阻抗状态,从而实现了高效能量传输。

2. 特点(1)具有较大的输入阻抗,在输入端不会对信号源造成负载影响;(2)输出端阻抗小,适合驱动低阻抗负载;(3)对于变化较小的负载变化具有一定的稳定性。

3. 应用(1)用于滤波器设计中,可以实现对某一特定频率进行滤波;(2)用于无线通信系统中,可以实现对信号进行选择性放大;(3)用于音频放大器中,可以实现对特定频率的信号进行放大。

三、串联谐振1. 原理串联谐振电路由一个电感L和一个电容C组成,如图2所示。

当交流信号通过该电路时,如果信号频率与电感和电容的共振频率相同,则会在该频率下形成低阻抗状态,从而实现了高效能量传输。

2. 特点(1)具有较小的输入阻抗,在输入端会对信号源造成一定的负载影响;(2)输出端阻抗大,适合驱动高阻抗负载;(3)对于变化较小的输入信号变化具有一定的稳定性。

3. 应用(1)用于无线通信系统中,可以实现对信号进行选择性滤波;(2)用于音频放大器中,可以实现对特定频率的信号进行放大;(3)用于LC振荡器中,可以实现产生稳定的正弦波输出。

四、总结并联谐振和串联谐振是两种常见的谐振电路,在特定应用场景下具有各自独特的优势。

并联谐振适合驱动低阻抗负载,具有较大的输入阻抗和对负载变化的稳定性;串联谐振适合驱动高阻抗负载,具有较小的输入阻抗和对输入信号变化的稳定性。

在实际应用中,需要根据具体情况选择合适的谐振电路。

多图详解串联-并联谐振电路

多图详解串联-并联谐振电路

相位,即电源电能全部为电阻消耗,成为电阻电路时,叫作并联谐振。 并联谐振是一种完全的补偿,电源无需提供无功功率,只提供电阻所需要 的有功功率。谐振时,电路的总电流最小,而支路的电流往往大于电路的总 电流,因此,并联谐振也称为电流谐振。 发生并联谐振时,在电感和电容元件中流过很大的电流,因此会造成电路 的熔断器熔断或烧毁电气设备的事故;但在无线电工程中往往用来选择信号 和消除干扰。 并联谐振发生条件 在以下两类电路中 发生并联谐振时, (a) 由 可得 则谐振频率就是 (b) 可得: 一般情况下,线圈电阻 R 远远小于 XL,因此,忽略 R 得到,即得谐振频 率。 并联谐振电路的特点
● 电压一定时,谐振时电流最小 ● 总阻抗最大 ● 电路呈电阻性,支路电流可能会大于总电流 并联谐振电路的应用 LC 并联谐振回路在通信电子电路中的应用由它的特点决定。具体来说,主 要包括三大类,其一是工作于谐振状态,作为选频网络应用,此时呈现为大 的电阻,在电流的激励下输出较大的电压;其二是工作于失谐状态,此时呈 现为感性或容性,与电路中其他电感和电容一起,满足三点式振荡电路的振 荡条件,形成正弦波振荡器;其三是工作于失谐状态,即工作于幅频特性曲 线或相频特性曲线的一侧,实现幅频变换、频幅变换以及频相变换、相频变 换,构成角度调制与解调电路。 1. 用作选频匹配网络的 LC 并联谐振回路 选频即从输入信号中选择出有用频率分量而抑制掉无用频率分量或噪声。 在通信电子电路中,LC 并联谐振回路作为选频网络而使用是最普遍的,它广 泛地应用于高频小信号放大器、丙类高频功率放大器、混频器等电路中。这 些电路的共同特点是:LC 谐振回路不仅是一种选频网络,通过变压器连接方 式,还起到阻抗变换的作用,减小放大管或负载对谐振回路的影响,可获得 较好的选择性。 高频小信号选频放大器用来从众多的微弱信号中选出有用频率信号加以放 大,并对其他无用频率信号予以抑制,它广泛应用于通信设备的接收机中。 单调谐放大器电路及交流通路如下图所示。 上图中,LC 并联谐振回路作为晶体管集电极负载,它调谐于放大器的中心 频率。在联接方式上,LC 回路通过自耦变压器与本级集电极电路进行联接, 与下一级的联接则采用变压器耦合。

串联谐振和并联谐振

串联谐振和并联谐振

串联谐振和并联谐振首先讲一下什么是谐振,在含有电阻、电感和电容的交流电路中,电路两端电压与其电流一般是不同相的,若调节电路参数或电源频率使电流与电源电压同相,电路呈电阻性,称这时电路的工作状态为谐振。

谐振又分为串联谐振和并联谐振,在串联电路中发生的谐振即为串联谐振,在并联电路中发生的谐振即为并联谐振,谐振现象是正玄交流电路的一种特定现象,它在电子和通讯工程中得到广泛的应用,但是在电力系统中,发生谐振有可能破坏系统的正常工作。

接下来我们再来分别介绍一下串联谐振和并联谐振的特电路特点。

串联谐振的电路特点1.总阻抗值最小;2.电源电压一定时,电流最大;3. 电路呈电阻性,电容或电感上的电压可能高于电源电压。

并联谐振电路的特点1.电压一定时,谐振时电流最小;2.总阻抗最大;3.电路呈电阻性,支路电流可能会大于总电流。

串联谐振与并联谐振的区别1. 从负载谐振方式划分,可以为并联谐振和串联谐振两大类型,下面列出串联谐振和并联谐振的主要技术特点及其比较:串联谐振和并联谐振的差别,源于它们所用的振荡电路不同,前者是用L、R和C串联,后者是L、R和C并联。

(1)串联谐振的负载电路对电源呈现低阻抗,要求由电压源供电。

因此,经整流和滤波的直流电源末端,必须并接大的滤波电容器。

当逆变失败时,浪涌电流大,保护困难。

并联谐振的负载电路对电源呈现高阻抗,要求由电流源供电,需在直流电源末端串接大电抗器。

但在逆变失败时,由于电流受大电抗限制,冲击不大,较易保护。

串联谐振和并联谐振区别2(2)串联谐振的输入电压恒定,输出电压为矩形波,输出电流近似正弦波,换流是在晶闸管上电流过零以后进行,因而电流总是超前电压一φ角。

并联谐振的输入电流恒定,输出电压近似正弦波,输出电流为矩形波,换流是在谐振电容器上电压过零以前进行,负载电流也总是越前于电压一φ角。

这就是说,两者都是工作在容性负载状态。

(3)串联谐振是恒压源供电,为避免逆变器的上、下桥臂晶闸管同时导通,造成电源短路,换流时,必须保证先关断,后开通。

串联谐振与并联谐振

串联谐振与并联谐振

电路中,所接受的电磁信号频率与电路本身的固有频率相同,从而电路产生的振荡电流达到最大,即电学中的共振现象!谐振,E文叫Resonance,就是在电路中,Z=R+j(Xl-Xc),当XL==Xc 了,Z呈现纯电阻性,我们就认为发生了谐振。

串联谐振产生过电压,并联谐振产生大电流。

谐振分串联谐振和并联谐振。

1.串联谐振正弦电压加在理想的(无寄生电阻)电感和电容串联电路上,当正弦频率为某一值时,容抗与感抗相待,电路的阻抗为零,电路电流达无穷大,此电路称为串联谐振;若纯电感L、纯电容C和纯电阻R串连,所加交流电压U(有效值)的圆频率为w。

则电路的复阻抗为:(3.1)复阻抗的模:(3.2)复阻抗的幅角:(3.3)即该电路电流滞后于总电压的位相差。

回路中的电流I(有效值)为:(3.4)上面三式中Z、φ、I均为频率f (或圆频率ω,ω=2πf )的函数。

当时,知φ=0,表明电路中电流I和电压U同位相,整个电路呈现纯电阻性,这就是串联谐振现象。

此时电路总阻抗的模Z=R为最小,如U不随f变化,电流I=U/R则达到极大值。

易知,只要调节f、L、C中的任意一个量,电路都能达到谐振。

2.并联谐振如果正弦电压加在电感和电容并联电路上,当正弦电压频率为某一值时,电路的总导纳为零,电感、电容元件上电压为无穷大,此电路称为并联谐振。

若纯电感L与纯电阻R串连再和纯电容C串连,该电路复阻抗的模为:(3.5)幅角为:(3.6)式中Z、φ均随电源频率f变化。

改变频率f,当ωL-ωC(R L2+ω2L2)=0时,φ=0,表明电路总电压和总电流同位相,电路总阻抗呈现纯电阻性,这就是并联谐振现象。

谐振频率可由谐振条件ωL-ωC(R L2+ω2L2)=0求出:(3.7)一般情况下L/C>>R L2,则上式近似为:(3.8)式中ω0、f0为串联谐振时的圆频率和频率。

可见在满足上述条件下,串并联电路的谐振频率是相同的。

由(3.5)式可知并联谐振时,Z近似为极大值。

串联及并联谐振电路分析及应用ppt课件

串联及并联谐振电路分析及应用ppt课件

RLC串联电路中,
Z
R
j( X L
XC)
R
j(L
1)
C
R jX Z
其中, arctan X L XC
R
当 X L X C 时, 0 ,电路呈电阻性,
电压与电流同相位,这时电路发生串联谐振
串联谐振电路的分析及其应用
❖RLC串联电路发生谐振的条件
XL XC 谐振角频率
即 L 1 C

I I0 U R
串联谐振电路的分析及其应用
(3)谐振电路呈现电阻性。电源供给电路 的能量全部被电阻所消耗
P 1 T pdt 1 t [UI cos UI cos(2t )]dt
T0
UI cos
T0 IU R
I
2R
U
2 R
R
串联谐振电路的分析及其应用
(4)电源电压 U U R ,且相位也相同
因数是100,电源电压为10V,若电路处于谐振状态, 求:谐振频率 f0,总电流 I 0,支路电流 I L0、IC0, 以及电路吸收的功率。

f0
2
1 LC
1.59MHz
Z QP0L 100K
所以有:I0
U0 Z00.1mAP源自I2 L0R
1mW
I L0 IC0 Qp I0 10mA
总结
UR
I0
R
U R
R
U
UL
UC
I0
XL
I0
XC
0L U
R
1 U
0CR
Q U L UC 1 0L 谐振电路的品质因数 U U 0CR R
在串联谐振时,电容及电感的端电压是电源电 压的Q倍,故串联谐振也称电压谐振。

串联谐振和并联谐振的条件

串联谐振和并联谐振的条件

串联谐振和并联谐振的条件串联谐振和并联谐振是一种特殊的共振模式,可以用来提高电路或系统的性能。

串联谐振和并联谐振有自己独特的定义,它们也有不同的应用场景。

在这里,我们将详细阐述下串联谐振和并联谐振的条件。

首先,要明确两者的概念,串联谐振是指把一个电容和一个电感串联起来,在一定的频率下形成一个共振模式。

而并联谐振则是指将一个电容和一个电感并联起来,在一定的频率下形成一个共振模式。

其次,要了解两者的条件。

串联谐振的条件是,两个电容和电感之间的阻抗必须大于零,而且两个电感之间的静态电容与两个电容之间的动态电感必须相等。

另外,两个电感之间的电容必须大于零,而两个电容之间的电感必须小于零。

如果满足上述条件,就会形成串联谐振。

而并联谐振的条件则是,两个电感之间的静态电容与两个电容之间的动态电感必须相等;同时,两个电容之间的电感必须大于零,而两个电感之间的电容必须小于零。

如果满足上述条件,就会形成并联谐振。

最后,要清楚的是,两者都是一种特殊的共振模式,它们都有自己独特的定义,它们也有不同的应用场景。

一般来说,串联谐振适用于抑制低频信号,而并联谐振则适用于抑制高频信号。

因此,在不同的情况下应该使用不同的谐振模式来提升系统的性能。

总之,串联谐振和并联谐振是两种特殊的共振模式,它们有自己独特的定义,它们也有不同的应用场景。

串联谐振的条件是,两个电容和电感之间的阻抗必须大于零,而且两个电感之间的静态电容与两个电容之间的动态电感必须相等。

而并联谐振的条件则是,两个电感之间的静态电容与两个电容之间的动态电感必须相等;同时,两个电容之间的电感必须大于零,而两个电感之间的电容必须小于零。

这样,串联谐振和并联谐振才能正常工作,从而提高电路或系统的性能。

串联谐振与并联谐振产生谐振的条件有什么区别?

串联谐振与并联谐振产生谐振的条件有什么区别?

串联谐振与并联谐振产生谐振的条件有什么区别?
我们知道变频串联谐振电缆交流耐压试验装置主要是针对220kV高压套管、隔离开关的交流耐压试验, 220kV主变的交流耐压试验设计制造而成。

它具有较宽的适用范围,也是地、市、县级高压试验部门及电力安装、修试工程单位理想的耐压设备。

那么,串联谐振与并联谐振产生谐振的条件有什么区别?
我们先来看串联谐振。

当在电阻、电容、电感串联电路中,出现电源、电压、电流同相位现象时,这种情况就叫做串联谐振,它的特点是:电路呈纯电阻性,电源、电压和电流同相位,电抗X等于0,阻抗Z等于电阻R,此时电路的阻抗最小,电流最大,在电感和电容上可能产生比电源电压大很多倍的高电压,因此串联谐振也称电压谐振。

串联谐振就是电源和LC回路串联,当满足XL=XC时,LC等值阻抗几乎为零,电源输出电流极大,所以又称为“电流谐振”。

我们再来看并联谐振。

当在电阻、电容、电感并联电路中,出
现电路端电压和总电流同相位的现象,叫做并联谐振,其特点是:并联谐振是一种完全的补偿,电源无需提供无功功率,只提供电阻所需要的有功功率,谐振时,电路的总电流最小,而支路电流往往大于电路中的总电流,因此,并联谐振也叫电流谐振。

并联谐振就是电源和LC回路并联,当满足XL=XC时,电源输出电流几乎为零,LC上的电压极高,所以又称为“电压谐振”。

以上,就是串联谐振与并联谐振产生谐振的条件区别。

串联谐振电路和并联谐振电路的定义

串联谐振电路和并联谐振电路的定义

串联谐振电路和并联谐振电路的定义华天电力专业生产串联谐振(又称变频串联谐振耐压装置),接下来为大家分享串联谐振电路和并联谐振电路的定义你知道吗。

串联谐振电路和并联谐振电路的定义解读如下:
1、路中的各元件是逐个顺次连接来的,则电路为串联电路。

特点是:流过一个元件的电流同时也流过另一个。

在串联电路中,由于电流的路径只有一条,所以,从电源正极流出的电流将依次逐个流过各个用电器,后回到电源负极。

因此在串联电路中,如果有一个用电器损坏或某一处断开,整个电路将变成断路,电路就会无电流,所有用电器都将停止工作,所以在串联电路中,各个用电器互相牵连,要么全工作,要么全部停止工作。

2、元件“首首相接,尾尾相连”并列地连在电源之间,则电路就是并联电路。

特点是:干路的电流在分支处分成几部分,分别流过几个支路中的各个元件。

在并联电路中,从电源正极流出的电流在分支处要分为几路,每一路都有电流流过,因此即使某一支路断开,但另一支路仍会与干路构成通路。

由此可见,在并联电路中,各个支路之间互不牵连。

并联谐振和串联谐振的区别

并联谐振和串联谐振的区别

并联谐振和串联谐振的区别
并联谐振是⼀种完全的补偿,电源⽆需提供⽆功功率,只提供电阻所需要的有功功率。

谐振时,电路的总电流最⼩,⽽⽀路的电流往往⼤于电路的总电流,因此,并联谐振也称为电流谐振。

串联谐振是⼀种电路性质。

同时也是串联谐振试验装置。

串联谐振产品优点
1.所需电源容量⼤⼤减⼩。

系列串联谐振试验装置是利⽤谐振电抗器和被试品电容产⽣谐振,从⽽得到所需⾼电压和⼤电流的,在整个系统中,电源只需要提供系统中有功消耗的部分,因此,试验所需的电源功率只有试验容量的1/Q倍(Q为品质因素)。

2.设备的重量和体积⼤⼤减⼩。

串联谐振电源中,不但省去了笨重的⼤功率调压装置和普通的⼤功率⼯频试验变压器,⽽且,谐振激磁电源只需试验容量的1/Q,使得系统重量和体积⼤⼤减⼩,⼀般为普通试验装置的1/5~1/10。

3.改善输出电压波形。

谐振电源是谐振式滤波电路,能改善输出电压的波形畸变,获得很好的正弦波,有效地防⽌了谐波峰值引起的对被试品的误击穿。

4.防⽌⼤的短路电流烧伤故障点。

在谐振状态,当被试品的绝缘弱点被击穿时,电路⽴即脱谐(电容量变化,不满⾜谐振条件),回路电流迅速下降为正常试验电流的1/Q。

⽽采⽤并联谐振或者传统试验变压器的⽅式进⾏交流耐压试验时,击穿电流⽴即上升⼏⼗倍,两者相⽐,短路电流与击穿电流相差数百倍。

所以,串联谐振能有效地找到绝缘弱点,⼜不存在⼤的短路电流烧伤故障点的忧患。

5.不会出现任何恢复过电压。

被试品发⽣击穿闪络时,因失去谐振条件,⾼电压也⽴即消失,电弧⽴刻熄灭,装置的保护回路动作,切断输出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

谐振现象是正玄交流电路的一种特定现象, 谐振现象是正玄交流电路的一种特定现象,它在 电子和通讯工程中得到广泛应用,但在电力系统中, 电子和通讯工程中得到广泛应用,但在电力系统中, 发生谐振有可能破坏系统的正常工作。 发生谐振有可能破坏系统的正常工作。
第5章 谐振与互感电路
一、 串联谐振
1. 谐振条件 UL = UC 即: X L = XC
C L1 L2
信号
信号
可调 电容
各电台信号 频率不同) (频率不同)
第5章 谐振与互感电路
二、 并联谐振
+ I &
& U
& I1
C (a)
& Ic
R
& IR
+ I &
& U
R L
& I1
& Ic
C
L

– (b)
1. 谐振条件
1 由ωL = ωC
谐振频率
1 1 (a) Y = + j(ωC − ) R ωL
作业: 、 作业:5-4、5-6
& Ic & & I = IR
U

1 可得: 可得:ωo = LC
& I1
1 f0 = 2π LC
第5章 谐振与互感电路
(b) I1 sinϕ1 = IC
U U I1 = = 2 R2 + X L R 2 + (ω L) 2
& I
+
& U
R L
& I1
& Ic
C
ωLU = ωCU 可得 2 2 R + (ωL)
ωL sin ϕ 1 = = 2 2 R + XL R 2 + (ω L) 2 U IC = = ω CU XC
XL
– 线圈
& Ic
I

ϕ1
& I1
1 f0 = 2π LC
U

一般线圈电阻R<<XL (忽略 )得: 忽略R) 一般线圈电阻 忽略 1 1 ≈ ω0C ω0 ≈ 谐振频率 ω0 L LC
第5章 谐振与互感电路
5. 频率特性 (1)阻抗角的频率特性 ) 相频特性) (相频特性) 1
ϕ(ω) = arctg ωL ωC
R
ϕ (ω ) π 2

π
0
2
ωo
ω
(2)导纳的模频率特性 ) 1 1 Y = = 1 2 Z 2 R + (ωL − ) ωC (3)电流的频率特性 )
Y (ω )
0
I (η) 整理得: 整理得: IO = 1 1 + Q (η − )2
2
ωo
ω
Q大曲线尖
Q=100
η1 1 η2
η
1
η
通频带
第5章 谐振与互感电路
应用举例:无线电接收设备的输入调谐电路如图。 应用举例:无线电接收设备的输入调谐电路如图。
接收 天线 R + us1 – + us2 – C + us3 – L
I特性) 幅频特性)
I (ω) = U 1 2 R + (ωL − ) ωC
2
0
ωo
ω
RLC串联电路的频率特性 串联电路的频率特性
第5章 谐振与互感电路
6. 电路的选择特性 I (ω ) 突出 ωO 及其附近频率所对 Io 应的电流而抑制远离 ωO 的频率 所对应的电流的性能称为电路 0 选频特性。 的选频特性。 曲线越尖锐,选择性越好, 曲线越尖锐,选择性越好,稍有 I 偏离谐振频率的信号就大大减弱。 偏离谐振频率的信号就大大减弱。 IO 1 U I (ω) = 1 2 0.707 R2 + (ωL − ) ωC 相对抑 ω I (η) 令: = 制比 η I (ω) → 0 ωo IO
X L − XC ϕ = arctan =0 R
UL + UR = U
• • •

& I
& UR
– + + R jXL – jXC
I Uc

& & U U L
电压与电流同相,电路 电压与电流同相 电路 中发生串联谐振。 中发生串联谐振。
1 由ωL = ωC
谐振频率
– &+ UC – –
1 可得: 可得:ωo = LC 1 f = f0 = 2π LC
(也可用导纳推倒,当Q>>1时) 也可用导纳推倒, 也可用导纳推倒 时
第5章 谐振与互感电路
2. 并联谐振电路的特点: 并联谐振电路的特点: 电流最小; (1)电压一定时,谐振时电流最小; )电压一定时,谐振时电流最小 (2)总阻抗最大; )总阻抗最大; (3)电路呈电阻性,支路电流可能会大于总电流。 )电路呈电阻性,支路电流可能会大于总电流。 通过对电路谐振的分析, 通过对电路谐振的分析,掌握谐振电路的特 在生产实践中,应该用其所长,避其所短。 点,在生产实践中,应该用其所长,避其所短。
谐振角 频率
第5章 谐振与互感电路
2. 串联谐振电路特点 (1)总阻抗值最小 )总阻抗值最小;
1 Z = R + j(ωL − )= R ωC
(2) 电源电压一定时,电流最大 ) 电源电压一定时,电流最大; U U I = I0 = = Z R
UL
• =U UR •

I Uc


(3)电路呈电阻性,电容或电感上的电压可能高于 )电路呈电阻性, 电源电压。 电源电压。 3. 谐振时电路中的能量变化 电路向电源吸收的 Q=0 ,谐振时电路能量交换在 电路内部的电场与磁场 电场与磁场间进行 电源只向R提供能量 提供能量。 电路内部的电场与磁场间进行。电源只向 提供能量。
第5章 谐振与互感电路
第五章
谐振与互感电路
谐振电路
第一节
谐振现象 在含有电阻、电感和电容的交流电路中, 在含有电阻、电感和电容的交流电路中,电路 两端电压与其电流一般是不同相的, 两端电压与其电流一般是不同相的,若调节电路参 数或电源频率使电流与电 源电压同相, 数或电源频率使电流与电 源电压同相,电路呈电阻 称这时电路的工作状态为谐振 谐振。 性,称这时电路的工作状态为谐振。 谐振 串联谐振:在串联电路中发生的谐振。 串联谐振:在串联电路中发生的谐振。 并联谐振:在并联电路中发生的谐振。 并联谐振:在并联电路中发生的谐振。
第5章 谐振与互感电路
4. 电路的品质因数
特性阻抗
1 L ρ = ω0 L = = ω0C C
品质因数
1 L Q= = R R C
ω0 L
UL和UC是Q倍 倍 的电源电压, 的电源电压,串 联谐振又称为电 压谐振。 压谐振。
高电压可能会损坏设备。在电力系统中应避 高电压可能会损坏设备。 免发生串联谐振。 免发生串联谐振。而串联谐振在无线电工程中有 广泛应用。 广泛应用。 5. 频率特性 电路的频率特性是指电路中的电压 电流, 频率特性是指电路中的电压, 电路的频率特性是指电路中的电压,电流,阻 导纳等各量随 变化的关系。 等各量随ω 抗或导纳等各量随ω变化的关系。
相关文档
最新文档