矩阵分析课后答案(整理版)第二章

合集下载

同济五版线性代数习题答案第二章矩阵及其运算.doc

同济五版线性代数习题答案第二章矩阵及其运算.doc

解(X] x 2x 3)第二章 矩阵及其运算(参考答案)(习题二心76)p 54 1.计算下列乘积:<4 3 r<7、⑴ 1 -2 3 2q7<b<4 3 r ['4x7 + 3x24-1x1、15、 解1 -23 2 — lx7 + (—2)x2 + 3xl — 6 q 70 /、5x74-7x2 + 0x1 \ z <49;3⑵(1,2,3) 2 .,3、解(1 2 3) 2 =(lx3 + 2x2 + 3xl) = (10).J;<2-1(5)3],易,工3)a \2<2‘2x(-1)2x2、 "-2 4、解1 (T 2)=1x(-1)1x2 -1 2X /<3x(-1) 3x2)厂3⑶ 1 (-1,2).31 1 \'1 3 1、"2 1 4 0、 0 -1 2(6 -7 8、 J T 3 4,1 -3 1_〔20 -5 —6,.4 0 一240 解\-2J。

a \2>i = -3Z] + z 2'力=2Z|+Z3y 3=-z 2-k3z 3=(%/] + a ]2x 2 + a ]3x 3 a l2x } + a^x 2 + a 13x 3 a u x } + a-,3x 2 + 6t 33x 3) x =a u x[ + a 22x^ + %3工;+ 2a l2x }x 2 + 2a l3x }x 3 + 2a 23x 2x 3。

2 1 0、<10 3 10 10 10 12-1(6).0 0 2 10 0-23^0 0 0 3, ^0 0 0 —3,<12 10、 Q 0 31<1 2 5 20 10 10 12-10 12-4解0 0 2 1 0 0-23 0 0-43^0 0 0 3, 、0 0 0 一3/,0 0 0 -9;q i i)'1 2 3、fl 1 1解 3AB — 2A=3 i i -i-1 -2 4 -2 1 1 -1 J t •>、05 1,J -1 b5 8、<1 1 qr-2 13 22、 0 -5 6 -2 1 1 -i -2 -17 20<29 0;<1-1<429 -2>求从Z], Z2, Z 3到X p X 2, W 的线性变换.<1 11、< 1 2 3、乌2.设A = 1 1-1 ,B =-1 -2 4<1 "I<o 5 L求 3 AB —2 A 及NB.<1 1 1) '1 2 3、<0 5 8、 A 『B = 1 1 -1 -1 -2 40 -5 6J -1 •> p 0 5 1)<2 9 o >P 54 3.已知两个线性变换而=2一+为< 邑=一2乂+3),2+2为 石=4名+力+5为/、< 2 0 1) 3、< 2 0 1) '-3 1 oy J-2 3 2-2 3 2 2 0 i<4 1 5>*4 \ 1 5, /-1 3^ 由己/ 、22k Z 3>所以有2、 3>8> AB 主 BA(2) (A + B)22、 "2 2、 r 8 14 5, 2 51429 / \ /\ <3 8、 %8、 / + + <4<8 12\‘10 16、J5 27,<2 (A + B)(A —B)=2V05人。

第二章 矩阵答案详解

第二章  矩阵答案详解

a a a a a B12 ,其中 B11 b b b , B12 b b ; E c c c b b a b A12 B12 c A22 0 0 a a a 2 a 5 b b b 3 b 2 c c c 1 c 6 0 0 4 0 0 0 0 4
2 1 1÷ 7 4 4 ç ÷ ç ÷ 3 1 0÷ 9 4 3 (1) ç ç ÷ ç ÷ ç ÷ 3 3 4 ç0 1 2÷ cos q - sin q ÷ ÷ ( 2) ç ç ÷ ,n> 0 ; ç sin q cos q ÷
【解析】
n
2
cos q - sin q sin q cos q
本题主要考察逆矩阵的判别和求逆矩阵.
习题 2.3 矩阵的分块
1.将矩阵分块并计算 AB
1 ç ç ç 0 ç ç ç A=ç 0 ç ç ç 0 ç ç ç ç0
0 0 1 0 0 1 0 0 0 0
5 ÷ ÷ ÷ 3 -2 ÷ ÷ ÷ ÷ , -1 6 ÷ ÷ ÷ ÷ 4 0 ÷ ÷ ÷ ÷ 0 4 ÷
求 4 A - 3B ,
1 ( A + B) . 3 1 8 3 3 1 5 3 3 5 8 3 3 0 1 2 3
1 1 3 2 24 11 3 7 1 1 1 【解析】 4 A 3B 18 25 4 1 5 ; ( A B ) 3 3 3 1 2 6 4 15 5 11 3 3
è1 3ø

2 -23÷ =ç ÷ ç ç0 ÷ 1 8 ÷
( 2)
-1 1 4 0,
=
0 -1 0

《线性代数》第二章矩阵及其运算精选习题及解答

《线性代数》第二章矩阵及其运算精选习题及解答

An
=
⎜⎜⎝⎛
0 C
⎜⎛ 1
B 0
⎟⎟⎠⎞
,
其中
C = (n) ,
B
=
⎜ ⎜ ⎜⎜⎝
0 M 0
0 L 0 ⎟⎞
2 M 0
L L
n
0
M −
⎟ ⎟ 1⎟⎟⎠

故 C −1 = ( 1 ) , n
⎜⎛1 0 L
0 ⎟⎞
B −1
=
⎜0
⎜ ⎜⎜⎝
M 0
12 M 0
L L
1
0⎟ (nM− 1) ⎟⎟⎟⎠

根据分块矩阵的逆矩阵公式
⎜⎛ 2 ⎜0
0 4
2⎟⎞ 0⎟
⎜⎝ 4 3 2⎟⎠
例 2.12 设 X(E − B −1 A)T BT = E , 求 X . 其中
⎜⎛1 −1 0 0 ⎟⎞
⎜⎛ 2 1 3 4⎟⎞
A
=
⎜ ⎜ ⎜⎜⎝
0 0 0
1 0 0
−1 1 0
0⎟ −11⎟⎟⎟⎠ ,
B
=
⎜ ⎜ ⎜⎜⎝
0 0 0
2 0 0
1 2 0
0⎟
0 8
⎟ ⎟⎟⎠
,
求B,
使 ABA −1
=
BA −1
+ 3E

解 根据 ABA −1 = BA−1 + 3E , 得到 (A − E )BA−1 = 3E
故 A − E, A 皆是可逆的, 并且
( ) [ ] B = 3(A − E )−1 A = 3(A − E )−1 A−1 −1 = 3 (A−1 )(A − E) −1 = 3(E − A−1 )−1
第二章 矩阵及其运算

矩阵分析

矩阵分析

矩阵分析课后习题答案第二章 内积空间14 . 设A , B 均为厄米特矩阵, 证明: AB 为厄米特矩阵的充要条件是AB = BA .证明: H A A =,H B B =()HH H AB AB B A AB =⇔=即 AB BA =17 . 证明:两个正规矩阵相似( 酉等价) 的充要条件是特征多项式相同.证明:设A , B 是两个n 阶的正规矩阵,如果A 与B 是酉等价的,则存在酉矩阵Q ,使得1H B Q AQ Q AQ -==()11E B E Q AQ Q E A Q E A λλλλ--⇒-=-=-=-即A , B 有相同的特征多项式反之,A , B 有相同的特征多项式,因而有相同的特征值集合{}12,,,n λλλA ,B 是正规矩阵,则存在酉矩阵1Q 及2Q ,使得1111122n Q AQ Q BQ λλλ2--⎡⎤⎢⎥⎢⎥==⎢⎥ ⎢⎥ ⎣⎦ 则有 ()()11111121121212B Q Q A Q Q Q QA Q QP A P------=== 易知,112p Q Q -=是酉矩阵,即A , B 是酉相似的。

第三章 矩阵的标准形6 . 在复数域上, 求下列矩阵的约当标准形:()11 -1 2 3 7 -3 3 0 8 4 5 -2⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥ 3 -3 6 ; (2) -2 -5 2; (3) 3 -1 6; (4) -⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥2 -2 4-4 -10 3-2 0 -5⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥2 -2 1 ⎢⎥⎢⎥-1 -1 1⎣⎦解 (1) 特征矩阵为λλλ-1 1 -2⎡⎤⎢⎥-3 +3 - 6⎢⎥⎢⎥-2 2 -4⎣⎦所以行列式因子为()()121D D λλλ==,,()()232D λλλ=-不变因子为()()()()()()()()()231123121,D D d D d d D D λλλλλλλλλλλ== ==, ==-2全部初级因子为()2,,λλλ-故约当标准型为 2J 0 0⎡⎤⎢⎥=0 0 0⎢⎥⎢⎥0 0 0⎣⎦(2) 特征矩阵为λλλ -3 - 7 3⎡⎤⎢⎥ 2 +5 -2⎢⎥⎢⎥ 4 10 - 3⎣⎦所以行列式因子为()()211D D λλ==,()()31()()D i i λλλλ=--+不变因子为()()()()()()()()()231123121,1()()D D d D d d i i D D λλλλλλλλλλλ== ==1, ==--+全部初级因子为1,,i i λλλ- - +故约当标准型为 J i i 1 0 0⎡⎤⎢⎥=0 0⎢⎥⎢⎥0 0 -⎣⎦(3) 特征矩阵为5λλλ -3 0 -8⎡⎤⎢⎥ -3 +1 -6⎢⎥⎢⎥ 2 0 +⎣⎦所以行列式因子为()()()()1231,1,1D D D λλλλλ3= =+ =+不变因子为()()()()()()()()()2231123121,1D D d D d d D D λλλλλλλλλλ== ==+1, ==+全部初级因子为21,1)λλ+ (+故约当标准型为 J -1 0 0⎡⎤⎢⎥= 0 -1 0⎢⎥⎢⎥ 0 1 -1⎣⎦(4) 特征矩阵为λλλ -4 - 5 2⎡⎤⎢⎥ 2 +2 -1⎢⎥⎢⎥ 1 1 - 1⎣⎦所以行列式因子为()()211D D λλ==,()()331D λλ=-不变因子为()()()()()()()()()3231123121,D D d D d d D D λλλλλλλλλ== ==1, ==-1全部初级因子为()31λ-故约当标准型为 J 1 0 0⎡⎤⎢⎥=1 1 0⎢⎥⎢⎥0 1 1⎣⎦8 . 证明: ( 1)方阵A 的特征值全是零的充要条件是存在自然数m ,使得A m = 0; ( 2) 若A m = 0 , 则1A E +=.证明:(1) 如λ为A 的任一特征值,A 为n 阶方阵,则m λ为m A 的特征值,若0m A =则m n E A E λλλ-==,即A 的特征值为0。

矩阵分析第二章 共112页

矩阵分析第二章 共112页
dr (1)er1(2)er2 (s)ers
其为中di|d 1i, 1()(si 是1 ,互异,r的 1 复),数所,e i以j 是满非足负如整下数关。系因
0 e11 e21 0 e12 e22
er1 er2
定义
称为
0 e1s e2 s ers
2
2 4 4 2 3 7
0
1

2 3 4
0
1

2 3 4
1
2
0

0
2
1

0 4 2 3 1 2 3 4
1
0
0

0
2
1
B ()P ()A ()Q ()
矩阵Smith标准形的存在性
定 理 任意一个非零的mn型的 矩阵都等价于
一个对角矩阵,即
d1 ( )


d2()



A( )

dr ( )


0






0
其中 r 1,di()是首项系数为1的多项式且
d i()d i 1 () (i 1 ,2 , ,r 1 )
相当于用相应的 阶m初等矩阵左乘 A。( 对 ) A ( ) 的列作初等列变换,相当于用相应的 n 阶初等矩阵右
乘 A( ) 。 定义 如果A ( ) 经过有限次的初等变换之后变成 B ( ) ,则称 A ( ) 与 B ( ) 等价,记之为
A() B()
定理 A ( ) 与 B ( ) 等价的充要条件是存在两个可逆 矩阵 P ( ) 与 Q ( ) ,使得

矩阵分析第2章习题解

矩阵分析第2章习题解

第二章习题1、 用初等变换把下列矩阵化为标准型 (1)322253λλλλλλ⎛⎫- ⎪+⎝⎭ (2)23100(1)λλ⎛⎫- ⎪-⎝⎭ (3)22211λλλλλλλλλ⎛⎫- ⎪- ⎪ ⎪+⎝⎭(4)2(1)0000(1)λλλλ+⎛⎫⎪ ⎪ ⎪+⎝⎭解: (1)322253λλλλλλ⎛⎫- ⎪+⎝⎭2122()23233235351102033r r λλλλλλλλλλλλλ-⎛⎫+⎛⎫+ ⎪ ⎪⎪--- ⎪⎝⎭⎝⎭32103λλλλ⎛⎫ ⎪--⎝⎭(2)231(1)λλ⎛⎫-⎪-⎝⎭212222(3)32211110331(3)(1)4(1)r r λλλλλλλλλλλ--⎛⎫⎛⎫---- ⎪ ⎪-+-----⎝⎭⎝⎭[因为32331λλλ-+-除以21λ-商为3λ-余式为4(1)λ-]222222114(1)(3)(1)(3)(1)4(1)11λλλλλλλλλλ⎛⎫⎛⎫------ ⎪ ⎪------⎝⎭⎝⎭211(3)(1)42224(1)011(1)(3)(1)(1)4c c λλλλλλλλ+-+-⎛⎫⎪ ⎪--+-+-⎝⎭31(1)(1)λλλ-⎛⎫⎪+-⎝⎭(3)22211λλλλλλλλλ⎛⎫- ⎪- ⎪ ⎪+⎝⎭222101λλλλλλλλ⎛⎫⎪- ⎪ ⎪++⎝⎭222221001(1)(1)λλλλλλλλλλλλ⎛⎫⎪-⎪ ⎪++-++-++⎝⎭43321000λλλλλλ⎛⎫ ⎪- ⎪ ⎪----⎝⎭ 43210002λλλλ⎛⎫⎪ ⎪ ⎪---⎝⎭ 221(1)λλλ⎛⎫⎪⎪ ⎪+⎝⎭(4)2(1)000000(1)λλλλ+⎛⎫⎪ ⎪ ⎪+⎝⎭ 2(1)00021λλλλλλ+⎛⎫⎪⎪⎪++⎝⎭32(2)(1)000(2)1r r λλλλλλλ-++⎛⎫⎪ ⎪ ⎪-+⎝⎭1(2)0000(1)λλλλλλ-+⎛⎫⎪⎪⎪+⎝⎭21(2)00(2)000(1)λλλλλλλ-+⎛⎫ ⎪++ ⎪ ⎪+⎝⎭ 210(1)000(1)λλλλ⎛⎫⎪+⎪⎪+⎝⎭2100(1)000(1)λλλλ⎛⎫⎪+ ⎪ ⎪+⎝⎭2、试证:Jordan 块 10()0100J αααα⎛⎫⎪= ⎪ ⎪⎝⎭相似于0000αεαεα⎛⎫⎪⎪ ⎪⎝⎭,这里0ε≠是任意实数。

史荣昌魏丰版矩阵分析第二章(2)

史荣昌魏丰版矩阵分析第二章(2)

证:必要性,设 A 可对角化,则存在可逆矩阵 P, 使得
⎡λ1

⎢ P −1 AP = ⎢
λ2
⎥ ⎥


⎢ ⎣
λn
⎥ ⎦
对于任意常数 k,
⎡λ1
⎢ kI − A = kI − P ⎢
λ2





⎥ P −1 ⎥
λn
⎥ ⎦
⎡k − λ1
⎢ = P⎢
⎢ ⎢ ⎣
k − λ2


⎥ P −1 ⎥
k

λn
⎡⎣ X1,
X2,
X
3
⎤⎦
⎢ ⎢
0
−1
1
⎥ ⎥
⎢⎣ 0 0 −1⎥⎦
= ⎡⎣− X1, − X 2 , X 2 − X3 ⎤⎦
从而可得
AX1 = − X1, AX2 = − X2 , AX3 = X2 − X3
整理以后可得三个线性方程组
(I + A)X1 = 0 (I + A)X2 = 0 (I + A)X3 = X2
k≥3
⎢ O 00 ⎥
⎢ ⎣
0⎥⎦
(1) 每个Jordan 块 Ji 对应属于 λi 的一个特征向量; (2) 对于给定的 λi,其对应的Jordan 块的个数 等于λi 的几何重复度; (3) 特征值 λi 所对应的全体Jordan 块的阶数之和 等于 λi 的代数重复度.
根据 rank(kI − A)l = rank(kI − J )l , l = 1,2,
(λ − 1)2(λ − 2)⎥⎦
所以 A 的初等因子为 (λ −1)2 , λ − 2 .
故 A 的标准形为

矩阵分析 第二章

矩阵分析 第二章

第2章范数理论及其应用2.1向量范数及l p范数定义:如果V是数域K上的线性空间,且对于V的任一向量x,对应一个实数值||x||,它满足以下三个条件:1)非负性:||x||≥0,且||x||=0⇔x=0;2)齐次性:||k⋅x||=|k|⋅||x||,k∈K;3)三角不等式:||x+y||≤||x||+||y||.则称||x||为V上向量x的范数,简称为向量范数。

可以看出范数||⋅||为将V映射为非负数的函数。

注意:2)中|k|当K为实数时为绝对值,当K为复数域时为复数的模。

虽然向量范数是定义在一般的线性空间上的,但是由于前面的讨论,我们知道任何n维线性空间在一个基下都代数同构于常用的n维复(或实)列向量空间,因此下面我们仅仅讨论n维复(或实) 列向量空间就足够了。

下面讨论如下:1.设||⋅||为线性空间V n的范数,任取它的一个基x1,x2,…,x n,则对于任意向量x,它可以表示为x=ξ1x1+ξ2x2+…+ξn x n其中,(ξ1,ξ2,…,ξn)T为x的坐标。

由此定义C n(或R n)中的范数如下:||ξ||C =ϕ(ξ)=||ξ1x1+ξ2x2+…+ξn x n||则容易验证||ξ||C确实为C n中的范数.2.反之, 若||ξ||C为C n中的范数,定义V n的范数如下:||x||=φ(x)=||ξ||C其中x=ξ1x1+ξ2x2+…+ξn x n。

则容易验证φ(x)确实为V n的范数。

这个例子充分说明了一般线性空间的范数和n维复(或实)列向量空间的范数之间的关系。

这也是为我们只讨论n维复(或实)列向量空间的范数的理由.范数首先是一个函数,它将线性空间的任意向量映射为非负实数。

范数与函数性质1. 范数是凸函数,即|| (1-λ)x+λy||≤(1-λ)||x||+λ||y||其中0≤λ≤ 1。

向量的范数类似于向量长度。

性质2. (范数的乘法)若||⋅||为线性空间V上的向量范数,则k||⋅|| 仍然为向量范数, 其中k > 0.性质3. 设||⋅||comp为R m上的范数,且对x∈ (R+)m为单调增加的(即,若x,y∈(R+)m,且x i≤y i,那么||x||comp≤||y|| comp成立.),那么,对于给定的m个n维线性空间V上的范数||⋅||i,i=1,2,…,m,我们可以定义一个复合范数为||x||=||U(x)|| comp ,其中,U(x)=( ||x||1,||x||2, …,||x||m)T.证明:非负性和齐次性是显然的,仅需证明三角不等式。

线性代数课后习题答案第二章矩阵及其运算

线性代数课后习题答案第二章矩阵及其运算

第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y . 2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换. 解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3.设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B ,求3AB -2A 及A T B .解⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T.4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635.(2)⎪⎪⎭⎫ ⎝⎛123)321(;解⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解)21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142.(4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ;解⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解 ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA . (2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B )2≠A 2+2AB +B 2.(3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B )(A -B )≠A 2-B 2.6. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0.(2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k. 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k .8.设⎪⎪⎭⎫⎝⎛=λλλ001001A ,求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA kk kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫.用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ,由数学归纳法原理知:⎪⎪⎪⎪⎭⎫⎝⎛-=---k k kk k k k k k k k A λλλλλλ0002)1(121.9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB , 即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以 AB =(AB )T =B T A T =BA . 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫⎝⎛5221;解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为⎪⎭⎫⎝⎛--=⎪⎭⎫⎝⎛=1225*22122111A A A A A , 故 *||11A A A =-⎪⎭⎫⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ;解 ⎪⎭⎫ ⎝⎛-=θθθθc o s s i n s i n c o s A . |A |=1≠0, 故A -1存在. 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛=θθθθc o s s i ns i n c o s *22122111A A A A A , 所以 *||11A A A =-⎪⎭⎫⎝⎛-=θθθθc o s s i ns i n c o s .(3)⎪⎪⎭⎫⎝⎛---145243121;解⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以*||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n a a a A 10011211 .12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232.(2)⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛--234311*********X ;解1111012112234311-⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解11110210132141--⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111.(4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012.13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有⎪⎩⎪⎨⎧===305321x x x . 14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ). 另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或 E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2, 即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1, )3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*.证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有|A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆.因为A *=|A |A -1, 所以 (A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以(A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A *, 证明: (1)若|A |=0, 则|A *|=0; (2)|A *|=|A |n -1. 证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0. (2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到|A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1. 19.设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B ,求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E AB ⎪⎪⎭⎫ ⎝⎛-=011321330.20.设⎪⎪⎭⎫⎝⎛=101020101A ,且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A ,所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E ,B =-8(A *-2E )-1A -1=-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21,1 ,21(d i a g 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A ,且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A 11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-103006060060006603001010010000161.23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)]=diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫ ⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A .26. 计算⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121.解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B , 则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,所以⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521,即⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫⎝⎛---=9000340042102521. 27. 取⎪⎭⎫⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠. 解4100120021010*********0021010010110100101==--=--=D C B A ,而 01111||||||||==D C B A , 故 |||||||| D C B A DC B A ≠.28. 设⎪⎪⎪⎭⎫⎝⎛-=22023443O O A , 求|A 8|及A 4.解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则 ⎪⎭⎫⎝⎛=21A O O A A ,故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A .29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1-⎪⎭⎫⎝⎛O B A O ;解 设⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====snE BC OBC OAC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛---O A B O O B A O 111.(2)1-⎪⎭⎫⎝⎛B C O A .解 设⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A .30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025;解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001.解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.。

线性代数第二章矩阵(答案)

线性代数第二章矩阵(答案)

线性代数第二章矩阵(答案)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March线性代数练习题 第二章 矩 阵系 专业 班 姓名 学号第一节 矩阵及其运算一.选择题1.有矩阵23⨯A ,32⨯B ,33⨯C ,下列运算正确的是 [ B ] (A )AC (B )ABC (C )AB -BC (D )AC +BC2.设)21,0,0,21(=C ,C C E A T -=,C C E B T 2+=,则=AB [ B ](A )C C E T + (B )E (C )E - (D )03.设A 为任意n 阶矩阵,下列为反对称矩阵的是 [ B ] (A )T A A + (B )T A A - (C )T AA (D )A A T 二、填空题:1.⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛-12125614321028244612.设⎪⎪⎪⎭⎫ ⎝⎛=432112122121A ,⎪⎪⎪⎭⎫ ⎝⎛----=101012121234B ,则=+B A 32⎪⎪⎪⎭⎫⎝⎛--561252527813143.=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎪⎭⎫⎝⎛496354.=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎪⎭⎫ ⎝⎛---6520876三、计算题:设⎪⎪⎪⎭⎫ ⎝⎛--=111111111A ,4⎪⎪⎪⎭⎫ ⎝⎛--=150421321B ,求A AB 23-及B A T;2294201722213222222222209265085031111111112150421321111111111323⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=-A AB .092650850150421321111111111⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--===AB B A A A A TT ,则对称,由线性代数练习题 第二章 矩 阵系 专业 班 姓名 学号第二节 逆 矩 阵一.选择题1.设*A 是n 阶矩阵A 的伴随矩阵,则 [ B ] (A )1-*=A A A (B )1-*=n AA (C )**=A A n λλ)( (D )0)(=**A2.设A ,B 都是n 阶可逆矩阵,则 [ C ] (A )A +B 是n 阶可逆矩阵 (B )A +B 是n 阶不可逆矩阵 (C )AB 是n 阶可逆矩阵 (D )|A +B | = |A |+|B |3.设A 是n 阶方阵,λ为实数,下列各式成立的是 [ C ] (A )A A λλ= (B )A A λλ= (C )A A n λλ= (D )A A n λλ= 4.设A ,B ,C 是n 阶矩阵,且ABC = E ,则必有 [ B ] (A )CBA = E (B )BCA = E (C )BAC = E (D )ACB = E 5.设n 阶矩阵A ,B ,C ,满足ABAC = E ,则 [ A ](A )E C A B A T T T T = (B )E C A B A =2222 (C )E C BA =2 (D )E B CA =2 二、填空题:1.已知A B AB =-,其中⎪⎪⎭⎫⎝⎛-=1221B ,则⎪⎪⎪⎪⎭⎫ ⎝⎛-=121211A 2.设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛12643152X ,则X = ⎪⎪⎭⎫⎝⎛-40132 3.设A ,B 均是n 阶矩阵,2=A ,3-=B ,则6421nBA -=-*4.设矩阵A 满足042=-+E A A ,则)2(21)(1E A E A +=--三、计算与证明题: 1.设方阵A 满足022=--E A A ,证明A 及E A 2+都可逆,并求1-A 和12-+)(E A;2)2(2)(0212E A A A E E A A E E A A E A A -=⇒=-⇒=-⇒=---可逆,且 .43)2(2)2)(43(4)2)(3(04)2(3)2(023)2(0212EA E A E A EE A E A EE A E A E E A E A A E A E A A E A A --=++⇒=+--⇒-=+-⇒=++-+⇒=--+⇒=---可逆,且2.设⎪⎪⎪⎭⎫ ⎝⎛---=145243121A ,求A 的逆矩阵1-A解:设3)(ij a A ,则,24321)1(,12311)1(,02412)1(,144521)1(,61511)1(,21412)1(,324543)1(,131523)1(,414243333233231313223222221213113211211-=-=-=---==---==--==--==---=-=--=-=--=-=--=++++++++A A A A A A A A A从而⎪⎪⎪⎭⎫ ⎝⎛-----=214321613024*A .又由261412614512300121452431211312=--=--+----=c c c c A则⎪⎪⎪⎭⎫ ⎝⎛-----==-1716213213012*1A A A3.设⎪⎪⎪⎭⎫⎝⎛-=321011330A 且满足B A AB 2+=,求 B ⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛---⇒=-⇒+=321011330121011332)2(2B AB E A BA AB⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛--⨯⎪⎪⎪⎭⎫⎝⎛-----⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫⎝⎛----↔⎪⎪⎪⎭⎫ ⎝⎛----0111003210103300010111003210100110113011100352310011011)21(02220035231001101133011035231001101123211213303320110113211210110113303322132323131221r r r r r r r r r r r r r则⎪⎪⎪⎭⎫⎝⎛-=-=-011321330)2(1A E A B线性代数练习题 第二章 矩 阵系 专业 班 姓名 学号第三节(一) 矩阵的初等变换一、把下列矩阵化为行最简形矩阵:()()()⎪⎪⎪⎪⎪⎭⎫⎝⎛------÷-÷-÷⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----------⎪⎪⎪⎪⎪⎭⎫⎝⎛---------22100221002210034311534101050066300884003431132312433023221453334311432141312r r r r r r r r r⎪⎪⎪⎪⎪⎭⎫⎝⎛----⎪⎪⎪⎪⎪⎭⎫⎝⎛-----0000000000221003201130********02210034311212423r r r r r r二、把下列矩阵化为标准形:⎪⎪⎪⎪⎪⎭⎫⎝⎛--------⎪⎪⎪⎪⎪⎭⎫⎝⎛------↔⎪⎪⎪⎪⎪⎭⎫⎝⎛------76750129880111104202132347310382373132420213473103823420217313214131221r r r r r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛---↔⎪⎪⎪⎪⎪⎭⎫⎝⎛-----410002120011110420212120041000111104202158432423r r r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛----⎪⎪⎪⎪⎪⎭⎫⎝⎛---+--410002020020010400212141000202003011040021232414243r r r r r r r r⎪⎪⎪⎪⎪⎭⎫⎝⎛-+-⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛---+010*******000100000142410001010020010000012141000202002001000001243253221c c c c r r r r 三、用矩阵的初等变换,求矩阵的逆矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=1210232112201023A ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----↔⎪⎪⎪⎪⎪⎭⎫⎝⎛-----100012100001102300101220010023211000121001002321001012200001102331r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛----↔⎪⎪⎪⎪⎪⎭⎫⎝⎛-----00101220030159401001210010023211000121003015940001012200100232134213r r r r⎪⎪⎪⎪⎪⎭⎫⎝⎛-------+⎪⎪⎪⎪⎪⎭⎫⎝⎛----------10612100043011100100012100100232122010120043011100100012100100232124342423r r r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛----------+⎪⎪⎪⎪⎪⎭⎫⎝⎛------------+1061210006311010010********11021231061210006311010011612021020112432123231434241r r r r r r r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-------+10612100063110100101000104211001221r r⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------=∴-106126311101042111A 四、已知111101022110110014X -⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,求X3132233131111011111011111010221100221100221101100140211130030232110123111101211022110020123322001010010133r r r r r r r r r ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎛⎛⎫ ⎪-- ⎪⨯-- ⎪+ ⎪ ⎪⎝⎭21221511012100332611111010101012262622001010010133r r r ⎫⎪ ⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⨯----- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭故15326111262013X ⎡⎤⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎣⎦线性代数练习题 第二章 矩 阵系 专业 班 姓名 学号 第三节(二) 矩 阵 的 秩一.选择题1.设A ,B 都是n 阶非零矩阵,且AB = 0,则A 和B 的秩 [ D ] (A )必有一个等于零 (B )都等于n (C )一个小于n ,一个等于n (D )都不等于n2.设n m ⨯矩阵A 的秩为s ,则 [ C ](A )A 的所有s -1阶子式不为零 (B )A 的所有s 阶子式不为零(C )A 的所有s +1阶子式为零 (D )对A 施行初等行变换变成⎪⎪⎭⎫ ⎝⎛000sE3.欲使矩阵⎪⎪⎪⎭⎫ ⎝⎛12554621231211t s 的秩为2,则s ,t 满足 [ C ](A )s = 3或t = 4 (B )s = 2或t = 4 (C )s = 3且t = 4 (D )s = 2且t = 4 4.设A 是n m ⨯矩阵,B 是m n ⨯矩阵,则 [ B ](A )当n m >时,必有行列式0≠||AB (B )当n m >时,必有行列式0=||AB (C )当m n >时,必有行列式0≠||AB (D )当m n >时,必有行列式0=||AB5.设⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a a a a a a a a A ,⎪⎪⎪⎭⎫⎝⎛+++=133312321131131211232221a a a a a a a a a a a a B ,⎪⎪⎪⎭⎫⎝⎛=1000010101P ,⎪⎪⎪⎭⎫⎝⎛=1010100012P ,则必有=B [ C ](A )21P AP (B )12P AP (C )A P P 21 (D )A P P 12 二.填空题:1.设⎪⎪⎪⎭⎫ ⎝⎛---=443112112013A ,则=)(A R 22.已知⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+-+=12221232121a a a A 的秩为2,则a 应满足 a =-1或3三、计算题:1.设⎪⎪⎪⎪⎪⎭⎫⎝⎛---=02301085235703273812A ,求)(A R 。

矩阵分析与计算 (朱元国 饶玲 严涛 张军 李宝成 著) 国防工业出版社 课后答案

矩阵分析与计算 (朱元国 饶玲 严涛 张军 李宝成 著) 国防工业出版社 课后答案




( )( ) = ������ Λ������ −1 ������ ������������ −1 = ������������,

( )( ) ������������ = ������ ������������ −1 ������ Λ������ −1 = ������ ������Λ������ −1 = ������ Λ������������ −1
概率与数理统计 第二, C语言程序设计教程 第 西方经济学(微观部分) C语言程序设计教程 第 复变函数全解及导学[西 三版 (浙江大学 三版 (谭浩强 张 (高鸿业 著) 中 二版 (谭浩强 张 安交大 第四版]
社区服务
社区热点
进入社区
/
2009-10-15

其中 ������ 和 Λ 是对角矩阵。于是有
w.
m
co m
ww
w.
2. (两个可对角化矩阵������, ������ ∈ ������ ������×������ 称为同时可对角化的,如果存在
co
m
矩阵分析与计算 第1章习题解答与提示
1
第1章 习题解答与提示
课后答案网
同一个相似变换矩阵������ ∈ ������ ������×������ ,使得������ −1 ������������ 和������ −1 ������������ 同为对角矩 阵。)
充分性 若������和������ 同时可对角化,则存在可逆矩阵������ ,使得 ������ = ������ ������������ −1 , ������ = ������ Λ������ −1 ,
是对应������的特征向量,而������是������的单特征值,所以������, ������������ 线性相关。因

线性代数第二章矩阵(答案).docx

线性代数第二章矩阵(答案).docx

线性代数练习题第二章矩阵系专业班姓名学号第一节矩阵及其运算一.选择题1.有矩阵A3 2,B23, C 3 3,下列运算正确的是[B]( A) AC( B) ABC( C) AB- BC( D) AC+BC2.设C (1, 0 ,0 ,1),A E C T C , B E 2C T C ,则AB[ B ] 22( A)E C T C( B)E(C)E( D)03.设 A 为任意 n 阶矩阵,下列为反对称矩阵的是[ B]( A)A A T(B)A A T( C)AA T( D)A T A二、填空题:1642011651.282342112412124321141387 2.设A 2 1 2 1, B 2 1 2 1,则 2A 3B2525 123401012165 4317353.1232657014913121400126784.13413120561402三、计算题:111设 A111,4111123B124,求 3AB2A 及 A T B0511111231113AB 2 A 3 111124 2 1111110511110582223 0562222902222132221720 ;4292111123058由 A对称,A T A,则 A TB AB11112405 6 .111051290线性代数练习题第二章矩阵系专业班姓名学号第二节逆矩阵一.选择题1.设A是 n 阶矩阵A的伴随矩阵,则[B]( A)AA A 1( B)An 1( C)( A)n A( D)( A )0 A2.设 A,B 都是 n 阶可逆矩阵,则[C]( A) A+B 是 n 阶可逆矩阵( B)A+B 是 n 阶不可逆矩阵( C)AB 是 n 阶可逆矩阵( D)| A+B| = | A|+| B|3.设 A 是 n 阶方阵,λ为实数,下列各式成立的是( A)A A(B)A A(C)A n A(D)A [ C] n A4.设 A, B, C 是 n 阶矩阵,且ABC = E ,则必有[ B]( A) CBA = E(B)BCA = E(C)BAC = E(D)ACB = E5.设 n 阶矩阵 A,B, C,满足 ABAC = E,则[ A]( A ) A T B T A T C T E (B ) A 2 B 2 A 2 C 2E(C ) BA 2CE ( D ) CA 2 B E二、填空题:1121A ,其中 B21.已知 ABB,则 A2 11122.设2 54 6,则 X =2 13 1 X21 0433.设 A , B 均是 n 阶矩阵, A2 , B3 ,则 2 A B14n64.设矩阵 A 满足 A 2A4E0 ,则 ( A E) 11 ( A 2E)2三、计算与证明题:1. 设方阵 A 满足 A 2A 2E 0 ,证明 A 及 A2E 都可逆,并求 A 1和 ( A 2E ) 1A 2A 2 E 0A( A E ) 2 E A(A2 E ) EA 可逆,且 A 1AE ;2A 2 A 2E 0A( A 2E) 3A 2E 0A( A 2E) 3( A 2E) 4E 0( A 3E )( A 2E) 4E ( A3E)( A 2E)E4A可逆,且 (A 2E)1A 3E41 2 12. 设 A3 4 2 ,求 A 的逆矩阵 A 1541解:设 A(a ij )3 ,则A 114 2 4,A 12( 1)1232 13, A 13( 1)133432,4 15154A21( 1)1221 2, A 22 ( 1)2211 6, A 23 ( 1)2312 14,41 5154A 31( 1) 13210, A 32 ( 1) 3211 1, A 33( 1) 3312 2,4232344 2 0 从而 A *1361 .32 142又由1 212c 11 00 2 1A3 4c 23 212254 1 c 3c1514 614 6A * 21 0则 A 113 31A27216 10 3 33. 设 A1 1 0 且满足 ABA2B ,求 B12 3AB A2B( A 2E) B A2 3 3 0 3 3 11 0 B 1 1 012 11 232 3 3 0 3 311 0 1 1 0 1 1 0 1 1 0 r 1r 22 3 3 03 3 12 11 2 31 2 1 1 2 31 1 0 1 1 0 1 1 01 1 0 r 22r 10 1 3 2 5 3 r 3 r 2 0 13 25 3 r 3 r 11 13 32 2 211 0 11 0110 1 10 r 3 ( 1) 0 1 3 2 5 3 r 23r 3 0 1 01 2 32 0 0 1 1 1 00 011 11 0 0 0 3 3 r 1 r2 0 1 01 2 30 0 111 00 3 3 则 B ( A 2E) 1 A1 2 31 1线性代数练习题第二章矩 阵系专业 班姓名学号第三节(一)矩阵的初等变换一、把下列矩阵化为行最简形矩阵:1 1 3 4 3 r2 3r 1 1 134 3r 2 4 1 1 3 4 3 3 3 5 4 1 0 0 4 8 8 0 0 1 2 222 3 2 0 r 3 2r 1 00 366 r 33 0 0 1 2 233 4 2 1r43r 1 0 0 5 10 10r45 012 211 34 3 11 023 r 3 r 2 0 0 1 2 2 00 1 2 2 r 4r 2 00 0 0 0 r 1 3r20 0 0 0二、把下列矩阵化为标准形:2 3 1 3 7 1 2 0 2 4 r 2 2r 1 1 2 0 2 4 1 2 0 2 4 23 1 3 7 0 1 1 1 132 83 0 r 1 r232 83 0 r 33r18 8 9 12 13 74 313 74 3 r 4 r 1 05 767122 4 122 4 r3 8r 2 0 1 1 1 1 01 1 1 1 r 45r 2 00 0 1 4 r 3 r40 2 1 20 212 00 0 14r 3 r 4 1 20 0 4120 040 1 1 0 31r 3 01 0 0 2r 2 r 4 r 20 0 2 0 20 0 2 0 2 r 1 2r 420 00 140 141 0 0 0 0 r 21 0 0 0 0 1 0 0 0 0 01 0 0 20 1 0 0 2 0 1 0 0 0r 12r20 2 0 2 1r 3 0 0 1 0 1c52c 2c34c40 1 0 00 00 14 20 0 0 140 0 0 1 0三、用矩阵的初等变换,求矩阵的逆矩阵3 2 0 1 0 2 2 1A2 3 211 213 2 0 1 1 0 0 0 1 2 3 2 0 0 1 0 0 2 2 1 0 1 0 0 0 2 2 1 0 1 0 01 2 3 2 0 0 1 r 1 r 32 0 1 1 0 0 0 03 012 1 0 0 0 1 012 1 0 0 0 11 2 3 2 0 0 1 0 1 2 3 2 0 0 1 0 02 2 1 0 1 0 0 01 2 1 0 0 0 1 r 33r14 95 1 0 3 0 r 2 r44 95 1 0 3 0 01210 00 12210 10 01 2 3 2 0 0 1 0 1 2 3 2 0 0 1 0 r 3 4r 2 0 12 1 0 0 0 1 012 1 0 0 0 1 r 42r 2 0 01 1 1 0 3 4 r 42r30 01 1 1 0 3 40 0210 10 2 0 00 12 1 6 10123 0 42 11 20120 0 1 1 2 2 r 12r4012 0 2 16 11 r 1 3r 3 0 1 00 01 0 1 r2 r 4 0 0 1 0 1 1 36 r 2 2r 3 0 0 1 0 1 1 36 r 3 r 40 00 1 2 1 6100 12 16101 0 0 0 1 1 24 r 1 2r 2 0 10 0 0 1 0 1 0 01 0 1 1 360 00 12 1 6101 12 4 A10 1 0 1 1 1 3 62 1 6 101 1 1 1 0 1 四、已知0 2 2 X 1 1 0 ,求 X110 1 41 1 1 1 0 11 1 1 10 11 1 1 1 0 1 0 22 1 1 0 r3 r 1 0 2 2 11 0 r 3r 2 0 2 2 1 1 0uuuuuruuuuur11 01 40 2 1 1 1 30 03 0 231 1 0 12 21 111 0 13r 22r3 0 20 1r 310 2 2 1 1 0 123r r30 012 1 uuuuuuur20 1 0 1331 1 01221 01 5 33 26r 210 1 0111 r 1 r2 0 1 0 111226uuuuur26uuuuur220 0 1 010 0 1 013 31 5 32 6故 X1 1 12 62 13线性代数练习题第二章矩 阵系专业班姓名学号第三节(二)矩 阵 的 秩一.选择题1.设 A , B 都是 n 阶非零矩阵,且 AB = 0,则 A 和 B 的秩[ D]( A )必有一个等于零 ( B )都等于 n(C )一个小于 n ,一个等于 n( D )都不等于 n2.设 mn 矩阵 A 的秩为 s ,则[ C]( A ) A 的所有 s( B )A 的所有 s阶子式不为零- 1 阶子式不为零( C )A 的所有 s +1 阶子式为零(D )对 A 施行初等行变换变成E s0 0112133.欲使矩阵2s126的秩为2,则s,t满足[ C ] 455t12( A)s = 3 或t = 4(B)s= 2 或t = 4( C)s = 3 且t = 4(D)s = 2 且t = 44.设A是m n 矩阵,B是 n m 矩阵,则( A)当m n 时,必有行列式| AB |0( B)当( C)当n m 时,必有行列式| AB |0( D)当[ B ] m n 时,必有行列式| AB |0n m 时,必有行列式| AB |0a11a12a13a21a22a230105.设Aa21a22a23, Ba11a12a13, P1100,a31a32a33a31a11a32a12a33a13001100P2010,则必有 B[ C ] 101( A)AP1P2(B)AP2P1( C)P1P2A( D)P2P1A二.填空题:31021.设A1 1 2 1 ,则 R( A)213441212.已知A 23a2应满足a=-1 或 3 1a的秩为 2,则 a22a21三、计算题:218371.设A230753258,求 R( A) 。

矩阵分析所有习题及标准答案

矩阵分析所有习题及标准答案

习题3-16
#3-16:设若A,BHnn,且A为正定Hermite矩阵, 试证:AB与BA的特征值都是实数.
证1:由定理3.9.4,A1/2是正定矩阵,于是 A-1/2(AB)A1/2=A1/2BA1/2=MHmn, 即AB相似于一个Hermite矩阵M. ∴ (AB)=(M)R,得证AB的特征值都是实数. 又 A1/2(BA)A-1/2=A1/2BA1/2=MHmn, 即BA相似于一个Hermite矩阵M. ∴ (BA)=(M)R,得证BA的特征值都是实数.
习题3-25
#3-25:A*=-A(ASHnn) U=(A+E)(A-E)-1Unn. (ASHnnAE的特征值全不为0,从而AE可逆)
解: U*=U-1 ((A-E)*)-1(A+E)*=(A-E)(A+E)-1 (-A-E)-1(-A+E)=(A-E)(A+E)-1 (A+E)-1(A-E)=(A-E)(A+E)-1 (A-E)(A+E)=(A+E)(A-E) A2-E=A2-E
n
j
nn使U*AU=R为 3 1 6 #3-3(1):已知A= ,试求UU 2 0 5 上三角矩阵. 解:det(E-A)=(+1)3给出=-1是A的3重特征值. 显然,1=(0,1,0)T是A的一个特征向量.作酉矩阵 V=(1,2,3),2=(1,0,0)T,3=(0,0,1)T,则
习题3-14
#3-14:若AHmn,A2=E,则存在UUnn使得 U*AU=diag(Er,-En-r).
证:存在UUnn使得 A=Udiag(1,…,n)U*, (*) 其中1,…,n是A的特征值的任意排列. ∵ A2=E=Udiag(1,…,1)U* 和 A2=Udiag(1,…,n)U*Udiag(1,…,n)U* =Udiag(12,…,n2)U* ∴ i2=1,即i=1,i=1,…,n,. 取1,…,n的排列使特征值1(设共有r个)全排在 前面,则(*)式即给出所需答案.

第二章 习题解答(11.27)

第二章  习题解答(11.27)

练习2.1答案详解一、选择题.1. 以下结论正确的是( ).(A )所有的零矩阵相等; (B ) 零矩阵必定是方阵; (C ) 所有的3阶方阵必是同型矩阵; (D ) 不是同型矩阵也可能相等. 解:(A )零矩阵的阶数可以不同,故(A )不正确;(B ) 按定义,零矩阵是元素全部为零的矩阵,未必是方阵,故(B )不正确; (C) 按定义,若两个矩阵的行数相等,列数也相等,则这两个矩阵同型,故(C )不正确;(D )按定义,不同型的矩阵或者行数不相等,或者列数不相等地,或者两者都不相等,故(D )不正确.故选(C ). 二、填空题.2. 某企业生产3种产品,每种产品在2014年和2015年各季度的产值(单位:万元)如下表:试作矩阵A 和B 分别表示三种产品在2014年和2015年各季度的产量.答案:181215192730263515181413A,161817152530283713201815B . 3. 已知1422y A x -⎫⎛=⎪-⎝⎭,132y B ⎛⎫= ⎪⎝⎭,B A =,则x = ,y = . 解:由定义,两个矩阵相等,当且仅当对应元素相等. 由B A =,得 423y y x -=⎧⎨-=⎩解这两个个方程,得24y x =⎧⎨=⎩.三、问答题.4. 下列矩阵哪些是方阵?哪些是三角矩阵?若是方阵,其主对角元素是什么?102100312A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, 314702260001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,135013002C ⎛⎫ ⎪= ⎪ ⎪⎝⎭.答案:A 和C 均为方阵;C 为三角阵,且为三阶上三角矩阵,A 的主对角元素为1,0,2.C 的主对角元素为1,1,2.练习2.2答案详解一、选择题.1. 设矩阵A 为3行5列,矩阵B 为5行4列,矩阵C 为4行6列,则矩阵ABC 为( ).(A) 3行4列; (B) 3行6列; (C) 5行4列; (D) 5行6列. 解:由题设,A 是35⨯矩阵,B 是54⨯矩阵,B 是46⨯矩阵,则由矩阵乘法的定义和运算规律,知AB 是34⨯矩阵,从而()ABC AB C =是36⨯矩阵. 故选(B ). 2. 设三阶矩阵A 的行列式2A =,则2A -= ( ).(A )2-; (B )4-; (C )16-; (D ) 8. 解:由数乘矩阵的定义和行列式的性质,有 332(2)(2)216A A -=-=-⋅=-. 故选(C ).3. 设A 为二阶矩阵,且1-=A ,则A A = ( ).(A ) 0; (B ) 1-; (C ) 1; (D ) 2. 解:由数乘矩阵的定义和行列式的性质,有 233(1)1A A AA A ===-=-.故选(B ).4. 对任意的n 阶方阵A 、B ,总有 ( ).(A )B A B A +=+; (B )T T T B A AB =)(; (C )2222)(B AB A B A +-=-;(D )BA AB =.解:(A )不正确. 例子. 设1000,0001A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,则10000,0,0001A B ====,但100010000101A B ⎛⎫⎛⎫⎛⎫+=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且10 1.01A B +== (B )因()TTTAB B A =,故(B )不正确. (C )因矩阵乘法不满足交换律,故2()()()()()A B A B A B A B A A B B-=--=---2222()()A BA BA B A BA AB B =---=--+222A AB B ≠-+.故(C )不正确.(D )因,AB A B BA B A ==,故AB BA =. 所以选(D ).5. 以下结论正确的是( ).(A )若方阵A 的行列式0A =, 则0A =; (B ) 若20A = 则0A =;(C ) 若A 为对称矩阵, 则2A 也是对称矩阵;(D ) 对n 阶矩阵,A B , 有22()()A B A B A B +-=-.解:(A )不正确. 例子, 设1111A ⎛⎫=⎪--⎝⎭,而11011A ==--. (B ) 设122,341αβ⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 则2(1,2,4)312(2)34101T αβ⎛⎫⎪=-=⨯+-⨯+⨯= ⎪ ⎪⎝⎭,记22283(1,2,4)361201124T A βα-⎛⎫⎛⎫⎪ ⎪==-=-≠ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭, 从而 22()()()()00T T T T T T A βαβαβαβαβαβα====⋅⋅=故(B )不正确.(C ) 因A 对称, 故T A A =. 从而222()()T T A A A ==. 故(C )正确. (D ) 因矩阵乘法不满足交换律,故22()()()()()()A B A B A B A A B B A BA AB B +-=+-+=+-+2222A BA AB B A B =+--≠-.故(D )不正确.从而选(C ). 二、填空题.6. 已知⎪⎪⎭⎫⎝⎛=4321A ,⎪⎪⎭⎫⎝⎛=2101B ,则=AB . 答案:⎪⎪⎭⎫⎝⎛8743.7. 若A ,B 为3阶方阵,且2,2A B ==,则2A -= ,1TA B -= .解:由数乘矩阵的定义和行列式的性质,有 332(2)(2)216A A -=-=-⋅=-, 11111212TTT A BA B AB B A ---====⋅=. 8. 设1023A ⎛⎫=⎪-⎝⎭,2111B ⎛⎫= ⎪-⎝⎭,则AB = .解:1021[1(3)][2(1)11]92311AB A B ===⋅-⋅⋅--⋅=--.三、计算题.9. 对§2.1练习题2中的矩阵A 和B ,(1)计算A B 与B A ,并说明其经济意义;(2)计算1()2A B ,并说明其经济意义.解: §2.1练习题2中的矩阵为181215192730263515181413A,161817152530283713201815B .于是人 (1) 343032345260547228383228AB, 262420222242B A,A B 的经济意义表示三种产品2014年和2015年两年各季度的产量的和;B A 的经济意义表示三种产品2015年比2014年各季度产量的增加量. (2)171516171()26302736214191614A B ,其经济意义表示三种产品2014年和2015年两年各季度的平均产量.10. 设⎪⎪⎭⎫⎝⎛-=43110412A ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=204131210131B ,用两种方法求()TAB . 解:(1) 13121400121134131402AB ⎛⎫ ⎪-⎛⎫ ⎪= ⎪ ⎪--⎝⎭ ⎪-⎝⎭⎪⎪⎭⎫⎝⎛---=6520876 所以620()75.86TAB ⎛⎫⎪=-- ⎪ ⎪-⎝⎭11. 设()1 1 12A ⎛⎫= ⎪⎝⎭,求(1)A ,(2)nA .解: (1)记11,21αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 则1(1,1)32T βα⎛⎫== ⎪⎝⎭()1111 1222T A αβ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭. (2) ()()()()()()n T n T T T T T n A αβαβαβαβαβαβ==个1()()()()T T TT Tn αβαβαβαβαβ-=个111()()3T n T n n A αβαββααβ---===111322n -⎛⎫= ⎪⎝⎭.12. 设矩阵⎪⎪⎭⎫⎝⎛=4523A ,⎪⎪⎭⎫ ⎝⎛--=3547B .求A ,B ,TA ,AB . 答案:21012=-=A ;12021=-=B ;2==A A T;2==B A AB .练习2.3答案详解一、选择题.1. 设A ,B 均为n 阶可逆矩阵,则下列各式中不正确的是( ).(A )()T T TA B A B +=+;(B ) 111()A B A B ---+=+;(C ) 111()AB B A ---=;(D ) ()T T TAB B A =.答案:B. 2. 设2011A ⎛⎫=⎪-⎝⎭,则*A =( ).(A )1120-⎛⎫ ⎪⎝⎭; (B )1012-⎛⎫ ⎪-⎝⎭; (C ) 2101⎛⎫⎪-⎝⎭; (D ) 1120-⎛⎫⎪⎝⎭. 解:1111(1)(1)1A +=-⋅-=-,1212(1)11A +=-⋅=-, 2121(1)00A +=-⋅=,2222(1)22A +=-⋅=.所以1121*12221012A A A A A -⎛⎫⎛⎫==⎪ ⎪-⎝⎭⎝⎭. 故选(B ). 3. 设A 为3阶方阵,*A 为A 的伴随阵,A = 3,则*A = ( ).(A )31; (B )3; (C )6; (D )9. 解:1*3139.n A A --===故选(D )4. 设A 为(2)n n ≥阶方阵,且A 的行列式0A a =≠,则*A 等于( ). (A )1a -; (B )a ; (C )1n a -; (D )n a . 解:1*1.n n A A a --==故选(D )二、填空题.5. 设⎪⎪⎪⎭⎫ ⎝⎛=654032001A ,则A = ;=-1*)(A .解:(1)10023018.456A ==(2)因180A =≠|, 故由AA *= A *A =|A |E , 有**11()()A A A A E A A==,所以 *110011()23018456A A A -⎛⎫⎪== ⎪ ⎪⎝⎭. 6. 设234(,,,)A αγγγ=,234(,,,)B βγγγ=,其中234,,,,αβγγγ均为四维列向量,已知4A =,1B =,则||A B += . 解:根据分块矩阵的加法和行列式的性质,得234234234(,,,)(,,,)(,2,2,2)A B αγγγβγγγαβγγγ+=+=+ 332342342342,,,2(,,,,,,)αβγγγαγγγβγγγ=+=+332()2(41)40.A B =+=+= 三、计算题.7. 设⎪⎪⎭⎫ ⎝⎛-=4031A ,求A 的伴随阵*A .解:1111(1)44A +=-⋅=,1212(1)00A +=-⋅=, 2121(1)33A +=-⋅=-,2222(1)(1)1A +=-⋅-=-.所以1121*12224301A A A A A -⎛⎫⎛⎫==⎪ ⎪-⎝⎭⎝⎭. 8. 判断方阵⎪⎪⎭⎫⎝⎛-=4031A 是否可逆,若可逆,试用伴随矩阵方法求出逆矩阵. 解:因04||≠-=A ,故A 可逆. 由上题结果,*4301A -⎛⎫=⎪-⎝⎭. 所以 1*1A A A -=⎪⎪⎪⎪⎭⎫⎝⎛-=410431.9. 若A为4阶方阵,2=A ,求*123)21(A A --. 解:11**1331313()222222222A A A A A A A A A -*-***-=-=⋅-=⋅- 41*44441311111()()()2.222222A A A A A -***-=-=-=-=-=-⋅= 10.设2阶矩阵⎪⎪⎭⎫ ⎝⎛=1223A ,⎪⎪⎭⎫ ⎝⎛=1110P ,矩阵B 满足关系式 P A PB *=,计算行列式B 的值.解:由已知,32011,12111A P ==-==-,所以21*21(1)1A A--==-=-,对P A PB *=两边取行列式,得*P B A P =,所以**1A P B A P===-.四、证明题.11.设矩阵A 可逆,证明*11()A A A --=.证明:因为**AA A A A E ==,矩阵A 可逆,所以0A ≠,故**A A A A E A A==,又因为11AA-=,所以*11()A A A --=. 12. 设方阵A 满足254A A E O -+=,证明A 及3A E -都可逆,并求1-A 及1(3)A E --.证明:由254A A E O -+=得(5)4A A E E -=-,(5)4A E A E -=-,从而有 (5)4E A AE -=,(5)4E A A E -=,则A 可逆,且11(5)4A E A -=-. 由254A A E O -+=得232620A A A E E --+-=,即(3)2(3)20A A E A E E ----= 或 (3)(3)220A E A A E E ---⋅-= 即(2)(3)20A E A E E ---= 或 (3)(2)20A E A E E ---= 从而(2)(3)2A E A E E --= , (2)(3)2A E A E E --=,则3A E -可逆,且11(3)(2)2A E A E --=-.练习2.4答案详解一、选择题.1. 下列矩阵是初等矩阵的是( ).(A )2011010⎛⎫ ⎪0 ⎪ ⎪0⎝⎭; (B )1001100⎛⎫ ⎪0 ⎪ ⎪0⎝⎭; (C )1011210⎛⎫⎪⎪0 ⎪ ⎪00⎝⎭; (D )111410⎛⎫ ⎪0- ⎪ ⎪00⎝⎭. 答案:D.本题题有误,应改成1. 下列矩阵不是初等矩阵的是( ).(A )2011010⎛⎫ ⎪0 ⎪ ⎪0⎝⎭; (B )1001100⎛⎫ ⎪0 ⎪ ⎪0⎝⎭; (C )1011210⎛⎫⎪⎪0 ⎪ ⎪00⎝⎭; (D )111410⎛⎫ ⎪0- ⎪ ⎪00⎝⎭.2. 设矩阵400020003A ⎫⎛⎪ =⎪⎪⎝⎭,则1A -等于( ).(A ) 100310021004⎫⎛⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭;(B ) 100410021003⎫⎛⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭; (C ) 100310041002⎫⎛⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭; (D ) 100210031004⎫⎛⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭. 答案:B. 二、填空题.3. 设11,01A -⎛⎫=⎪⎝⎭则1(2)A -= . 解:1111(1)11A +=-⋅=,1212(1)00A +=-⋅=,2121(1)(1)1A +=-⋅-=,2222(1)1A +=-⋅=.所以1121*12221101A A A A A ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭. 从而 11*11111111122(2).011222102A A A A --⎛⎫⎪⎛⎫====⎪ ⎪⎝⎭⎪ ⎪⎝⎭4. 设123456789A ⎫⎛⎪ =⎪ ⎪⎝⎭,001010100P ⎫⎛⎪ =⎪⎪⎝⎭,100001010Q ⎫⎛⎪ =⎪ ⎪⎝⎭,则100100P AQ = .解:矩阵P 是一个互换第一、三行的初等矩阵,所以它的100次方就意味着将后面的矩阵的第一、三行互换100次;矩阵Q 是一个互换第二、三列的初等矩阵,所以它的100次方就意味着将前面的矩阵的第二、三列互换100次. 所以 100100123456789PAQ A A ⎛⎫ ⎪=== ⎪ ⎪⎝⎭.三、计算题.5. 设21112112144622436979B --⎛⎫⎪-⎪= ⎪--⎪-⎝⎭,将矩阵B 化为行最简阶梯形矩阵,并指出在矩阵变换过程中哪些矩阵是行阶梯形矩阵.解: 1231221112112144622436979r r r B ↔⨯--⎛⎫⎪-⎪=→ ⎪--⎪-⎝⎭111214211122311236979B -⎛⎫⎪-- ⎪= ⎪--⎪-⎝⎭23314122311214022200553603343r r r r r r B ----⎛⎫ ⎪- ⎪→= ⎪--- ⎪--⎝⎭232421235311214011100002600013r r r r r B ⨯+--⎛⎫⎪- ⎪→= ⎪- ⎪-⎝⎭34434211214011100001300000r r r r B ↔--⎛⎫ ⎪-⎪→= ⎪- ⎪⎝⎭1223510104011030001300000r r r r B ---⎛⎫⎪-⎪→= ⎪-⎪⎝⎭其中45,B B 是行阶梯形矩阵,5B 已是行最简形矩阵.6. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=343122321A ,求1A -.解:⎪⎪⎪⎭⎫ ⎝⎛=100343010122001321),(E A 121323~r r rr --⎪⎪⎪⎭⎫ ⎝⎛------1036200125200013212123~r r r r +-⎪⎪⎪⎭⎫ ⎝⎛--------111100012520011201313225~r r r r --⎪⎪⎪⎭⎫ ⎝⎛------111100563020231001 231()2(1)~r r ⨯-⨯-⎪⎪⎪⎪⎭⎫ ⎝⎛----11110025323010231001,所以A 可逆,且113235322111A --⎛⎫ ⎪ ⎪=-- ⎪ ⎪-⎝⎭. 7. 矩阵X ,使B AX =,其中A 可逆,且⎪⎪⎪⎭⎫ ⎝⎛=343122321A ,253143B ⎛⎫⎪= ⎪⎪⎝⎭.解:解法1 因A 可逆,则AX B =,用1A -左乘上式,有11A AX AB --= ,即有1X A B -=.由题6中已经求出113235322111A --⎛⎫ ⎪ ⎪=-- ⎪ ⎪-⎝⎭,所以113225323533123224313111X A B --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==--=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭-⎝⎭. 解法2 ⎪⎪⎪⎭⎫ ⎝⎛--------⎪⎪⎪⎭⎫ ⎝⎛=--1226209152052321~343431312252321),(121323r r rr B A21312322331()225(1)102141003210032~02519~02046~01023001130011300113r r r r r r r r r r ⨯--+--⨯---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪------- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭, 可见E A r~,所以1322313X A B -⎛⎫⎪==-- ⎪ ⎪⎝⎭.练习2.5答案详解一、填空题.1. 设矩阵500031021A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A .答案:1005011023⎛⎫ ⎪⎪- ⎪ ⎪- ⎪⎝⎭ 二、计算题.2. 设1000101001001201,1210104111011120A B ⎛⎫⎛⎫⎪⎪-⎪⎪== ⎪ ⎪- ⎪⎪--⎝⎭⎝⎭,求AB . 解:把,A B 分块成12311000101001001201,1210104111011120B E E O A B B B A E ⎛⎫⎛⎫⎪⎪-⎛⎫⎛⎫⎪ ⎪==== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎪⎪--⎝⎭⎝⎭, 则1112131010120124331131B E AB A B B A B ⎛⎫⎪-⎛⎫ ⎪==⎪⎪++-⎝⎭ ⎪-⎝⎭. 3. 求矩阵1000120000410020A ⎛⎫⎪- ⎪= ⎪⎪⎝⎭的逆矩阵.解:A 可分块成121000120000410020A O A OA ⎛⎫⎪-⎛⎫ ⎪==⎪ ⎪⎝⎭ ⎪⎝⎭,其中11012A ⎛⎫= ⎪-⎝⎭,24120A ⎛⎫= ⎪⎝⎭, 求得11101122A -⎛⎫ ⎪= ⎪⎝⎭,1210212A -⎛⎫⎪= ⎪-⎝⎭,故11000110022100020012A -⎛⎫ ⎪ ⎪⎪= ⎪ ⎪⎪ ⎪-⎝⎭.练习2.6答案详解一、选择题.1. 已知A 有一个r 阶子式不等于零,则r (A )= ( ). (A) r ; (B) 1r +; (C) r ≤ ; (D) r ≥. 答案:D.2. 设A 是n 阶方阵,若()r A r =,则( ).(A )A 中所有r 阶子式都不为零; (B ) A 中所有r 阶子式都为零; (C )A 中至少有一个1+r 阶子式不为零;(D )A 中至少有一个r 阶子式不为零. 答案:D.3. 设⎪⎪⎪⎪⎪⎭⎫⎝⎛=4444333322221111A 的秩()r A =( ). (A)1; (B)2; (C)3; (D)4.解:11111111222200003333000044440000A ⎛⎫⎛⎫⎪⎪⎪ ⎪=→ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭, 所以()1r A =. 故选(A ). 4. 设3阶方阵A 的秩为2,则与A 等价的矩阵为 ( ).(A )⎪⎪⎪⎭⎫⎝⎛000000111; (B )⎪⎪⎪⎭⎫ ⎝⎛000110111; (C ) ⎪⎪⎪⎭⎫ ⎝⎛000222111 ; (D ) ⎪⎪⎪⎭⎫ ⎝⎛333222111. 解:两个同型矩阵A 、B 等价的充要条件是:()().r A r B =显然,第二个矩阵的秩为2,而其余矩阵的秩者为1. 故选(B ).5. 设三阶矩阵A 的秩为3,则其伴随矩阵*A 的秩为( ).(A)0; (B)1; (C)2; (D)3. 解:若A 为n 阶矩阵,则*,()()1,()10,()1n r A n r A r A n r A n =⎧⎪==-⎨⎪<-⎩故本题的*()3r A =,故选(D ). 二、填空题.6. 设矩阵103100030000A -⎛⎫ ⎪= ⎪ ⎪⎝⎭,则矩阵A 的秩为 .答案: ()2r A =.7. 设A 为34⨯阶矩阵,秩()2r AB =,且⎪⎪⎪⎭⎫⎝⎛-=102010102B ,则()r A = .解:因为20120101001040201002B ===≠-,所以B 可逆,从而()()2r A r AB ==.三、计算题.8. 求矩阵123235471A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭的秩. 解:易见A 的一个二阶子式121023=-≠,又A 的三阶子式只有A ,且123123235011104710111A =-=--=--,故()2r A =.9. 求矩阵123501211156-⎛⎫ ⎪ ⎪ ⎪-⎝⎭的秩. 解:对A 施行初等行变换,将其化成行阶梯形矩阵123512351235012101210121115601210000---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.所以()2r A =.10. 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-------=544744104421311024121A 的秩. 解:对A 施行初等行变换,将其化成行阶梯形矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------=544744104421311024121A ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----→--3120108182001311024121141342r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛----→--0008182001311024121342421r r r r ,由于有3个非零行,因此()3r A =.11. 若12421110A λ⎛⎫⎪= ⎪ ⎪⎝⎭,为使矩阵A 的秩最小,求λ.解:12411021014,110021rA λλ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭要使得矩阵A 的秩有最小秩,则219144λλ-=⇒=. 12. 已知矩阵1123223141011523554a A =⎛⎫ ⎪⎪ ⎪⎪⎝⎭的秩为3,求a 的值.解:r 11231123112322314001122001122,10115011120111223554000630000630r a a a a a A a a a a ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪------⎪ ⎪ ⎪= ⎪ ⎪ ⎪------ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭所以6302a a -=⇒=当时矩阵的秩为3.13. 设矩阵121231041a A a b ⎛⎫ ⎪=- ⎪ ⎪⎝⎭的秩为2,求,a b .解:12112112123100712207122,410720012a a a A a aa b a b a b ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=------- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭因为矩阵A 的秩为 2,所以10,201,2a b a b --=-=⇒=-=. 四、证明题.14. 设A 是一个n 阶矩阵, 且2A A =, 证明: ()().r A r A E n +-= 证明:因为2A A =,所以()0A A E -=,从而()()r A r A E n +-≤ ① 利用不等式()()()r A B r A r B +≤+,得()()()[()]r A r A E r A r E A +-=+--()()[()()]r A r E A r A E A =+-≥+-()r E n == ②由①、 ②,得()()r A r A E n +-=.第2章 综合练习答案详解一、基本题.1. 设方阵A 满足A A =2,则以下正确的是( ).(A )0=A ;(B) E A =; (C)0=A 或E A =; (D) 以上等式都不成立. 解:因为零因子存在,即由0AB =推不出0A =或0B =. 于是由A A =2得到()0A A E -=,故同样推不出0A =或0A E -=. 从而选取(D ).2. 设A 是p s ⨯矩阵,C 是m n ⨯矩阵,如果TAB C 有意义,则B 是( )矩阵.(A )p n ⨯; (B )p m ⨯; (C )s m ⨯ ; (D )m s ⨯.解:因为A 是p s ⨯矩阵,C 是m n ⨯矩阵,且TAB C 有意义,所以T B 必是s m ⨯矩阵,从而B 是m s ⨯矩阵. 故选(D ).3. 设A 为n 阶可逆矩阵,下列运算中正确的是( ).(A )(2)2T TA A =;(B )11(3)3A A --=;(C )111[(())][()]T T T A A ---=; (D )1()TA A -=.解:根据逆矩阵的性质,正确的选项是(A ).4.设,A B 均为n 阶矩阵,且A 可逆,则下列结论正确的是( ). (A )若0AB ≠,则B 可逆 ; (B )若0AB =,则0B =; (C )若0AB ≠,则B 不可逆; (D )若AB BA =,则B E =.解:(A )不正确. 例子, 1001A ⎛⎫= ⎪⎝⎭,2100B ⎛⎫= ⎪⎝⎭,则21000AB ⎛⎫=≠ ⎪⎝⎭,但2100B ⎛⎫= ⎪⎝⎭不可逆.(C )不正确. 例子, 1001A ⎛⎫= ⎪⎝⎭,2110B ⎛⎫= ⎪⎝⎭,则21010AB ⎛⎫=≠ ⎪⎝⎭,但2110B ⎛⎫= ⎪⎝⎭可逆.(C )不正确. 例子, 2003A ⎛⎫= ⎪⎝⎭,4005B ⎛⎫= ⎪⎝⎭,则AB BA =,但B E ≠.(B )正确. 因为A 可逆,0AB =两边左乘以1A -,得110A AB A --=,即0B =.故选(B ).5. 设3=A ,2=B ,则有( ).(A )23=TAB ; (B ) 23⨯=T AB ; (C ) 23=T AB ; (D ) 32=T AB . 解:32T T AB A B A B ===⨯. 故选(B ).6. 设B A ,均为)2(≥n n 阶方阵,则必有 ( ).(A )||||||B A B A +=+; (B ) BA AB =;(C ) ||||BA AB =; (D ) 111)(---+=+A B B A . 答案:(C ).7. 设,A B 为n 阶方阵,满足22A B =,则必有( ).(A )A B =; (B )A B =-; (C )A B =; (D )22A B =.解:例子. 设1010,0101A B ⎛⎫⎛⎫==⎪ ⎪-⎝⎭⎝⎭, 则22A B =,但A B ≠±,A B ≠. 故(A )、(B )、(C )都不正确. 故用排除法,只有(D )正确.事实上,由22A B =两边取行列式,得22A B =,所以22A B =. 故选(D ).8. 设A 是n 阶方阵,k 为常数,则下式中成立的是( ). (A )()A k kA nT= ; (B ) ()TTA k kA 1=; (C )()A k kA T= ; (D ) ()Ak kA T=. 解:因A 是n 阶方阵,k 为常数,所以()T T kA kA =, ().TT T n T n nkA kA k A k A k A ====故选(A ).9. 已知二阶矩阵a b A c d ⎫⎛=⎪⎝⎭的行列式1A =-, 则()1*A -=( ).(A )a b c d --⎫⎛⎪--⎝⎭; (B )a b c d ⎫⎛⎪ ⎝⎭; (C )d b c a -⎫⎛⎪ -⎝⎭; (D )db c a -⎫⎛⎪ -⎝⎭. 解:因为**AA A A A E ==,矩阵A 可逆,所以0A ≠,故**A A A A E A A==,所以*111().1a b a b A A c d c d A ---⎛⎫⎛⎫=== ⎪ ⎪---⎝⎭⎝⎭故选(A ). 10. 设A 为n 阶可逆矩阵,0k ≠为常数,则*()kA =( ). (A ) *kA ; (B ) 1*n k A -; (C )*n k A ; (D ) n k A .解:因A 为n 阶可逆矩阵,0k ≠为常数,所以kA 可逆,且1*1()()kA kA kA-=,从而 *11*1*111()()n n n kA kA kA k A A k A A k A k k A---==⋅=⋅⋅=. 故选(B ).11. 已知02111334A -⎛⎫ ⎪= ⎪ ⎪0⎝⎭,14123130B -⎛⎫⎪=0 ⎪ ⎪-⎝⎭,求2AB BA -及TA B .解:116129352422152211218241134124335871419AB BA ------⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-=--=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭, 0131413113210232651341303228TA B --⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-0=-- ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭. 12. 计算下列矩阵的乘积.(1)31,2,321;(2)321231;(3)211251034034-⎛⎫-⎛⎫ ⎪ ⎪ ⎪⎝⎭ ⎪-⎝⎭; (4) 212113512541-⎛⎫⎛⎫⎪⎪-- ⎪⎪⎪⎪⎝⎭⎝⎭;(5) ()111213112321222323132333,,a a a x x x x a a a x a a a x ⎛⎫⎛⎫ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭.解:(1)()31,2,321⎛⎫ ⎪ ⎪ ⎪⎝⎭13223110=⨯+⨯+⨯=. (2)()321231⎛⎫ ⎪ ⎪ ⎪⎝⎭313233212223111213⨯⨯⨯⎛⎫ ⎪=⨯⨯⨯ ⎪ ⎪⨯⨯⨯⎝⎭369246123⎛⎫ ⎪= ⎪ ⎪⎝⎭. (3)211251034034-⎛⎫-⎛⎫ ⎪= ⎪ ⎪⎝⎭ ⎪-⎝⎭1519103-⎛⎫⎪-⎝⎭. (4)212113512541-⎛⎫⎛⎫ ⎪⎪--= ⎪⎪ ⎪⎪⎝⎭⎝⎭511⎛⎫ ⎪ ⎪ ⎪⎝⎭. (5)111213112312222321323333(,,)a a a x x x x a a a x a a a x ⎛⎫⎛⎫⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭()111122133121222233131232333,,a x a x a x a x a x a x a x a x a x =++++++123x x x ⎛⎫⎪ ⎪ ⎪⎝⎭222111222333121213132323222a x a x a x a x x a x x a x x =+++++.13. 设1*A BA A B E -=-, *222264368A ⎛⎫ ⎪= ⎪ ⎪⎝⎭为A 的伴随矩阵,试求矩阵B .解:1*A BA AB E -=-,在等式两边左乘A ,右乘1A -,得11*11AA BAA AA BA AEA ----=-1B A EBA E -→=-1B A BA E -→=-1B A A B E -→-=()1B A A E E -→-=*1B A A E E A ⎛⎫→⋅-= ⎪ ⎪⎝⎭()*B A E E →-= ()1*B A E -→=-, 而*122254367A E ⎛⎫ ⎪-= ⎪ ⎪⎝⎭,所以()1*1122210301B A E ---⎛⎫⎪=-=- ⎪ ⎪-⎝⎭.14. 设n 阶方阵A 满足2460A A E --=,试证A 及A E +均可逆,并求1A -及1()A E -+.证明:246A A E O --=246A A E ⇒-=(4)6A A E E ⇒-=1[(4)]6A A E E ⇒-= 所以A 可逆,且11(4)6AA E -=-;又246A A E O --=()(5)A E A E E ⇒+-=,所以A E +可逆,且1()5A E A E -+=-.15. 把下列矩阵化为行阶梯形.(1) 310211211344⎛⎫ ⎪-- ⎪⎪-⎝⎭; (2) 321312131370518---⎛⎫⎪-- ⎪ ⎪--⎝⎭. 解:(1) 310211211344⎛⎫⎪-- ⎪⎪-⎝⎭12r r ↔−−−→112131021344--⎛⎫ ⎪ ⎪ ⎪-⎝⎭ 21313r r r r --−−−→112104650465--⎛⎫⎪- ⎪ ⎪-⎝⎭32r r -−−−→ 112104650000---⎛⎫ ⎪⎝⎭; (2) 321322131370518---⎛⎫ ⎪-- ⎪ ⎪--⎝⎭12r r -−−−→134412131370518--⎛⎫ ⎪-- ⎪ ⎪--⎝⎭21312,7r r r r --−−−−−→13441071195021332715------⎛⎫ ⎪⎝⎭323r r -−−−→1344107119500----⎛⎫⎪⎝⎭. 16. 利用初等变换将下列矩阵化为行最简形.(1) 201312240131-⎛⎫ ⎪- ⎪ ⎪-⎝⎭; (2) 23137120243283023743--⎛⎫⎪-- ⎪⎪-⎪-⎝⎭.解:(1) 201312240131-⎛⎫ ⎪- ⎪ ⎪-⎝⎭12r r ↔−−−→122420130131-⎛⎫ ⎪- ⎪ ⎪-⎝⎭212r r -−−−→122404350131-⎛⎫⎪-- ⎪⎪-⎝⎭23r r ↔−−−→122401310435-⎛⎫ ⎪- ⎪ ⎪--⎝⎭324r r +−−−→1224013100159-⎛⎫⎪- ⎪ ⎪-⎝⎭3115r −−−→1224013130015⎛⎫⎪- ⎪- ⎪ ⎪- ⎪⎝⎭122r r -−−−→1086013130015⎛⎫ ⎪- ⎪- ⎪ ⎪- ⎪⎝⎭13238,3,r r r r +-−−−−−→610054010530015⎛⎫ ⎪ ⎪⎪ ⎪ ⎪⎪- ⎪⎝⎭; (2) 23137120243283023743--⎛⎫⎪--⎪ ⎪-⎪-⎝⎭12r r ↔−−−→12024231373283023743--⎛⎫⎪-- ⎪⎪-⎪-⎝⎭213141232r r r r r r ---−−−→1202401111088912077811--⎛⎫⎪- ⎪ ⎪-⎪-⎝⎭324287r r r r --−−−→12024011110001400014--⎛⎫⎪- ⎪⎪⎪⎝⎭12432r r r r +-−−−→1020201111000140000-⎛⎫ ⎪-⎪ ⎪⎪⎝⎭233(1)r r r -⨯-−−−→10202011030001400000-⎛⎫⎪-⎪⎪ ⎪⎝⎭. 17. 利用初等变换求下列矩阵的逆矩阵.(1) 123134144A ⎛⎫⎪= ⎪ ⎪⎝⎭; (2) 211112310-⎛⎫ ⎪- ⎪ ⎪-⎝⎭. 解:(1)123100(,)134010144001A E ⎛⎫⎪= ⎪ ⎪⎝⎭ 2131r r r r --−−−→123100011110021101⎛⎫⎪- ⎪ ⎪-⎝⎭ 322r r -−−−→12310011110001121⎛⎫ ⎪- ⎪ ⎪--⎝⎭23133r r r r ++−−−→120463010011001121-⎛⎫⎪- ⎪ ⎪--⎝⎭122r r -−−−→100441010011001121-⎛⎫ ⎪- ⎪ ⎪--⎝⎭, 所以1441011121A --⎛⎫⎪=- ⎪ ⎪--⎝⎭;(2) 211100112010310001-⎛⎫ ⎪- ⎪ ⎪-⎝⎭12r r ↔−−−→112010211100310001-⎛⎫⎪- ⎪ ⎪-⎝⎭213123r r r r ++−−−→112010015120026031-⎛⎫ ⎪ ⎪⎪⎝⎭12322r rr r --−−−→103110015120004211----⎛⎫ ⎪ ⎪ ⎪---⎝⎭ 13(1)1()4r r --−−−→103110015120111001244⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭132335r r r r --−−−→113100244335010244111001244⎛⎫- ⎪ ⎪ ⎪- ⎪⎪ ⎪-⎪⎝⎭, 所以1211112310--⎛⎫ ⎪-= ⎪ ⎪-⎝⎭21316354211-⎛⎫⎪- ⎪ ⎪-⎝⎭. 18. 求下列矩阵方程的解.(1) 223121*********X ⎛⎫⎛⎫ ⎪ ⎪-=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭;(2)设110011101A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,且2AX X A =+,求X .(3)021123213231334X ⎛⎫⎛⎫ ⎪-= ⎪ ⎪-⎝⎭ ⎪--⎝⎭; (4)010100143100001201001010120X -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.解:(1)矩阵方程记为AX B =.11011~1011722312r--⎛⎫ ⎪- ⎪ ⎪⎝⎭21312~r r r r+-110110112604314--⎛⎫ ⎪- ⎪ ⎪-⎝⎭12324~r r r r -+1011701126007728---⎛⎫⎪- ⎪ ⎪⎝⎭22312(,)1101110117A B ⎛⎫⎪=-- ⎪⎪-⎝⎭23(1)7~r r ÷-÷101170112600114---⎛⎫ ⎪--- ⎪ ⎪⎝⎭1323~r r r r ++100030101200014-⎛⎫⎪-- ⎪ ⎪⎝⎭, 所以1031214X A B --⎛⎫⎪==-- ⎪ ⎪⎝⎭.(2)2AX X A =+(2)A E X A ⇒-=,(2,)A E A -=110110011011101101---⎛⎫ ⎪--- ⎪ ⎪---⎝⎭123(1)(1)(1)~r r r ÷-÷-÷-110110011011101101-⎛⎫ ⎪- ⎪ ⎪-⎝⎭3231~r r r r +-110110011011002220-⎛⎫ ⎪- ⎪ ⎪-⎝⎭23123122~r r r r r --÷100011010101001110-⎛⎫⎪- ⎪ ⎪-⎝⎭,所以1011(2)101110X A E A --⎛⎫⎪=-=- ⎪ ⎪-⎝⎭;(3)矩阵方程记为XA B =,可推出TTT A XB . 因为02312(,)2132313431T TA B -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭ 10024~010*******r -⎛⎫⎪- ⎪ ⎪-⎝⎭ ,所以, 124()1714T T TX A B --⎛⎫⎪==- ⎪⎪-⎝⎭,从而1211474X BA ---⎛⎫== ⎪-⎝⎭. (4)对矩阵方程010100143100001201001010120X -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭的观察可见,矩阵010100001⎛⎫⎪ ⎪ ⎪⎝⎭是一个互换第一、二行的初等矩阵,其逆矩阵也是它本身,所以用它左乘就意味着将后面的矩阵的第一、二行互换;矩阵100001010⎛⎫⎪⎪ ⎪⎝⎭是一个互换第二、三列的初等矩阵,其逆矩阵也是它本身,所以用它右乘就意味着将前面的矩阵的第二、三列互换. 所以11010143100100201001001120010X ---⎛⎫⎛⎫⎛⎫⎪ ⎪⎪=- ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭201100210143001134120010102--⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-=- ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭.解法二:将矩阵方程010100143100001201001010120X -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭记为AXB C =,则010100(,)100010001001A E ⎛⎫ ⎪= ⎪ ⎪⎝⎭12~r r ↔100010010100001001⎛⎫ ⎪ ⎪ ⎪⎝⎭,故1010100001A -⎛⎫⎪= ⎪⎪⎝⎭,100100(,)001010010001B E ⎛⎫ ⎪= ⎪ ⎪⎝⎭23~r r ↔100100010001001010⎛⎫ ⎪ ⎪ ⎪⎝⎭,故1100001010B -⎛⎫⎪= ⎪⎪⎝⎭,所以11010143100210100201001134001120010102X A CB ----⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎪ ⎪==-=- ⎪⎪⎪ ⎪ ⎪⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭.19. 设101020101A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,且2AX E A X +=+,求X .解:2AX E A X +=+2AX X A E ⇒-=-()()()A E X A E A E ⇒-=-+,因001100010~010100001A E ⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,故A E -为可逆矩阵,所以1201()()()030102X A E A E A E A E -⎛⎫⎪=--+=+= ⎪ ⎪⎝⎭.二、综合题.20 . 设⎪⎪⎭⎫⎝⎛=1101A ,求所有与A 相乘可换的矩阵.解:显然与A 可交换的矩阵必为二阶方阵,设为X ,并令⎪⎪⎭⎫ ⎝⎛=d cb aX , 又 ⎪⎪⎭⎫ ⎝⎛++=d b c a b a AX , ⎪⎪⎭⎫⎝⎛++=d d c b b a XA ,由可交换条件AXXA ,可得 0b =,d a = (其中c d a ,,为任意常数),即⎪⎪⎭⎫⎝⎛=a c a X 0.21. 设2()35f x x x =-+,2133A -⎛⎫=⎪-⎝⎭,证明:()0f A =.证明:计算得2751512A -⎛⎫=⎪-⎝⎭,则有210217500()35350133151200f A E A A --⎛⎫⎛⎫⎛⎫⎛⎫=-+=-+= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭,即()f A O =.22. 设A 为n 阶方阵,证明:(1) 若20A =, 则1()E A E A --=+; (2) 若0kA =, , 则121()k E A E A A A ---=++++.证明:(1)因为2A O =,所以22()()E A E A E A A A E A E O E -+=+--=-=-=,所以1()E A E A --=+;(2)因为kA O =,所以,21()()k E A E A A A --++++2121()()k k k E A A A A A A A --=++++-++++k E A E =-=,所以121()k E A E A A A ---=++++.23. 证明:如果A 为可逆对称阵,则1A -也是对称阵. 证明:因为A 为可逆对称阵,即有11,TA A AAA A E --===, 对第二式取转置,11()()T T T AA A A E --==,即11()()T T T T A A A A E --==,注意到,T A A =上式成为11()()T TA A A A E --== 所以11()TA A --=,即1-A 为对称矩阵. 24. 设矩阵1410,1102P D ---⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,矩阵A 由矩阵方程1P AP D -=确定,求5A . 解:由1P AP D -=,得1A PDP -=,所以5151111151()A PDP PDP PDP PDP PDP PDP PD P -------===51141014110211------⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭14141033110321133⎛⎫ ⎪---⎛⎫⎛⎫= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭-- ⎪⎝⎭ 14112843443313211111233⎛⎫ ⎪-⎛⎫⎛⎫== ⎪ ⎪ ⎪--- ⎪⎝⎭⎝⎭-- ⎪⎝⎭.教材上答案错误,以此为准.25. 已知()111,2,3,1,,23αβ⎛⎫== ⎪⎝⎭,令TA αβ=,求n A (n Z +∈).解:计算:111(1,,)23233T βα⎛⎫ ⎪== ⎪ ⎪⎝⎭,1112311122(1,,)2123333312T A αβ⎛⎫⎪⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎪⎝⎭. 所以 ()()()()()()n T n T T T T T n A αβαβαβαβαβαβ==个1()()()()T T T T T n αβαβαβαβαβ-=个111111123233332133312T n n T n n A αβαβ----⎛⎫ ⎪⎪ ⎪==== ⎪⎪ ⎪⎪⎝⎭. 26. 设111222333A ⎛⎫⎪= ⎪ ⎪⎝⎭, 求100A .解:解法一:对矩阵A 的观察可得,11112222(1,1,1)3333A ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,若记(1,2,3),α=(1,1,1)β=,则T A αβ=,且1(1,1,1)263T βα⎛⎫ ⎪== ⎪ ⎪⎝⎭, 所以100()()()()()()T n T T T T T A αβαβαβαβαβαβ==100个99()()()()T T T T T αβαβαβαβαβ=个999999991116666222333T T A αβαβ⎛⎫ ⎪==== ⎪ ⎪⎝⎭. 解法二:直接计算,211111166611122222212121262226333333181818333A AA A ⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪===== ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭3226666A A A AA A A ===⋅= 432236666A A A AA A A ===⋅= ........................................................... 100999911166222333AA ⎛⎫⎪== ⎪ ⎪⎝⎭.27.设3阶矩阵A,B 满足关系式BA A BA A +=-61,其中⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=710004100031A ,求B . 解:BA A BA A +=-61⇒11116A BAA AA BAA ----=+⇒16A B E B -=+⇒16AA B A AB -=+ ⇒6B A AB =+⇒1116A B A AB A A ----= ⇒ 11)(6---=E A B ,()11300200040030,007006A A E --⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭而,()-111002300100020.30011006A E B -⎛⎫ ⎪⎛⎫ ⎪⎪⎪-== ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎪⎝⎭则,所以 28. 设A 为3阶矩阵,且1||2A =,求1*(3)2A A --的值. 解:1*3111().24n A A--===11*111(3)22233A A A A A A A-*-**-=-=- 331111116(2)(2).1334272A A *=-=⋅-⋅=- 29. 确定参数λ,使矩阵2112121212λλλ----⎛⎫ ⎪⎪ ⎪⎝⎭的秩最小.解:222211211212103321203224λλλλλλλλ⎛⎫⎛⎫-- ⎪ ⎪-→-- ⎪ ⎪⎪ ⎪----⎝⎭⎝⎭22222112112033033032103(1)(2)1λλλλλλλλλλλλ⎛⎫⎛⎫-- ⎪ ⎪→--→-- ⎪ ⎪ ⎪ ⎪+---+-⎝⎭⎝⎭可见,当1λ=时矩阵的秩最小为2.30. 已知A =⎪⎪⎪⎭⎫ ⎝⎛x x x 111111, 讨论A 的秩.解:211111111110111111011x x x A x x x x x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=→→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭2111101101100(1)(1)00(1)(2)x x x x x x x x x x ⎛⎫⎛⎫ ⎪ ⎪→--→-- ⎪ ⎪⎪ ⎪-+--+⎝⎭⎝⎭所以当3)(21=-≠A r x 时,和; 当2)(2=-=A r x 时,; 当1)(1==A r x 时,.31. 试写出矩阵1001010200130000A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭的三种分块形式. 解:(1) ⎪⎪⎭⎫ ⎝⎛=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=210000310020101001O O D E A , 其中100010,001E ⎛⎫ ⎪= ⎪ ⎪⎝⎭12,3D ⎛⎫⎪= ⎪ ⎪⎝⎭1(0,0,0),O =()1120⨯=O ;(2) ()10010102,,00130000A F b ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0321,000100010001b F ; (3) ()12310010102,,,00130000A a a a b ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦, 其中⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0321,0100,0010,0001321b a a a .。

(完整版)线性代数第二章矩阵试题及答案

(完整版)线性代数第二章矩阵试题及答案

第二章矩阵一、知识点复习1、矩阵的定义由m⨯n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m⨯n型矩阵。

例如2 -1 0 1 11 1 1 0 22 5 4 -2 93 3 3 -1 8 是一个4⨯5矩阵.一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素。

元素全为0的矩阵称为零矩阵,通常就记作0。

两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等。

2、n阶矩阵与几个特殊矩阵行数和列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵。

n阶矩阵的从左上角到右下角的对角线称为主对角线。

下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的.对角矩阵: 对角线外的的元素都为0的n阶矩阵.单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I).数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E.上三角矩阵: 对角线下的的元素都为0的n阶矩阵.下三角矩阵: 对角线上的的元素都为0的n阶矩阵.对称矩阵: 满足A T=A矩阵,也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵.反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.) 正交矩阵:若AA T=A T A=E,则称矩阵A是正交矩阵。

(1)A是正交矩阵⇔A T=A-1 (2)A是正交矩阵⇔2A=1阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足:①如果它有零行,则都出现在下面。

②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增。

把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角。

每个矩阵都可以用初等行变换化为阶梯形矩阵,这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练。

最新矩阵分析课后习题解答(整理版)

最新矩阵分析课后习题解答(整理版)

第一章线性空间与线性变换(以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传)(此处注意线性变换的核空间与矩阵核空间的区别)1.9.利用子空间定义,)R对m C满足加(AR是m C的非空子集,即验证)(A法和数乘的封闭性。

1.10.证明同1.9。

1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数)1.13.提示:设),)(-⨯==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0( ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0( ==(其中1位于ij X 的第i 行和第j 行),代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故A A T -=,即A 为反对称阵。

若X 是n 维复列向量,同样有0=ii a ,0=+ji ij a a ,再令T ij i X X ),0,1,0,0,,0,0( ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)(1.15.存在性:令2,2HH A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==,唯一性:假设11C B A +=,1111,C C B B HH -==,且C C B B ≠≠11,,由1111C B C B A H H H -=+=,得C A A C B A A B HH =-==+=2,211(矛盾)第二章酉空间和酉变换(注意实空间与复空间部分性质的区别)2.8 法二:设~2121),,()0,0,1,0,0)(,,(X e e e e e e e n T n i ==(1在第i 行);~2121),,()0,0,1,0,0)(,,(Y e e e e e e e n T n j ==(1在第j 行) 根据此题内积定义⎩⎨⎧≠===j i j i X Y e e H j i 01),~~( 故n e e e ,,21是V 的一个标准正交基。

大学线性代数第二章习题答案

大学线性代数第二章习题答案

第二章 矩阵及其运算第一节 矩阵 1.解.,251=x 212=x .2.解. ⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236zz z x z z z x z z z x 其系数矩阵为⎪⎪⎪⎭⎫ ⎝⎛----161109412316第二节 矩阵的运算一 填空题:1. ⎪⎪⎭⎫⎝⎛224210 2.3 , ⎪⎪⎪⎭⎫ ⎝⎛1312123323121 , 13-k ⎪⎪⎪⎭⎫ ⎝⎛1312123323121(k 为正整数)。

3. ⎪⎪⎪⎭⎫⎝⎛0000000004.⎪⎪⎪⎭⎫ ⎝⎛10100010001 5. 0二选择题 :CCCCC B三计算:1.(1)⎪⎪⎪⎭⎫⎝⎛---632142(2)10 (3)322331132112233322222111222x x a x x a x x a x a x a x a +++++(4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+++++32155121232272i i i i ii i 2. ()()T T T A I A AA A I A A A T A A I +=+=+=⋅+=⋅+(1)00A A A I A I <⇒-+=+=.3.111101()()2()2000101n T n T n T n A αααααα----⎡⎤⎢⎥===⎢⎥⎢⎥-⎣⎦,则2(2)n n aE A a a -=-. 4.设2222223T T x x xy xz y xy y yz x y z z xz yzy ααααα⎡⎤⎡⎤⎢⎥⎢⎥=⇒=⇒=++=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦5.02()()()A E A B A B E A E A E B A E A E B E +≠--=⇒+-=+⇒-=112A EB B ⇒-⋅=⇒=. 6.()()⎪⎪⎪⎭⎫ ⎝⎛-=+-1154123600022B A B A7.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012328317 8.-80第三节逆矩阵 一 填空题:1.⎪⎪⎪⎭⎫ ⎝⎛100000031212. ⎪⎪⎭⎫ ⎝⎛--24205100010 3. ⎪⎪⎪⎭⎫ ⎝⎛----611859131320001 4. ⎪⎪⎪⎭⎫ ⎝⎛000000213141 5.⎪⎪⎪⎭⎫ ⎝⎛=123B 6. 541-;7.100122()(2)2()0102100B E AB A B A E B E E A E -⎡⎤-⎢⎥=+⇒--=⇒-==⎢⎥⎢⎥⎣⎦8.21()(2)20B A E A E --⎡⎤=--=⎢⎥⎣⎦. 9.由21224()().22A E A EA A E O A E E A E -+++-=⇒-=⇒-=()()kA lE h A E +=10.由111021()102002AB B A A B B E -⎡⎤⎢⎥⎢⎥⎢⎥-=⇒=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 二.选择题:ACBBD三.计算题:1.(1) ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--3131002121001 (2) ⎪⎪⎪⎪⎭⎫ ⎝⎛-----17162132130122. 由BA A BA A +=-61得,B E B A +=-61, 所以 E B E A 6)(1=--从而 , 11)(6---=E A B ,⎪⎪⎪⎭⎫ ⎝⎛=-7000400031A ,所以⎪⎪⎪⎭⎫⎝⎛=--6321E A3.11010100001693471582100001010--⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=010100001693471582100001010⎪⎪⎪⎭⎫⎝⎛=963852741. 4. 因为)3,2,1(==i i A i i αα,所以⎪⎪⎪⎭⎫⎝⎛=300020001),,(),,(321321ααααααA ,因此 1321321),,(300020001),,(-⎪⎪⎪⎭⎫⎝⎛=ααααααA .又),,(321ααα⎪⎪⎪⎭⎫ ⎝⎛---=212122221,所以1321),,(-ααα⎪⎪⎪⎭⎫ ⎝⎛---=21212222191,故 =A ⎪⎪⎪⎭⎫ ⎝⎛---212122221⎪⎪⎪⎭⎫ ⎝⎛300020001⎪⎪⎪⎭⎫ ⎝⎛---21212222191⎪⎪⎪⎭⎫ ⎝⎛----=622250207315. 由23**0T T ij ij a A A A AA AA A E A A A =⇒=⇒==⇒=⇒=或1A =.又22211111212131311121301A a A a A a A a a a A =++=++≠⇒=.6. 1100200611AP PB A PBP -⎡⎤⎢⎥=⇒==⎢⎥⎢⎥--⎣⎦.5511A PB P PBP A --===. 7.1*11112(3)2233A A A A A A -----=-=-,所以 1*131228116(3)2()332727A A A A A ----=-=-=-⋅=-.或 *1*1***114(3)222333A A A A A A A A ---=-=⋅-=-,则311**3*446416(3)2()332727A A A A A ---=-=-=-⋅=-.8.E BA E BA A A E B A A B -=-=-=--**11||)(,即E E A B =-)(*,因而⎥⎥⎦⎤⎢⎢⎣⎡----=⎥⎥⎦⎤⎢⎢⎣⎡=-=--1030122211763452221)(11E A B *解 1*n A A-=.9.证 (1)由1124(2)(4)28A B B E A E B E E A E -=-⇒-⋅-=⇒-可逆,且 11(2)(4)8A EB E --=-(2)由(1)得102028(4)110002A E B E -⎛⎫⎪=+-=-- ⎪ ⎪-⎝⎭. 四、证明题:1.证:根据伴随矩阵的性质有E A AA =*又E A A =2,所以2A AA =*,再由于A 可逆,便有A A =*.2.证:假设A 可逆,即1-A 存在,以1-A 左乘0=AB 的两边得0=B ,这与B 是n 阶非零矩阵矛盾;类似的,若B 可逆,即1-B 存在,以1-B 右乘0=AB 的两边得0=A ,这与A 是n 阶非零矩阵矛盾,因此,A 和B 都是不可逆的. 第四节 矩阵分块法1. 00011000100000010010010001000010010000100010010010000100011000r ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,所以100010001001000100100010010001000-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦. 2. ⎪⎪⎪⎪⎪⎭⎫⎝⎛---31313231000000520021. 3.A ;4.若1A -易求得,由*1A A A -=最简便.显然111,A O C C A B OB ---⎡⎤==⎢⎥⎣⎦1**11*A B A OB A OC C C O A B B O A B ---⎡⎤⎡⎤⇒===⎢⎥⎢⎥⎣⎦⎣⎦. 5. (1) 1()T APQ O A b A ααα-⎛⎫=⎪-⎝⎭. (2) 由(1)得0211()P A TT P Q PQ A b A Q b A αααα=≠--⋅==-=-. 6. 23423422288()40A B A B αβγγγαβγγγ+=+=+=+=.7. 11100100112120(2)01221001001B O B O A I A I O O --⎡⎤⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥-==⇒-==-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦⎢⎥⎣⎦. 8. (1)m m mnnnO A A O C B OOB =-从第n+1列开始每一列与前n 列逐列交换(1)mn m n A B =-(1)mn ab =-.自测题一.单项选择题:1.D 2.C 3.C 4.A5. B 二、填空题:1. 912.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-133 3.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---4332211 4.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=-11001200005200211A 5. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----O O 21313725 三.计算题1.由B X A =*得,AB X AA =*,即 AB X A = ,因为2-=A , 所以⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛-=00021152031000221X ⎪⎪⎪⎭⎫⎝⎛----=020111.2、1) B E B A E A AB E B A B A A B AA ⇒=-⇒+=⇒+=-)|(|||)(1*可逆.2) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=--1111116166666)8(11A EB .3.111()[()]()()T T T T T T T A E C B C E A C C B C E A C B C C E ----=⇒-=⇒-=1()()()T T T A C B CC E A C B E -⇒-=⇒-=110001100[()]12100121T A C B -⎡⎤⎢⎥-⎢⎥⇒=-=⎢⎥-⎢⎥-⎣⎦. 4.-250;415. 由1113()3ABA BA E E A B E ---=+⇒-=.又3*82A A A ==⇒=,则**160000600()36(2)606010306A E B E B E A A -⎛⎫ ⎪⎪-=⇒=-= ⎪⎪ ⎪- ⎪⎝⎭四.证明题1.证 由**T T A A AA AA A E =⇒==.假设0T A AA O =⇒=.考虑T AA 的主对角线上的元素,令()T ij AA B b ==,则222121200ii i i in i i in b a a a a a a =+++=⇒==== ,即A 的第i 行的元素全为零,由i 的任意性,得A 的元素全为零,即A O =,矛盾. 2.由23202A E A A E A E A ---=⇒⋅=⇒可逆,且12A EA --=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档