模电第一章期末知识点总结
模电总结知识点复习资料大全
模电总结知识点复习资料大全第一章节半导体二极管的基本原理一.半导体的基础知识讲解1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯净的具有单晶体结构的半导体。
4. 两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
6. 杂质半导体的特性定理*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
* PN结的单向导电性---正偏导通,反偏截止。
8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析方法------将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。
1)图解分析算法该式与伏安特性曲线的交点叫静态工作点Q。
2) 等效电路算法➢直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。
*三种模型➢微变等效电路法三. 稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。
模电各章节主要知识点总结
(2)若是开环(无反馈),或正反馈,则放大器处于饱和状态 2、理想运放条件: Ri ,由此得到虚断, i i 0
Avo ,由此得到虚短, v v
3、虚短和虚断:
RO 0 KCMRR
各种运算(比例,加减法,积分微分电路等)中,
i i 0,说明两个输入端无电流 ; v v,说明两个输入端等电位
2
Rb2
VCC
,
VE
VB
VBE
IE
VE RE
IC
VCE
VCC
IC (RC
RE )
(2)图解分析方法:
要求: (a)用图解分析方法,判断什么情况下会发生截止和饱和失真现象,如何解决? (b)对于共射极放大器,用直流负载线和交流负载线求解最大不失真输出电压幅度
Vom VCEQ VCES ,以及ICQ RL ' 二者取最小的,即为最大不失真输出电压幅度。
Feedback Amplifier
反 馈 判 一、反馈性质判断(瞬时极性) 断 总 结 : 下图是常见器件的瞬时极性,务必掌握!
输入
-
+
+
+
输入 +
输入
+
+
+
输入
二、输入端的链接方式(串联还是并联)
并联负反馈
(+) X i
(-) X f
串联负反馈
X(+i) (+) X f
并联负反馈
(+)
1、K1、K3闭合,K2断开; 2、K2、K3闭合,K1断开; 3、K1、K2闭合,K3断开; 4、K1、K2、K3闭合。
模拟电子技术基础-知识点总结
模拟电子技术复习资料总结第一章半导体二极管一.半导体的根底知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯洁的具有单晶体结构的半导体。
4. 两种载流子 ----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。
表达的是半导体的掺杂特性。
*P型半导体: 在本征半导体中掺入微量的三价元素〔多子是空穴,少子是电子〕。
*N型半导体: 在本征半导体中掺入微量的五价元素〔多子是电子,少子是空穴〕。
6. 杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为,锗材料约为。
* PN结的单向导电性---正偏导通,反偏截止。
8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管,锗管。
*死区电压------硅管,锗管。
3.分析方法------将二极管断开,分析二极管两端电位的上下:假设 V阳 >V阴( 正偏 ),二极管导通(短路);假设 V阳 <V阴( 反偏 ),二极管截止(开路)。
1〕图解分析法该式与伏安特性曲线的交点叫静态工作点Q。
2) 等效电路法➢直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的上下: 假设 V阳 >V阴( 正偏 ),二极管导通(短路);假设 V阳 <V阴( 反偏 ),二极管截止(开路)。
*三种模型➢微变等效电路法三.稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。
模电知识体系总结
模电知识体系总结第一章:常用半导体器件1.1半导体基础器件1.1.1本征半导体纯净的具有晶体结构的半导体称为本征半导体。
常用的半导体材料硅(Si)和锗(Ge)均为四价元素。
在常温下,仅有极少数的价电子由于热运动(热激发)获得足够的能量,从而挣脱共价键的束缚变成为自由电子。
与此同时,在共价键中留下一个空位置,称为空穴。
运载电荷的粒子称为载流子。
导体导电只有一种载流子,即自由电子导电;而本征半导体有两种载流子,即自由电子和空穴均参与导电,这是半导体导电的特殊性质。
半导体在热激发下产生自由电子和空穴对的现象称为本征激发。
自由电子在运动的过程中如果与空穴相遇就会填补空穴,使两者同时消失,这种现象称为复合。
在一定的温度下,本征激发所产生的自由电子与空穴对,与复合的自由电子与空穴对数目相等,故达到动态平衡。
换言之,在定温度下,本征半导体中载流子的浓度是一定的,并且自由电子与空穴的浓度相等。
当环境温度升高时,热运动加剧,挣脱共价键束缚的自由电子增多,空穴也随之增多,即载流子的浓度升高,因而必然使得导电性能增强。
反之,若环境温度降低,则载流子的浓度降低,因而导电性能变差。
本征半导体的导电性能很差,且与环境温度密切相关。
半导体材料性能对温度的这种敏感性,既可以用来制作热敏和光敏器件【好处】,又是造成半导体器件温度稳定性差的原因【劣势】。
1.1.2杂质半导体一、N型半导体在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。
N为Negative(负)的字头,由于电子带负电,故得此名。
N型半导体中,自由电子的浓度大于空穴的浓度,故称自由电子为多数载流子,空穴为少数载流子;简称前者为多子,后者为少子,由于杂质原子可以提供电子,故称之为施主原子。
N型半导体主要靠自由电子导电,掺人的杂质越多,多子(自由电子)的浓度就越高,导电性能也就越强。
二、P型半导体在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,就形成了P型半导体。
模电第一章期末知识点总结
模拟电子技术基础复习要点一、常用半导体器件1.半导体二极管(1)掌握二极管具有单向导电的特性。
用电位的方法来判断二极管是否导通,即,哪个二极管的阳极电位最高,或哪个二极管的阴极电位最低,哪个二极管就优先导通。
(2)注意:理想二极管导通之后相当短路,截止后相当开路。
(3)掌握二极管的动态电阻小,静态电阻大的概念(直流通路恒压源,交流通路小电阻)。
交流的时候把二极管当成一个交流的小电阻,用静态工作点和公式求二极管的电阻值(4)熟悉二极管的应用(开关、钳位、隔离、保护、整流、限幅)作业:1.32. 半导体稳压管(1)掌握稳压管工作在反向击穿区的特点只要不超过稳压管的最大功率,电流越大越好(2)掌握稳压管与一电阻串联时,在电路中起的稳压作用。
(3)掌握稳压管的动态电阻小,静态电阻大的概念。
(3)熟悉稳压管的应用(稳压、限幅)作业:1.5 , 1.63. 晶体三极管(1)熟悉晶体管的电流放大原理(重点掌握Ic=βIb )(2)掌握NPN 型三极管的输出特性曲线。
晶体管有三个级,必然就有BE 间的输入,CE 间的输出,所以有两组特性曲线。
iB 和Ube 之间的关系,但是保证Uce 是一个恒定值iC 和Uce 之间的关系,保证Ib 是一个恒定值关于NPN 型管子:管子处于何种状态要根据电压之间的关系来确定。
主要是饱和区和截止区之间的区别(3)掌握三极管的放大、饱和与截止条件。
(4)理解CEO CBO I I 和的定义及其对晶体管集电极电流的影响。
作业:1.9,1.12 ,共射交流放大倍数β,共基交流放大倍数α≈14. 场效应管(1)能够从转移特性曲线和输出特性曲线识别场效应管类型。
(2)掌握结型场效应管(N沟道)的转移特性和输出特性的意义。
(3)掌握绝缘栅N沟道增强型MOS的转移特性和输出特性的意义。
(4)掌握电流方程,1.4.4 式和1.4.5式作业:1.14结型场效应MOS。
《模电》第一章重点掌握内容
《模电》第一章重点掌握内容:一、概念1、半导体:导电性能介于导体和绝缘体之间的物质。
2、半导体奇妙特性:热敏性、光敏性、掺杂性。
3、本征半导体:完全纯净的、结构完整的、晶格状的半导体。
4、本征激发:环境温度变化或光照产生本征激发,形成电子和空穴,电子带负电,空穴带正电。
它们在外电场作用下均能移动而形成电流,所以称载流子。
5、P型半导体:在纯净半导体中掺入三价杂质元素,便形成P型半导体,使导电能力大大加强,此类半导体,空穴为多数载流子(称多子)而电子为少子。
6、N型半导体:在纯净半导体中掺入五价杂质元素,便形成N型半导体,使导电能力大大加强,此类半导体,电子为多子、而空穴为少子。
7、PN结具有单向导电性:P接正、N接负时(称正偏),PN结正向导通,P接负、N接正时(称反偏),PN结反向截止。
所以正向电流主要由多子的扩散运动形成的,而反向电流主要由少子的漂移运动形成的。
8、二极管按材料分有硅管(S i管)和锗管(G e管),按功能分有普通管,开关管、整流管、稳压管等。
9、二极管由一个PN结组成,所以二极管也具有单向导电性:正偏时导通,呈小电阻,大电流,反偏时截止,呈大电阻,零电流。
其死区电压:S i管约0。
5V,G e管约为0。
1 V ,其死区电压:S i管约0.5V,G e管约为0.1 V 。
其导通压降:S i管约0.7V,G e管约为0.2 V 。
这两组数也是判材料的依据。
10、稳压管是工作在反向击穿状态的:①加正向电压时,相当正向导通的二极管。
(压降为0.7V,)②加反向电压时截止,相当断开。
③加反向电压并击穿(即满足U﹥U Z)时便稳压为U Z。
11、二极管主要用途:整流、限幅、继流、检波、开关、隔离(门电路)等。
二、应用举例:(判二极管是导通或截止、并求有关图中的输出电压U0。
三极管复习完第二章再判)参考答案:a、因阳极电位比阴极高,即二极管正偏导通。
是硅管。
b 、二极管反偏截止。
f 、因V的阳极电位比阴极电位高,所以二极管正偏导通,(将二极管短路)使输出电压为U0=3V 。
(精品word)模拟电子技术基础知识点总结(良心出品必属精品)
模拟电子技术复习资料总结第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯净的具有单晶体结构的半导体。
4.两种载流子 ----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体: 在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
6.杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
* PN结的单向导电性---正偏导通,反偏截止。
8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析方法------将二极管断开,分析二极管两端电位的高低: 若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。
1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。
2) 等效电路法直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低: 若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。
*三种模型微变等效电路法三.稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。
模拟电路各章知识点总结
模拟电路各章知识点总结第一章:电路基础1.1 电路的基本概念电路是由电气元件(例如电阻、电容、电感等)连接而成的网络。
电路中电流和电压是基本的参数,描述了其中元件之间的相互作用。
电路按照其两个端点的特性可以分为单端口电路和双端口电路。
1.2 电路的基本定律欧姆定律、基尔霍夫定律以及其他电路定律描述了电路中电流和电压之间的关系。
其中欧姆定律描述了电阻元件电流和电压之间的关系,而基尔霍夫定律描述了电路中电流和电压的分布和流动规律。
1.3 电路的等效变换电路中电气元件可以通过等效电路进行简化处理。
例如将若干电阻串并联为一个等效电阻等。
第二章:基本电路元件2.1 电阻电阻是电路中最基本的元件之一,它的作用是阻碍电流的流动。
在电路中,电阻可以通过串联和并联的方式连接。
电阻的阻值与其材料、长度和横截面积有关系。
2.2 电容电容是电路中用来存储电荷的元件,它在电路中具有很多重要的应用。
电容的存储能量与其带电电压和电容量有关。
2.3 电感电感是电路中具有电磁感应作用的元件,其具有对电流变化的响应。
电感的存储能量与其感抗和电流有关。
2.4 理想电源理想电源是电路中常用的元件,可以提供恒定的电压或电流。
其特点是内部阻抗为零或者无穷大。
第三章:基本电路分析方法3.1 直流电路分析直流电路是电路分析中最简单的一种情况。
在直流电路中,电源提供的是恒定电压或电流,不会发生周期性或者随时间改变的变化。
3.2 交流电路分析交流电路分析是在电路中考虑电压和电流随时间变化的情况。
常见的交流电路分析包括使用复数形式进行计算。
3.3 电路的参数测量方法电路中常用的参数测量方法有欧姆表、万用表等。
它们可以测量电阻的阻值、电压的大小以及电流的大小等参数。
第四章:模拟电路设计4.1 放大器设计放大器是模拟电路中广泛应用的电路元件,可以放大电压或者电流的幅值。
常见的放大器有运放放大器、差分放大器等。
4.2 滤波器设计滤波器是可以去除特定频率成分的电路,可以用于信号处理、通信和音频等领域。
【精品】模拟电子技术第一章知识要点
第一章常用半导体器件1.1半导体基础知识场作用下很容易产生定向移动,形成电流。
力很强,只有在外电场强到一定程度时才可能导电。
Si)、锗(Ge),均为四价元素,它们原子的最外层电子受原子核的束缚力介于导体与绝缘体之间。
制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”。
它在物理结构上呈单晶体形态。
1.1.1本征半导体1、晶体中原子的排列方式如图所示:2、本征半导体的结构硅单晶中的硅原子通过共价健结构与周围的四个硅原子结合在一起,共价键中的两个电子,称为价电子。
因热激发而出现的自由电子和空穴是同时成对出现的,称为电子空穴对。
游离的部分自由电子也可能回到空穴中去,称为复合。
一定温度下,自由电子与空穴对的浓度一定;温度升高,热运动加剧,挣脱共价键的电子增多,自由电子与空穴对的浓度加大。
2、本征半导体中的两种载流子由于热运动,具有足够能量的价电子挣脱共价键的束缚自由电子的产生使共价键中留有一载流子外加电场时,带负电的自由电子和带正电的空穴均参与导电,且运动温度升高,热运动加剧,载流子浓度增大,导电性增强。
热力学温度0K时不导电。
自由电子的定向运动形成了电子电流,空穴的定向运动也可形成空穴电流,它们的方向相反。
只不过空穴的运动是靠相邻共价键中的价电子依次充填空穴来实现的,因此,空穴的导电能力不如自由电子。
1.1.2杂质半导体在本征半导体中掺入某些微量元素作为杂质,可使半导体的导电性发生显著变化。
掺入的杂质主要是三价或五价元素。
掺入杂质后的本征半导体称为杂质半导体。
1.N型半导体在本征半导体中掺入五价杂质元素,例如磷,可形成N型半导体,也称电子型半导体。
自由电子是多数载流子,它主要由杂质原子提供;空穴是少数载流子,由热激发形成。
提供自由电子的五价杂质原子因自由电子脱离而带正电荷成为正离子,因此,五价杂质原子也被称为施主杂质。
多数载流子磷(P)正离子杂质半导体主要靠多数载流子导电。
掺入杂质越多,多子浓度越高,导电性越强,实现导电性可控。
模电知识点总结
模电知识点总结第一篇:模电知识点总结第一章绪论1.掌握放大电路的主要性能指标:输入电阻,输出电阻,增益,频率响应,非线性失真2.根据增益,放大电路有那些分类:电压放大,电流放大,互阻放大,互导放大第二章预算放大器1.集成运放适合于放大差模信号2.判断集成运放2个输入端虚短虚断如:在运算电路中,集成运放的反相输入端是否均为虚地。
3.运放组成的运算电路一般均引入负反馈4.当集成运放工作在非线性区时,输出电压不是高电平,就是低电平。
5.根据输入输出表达式判断电路种类同相:两输入端电压大小接近相等,相位相等。
反相:虚地。
第三章二极管及其基本电路1.二极管最主要的特征:单向导电性2.半导体二极管按其结构的不同,分为面接触型和点接触型3.面接触型用于整流。
点接触型用于高频电路和数字电路4.杂质半导体中少数载流子浓度只与温度有关5.掺杂半导体中多数载流子主要来源于掺杂6.在常温下硅二极管的开启电压为0.5伏,锗二极管的开启电压为0.1伏7.硅二极管管压降0.7伏,锗二极管管压降0.2伏8.PN结的电容效应是势垒电容,扩散电容9.PN结加电压时,空间电荷区的变化情况正向电压:外电场将多数载流子推向空间电荷区,使其变窄,削弱内电场,扩散加剧反向电压:外电场使空间电荷区变宽,加强内电场,阻止扩散运动进行10.当PN结处于正向偏置时,扩散电容大.当PN结反向偏置时,势垒电容大11.稳压二极管稳压时,工作在反向击穿区.发光二极管发光时,工作在正向导通区 12.稳压管称为齐纳二极管13.光电二极管是将光信号转换为电信号的器件,它在PN结反向偏置状态下运行,反向电压下进行,反向电流随光照强度的增加而上升14.如何用万用表测量二极管的阴阳极和判断二极管的质量优劣?用万用表的欧姆档测量二极管的电阻,记录下数值,然后交换表笔在测量一次,记录下来.两个结果,应一大一小,读数小的那次,黑表笔接的是阳极,红表笔接的是阴极.这个读数相差越多,二极管的质量越好.当两个读数都趋于无穷大时,二极管断路.当两个读数都趋于零时,二极管短路第四章双极结型三极管及放大电路1.半导体三极管又称双极结型三极管,简称BJT是放大器的核心器件2.采用微变等效电路求放大电路在小信号运用时,动态特性参数3.晶体三极管可以工作在: 放大区,发射结正偏,集电极反偏饱和区,发射结集电极正偏截止区,发射结集电极反偏4.NPN,PNP,硅锗管的判断5.工作在放大区的三极管,若当Ib以12μA增大到22μA时,Ic 从1mA变为2mA,β约为1006.直流偏置电路的作用是给放大电路设置一个合适的静态工作点,若工作点选的太高——饱和失真。
模电各章重点内容及总复习
《模电》第一章重点掌握内容:一、概念1、半导体:导电性能介于导体和绝缘体之间的物质。
2、半导体器件,主要是利用半导体材料制成,如硅和锗。
3、半导体奇妙特性:热敏性、光敏性、掺杂性。
4、本征半导体:完全纯净的、结构完整的、晶格状的半导体。
5、本征激发:环境温度变化或光照产生本征激发,形成电子和空穴,电子带负电,空穴带正电。
它们在外电场作用下均能移动而形成电流,所以称载流子。
6、半导体中存在两种载流子:自由电子和空穴。
7、P型半导体:在纯净半导体中掺入三价杂质元素,便形成P型半导体,使导电能力大大加强,此类半导体,空穴为多数载流子(称多子)而自由电子为少子。
8、N型半导体:在纯净半导体中掺入五价杂质元素,便形成N型半导体,使导电能力大大加强,此类半导体,电子为多子、而空穴为少子。
9、PN结具有单向导电性:P接正、N接负时(称正偏),PN结正向导通,P接负、N接正时(称反偏),PN结反向截止。
所以正向电流主要由多子的扩散运动形成的,而反向电流主要由少子的漂移运动形成的。
10、二极管按材料分有硅管(S i管)和锗管(G e管),按功能分有普通管,开关管、整流管、稳压管等。
11、二极管由一个PN结组成,所以二极管也具有单向导电性:正偏时导通,呈小电阻,大电流,反偏时截止,呈大电阻,零电流。
P6,图1.2.5二极管的伏安特性。
P7,(1.2.1式)二极管方程其死区电压:S i管约0.5V,G e管约为0.1 V 。
其导通压降:S i管约0.7V,G e管约为0.2 V 。
这两组数也是判材料的依据。
10、稳压管是工作在反向击穿状态的:①加正向电压时,相当正向导通的二极管。
(压降为0.7V,)②加反向电压时截止,相当断开。
③加反向电压并击穿(即满足U﹥U Z)时便稳压为U Z。
11、二极管主要用途:整流、限幅、继流、检波、开关、隔离(门电路)等。
12.三极管由两个PN结组成。
从结构看有三个区、两个结、三个极。
(参考P40)三个区:发射区——掺杂浓度很高,其作用是向基区发射电子。
(完整版)模电知识总结
第一部分半导体的基本知识二极管、三极管的结构、特性及主要参数;掌握饱和、放大、截止的基本概念和条件。
1、导体导电和本征半导体导电的区别:导体导电只有一种载流子:自由电子导电半导体导电有两种载流子:自由电子和空穴均参与导电自由电子和空穴成对出现,数目相等,所带电荷极性不同,故运动方向相反。
2、本征半导体的导电性很差,但与环境温度密切相关。
3、杂质半导体(1)N型半导体——掺入五价元素(2)P型半导体——掺入三价元素4、PN结——P型半导体和N型半导体的交界面在交界面处两种载流子的浓度差很大;空间电荷区又称为耗尽层反向电压超过一定值时,就会反向击穿,称之为反向击穿电压5、PN结的单向导电性——外加电压正向偏置反向偏置6、二极管的结构、特性及主要参数(1)P区引出的电极——阳极;N区引出的电极——阴极温度升高时,二极管的正向特性曲线将左移,反向特性曲线下移。
二极管的特性对温度很敏感。
其中,Is为反向电流,Uon为开启电压,硅的开启电压——0.5V,导通电压为0.6~0.8V,反向饱和电流<0.1μA,锗的开启电压——0.1V,导通电压为0.1~0.3V,反向饱和电流几十μA。
(2)主要参数1)最大整流电流I:最大正向平均电流2)最高反向工作电流U:允许外加的最大反向电流,通常为击穿电压U的一半3)反向电流I:二极管未击穿时的反向电流,其值越小,二极管的单向导电性越好,对温度越敏感4)最高工作频率f:二极管工作的上限频率,超过此值二极管不能很好的体现单向导电性7、稳压二极管在反向击穿时在一定的电流范围内(或在一定的功率耗损范围内),端电压几乎不变,表现出稳压特性,广泛应用于稳压电源和限幅电路中。
(1)稳压管的伏安特性(2)主要参数1)稳定电压U:规定电流下稳压管的反向击穿电压2)稳定电流I:稳压管工作在稳定状态时的参考电流。
电流低于此值时稳压效果变坏,甚至根本不稳压,只要不超过稳压管的额定功率,电流越大稳压效果越好。
模拟电路第一章知识点总结
第一章半导体物理基础一、半导体基础知识半导体是电子电路元器件的主要材料,其导电性能介于导体与绝缘体之间,具有特殊的导电性质。
1.本征半导体本征半导体是完全纯净、结构完整的半导体晶体。
2.杂质半导体杂质半导体是掺入杂质元素的半导体。
价电子数多于半导体元素的杂质称为施主杂质,少于半导体元素的杂质称为受主杂质,相应的元素分别称为施主元素与受主元素。
掺入施主杂质的杂质半导体称为电子型半导体或N型半导体,掺入受主杂质的杂质半导体称为空穴型半导体或P型半导体。
杂质半导体中数量多的那种载流子称为多子,另一种数量少的载流子称为少子,N型半导体中自由电子是多子,空穴是少子,P型半导体中自由电子是少子,空穴是多子。
3.载流子在半导体中的运动载流子在半导体中有两种运动方式,漂移运动和扩散运动。
漂移运动是载流子在外加电场力作用下沿电场方向的定向运动,由漂移运动产生的电流叫漂移电流。
漂移电流等于空穴与自由电子运动产生的电流之和。
扩散运动是载流子在浓度差的作用下产生的定向运动,由扩散运动产生的电流叫扩散电流。
二、PN结1.PN结的形成过程N型半导体和P型半导体的交界面处会产生PN结。
其形成机理为:P型区到N型区的过渡带两边浓度差很大,形成的扩散运动使过渡区域产生强烈的复合作用,产生一个空间电荷区,也叫耗尽区,扩散运动使过渡带内产生电位差和电场,称为接触电位差和内建电场,内建电场由N型区指向P型区,阻碍多子的扩散运动,促进过渡带中少子的漂移运动,当两者速度相等达到平衡状态后,过渡带中的接触电位差、内建电场强度、空间电荷区宽度均处于稳定值,PN结形成。
P、N的过渡带称为PN结,其宽度等于耗尽区的宽度。
2.PN结的伏安特性PN结的正偏(正向偏置)是指两端电压正极接在P区,负极接在N区,反之则称为反偏(反向偏置)。
正偏时PN结中会有较大的正向电流,且随着正偏电压增大迅速增大,一般认为正偏时PN是导通的,电阻很小。
反偏时PN结中只有很小的反向电流通过,在很大范围内随着反偏电压增大,反向电流变化不明显,具有与少子浓度关系较大的反向饱和电流,其数值很小,一般认为PN结在反偏下截止,电阻无穷大,相当于绝缘体,可以等效为电容,称为结电容。
模电各章节主要知识点总结
06
第六章:信号发生器与信号变换器
信号发生器的定义和分类
总结词
信号发生器是用于产生所需信号的电子设备 ,根据产生信号的方式不同,可以分为振荡 器和调制器两类。
详细描述
信号发生器是用来产生各种所需信号的电子 设备,这些信号可以是正弦波、方波、脉冲 波等。根据产生信号的方式不同,信号发生 器可以分为两类:振荡器和调制器。振荡器 是利用自激反馈产生所需信号的电子设备, 而调制器则是利用调制技术将低频信号加载
THANKS
感谢观看
限流、分压、反馈等
电阻的串并联
串联增大阻值,并联减小阻值
电容
电容的种类
电解电容、瓷片电容、薄膜电 容等
电容的参数
标称容量、允许偏差、额定电 压、绝缘电阻等
电容的作用
隔直流通交流、滤波、耦合等
电容的充电放电
在交流电下,电容具有“隔直 流通交流”的作用,即让高频 信号通过,阻止低频信号通过
电感
电感的种类
信号变换器的工作原理和应用
• 总结词:模拟式信号变换器的工作原理是将输入的模拟信号进行采样、量化和 编码,转换成数字信号输出;数字式信号变换器则是将输入的数字信号进行解 码和数模转换,转换成模拟信号输出。
• 详细描述:模拟式信号变换器的工作原理是将输入的模拟信号进行采样、量化 和编码,转换成数字信号输出。采样是将连续时间信号转换为离散时间信号的 过程,量化是将采样后的离散值进行近似取整的过程,编码则是将量化后的离 散值转换为二进制码元的过程。数字式信号变换器的工作原理是将输入的数字 信号进行解码和数模转换,转换成模拟信号输出。解码是将输入的数字码元进 行解码的过程,数模转换则是将解码后的离散值转换为连续时间信号的过程。 模拟式和数字式信号变换器在通信、测量、控制等领域有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟电子技术基础复习要点
一、常用半导体器件
1.半导体二极管
(1)掌握二极管具有单向导电的特性。
用电位的方法来判断二极管是否导通,即,哪个二极管的阳极电位最高,或哪个二极管的阴极电位最低,哪个二极管就优先导通。
(2)注意:理想二极管导通之后相当短路,截止后相当开路。
(3)掌握二极管的动态电阻小,静态电阻大的概念(直流通路恒压源,交流通路小电阻)。
交流的时候把二极管当成一个交流的小电阻,用静态工作点和公式求二极管的电阻值
(4)熟悉二极管的应用(开关、钳位、隔离、保护、整流、限幅)作业:1.3
2. 半导体稳压管
(1)掌握稳压管工作在反向击穿区的特点
只要不超过稳压管的最大功率,电流越大越好
(2)掌握稳压管与一电阻串联时,在电路中起的稳压作用。
(3)掌握稳压管的动态电阻小,静态电阻大的概念。
(3)熟悉稳压管的应用(稳压、限幅)作业:1.5 , 1.6
3. 晶体三极管
(1)熟悉晶体管的电流放大原理(重点掌握Ic=βIb )
(2)掌握NPN 型三极管的输出特性曲线。
晶体管有三个级,必然就有BE 间的输入,CE 间的输出,所以有两组特性曲线。
iB 和Ube 之间的关系,但是保证Uce 是一个恒定值
iC 和Uce 之间的关系,保证Ib 是一个恒定值
关于NPN 型管子:管子处于何种状态要根据电压之间的关系来确定。
主要是饱和区和截止区之间的区别
(3)掌握三极管的放大、饱和与截止条件。
(4)理解CEO CBO I I 和的定义及其对晶体管集电极电流的影响。
作业:1.9,1.12 ,
共射交流放大倍数β,共基交流放大倍数α≈1
4. 场效应管
(1)能够从转移特性曲线和输出特性曲线识别场效应管类型。
(2)掌握结型场效应管(N沟道)的转移特性和输出特性的意义。
(3)掌握绝缘栅N沟道增强型MOS的转移特性和输出特性的意义。
(4)掌握电流方程,1.4.4 式和1.4.5式作业:1.14
结型场效应
MOS。