第3节 定积分的计算方法

合集下载

高等数学 定积分

高等数学 定积分

第五章 定积分第一节 定积分的概念第二节 定积分的性质和中值定理第三节 微积分基本公式第四节 定积分的换元法第五节 定积分的分部积分法第六节 定积分的近似计算第七节 广义积分问题的提出定积分的定义 几何意义定积分存在定理第一节 定积分的概念abxyo?=A 曲边梯形由连续曲线实例1 (求曲边梯形的面积))(x f y =)0)((≥x f 、x 轴与两条直线a x =、b x =所围成.一、问题的提出)(x f y =ab xyoab x yo用矩形面积近似取代曲边梯形面积显然,小矩形越多,矩形总面积越接近曲边梯形面积.(四个小矩形)(九个小矩形)观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.曲边梯形如图所示,,],[1210b x x x x x a b a n n =<<<<<=- 个分点,内插入若干在区间a bxyoi ξi x 1x 1-i x 1-n x ;],[],[11---=∆i i i i i x x x x x n b a 长度为,个小区间分成把区间形面积,曲边梯形面积用小矩上任取一点在每个小区间i i i x x ξ-],[1ii i x f A ∆ξ≈)(:))(],[(1近似为高为底,以i i i f x x ξ-(1)分割(2)近似ini i x f A ∆≈∑=)(1ξ曲边梯形面积的近似值为ini i x f A ∆=∑=→)(lim 10ξλ时,趋近于零即小区间的最大长度当分割无限加细)0(},,max{,21→∆∆∆=λλn x x x 曲边梯形面积为(3)求和(4)取极限实例2 (求变速直线运动的路程)设某物体作直线运动,已知速度)(t v v =是时间间隔],[21T T 上t 的一个连续函数,且0)(≥t v ,求物体在这段时间内所经过的路程.思路:把整段时间分割成若干小段,每小段上速度看作不变,求出各小段的路程再相加,便得到路程的近似值,最后通过对时间的无限细分过程求得路程的精确值.(1)分割212101T t t t t t T n n =<<<<<=- 1--=∆i i i t t t ii i t v s ∆≈∆)(τ部分路程值某时刻的速度(3)求和ii ni t v s ∆≈∑=)(1τ(4)取极限},,,max{21n t t t ∆∆∆= λini i t v s ∆=∑=→)(lim 10τλ路程的精确值(2)近似设函数)(x f 在],[b a 上有界,记},,,max{21n x x x ∆∆∆= λ,如果不论对],[b a 在],[b a 中任意插入若干个分点bx xx x x a nn =<<<<<=-121把区间],[b a 分成n 个小区间,各小区间的长度依次为1--=∆i i i x x x ,),2,1( =i ,在各小区间上任取一点i ξ(i i x ∆∈ξ),作乘积i i x f ∆)(ξ ),2,1( =i 并作和i i ni x f S∆=∑=)(1ξ,二、定积分的定义定义怎样的分法,⎰==ba I dx x f )(ii ni x f ∆∑=→)(lim 10ξλ被积函数被积表达式积分变量积分区间],[b a 也不论在小区间],[1i i x x -上点i ξ怎样的取法,只要当0→λ时,和S 总趋于确定的极限I ,我们称这个极限I 为函数)(x f 在区间],[b a 上的定积分,记为积分上限积分下限积分和几点说明:(1) 定积分是一个数值,它仅与被积函数及积分区间有关,⎰b a dx x f )(⎰=b a dt t f )(⎰=ba duu f )(而与积分变量的字母无关.)( ,)()( 2⎰⎰⎰=-=aaabbadx x f dx x f dx x f 规定:)(.],[)(],[)( 3的取法无关的分法及的和式的极限与所表示上可积,则在区间若)(i bab a dx x f b a x f ξ⎰,0)(≥x f ⎰=ba Adx x f )(曲边梯形的面积,0)(≤x f ⎰-=ba Adx x f )(曲边梯形的面积的负值a b xyo)(x f y =AxyoabA -)(x f y =三、定积分的几何意义1A 2A 3A 4A 4321)(A A A A dx x f ba ⎰=-+-,],[)(变号时在区间b a x f 三、定积分的几何意义.)(是面积的代数和⎰badx x f几何意义:积取负号.轴下方的面在轴上方的面积取正号;在数和.之间的各部分面积的代直线的图形及两条轴、函数它是介于x x b x a x x f x ==,)(++--当函数)(x f 在区间],[b a 上连续时,定理1定理2 设函数)(x f 在区间],[b a 上有界,且只有有限个间断点,则)(x f 在四、定积分的存在定理区间],[b a 上可积.例1 利用定义计算定积分.12dx x ⎰解将]1,0[n 等分,分点为nix i =,(n i ,,2,1 =)小区间],[1i i x x -的长度nx i 1=∆,(n i ,,2,1 =)取i i x =ξ,(n i ,,2,1 =)i i n i x f ∆∑=)(1ξi i ni x ∆=∑=21ξ,12i ni ix x ∆=∑=.,102的选取无关及法故和式极限与区间的分可积因为i dx x ξ⎰n n i ni 121⋅⎪⎭⎫ ⎝⎛=∑=∑==n i i n 12316)12)(1(13++⋅=n n n n ,121161⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=n n ∞→⇒→n 0λdx x ⎰102i i ni x ∆=∑=→210lim ξλ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=∞→n n n 121161lim .31= 几何上是曲线y=x 2,直线x=1及x 轴围成的曲边三角形面积.例2 利用定义计算定积分.121dx x⎰解在]2,1[中插入分点 12,,,-n q q q ,典型小区间为],[1ii q q -,(n i ,,2,1 =)小区间的长度)1(11-=-=∆--q qq q x i i i i ,取1-=i i qξ,(n i ,,2,1 =)i i ni x f ∆∑=)(1ξi ni ix ∆=∑=11ξ)1(1111-=-=-∑q q q i ni i ∑=-=ni q 1)1()1(-=q n 取2=nq即nq 12=),12(1-=n n )12(lim 1-+∞→xx x x xx 112lim1-=+∞→,2ln =)12(lim 1-∴∞→nn n ,2ln =dx x ⎰211i ni ix ∆=∑=→101lim ξλ)12(lim 1-=∞→n n n .2ln =i i ni x f ∆∑=)(1ξ原式⎥⎦⎤⎢⎣⎡π+π-++π+π=∞→n n n n n n n nsin )1(sin 2sin sin 1lim π=∑=∞→n i n n i n 1sin 1lim n n i ni n π⋅⎪⎭⎫ ⎝⎛ππ=∑=∞→1sin lim 1.sin 10⎰ππ=xdx ix ∆i ξ例3:将下列和式极限表示成定积分.⎥⎦⎤⎢⎣⎡-+++∞→n n n n n n πππ)(sin sin sin lim121 :五、小结1.定积分的实质:特殊和式的极限.2.定积分的思想和方法:分割化整为零求和积零为整取极限精确值——定积分求近似以直(不变)代曲(变)取极限Z .思考n n n n f n f n f ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛∞→ 21lim 试证.1)(ln ⎰=dxx f e 2:将和式极限,表示成定积分.⎥⎦⎤⎢⎣⎡-++-+-∞→2222241241141lim n n n n n 证明n n n n f n f n f ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫⎝⎛∞→ 21lim ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛∞→=n n n n f n f n f e21lim ln n n n n f n f n f ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛∞→ 21lim 试证.1)(ln ⎰=dx x f e 利用对数的性质得⎪⎭⎫⎝⎛∑==∞→n i f n ni n e1ln 1lim n n i f ni n e1ln lim 1⋅⎪⎭⎫ ⎝⎛∑==∞→ 指数上可理解为:)(ln x f 在]1,0[区间上的一个积分和.分割是将]1,0[n 等分分点为nix i =,(n i ,,2,1 =)⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛∞→=n n n n f n f n f e21ln lim 极限运算与对数运算换序得nn i f n i n 1ln lim 1⋅⎪⎭⎫ ⎝⎛∑=∞→⎰=10)(ln dx x f 故nn n n f n f n f ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛∞→ 21lim.10)(ln ⎰=dxx f e 因为)(x f 在区间]1,0[上连续,且0)(>x f 所以)(ln x f 在]1,0[上有意义且可积 ,2:将和式极限,表示成定积分.⎥⎦⎤⎢⎣⎡-++-+-∞→2222241241141lim n n n n n ⎰∑-=-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-++-+-=⎥⎦⎤⎢⎣⎡-++-+-=∞→∞→∞→1021222222222411)(41lim )(41)2(41)1(411lim 41241141lim dxx n ni n n n n n n n n n n i n n n 解第二节 定积分的性质、中值定理1.定积分性质2.中值定理对定积分的补充规定:(1)当b a =时,0)(=⎰ba dx x f ;(2)当b a >时,⎰⎰-=abb adx x f dx x f )()(.说明 在下面的性质中,假定定积分都存在,且不考虑积分上下限的大小.一、定积分性质和中值定理证⎰±ba dxx g x f )]()([i i i ni x g f ∆±=∑=→)]()([lim 10ξξλi i ni x f ∆=∑=→)(lim 10ξλii ni x g ∆±∑=→)(lim 10ξλ⎰=ba dx x f )(.)(⎰±ba dx x g ⎰±b a dx x g x f )]()([⎰=b a dx x f )(⎰±ba dx x g )(.(此性质可以推广到有限多个函数作和的情况)性质1⎰⎰=ba b a dx x f k dx x kf )()( (k 为常数).证⎰ba dx x kf )(ii ni x kf ∆=∑=→)(lim 10ξλi i n i x f k ∆=∑=→)(lim 1ξλii ni x f k ∆=∑=→)(lim 10ξλ.)(⎰=ba dx x f k 性质2⎰ba dx x f )(⎰⎰+=bcca dx x f dx x f )()(.补充:不论 的相对位置如何, 上式总成立.c b a ,,例 若,c b a <<⎰c a dx x f )(⎰⎰+=cb b a dx x f dx x f )()(⎰b a dx x f )(⎰⎰-=cb c a dxx f dx x f )()(.)()(⎰⎰+=bc ca dx x f dx x f (定积分对于积分区间具有可加性)假设bc a <<性质3dx b a ⋅⎰1dx ba⎰=a b -=.则0)(≥⎰dx x f ba. )(b a <证,0)(≥x f ,0)(≥ξ∴i f ),,2,1(n i =,0≥∆i x ,0)(1≥∆ξ∴∑=i i ni x f },,,max{21n x x x ∆∆∆= λi i ni x f ∆∴∑=→)(lim 1ξλ.0)(⎰≥=ba dx x f 性质4性质5如果在区间],[b a 上0)(≥x f ,例1 比较积分值dx e x⎰-20和dx x ⎰-20的大小.解令,)(x e x f x -=]0,2[-∈x ,0)(>x f ,0)(02>-∴⎰-dx x exdx ex⎰-∴2,02dx x ⎰->于是dx e x ⎰-2.20dx x ⎰-<性质5的推论:证),()(x g x f ≤ ,0)()(≥-∴x f x g ,0)]()([≥-∴⎰dx x f x g ba ,0)()(≥-⎰⎰ba ba dx x f dx x g 于是 dx x f ba ⎰)( dx x g ba ⎰≤)(.则dx x f ba ⎰)( dx x g ba ⎰≤)(. )(b a <如果在区间],[b a 上)()(x g x f ≤,(1)dx x f b a ⎰)(dx x f ba⎰≤)(.)(b a <证,)()()(x f x f x f ≤≤- ,)()()(dx x f dx x f dx x f ba ba ba ⎰⎰⎰≤≤-∴即dx x f ba ⎰)(dx x f ba⎰≤)(.说明: 可积性是显然的.|)(x f |在区间],[b a 上的性质5的推论:(2)设M 及m 分别是函数证,)(M x f m ≤≤ ,)(⎰⎰⎰≤≤∴ba ba b a Mdx dx x f dx m ).()()(a b M dx x f a b m ba -≤≤-⎰(此性质可用于估计积分值的大致范围)则 )()()(a b M dx x f a b m ba -≤≤-⎰.)(x f 在区间],[b a 上的最大值及最小值,性质6例2 估计积分dx x⎰π+03sin 31值的范围.解,sin 31)(3xx f +=],,0[π∈∀x ,1sin 03≤≤x ,31sin 31413≤+≤x ,31sin 31410030dx dx x dx ⎰⎰⎰πππ≤+≤.3sin 31403π≤+≤π∴⎰πdx x例3 估计积分dx xx⎰ππ24sin 值的范围.解,sin )(xx x f =2sin cos )(x x x x x f -='2)tan (cos x x x x -=⎥⎦⎤⎢⎣⎡∈2,4ππx ,0<)(x f 在]2,4[ππ上单调下降,,22)4(π=π=f M ,2)2(π=π=f m ,442π=π-π=-a b ,422sin 4224π⋅π≤≤π⋅π∴⎰ππdx x x .22sin 2124≤≤∴⎰ππdx x x 如果函数)(x f 在闭区间],[b a 上连续,上的平均值在],[)()(1b a x f dxx f a b ba⎰-则在积分区间],[b a 上至少存在一个点 ξ,使dx x f b a ⎰)())((a b f -=ξ. )(b a ≤≤ξ性质7(定积分中值定理)积分中值公式证Mdx x f a b m ba≤-≤∴⎰)(1)()()(a b M dx x f a b m ba -≤≤-⎰ 由闭区间上连续函数的介值定理知在区间],[b a 上至少存在一个点 ξ,)(1)(⎰-=ξbadx x f a b f dx x f ba ⎰)())((ab f -=ξ.)(b a ≤≤ξ即在区间],[b a 上至少存在一个点ξ,1. 积分中值公式的几何解释:xyoa b ξ)(ξf 使得以区间],[b a 为以曲线)(x f y =底边,为曲边的曲边梯形的面积等于同一底边而高为)(ξf 的一个矩形的面积。

高等数学 第5章 第三节 微积分基本公式

高等数学 第5章 第三节 微积分基本公式

设 f ( x) C[a, b], 且 x [a, b], 考察 f ( x) 在区间 [a, x]
上的定积分
x
a f ( x)dx
x
a f (t)dt
确定了一个
[a, b]上的函数 , 记作 ( x)
x
x
a
f
t dt
a x b.
积分上限函数
2
f ( ).
x
y y f (x) f
8
F'(x)
f ( x) x
x
f (t)dt
x tf (t)dt
0
0
x f (t)dt 2
0
f ( x)
x
xf (t)dt
0
x 0
tf
(
t
)dt
x
f
2
(t)dt
0
x
f ( x)0 ( x t) f (t)dt
x 0
f (t )dt 2
t [0, x], f (t) 0,( x t) f (t) 0,
1x pdx x p1 1 1
0
p1 p1
0
13
例10 对一切实数 t, 函数 f t 是连续的正函数,函数
gx
a
a
x
t
f
t dt,
a x aa 0.
证明 g' x 是单调增加的。
t a, x t x,a

gx
a
a
x
t
f
t dt
x x a
tf
t dt
a
x
t
xf
t dt
x
Fb
F a
(4)

定积分的数值计算方法[文献综述]

定积分的数值计算方法[文献综述]

毕业论文文献综述信息与计算科学定积分的数值计算方法一、 前言部分在科学与工程计算中,经常要计算定积分()()().baI f f x dx a b =-∞≤≤≤∞⎰ (1.1)这个积分的计算似乎很简单,只要求出f 的原函数F 就可以得出积分(1.1)的值,即()()().I f F b F a =- (1.2)如果原函数F 非常简单又便于使用,那么式(1.2)就提供了计算起来最快的积分法.但是,积分过程往往将导出新的超越函数,例如,简单积分1dx x ⎰可引出对数函数,它已不是代数函数了;而积分2x edx -⎰,将引出一个无法用有限个代数运算、对数运算或指数运算组合表示的函数.有些积分虽然容易求解,并且原函数仍然是一个初等函数,但可能过于复杂,以致于人们采用(1.2)来计算之前还得三思而行[1].例如411dx C x =++⎰, (1.3) 采用式(1.3)这种“精确”表达式时,所需运算次数是个根本问题.由式(1.3)看出,需计算对数和反正切,因此只能计算到一定的近似程度.因此可以看出,这类表面上是“精确”的方法,实际上也是近似的.因此,我们常常需要探讨一些近似计算定积分的数值方法[2].通过人们的研究和发现,得出了很多数值计算的方法,比如利用牛顿-科茨求积公式,复合求积公式,龙贝格积分法,高斯求积公式,切比雪夫求积法等来解决定积分的数值计算问题.构造数值积分公式最通常的方法是用积分区间上的n 次插值多项式代替被积函数,由此导出的求积公式称为插值型求积公式.特别在节点分布等距的情形称为牛顿-柯茨公式,例如梯形公式与抛物线公式就是最基本的近似公式.但它们的精度较差.龙贝格算法是在区间逐次分半过程中,对梯形公式的近似值进行加权平均获得准确程度较高的积分近似值的一种方法,它具有公式简练、计算结果准确、使用方便、稳定性好等优点,因此在等距情形宜采用龙贝格求积公式.当用不等距节点进行计算时,常用高斯型求积公式计算,它在节点数目相同情况下,准确程度较高,稳定性好,而且还可以计算无穷积分[3].二、 主题部分2.1 牛顿-科茨求积公式[4]2.1.1 公式的一般形式[4]将积分(1.1)中的积分区间[],a b 分成n 等分,其节点k x 为1,()k x a kh h b a n=+=- (0,1,,)k n =L . 对于给定的函数f ,在节点k x (0,1,,)k n =L 上的值()k f x 为已知.那么f 在n+1个节点01,,,n x x x L 上的n 次代数插值多项式为00()().n nj n kk j k j j k x x p x f x x x ==≠⎡⎤-⎢⎥=⎢⎥-⎢⎥⎣⎦∑∏ 如果记x a th =+,则上式可以写为00()().n nn kk j j k t j p x f x k j ==≠⎡⎤-⎢⎥=⎢⎥-⎢⎥⎣⎦∑∏ (2.1) 在积分(1.1)中的被积函数f 用其n+1个节点的代数插值多项式()n p x 来代替,可 得 ()()()()bbn n aaI f f x dx I f p x dx =≈=⎰⎰.多项式的积分是容易求出的,因此把上式写为()()()nn n k k I f I f A f x =≈=∑, (2.2)其中 ()00(),n n n k k j j kb a t j A dt b ac n k j=≠--==--∏⎰ (2.3) ()00(1)().!()!n kn n n kj j kct j dt k n k n -=≠-=--∏⎰ (2.4) 公式(2.2)称为牛顿-科茨求积公式或称为等距节点求积公式,k A 称为求积公式系数,()n k c 称为科茨求积系数.牛顿-科茨求积公式的误差估计()n E f ()()n I f I f =-,由下面定理给出 定理2.1 (1) 如果n 为偶数,(2)n f +在[],a b 上连续,则有[]3(2)()(),,n n n n E f c hf a b ηη++=∈, (2.5)其中 201(1)(2)()(2)!n n c t t t t n dt n =---+⎰L . (2) 如果n 为奇数,(1)n f+在[],a b 上连续,则有[]2(1)()(),,n n n n E f c h f a b ηη++=∈, (2.6)其中 01(1)(2)()(1)!n n c t t t t n dt n =---+⎰L . 定义2.1 如果求积公式()()nbk k ak f x dx A f x =≈∑⎰对所有次数不高于n 的代数多项式等式精确成立,但存在n+1次的代数多项式使等式不成立,则称上式求积公式具有n 次代数精度.由定理2.1可知,牛顿-科茨求积公式(2.2)的代数精度至少是n 次,而当n 是偶数时,(2.2)的代数精度可达n+1次.2.1.2 梯形公式[5]在牛顿-科茨公式(2.2)中,取n=1时(1)(1)011,2c c ==所以有 []1()()()().2b aI f I f f a f b -≈=+ (2.7) 公式(2.7)称为梯形公式,如果用连接(),()a f a 和(),()b f b 的直线来逼近f ,并对这线性函数进行积分可得到1()I f .再用1()I f 来逼近()I f . 定理 2.2 若[]2,f Ca b ∈,则梯形公式(2.7)的误差为[]3111()()()()''(),,.12E f I f I f b a f a b ηη=-=--∈ 2.1.3 辛普森公式[6]在牛顿-科茨公式(2.2)中,取n=2,则有220011(1)(2),46c t t dt =--=⎰221014(2),26c t t dt =--=⎰ 222011(1),46c t t dt =-=⎰有此得到2()()()4()().32h a b I f I f f a f f b +⎡⎤≈=++⎢⎥⎣⎦(2.8) 其中1()2h b a =-.式(2.8)称为辛普森公式. 定理2.3 若[]4,f Ca b ∈,则辛普森公式(2.8)的误差为[]5(4)221()()()(),,.90E f I f I f h f a b ηη=-=-∈2.2 复化求积公式[7]上面已经给出了计算积分()()baI f f x dx =⎰的3个基本的求积公式:梯形公式,辛普森公式,牛顿-科茨公式,并给出了它们误差的表达式.由这些表达式可知其截断误差依赖于求积区间的长度.若积分区间的长度是小量的话,则这些求积公式的截断误差是该长度的高阶小量.但若积分区间的长度比较大,直接使用这些公式,则精度难以保证.为了提高计算积分的精度,可把积分区间分为若干个小区间,()I f 等于这些小区间上的积分和,然后对每个小区间上的积分应用上述求积公式,并把每个小区间上的结果累加,所得到的求积公式称为复化求积公式.将积分区间[],a b 作n 等分,并记,,0,1,,k b ah x a kh k n n-==+=L ,于是 11()()k kn x x k I f f x dx +-==∑⎰.2.2.1 复化梯形求积公式[8]如果需要求出一个已知函数()f x 在一个很大区间[],a b 上的积分,那么我们可以把区间分成n 个长度为x h ∆=的小区间,对每一个小区间用梯形法则,然后再把这些小区间上的积分值相加.于是就得到了计算定积分的复化梯形公式:1101210()()(222)22n bi i n n ai h hf x dx f f f f f f f -+-=≈+=+++++∑⎰L (2.9)整体积分误差等于n 个小区间上的积分误差之和:整体误差= []312''()''()''()12n h f f f ξξξ-+++L ,其中i ξ是第i 个小区间上的某一点.如果''()f x 在区间[],a b 上连续,那么由连续函数的性质可知,在区间[],a b 上存在点ξ使得''()i f ξ的平均值等于()f ξ.于是由于nh b a =-,有整体误差= 322''()''()()1212nh b a f h f O h ξξ--=-=, 局部误差是3()O h ,整体误差是2()O h .2.2.2 复化辛普森求积公式[9]对于积分()baf x dx ⎰,将[],a b 等分,每个小区间长度b ah n-=,节点记为 (0,1,2,,)k x a kh k n =+=L ,第k 个小区间记为[]1,(1,2,,)k k x x k n -=L .记[]1,k k x x -的中点为1121()2k k k xx x --=+,则复化辛普森公式为 1112()()()4()()6n bk k ak k h f x dx S h f x f x f x --=⎡⎤≈=++⎢⎥⎣⎦∑⎰.2.3 龙贝格积分[10]现在要介绍用龙贝格(Romberg )命名的一个算法,龙贝格首先给出了这种算法的递推形式,假设需要积分()baI f x dx =⎰ (2.10)的近似值.在讨论过程中函数()f x 和区间[],a b 将保持不变.2.3.1 递推梯形法则[10]设()T n 表示在长度是()/h b a n =-的n 个子区间上积分I 的梯形法则.根据()''()nbai f x dx h f a ih =≈+∑⎰,我们有 00()()''()''()nn n i i b a b a T h f a ih f a i n n ==--=+=+∑∑, (2.11) 这里求和符号中的两撇表示和式中第一项和最后一项减半. 2.3.2 龙贝格算法[10]在龙贝格算法中使用上述公式.设(,0)R n 表示具有2n个子区间的梯形估计,我们有[]1211(0,0)()()()21(,0)(1,0)((21))2n n n i R b a f a f b R n R n hf a i h -=⎧=-+⎪⎪⎨⎪=-++-⎪⎩∑ , (2.12) 对于一个适度的M 值,计算(0,0),(1,0),(2,0),,(,0)R R R R M L ,并且其中没有重复的函数值的计算.在龙贝格算法的其余部分中,还要计算附加值(,)R n m .所有这些都可以被理解为积分I 的估计.计算出(,0)R M 后,不再需要被积函数f 值的计算.根据公式[]1(,)(,1)(,1)(1,1)41m R n m R n m R n m R n m =-+-----, (2.13)对于1n ≥和1m ≥构造R 阵列的各列.定理 2.4(龙贝格算法收敛性定理)[10]若[],f C a b ∈,则龙贝格阵列中每一列都收敛于f 的积分.因此,对每个m ,lim (,)()baR n m f x dx =⎰.2.4高斯求积[11]前面研究的求积公式都是事先确定了n 个节点,然后按使求积公式阶数达到最大的原 则选取最佳权.由于自由参数为n 个,所以阶数一般为n-1,但如果节点的位置也自由选择,则自由参数的个数将变为2n ,因此求积公式的阶数可达到2n-1.高斯求积公式就是通过选择最佳的节点和权,使求积公式的阶数最大化.一般地,对每个n ,n 点高斯公式都是唯一的,而且阶数为2n-1.因而,对一定的节点个数,高斯求积公式的精度是最高的.但它的求得比牛顿—柯特斯公式要困难得多.虽然它的节点和权也可由待定系数法确定,但得到的方程是非线性的.2.4.1 高斯求积公式[11]为说明高斯求积公式,推导区间[]1,1-上的两点公式1112221()()()()()I f f x dx w f x w f x G f -=≈+=⎰,其中的节点1x 、2x 及权1w 、2w 按使求积公式阶数最大化的原则选取.令公式对前四个单项式精确成立,得力矩方程组112111122112221122113331122112,0,2,30.w w dx w x w x xdx w x w x x dx w x w x x dx ----⎧+==⎪⎪+==⎪⎪⎨⎪+==⎪⎪+==⎪⎩⎰⎰⎰⎰这个非线性方程组的一个解为12121,1,x x w w =-===另一个解可通过改变1x ,2x 的符号而得到.这样,两点高斯求积公式为2()(G f f f =-+,阶数为3.另外,高斯求积公式的节点也可以由正交多项式得到.若p 是n 次多项式,且满足()0,0,,1,bk ap x x dx k n ==-⎰L 则p 与[],a b 区间上所有次数小于n 的多项式正交,容易证明:1. p 的n 个零点都是实的、单的,且位于开区间(,)a b .2. 区间[],a b 上以p 的零点为节点的n 点插值型求积公式的阶数为2n-1,是唯一的n 点高斯公式.定义2.2[12] 如果1n +个节点的求积公式()()()nbk k ak x f x dx A f x ρ=≈∑⎰(2.14)的代数精度达到21n +,则称式(2.14)为高斯型求积公式,此时称节点k x 为高斯点,系数k A 称为高斯系数.定理2.5[12] 以01,,,n x x x L 为高斯点的插值型求积公式具有21n +次代数精确度的充要条件是以这些节点为零点的多项式101()()()()n n x x x x x x x ω+=---L与任意次数不超过n 的多项式()p x 带权()x ρ均在区间[],a b 上正交,即1()()()0bn ax p x x dx ρω+=⎰. (2.14)定理2.6 高斯公式()()nbi i ai f x dx A f x =≈∑⎰(2.15)的求积系数k A 全为正,且 2()(),0,1,,bbk k k aaA l x dx l x dx k n ===⎰⎰L . (2.16)定理2.7 对于高斯公式(2.14),其余项为 (22)211()()()()(22)!b n n a R f f x x dx n ξρω++=+⎰ , (2.17) 其中[]101,,()()()().n n a b x x x x x x x ξω+∈=---L2.4.2 高斯—勒让德(Gauss-Legendre )公式[13] 对于任意求积区间[],a b ,通过变换22a b b ax t +-=+,可化为区间[]1,1-,这时11()()222bab a a b b af x dx f t dt --+-=+⎰⎰. 因此,不失一般性,可取1,1a b =-=,考查区间[]1,1-上的高斯公式 11()()ni i i f x dx A f x -==∑⎰. (4.5)我们知道,勒让德多项式1211111()(1)2(1)!n n n n n d L x x n dx+++++⎡⎤=-⎣⎦+, (4.6) 是区间[]1,1-上的正交多项式,因此,1()n L x +的n+1个零点就是高斯公式(4.5)的n+1个节点.特别地,称1()n L x +的零点为高斯点,形如(4.5)的高斯公式称为高斯—勒让德公式.以上这些公式中的节点和求积系数可查表得到. 2.4.3 高斯—哈米特求积公式(Gauss-Hermite )[14] Gauss-Hermite 求积公式2()0()()nx n k k k ef x dx f x ω∞--∞=≈∑⎰, (4.7)其余项为(22)1(().2(22)!n n n n R f f n ξ+++=+ (4.8)2.4.4 高斯—切比雪夫(Gauss-Chebyshev )求积公式[15] 区间为[]1,1-,权函数()x ρ=Gauss 型求积公式,其节点k x 是Chebyshev多项式1()n T x +的零点,即21cos (0,1,,)2(1)k k x k n n π⎡⎤+==⎢⎥+⎣⎦L ,而(0,1,,)1k A k n n π==+L于是得到1021cos 12(1)nk k f n n ππ-=⎡⎤+≈⎢⎥++⎣⎦∑⎰(4.9) 称为Gauss-Chebyshev 求积公式,公式的余项为 (22)2(1)2()(),(1,1)2(22)!n n n R f f n πηη++=∈-+ , (4.10) 这种求积公式可用于计算奇异积分.2.5 递推型高斯求积[10]高斯求积公式不具有递推性:当节点个数一定时,如果自由选择所有的节点和权以达到最高的阶数,则节点个数不同的公式一般没有公共节点,这意味着与一组节点对应的积分值,在用另外一组节点计算积分值时不能被利用.Kronrod 求积公式避免了这种工作量的增加,这类公式是对称的,n 点高斯公式n G 与2n+1个点Kronrod 公式21n K +对应.21n K +节点的约束条件为:以n G 的节点作为21n K +的节点,按求积公式达到最高阶数的要求确定21n K +中剩下的n+1个节点及2n+1个权(其中包括n G 的节点的权).这样,求积公式的阶数可达到3n+1,而真正2n+1个点高斯公式应该是4n+1阶的,所以精度和效率是一对矛盾.使用两个节点个数不同的求积公式的主要原因是可以用它们的差估计积分近似值的误差.使用Gauss-Kronrod 公式对时,若以21n K +的值作为积分的近似值,则一半基于理论,一半基于经验,可以得到关于误差的保守估计: 1.521(200)n n G K +-.Gauss-Kronrod 公式不仅有效地提供了较高的精度,还给出了可靠误差估计,所以它被认为是最有效的求积公式之一,并且构成了主要软件库中求积程序的基础,特别地,公式715(,)G K 已被普遍使用.三、 总结部分因为一些定积分的求解比较复杂,所以数值积分的理论与方法一直是计算数学研究的基本课题.各种定积分的数值计算方法的出现和发展,加快和简化了求解定积分的效率和步骤.以上主要介绍了各种数值积分的方法——牛顿-科茨求积公式,复合求积公式,龙贝格积分法,高斯求积公式等.每种方法都有各自的优缺点,针对不同的积分函数采用不同的方法,所以在实际计算时,要做适当的采取.相信随着理论分析和研究的日益深入,求定积分的数值计算方法将更加简单和完善,为我们的计算带来前所未有的方便,在数学领域也将会更上一层楼.四、参考文献[1] 孙志忠,吴宏伟,袁慰平,闻震初.计算方法与实习(第4版)[M].南京:东南大学出版社,2009,(2): 128~129.[2]Micheal T .Heath . 张威,贺华,冷爱萍译.科学计算导论(第2版)[M].北京:清华大学出版社,2005,(10): 396~297.[3]李桂成.计算方法[M].北京:电子工业出版社,2005,(10):186.[4] 现代应用数学手册编委会. 现代应用数学手册——计算与数值分析卷[M]. 北京:清华大学出版社,2005,(1): 163~168.[5] 林成森. 数值计算方法(上)[M]. 北京:科学出版社,2004,(5): 220~221.[6]冯康.数值计算方法[M].北京:国防工业出版社,1978,(12): 45~47.[7]孙志忠,袁慰平,闻震初.数值分析(第2版)[M].南京:东南大学出版社,2002,(1): 191~194.[8] (美)柯蒂斯F .杰拉尔德 帕特里克O .惠特莱. 应用数值分析(第7版)[M].北京:机械工业出版社,2006,(8): 222~225.[9]夏爱生,胡宝安,孙利民,夏凌辉.复化Simpson 数值求积公式的外推算法[J].军事交通学院学报.2006,第8卷(第1期): 66~68.[10](美)David Kincaid, Ward Cheney .王国荣,俞耀明,徐兆亮译.数值分析(原书第三版)[M].北京:机械工业出版社,2005,(9): 400~403.[11]M.T.Heath. Scientific Computing:An Introductory Survey, Sscond Edition[M].清华大学出版社.英文影印版. 2001,(10): 351~355.[12]封建湖,车刚明,聂玉.数值分析原理[M].北京:科学出版社,2001,(9): 111~114.[13]杨大地,涂光裕.数值分析[M].重庆:重庆大学出版社,,2006,(9): 139~142.[14] 黄明游,刘播,徐涛.数值计算方法[M].北京:科学出版社,2005,(8):137~138.[15]Jeffery J.Leader. Numerical Analysis and Scientific Computation[M].英文影印本.北京:清华大学出版社,2005,(8): 342~349。

3.4定积分的计算(二)、应用

3.4定积分的计算(二)、应用


简证: F ( x )是 f ( x )的一个原函数,则 设



b
a
f ( x )dx F (b) F (a )
又 F ( ( t )) f ( (t )) (t )
( t )dt F ( ( t )) F ( ( )) F ( ( )) f ( ( t ))
3,
1
令 若作如下运算: x t , 2xdx dt , dx
2
1 2 t
dt ,
于是

2
1
x dx 1
2
4
1 tdt 1 4 tdt t 3 2 t 2 1
2
3 4 2 1
7 . 3
这显然是错误的,原因在于 x t不是单值的.
3.4.3 定积分的分部积分法

a a
0 f ( x )dx a 2 0 f ( x )dx
当 f ( x ) 为奇函数 当 f ( x ) 为偶函数
例4 解
计算
I
2 x 2
2
4 x 2 dx.
x 2 2
2 2 2
4 x 2 dx
2 2
x 4 x dx 2
a
udv vdu
b b a a

b
a
udv uv vdu 分部积分公式
a a
b
b
例5 解
计算

2
1
x ln xdx .

2
1
1 2 x ln xdx ln xd ( x 2 ) 2 1
1 2 1 2 2 1 x ln x x dx 2 2 1 x 1

53第三节定积分的换元法和分部积分法

53第三节定积分的换元法和分部积分法

0
0
a
武 汉
f(x )d x f( t)d tf(t)d t
a
a
0



a
0
a
a
院 数
f( x ) d x f( x ) d x f( x ) d x 2f( x ) d x
a
a
0
0


高 等
(3) 令x=t+l,则dx=dt,且当x=l时,t=0,当x=a+l时,t=a
武 汉 科 技 学 院 数 理 系
高 等 利用换元法计算定积分时,要注意:
数 学
(1).在换元时,积分的上下限必须同时变化.
电 (2).在换元时,要注意换元后的函数在积分区域内是否有
子 教
意义.

如果用x=1/t,则注意积分区域是否有x=0的情况,
如果用x=t2,则被积函数开方时要注意在积分区域里
+2,也可为-2.
案 面对有正负号时,应该
考虑被积函数的情况
x 3

当t=-1时,要注意 t2 t
0
t

科 技
代入被积函数
-2 -1 1 2



理 系
如t从-1到+2,此时已经超过积分区域了
高 此外当积分区域应该考虑
等 数
如t从-1到+2,此时已经超过积分区域了
学 电
根据定积分的性质3可加性(p221)其结果是一样的.
2
教 案
0 c o s 3 x c o s 5 x d x 0 c o s 3 2 x 1 c o s 2 x d x 0 c o s 3 2 x s i n x d x

5.1 定积分的概念与性质

5.1 定积分的概念与性质

lim ෍ ( )Δ =
→0
=1
则称这个极限为函数()在区间[, ]上的定积分,记为

න ()d
第一节 定积分的概念与性质

定积分
第五章

积分上限


定积分
积分和
න ()d = = lim ෍ ( )Δ
积分下限
→0

=1
被积被
积分积
[, ]积分区间 函 变 表
[, ]
[, ]

( − )≤ න ()d ≤( − ) ( < )


∵ ≤()≤,



∴ න d≤ න ()d≤ න d ,




( − )≤ න () d≤( − ).

第一节 定积分的概念与性质
此性质可用于
估计积分值的
第五章
8. 定积分中值定理
如果 () 在区间[, ]上连续, 则至少存在一点 ∈ [, ], 使

න ()d = ( )( − )


设()在[, ]上的最小值与最大值分别为 , ,

1
න ()d≤
则由性质7可得 ≤

根据闭区间上连续函数介值定理, ∃ ∈ [, ], 使
= lim ෍ ( )
=
lim ෍ ( ) ⋅
→∞
− →∞

故它是有限个数的平均值概念的推广.
第一节 定积分的概念与性质
把区间[, ]分成个小区间,
[0 , 1 ], [1 , 2 ], ⋯ , [−1 , ], ⋯ , [−1 , ]
各个小区间的长度依次为

5.3 定积分的换元法和分部积分法

5.3 定积分的换元法和分部积分法
( 2 ) න (sin )d
= − න (π − )(sin(π − ))d
则 d = −d
0
0
π
= න (π − )(sin )d
0
π
π
= π න (sin )d − න (sin )d
0
π
0
π
= π න (sin )d − න (sin )d ,
0​

+ න () d
0​
= න [(−) + ()] d
0​

2 න () d , (−) = (),
=
0​
0,
− = − .
奇、偶函数在对称区间上的定积分性质 偶倍奇零
第三节 定积分的换元法和分部积分法
定积分
第五章
1
2 2 + cos
例6 计算 න
0

1
d.
( > 0)
π
令 = sin , d = cos d, = ⇒ = , = 0 ⇒ = 0.
2
π
2
cos
d
原式 = න
2
2
0 sin + (1 − sin )
=න
π
2
0
cos
1
d = න
sin + cos
1
=
6
6
1

第三节 定积分的换元法和分部积分法
0
cos 5 sin d
= − න cos 5 d(cos )
= 0 ⇒ = 1.
原式 = − න
π
2
1
= .

高等数学 第六章 第3节 微积分基本公式(中央财经大学)

高等数学 第六章 第3节 微积分基本公式(中央财经大学)

x


内为单调增加函数 .



上连续,且
F ( x)
.证明 ) f (x
在 上只有一个解 . F ( x) = 0 证 令 F ( x) = 2 x − ∫ f (t )dt − 1,
0
[0,1]
x
下面再看 定理 2 .
∵ f ( x) < 1, ∴ F ′( x) = 2 − f ( x) > 0,
a
x
∫ a f ( x) d x = F (b) − F (a)
b
定积分的计算 问题转化为已 知函数的导函 数,求原函数的 问题 .
二. 微积分基本公式
定理
( 牛顿 —莱布尼茨公式)
若 f ( x) ∈ C ([ a, b]), F ( x ) 为 f ( x ) 在 [a, b] 上的
一个原函数 , 则
∫ a f ( x) d x = F ( x)
牛顿— 莱布尼茨公式
b
b a
= F (b) − F (a ).
将定积分的计算与求原 函数的计算联系起来了 .

(sin x )′ = cos x,

π 2 cos 0
x d x = sin x
π 2 0
π = sin − sin 0 = 1. 2
问题的关键是如何求一个 函数的原函数.
f (t ) d t ,
如果 f ( x) ∈ C ([a, b]), 则由积分中值定理 得 ,
F ( x + ∆x ) − F ( x ) = ∫
x +∆x x
f (t ) d t = f (ξ ) ∆x ,
(ξ 在 x 与 x + ∆x 之间)

2020届高三理数一轮讲义:3.3-定积分与微积分基本定理(含答案)

2020届高三理数一轮讲义:3.3-定积分与微积分基本定理(含答案)
答案 C
[思维升华] 1.定积分是一个数值(极限值),它的值仅仅取决于被积函数与积分的上、下限,而 与积分变量用什么字母表示无关. 2.错误!f(x)dx、错误!|f(x)|dx 与|错误!f(x)dx|在几何意义上有不同的含义,由于被积函
数 f(x)在闭区间[a,b]上可正可负,也就是它的图象可以在 x 轴上方、也可以在 x 轴下方、还可以在 x 轴的上下两侧,所以 错误!f(x)dx 表示由 x 轴、函数 f(x)的曲线
4 角度 2 利用定积分计算平面图形的面积 【例 2-2】 (一题多解)由抛物线 y2=2x 与直线 y=x-4 围成的平面图形的面积 为________.
y2=2x,
解析 如图所示,解方程组
得两交点为(2,-2),(8,4).
y=x-4,
法一 选取横坐标 x 为积分变量,则图中阴影部分的面积 S 可看作两部分面积之 和,即 S=2错误! 2xdx+错误!( 2x-x+4)dx=18.
角度 1 利用定积分的几何意义计算定积分
【例 2-1】 (1)计算:错误!(2x+ 1-x2)dx=________.
(2)若错误! -x2-2x dx=π,则 m=________. 4
解析 (1)由定积分的几何意义知,错误! 1-x2 dx 表示以原点为圆心,以 1 为半
| 径的圆的面积的1,所以错误! 1-x2 dx=π,又 错误!2xdx=x2
曲边梯形的面积
2.定积分的性质
(1)错误!kf(x)dx=k错误!f(x)dx(k 为常数).
(2)错误![f1(x)±f2(x)]dx=错误!f1(x)dx±错误!f2(x)dx.
(3)错误!f(x)dx=错误!f(x)dx+错误!f(x)dx(其中 a<c<b).

53定积分的计算方法

53定积分的计算方法

9
目录
上页
下页
返回
例 8

π π
1
sin 3x cos2
x
d
x

解 因为 sin 3x 在[, ] 上是奇函数, 1 cos2 x
所以有

1
sin 3x cos2
x
d
x
=0.
2019/9/5
10
目录
上页
下页
返回
二、定积分的分部积分法
定理2 设 u (x ),v (x ) C 1 [a ,b ],则
答案为:
1 ln 2
0
42
例 10 计算
1
e
x dx .
答案为:
2
0
例 11 设 f (5) 2 ,
5
f (x)dx 3
计算
5
xf (x)dx .
0
0
答案为: 7
2019/9/5
12
目录
上页
下页
返回


例12 证明
In
2sinn xdx
0
2cosn xdx
f(x)f(x)时
2019/9/5
8
目录
上页
下页
返回
π
例 7

2 π
(
x3

3x

1)
cos
x
d
x

2
π
解 2π(x33x1)cosxdx 2
π
π
2π(x33x)cosxdx 2πcosxdx

2
02 2 cos xdx 0

第三节定积分的换元法和分部积分法(1)98796

第三节定积分的换元法和分部积分法(1)98796
第三节 定积分的换元法和分部积分法
一、换元公式 二、分部积分公式 三、小结 思考题
11
机动 目录 上页 下页 返回 结束
一、换元公式
【定理】 假设
(1) f ( x)在[a,b]上连续;
(2)函数 x (t)在[ , ]上是单值的且有连续
导数;
(3)当t 在区间[ , ]上变化时,x (t) 的值在 [a,b]上变化,且 ( ) a 、 ( ) b,
4
2
于是 f ( x 2)dx f (t)dt
1
1
0

dt
2 tet2dt
11 cos t 0
或先求f(x-2)再求原积分
4
f ( x 2)dx
较麻烦
1
1166
机动 目录 上页 下页 返回 结束
【总结】 定积分的证明题——一般用到积分区间的分割性
1 2
x
2
f
(
x)
1 0

1 2
1
0
x
2df
(
x
)

1 2
f
(1)

11
2 0
x2
f
( x)dx
2233
机动 目录 上页 下页 返回 结束
f ( x)
x2 sin t dt,
定积分的分部积分公式
【推导】 uv uv uv,
b
a (uv
)dx

uv
b
a
,
uv
b a

b
a
uvdx

b
a
uvdx
,

第三节 定积分计算

第三节 定积分计算
第三节 定积分计算
按上节中牛顿-莱布尼兹公式可知,计 算定积分的简便方法就是将定积分计算 转化为求被积函数原函数的增量,因此 不定积分中的换元积分法和分部积分法 都可以用来找到眼函数,并用来计算定 积分,只是计算定积分时必须要考虑积 分的上下限。
一 按公式计算
【例题】计算下列定积分
3e
(1)

e
dx x
2
2
2

5 2
9
(4)
4
x x 1
dx
x 4 u 2
9 3
解:令
9
u
x
,则
3
x u
3
2
dx 2udu
1 u 1

4
x x 1
dx 2
2
u
2
u 1
d u 2 (u 1
2
)d u
[ u 2 u 2 ln ( u 1)] 2 7 ln 4
1 2
[ F ( b ) F ( a )]
2 2
x
【例题】设 解:
f( ) x 1
f (x)
1 x
1 t dt
1
ln t
x 0

t
f (x) f (
1 x
)
1 t
1
ln t
dt

du u
2
x
t
1 u
u
1 1
1 x
x
,则
f( ) x 1
x
dt
ln 1
2
1 du

1
u ( ) 2 1 u u
u (1 u ) d u

定积分的计算方法

定积分的计算方法

则F[ (t )] 是 f [ (t )] (t )的一个原函数, 从而


f [ ( t )] ( t )dt F [ ( t )]

由此可得
F [ ( )] F [ ( )] F (b) F (a )

b
a
f ( x )dx f [ (t )] (t )dt


b
a
f ( x )dx f [ (t )] (t )dt


设F(x)是ƒ(x)的一个原函数, 则

b
a
f ( x )dx F (b) F (a )
因为当 x ( t ) 时, 有 F ( x) F (t ) , 则有复合函数求导法 则, 有
d F [ ( t )] F [ ( t )] ( t ) f [ ( t )] ( t ) dt
§ 定积分的计算方法
一. 换元积分法 二. 分部积分法
由牛顿—莱布尼茨公式知: 计算定积分

b
a
f ( x )dx 的关键在
于求出ƒ(x)在[a, b]上的一个原函数F(x); 从而不定积分的换元 积分法和分部积分法在求定积分时仍适用. 本节讨论在一定 条件下, 如何利用换元积分法和分部积分法计算定积分.
1 2
2
1
1 ln 2 2
注 如果不明确写出新的变量, 则定积分的上、下限就不需要 变更. 如

1 x 1 1 2 2 ln 1 x dx d( x 1) 2 0 1 x2 0 2 2 1 x
1
1
1
0
1 ln 2 2
例4
计算 I 0 sin3 x sin5 xdx

5.3 定积分的换元法和分部积分法

5.3 定积分的换元法和分部积分法

−a
0
0
a
= ∫ 0 [ f (x ) + f (− x) ]d x
a
a

∫ ∫ f ( x)d x = [ f ( x) + f (− x) ] d x
−a
0
a
a
∫ ∫ 即
f (x)d x = [ f (x) + f (−x) ] d x
−a
0
(1)若 f (x) 为偶函数,即 f ( x ) = f (− x )
π
原式 =
t 2
+
ln
|
sin
t
+
cos
t
|
2 0

4
例6:证明
(1)若 f (x) 在 [ - a , a ] 上连续且为偶函数,
a
a
则 ∫ − a f (x)d x = 2∫ 0 f (x)d x
(2)若 f (x) 在 [ - a , a ] 上连续且为奇函数,
a
则 ∫ −a f (x)d x = 0
1 −1
f (u) d u
∫ ∫ ∫ =
1
f (x)d x =
0 (1 + x2 ) d x +
1 e−x d x
−1
−1
0
=
[
x
+
1 3
x
3
]0−1
+
[−e − x ]10
= 7− 1 3e
二、 定积分的分部积分法
设 u = u (x) , v = v(x) 在区间 [ a , b ] 上有连续导
π 2

t
dt
π

定积分的概念与计算(11)

定积分的概念与计算(11)

1 t dt ]
0
1
3[
t
2
2
2
2 ln (1 t )) 0 ]
0
2
3( 2 2 ln 3) 3 ln 3
1 2


0
x
2
1 x
dx
2
解:令 x sin t
dx cos tdt
x 0, t 0
1 2
x
1 2
, t

6

a
b
f ( x )dx F ( b ) F ( a )

例 求 ( 2 co s x sin x 1) d x .
2
0



解 : 原 式 2 co s xd x
2
0

2
sin xd x
2 .
2
0

2
1d x
0
2 sin x
1 0
cos x 0 x

( x 2 )dx

2 0
2dx
2


xd x
3

xd x

2dx
2
4
x
2
x
2
2
2
5 2
2
0
2

例: 4 cos xdx
2 0
解:原式


4
1 cos 2 x 2

dx
1 2


0
[ 4 1dx
0

4
cos 2 x dx ]
0
1 1 [ sin 2 x | 04 ] 2 4 2

【知识点整合与训练】第三章 导数及其应用第3节 定积分与微积分基本定理

【知识点整合与训练】第三章 导数及其应用第3节 定积分与微积分基本定理

第3节 定积分与微积分基本定理最新考纲 1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念,几何意义;2.了解微积分基本定理的含义.知 识 梳 理1.定积分的概念与几何意义 (1)定积分的定义如果函数f (x )在区间[a ,b ]上连续,用分点将区间[a ,b ]等分成n 个小区间,在每个小区间上任取一点ξi (i =1,2,…,n ),作和式∑n i =1f (ξi )Δx =∑n i =1 b -an f (ξi ),当n →∞时,上述和式无限接近于某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛a b f (x )d x ,即⎠⎛ab f (x )d x =在⎠⎛a b f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. (2)定积分的几何意义(1)⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x (k 为常数).(2)⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛abf 2(x )d x . (3)⎠⎛a b f (x )d x =⎠⎛a c f (x )d x +⎠⎛c b f (x )d x (其中a <c <b ). 3.微积分基本定理一般地,如果f (x )是在区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么⎠⎛a b f (x )d x =F (b )-F (a ).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.可以把F (b )-F (a )记为F (x )⎪⎪⎪ba ,即⎠⎛ab f (x )d x =F (x )⎪⎪⎪ba )=F (b )-F (a ).[微点提醒]函数f (x )在闭区间[-a ,a ]上连续,则有 (1)若f (x )为偶函数,则⎠⎛-a a f (x )d x =2⎠⎛0a f (x )d x .(2)若f (x )为奇函数,则⎠⎛-aa f (x )d x =0.基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)设函数y =f (x )在区间[a ,b ]上连续,则⎠⎛a b f (x )d x =⎠⎛a b f (t )d t .( )(2)曲线y =x 2与y =x 所围成的面积是⎠⎛01(x 2-x )d x .( ) (3)若⎠⎛a b f (x )d x <0,那么由y =f (x ),x =a ,x =b 以及x 轴所围成的图形一定在x 轴下方.( )(4)定积分⎠⎛a b f (x )d x 一定等于由x =a ,x =b ,y =0及曲线y =f (x )所围成的曲边梯形的面积.( )(5)加速度对时间的积分是路程.( )解析 (2)y =x 2与y =x 所围成的面积是⎠⎛01(x -x 2)d x .(3)若⎠⎛a b f (x )d x <0,那么由y =f (x ),x =a ,x =b 以及x 轴所围成的图形在x 轴下方的面积比在x 轴上方的面积大.(4)定积分⎠⎛a b f (x )d x 等于由x =a ,x =b ,y =0及曲线y =f (x )所围成图形的面积的代数和.(5)加速度对时间的积分是速度,速度对时间的积分才是路程. 答案 (1)√ (2)× (3)× (4)× (5)×2.(选修2-2P50A5改编)定积分⎠⎛-11|x |d x =( )A.1B.2C.3D.4解析 ⎠⎜⎛-11|x |d x =⎠⎜⎛-10(-x )d x +⎠⎛01x d x =2⎠⎛01x d x =x 2⎪⎪⎪10=1. 答案 A3.(选修2-2P60A6改编)已知质点的速度v =10t ,则从t =0到t =t 0质点所经过的路程是( ) A.10t 20B.5t 20C.103t 2D.53t 20解析 S =⎠⎛0t 0v d t =⎪⎪⎪⎠⎛0t010t d t =5t 2t 0=5t 20. 答案B4.(2018·青岛月考)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积S ,正确的是( ) A.S =⎠⎛02(4x -x 3)d xB.S =⎠⎛02(x 3-4x )d xC.S =⎠⎛02⎝⎛⎭⎪⎫3y -y 4d yD.S =⎠⎛02⎝ ⎛⎭⎪⎫y 4-3y d y 解析 两函数图象的交点坐标是(0,0),(2,8),故对x 积分时,积分上限是2、下限是0,由于在[0,2]上,4x ≥x 3,故直线y =4x 与曲线y =x 3所围成的封闭图形的面积S =⎠⎛02(4x -x 3)d x ⎝ ⎛⎭⎪⎫同理对y 积分时S =⎠⎛08⎝ ⎛⎭⎪⎫3y -y 4d y .答案 A5.(2019·安阳模拟)若a =⎠⎛02x 2d x ,b =⎠⎛02x 3d x ,c =⎠⎛02sin x d x ,则a ,b ,c 的大小关系是( ) A.a <c <b B.a <b <c C.c <b <aD.c <a <b解析 由微积分基本定理a =⎠⎛02x 2d x =⎝ ⎛⎭⎪⎫13x 3⎪⎪⎪20=83,b =⎠⎛02x 3d x =⎝ ⎛⎭⎪⎫14x 4⎪⎪⎪20=4,c =⎠⎛02sin xd x =(-cos x )⎪⎪⎪20=1-cos 2<2,则c <a <b .答案 D6.(2019·昆明诊断)若⎠⎛a 0x 2d x =9,则常数a 的值为________. 解析 ⎠⎛a0x 2d x =13x 3⎪⎪⎪0a =-13a 3=9,∴a 3=-27,a =-3.答案 -3考点一 定积分的计算【例1】 (1)⎠⎛0π(cos x +1)d x =________. (2)⎠⎛-22|x 2-2x |d x =________. 解析 (1)⎠⎛0π(cos x +1)d x =(sin x +x )⎪⎪⎪π0=π.(2)⎠⎛-22|x 2-2x |d x =⎠⎛-20(x 2-2x )d x +⎠⎛02(2x -x 2)d x =⎝ ⎛⎭⎪⎫13x 3-x 2⎪⎪⎪0-2+⎝ ⎛⎭⎪⎫x 2-13x 3⎪⎪⎪20=83+4+4-83=8. 答案 (1)π (2)8规律方法 运用微积分基本定理求定积分时要注意以下几点:(1)对被积函数要先化简,再求积分;(2)若被积函数为分段函数的定积分,依据定积分“对区间的可加性”,先分段积分再求和;(3)对于含有绝对值符号的被积函数,要先去掉绝对值符号再求积分.【训练1】 (1)设f (x )=⎩⎨⎧x 2,x ∈[0,1],2-x ,x ∈(1,2],则⎠⎛02f (x )d x 等于( )A.34B.45C.56D.不存在 (2)定积分⎠⎛-11(x 2+sin x )d x =________.解析 (1)如图,⎠⎛02f (x )d x =⎠⎛01x 2d x +⎠⎛12(2-x )d x =13x 3⎪⎪⎪10+⎝ ⎛⎭⎪⎫2x -12x 2⎪⎪⎪21=13+⎝ ⎛⎭⎪⎫4-2-2+12=56. (2)⎠⎜⎛-11(x 2+sin x )d x =⎠⎜⎛-11x 2d x +⎠⎜⎛-11sin x d x =2⎠⎛01x 2d x =2·x 33⎪⎪⎪10=23. 答案 (1)C (2)23考点二 定积分的几何意义多维探究角度1 利用定积分的几何意义计算定积分【例2-1】 (1)计算:⎠⎛01(2x +1-x 2)d x =________.(2)若⎠⎛-2m -x 2-2x d x =π4,则m =________.解析 (1)由定积分的几何意义知,⎠⎛011-x 2 d x 表示以原点为圆心,以1为半径的圆的面积的14,所以⎠⎛011-x 2d x =π4,又⎠⎛012x d x =x 2⎪⎪⎪10=1,所以⎠⎛01(2x +1-x 2)d x =π4+1.(2)根据定积分的几何意义⎠⎜⎛-2m-x 2-2x d x 表示圆(x +1)2+y 2=1和直线x =-2,x =m 和y =0围成的图形的面积,又⎠⎜⎛-2m-x 2-2x d x =π4为四分之一圆的面积,结合图形知m =-1. 答案 (1)π4+1 (2)-1角度2 利用定积分计算平面图形的面积【例2-2】 (一题多解)由抛物线y 2=2x 与直线y =x -4围成的平面图形的面积为________.解析 如图所示,解方程组⎩⎪⎨⎪⎧y 2=2x ,y =x -4,得两交点为(2,-2),(8,4).法一 选取横坐标x 为积分变量,则图中阴影部分的面积S 可看作两部分面积之和,即S =2⎠⎛022x d x +⎠⎛28(2x -x +4)d x =18.法二 选取纵坐标y 为积分变量,则图中阴影部分的面积S =⎠⎜⎛-24⎝ ⎛⎭⎪⎫y +4-12y 2d y=18. 答案 18规律方法 1.运用定积分的几何意义求定积分,当被积函数的原函数不易找到时常用此方法求定积分.2.利用定积分求曲边梯形面积的基本步骤:画草图、解方程得积分上、下限,把面积表示为已知函数的定积分(注意:两曲线的上、下位置关系,分段表示的面积之间的关系).【训练2】 (1)计算:⎠⎛133+2x -x 2 d x =________.(2)已知曲线y =x 2与直线y =kx (k >0)所围成的曲边图形的面积为43,则k =________.解析 (1)由定积分的几何意义知,⎠⎛133+2x -x 2 d x 表示圆(x -1)2+y 2=4和x=1,x =3,y =0围成的图形的面积,∴⎠⎛133+2x -x 2 d x =14×π×4=π.(2)由⎩⎪⎨⎪⎧y =x 2,y =kx ,得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =k ,y =k 2,则曲线y =x 2与直线y =kx (k >0)所围成的曲边梯形的面积为⎠⎛0k(kx -x 2)d x =⎝ ⎛⎭⎪⎫k 2x 2-13x 3⎪⎪⎪k0=k 32-13k 3=43,则k 3=8,∴k =2.答案 (1)π (2)2考点三 定积分在物理中的应用【例3】 (1)物体A 以v =3t 2+1(m/s)的速度在一直线l 上运动,物体B 在直线l 上,且在物体A 的正前方5 m 处,同时以v =10t (m/s)的速度与A 同向运动,出发后,物体A 追上物体B 所用的时间t (s)为( ) A.3B.4C.5D.6(2)设变力F (x )作用在质点M 上,使M 沿x 轴正向从x =1运动到x =10,已知F (x )=x 2+1且方向和x 轴正向相同,则变力F (x )对质点M 所做的功为________ J(x 的单位:m ,力的单位:N).解析 (1)因为物体A 在t 秒内行驶的路程为⎠⎛0t (3t 2+1)d t ,物体B 在t 秒内行驶的路程为⎠⎛0t 10t d t .所以⎠⎛0t (3t 2+1-10t )d t =(t 3+t -5t 2)⎪⎪⎪t0=t 3+t -5t 2=5.整理得(t -5)(t 2+1)=0,解得t =5.(2)变力F (x )=x 2+1使质点M 沿x 轴正向从x =1运动到x =10所做的功为 W =⎠⎛110F (x )d x =⎠⎛110(x 2+1)d x =⎝ ⎛⎭⎪⎫13x 3+x ⎪⎪⎪101=342(J).答案 (1)C (2)342规律方法 定积分在物理中的两个应用(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的位移s =⎠⎛ab v (t )d t . (2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )d x .【训练3】 一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( ) A.1+25ln 5 B.8+25ln 113 C.4+25ln 5D.4+50ln 2解析 令v (t )=0,得t =4或t =-83(舍去), ∴汽车行驶距离s =⎠⎛04⎝⎛⎭⎪⎫7-3t +251+t d t =⎣⎢⎡⎦⎥⎤7t -32t 2+25ln (1+t )⎪⎪⎪40 =28-24+25ln 5=4+25ln 5(m). 答案 C[思维升华]1.定积分是一个数值(极限值),它的值仅仅取决于被积函数与积分的上、下限,而与积分变量用什么字母表示无关.2.⎠⎛a b f (x )d x 、⎠⎛a b |f (x )|d x 与|⎠⎛a b f (x )d x |在几何意义上有不同的含义,由于被积函数f (x )在闭区间[a ,b ]上可正可负,也就是它的图象可以在x 轴上方、也可以在x 轴下方、还可以在x 轴的上下两侧,所以⎠⎛a b f (x )d x 表示由x 轴、函数f (x )的曲线及直线x =a ,x =b (a ≠b )之间各部分面积的代数和;而|f (x )|是非负的,所以⎠⎛a b |f (x )|d x 表示在区间[a ,b ]上所有以|f (x )|为曲边的正曲边梯形的面积;而|⎠⎛a b f (x )d x |则是⎠⎛a bf (x )d x 的绝对值,三者的值一般情况下是不相同的. [易错防范]1.若定积分的被积函数是分段函数,应分段积分然后求和.2.若积分式子中有几个不同的参数,则必须先分清谁是被积变量.3.定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可以为负.基础巩固题组 (建议用时:35分钟)一、选择题1.(2019·西安调研)定积分⎠⎛01(2x +e x )d x 的值为( )A.e +2B.e +1C.eD.e -1解析 ⎠⎛01(2x +e x)d x =(x 2+e x)⎪⎪⎪10)=1+e 1-1=e.答案 C2.已知⎠⎛1e ⎝⎛⎭⎪⎫1x -m d x =3-e 2,则m 的值为( )A.e -14e B.12 C.-12D.-1解析 由微积分基本定理得⎠⎛1e ⎝⎛⎭⎪⎫1x -m d x =(ln x -mx )⎪⎪⎪e1)=m +1-m e ,结合题意得m +1-m e =3-e 2,解得m =12. 答案 B3.(2019·郑州模拟)汽车以v =(3t +2) m/s 做变速运动时,在第1 s 至第2 s 之间的1 s 内经过的路程是( ) A.132 mB.6 mC.152 mD.7 m解析 s =⎠⎛12(3t +2)d t =⎝ ⎛⎭⎪⎫32t 2+2t ⎪⎪⎪21=32×4+4-⎝ ⎛⎭⎪⎫32+2=10-72=132(m).答案 A4.π20⎰sin 2x2d x 等于( ) A.0 B.π4-12 C.π4-14D.π2-1解析π20⎰sin 2x2d x =π20⎰1-cos x 2d x =⎝ ⎛⎭⎪⎫12x -12sin x π20|=π4-12. 答案 B5.定积分⎠⎛02|x -1|d x 等于( )A.1B.-1C.0D.2解析 ⎠⎛02|x -1|d x =⎠⎛01|x -1|d x +⎠⎛12|x -1|d x=⎠⎛01(1-x )d x +⎠⎛12(x -1)d x =⎝ ⎛⎭⎪⎫x -x 22⎪⎪⎪10+⎝ ⎛⎭⎪⎫x 22-x ⎪⎪⎪21=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫222-2-⎝ ⎛⎭⎪⎫12-1=1. 答案 A6.如图,指数函数的图象过点E (2,9),则图中阴影部分的面积等于( )A.8ln 3B.8C.9ln 3D.9解析 设指数函数为y =a x (a >0且a ≠1),因为其过点E (2,9),所以a 2=9,解得a =3,所以图中阴影部分的面积S =⎠⎛023xd x =3x ln 3⎪⎪⎪20=8ln 3. 答案 A7.若f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0,f [f (1)]=1,则a 的值为( )A.1B.2C.-1D.-2解析 因为f (1)=lg 1=0,f (0)=⎠⎛0a 3t 2d t =t 3⎪⎪⎪a0=a 3,所以由f [f (1)]=1,得a 3=1,a =1. 答案 A8.由y =x 2,y =x 24,y =1所围成的图形的面积为( )A.43B.34C.2D.1解析 如图所示,阴影部分的面积为 S =2⎣⎢⎡⎦⎥⎤⎠⎛01⎝ ⎛⎭⎪⎫x 2-14x 2d x +⎠⎛12⎝ ⎛⎭⎪⎫1-14x 2d x =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13x 3-112x 3⎪⎪⎪10+⎝ ⎛⎭⎪⎫x -112x 3⎪⎪⎪21=2⎝ ⎛⎭⎪⎫13-112+2-112×23-1+112=43.答案 A 二、填空题9.已知f (x )为偶函数且⎠⎛06f (x )d x =8,则⎠⎛-66f (x )d x =________.解析 原式=⎠⎜⎛-6f (x )d x +⎠⎛06f (x )d x , 因为原函数为偶函数,所以在y 轴两侧的图象对称,所以对应面积相等,即8×2=16. 答案 1610.如图所示,函数y =-x 2+2x +1与y =1相交形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是________.解析 由⎩⎪⎨⎪⎧y =-x 2+2x +1,y =1,解得x 1=0,x 2=2.∴S =⎠⎛02(-x 2+2x +1-1)d x =⎠⎛02(-x 2+2x )d x=⎝ ⎛⎭⎪⎫-x 33+x 2⎪⎪⎪2=-83+4=43.答案 4311.(2019·济南模拟)设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________. 解析 封闭图形如图所示,则⎠⎛0ax d x =23x 32⎪⎪⎪a=23a 32-0=a 2,解得a =49.答案 4912.(2019·广州调研)设f (x )=⎩⎨⎧1-x 2,x ∈[-1,1),x 2-1,x ∈[1,2],则⎠⎛-12f (x )d x 的值为________.解析 ⎠⎜⎛-12f (x )d x =⎠⎜⎛-111-x 2d x +⎠⎛12(x 2-1)d x=12π×12+⎝ ⎛⎭⎪⎫13x 3-x ⎪⎪⎪21=π2+43.答案 π2+43能力提升题组 (建议用时:15分钟)13.(一题多解)若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( ) A.S 1<S 2<S 3 B.S 2<S 1<S 3 C.S 2<S 3<S 1D.S 3<S 2<S 1解析 法一 S 1=13x 3⎪⎪⎪21=83-13=73,S 2=ln x ⎪⎪⎪21=ln 2<ln e =1,S 3=e x ⎪⎪⎪21=e 2-e ≈2.72-2.7=4.59,所以S 2<S 1<S 3.法二 S 1,S 2,S 3分别表示曲线y =x 2,y =1x ,y =e x 与直线x =1,x =2及x 轴围成的图形的面积,通过作图易知S 2<S 1<S 3. 答案 B14.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A.-1B.-13C.13D.1解析 由题意知f (x )=x 2+2⎠⎛01f (x )d x ,设m =⎠⎛01f (x )d x ,则f (x )=x 2+2m ,⎠⎛01f (x )d x =⎠⎛01(x 2+2m )d x =⎝ ⎛⎭⎪⎫13x 3+2mx ⎪⎪⎪10 =13+2m =m ,解得m =-13. 答案 B15.一物体在力F (x )=⎩⎨⎧5,0≤x ≤2,3x +4,x >2(单位:N )的作用下沿与力F 相同的方向,从x =0处运动到x =4(单位:m)处,则力F (x )做的功为________ J. 解析 由题意知,力F (x )所做的功为 W =⎠⎛04F (x )d x =⎠⎛025d x +⎠⎛24(3x +4)d x=5×2+⎝ ⎛⎭⎪⎫32x 2+4x ⎪⎪⎪42=10+⎣⎢⎡⎦⎥⎤32×42+4×4-⎝ ⎛⎭⎪⎫32×22+4×2=36(J). 答案 3616.(2019·长春模拟)在平面直角坐标系xOy 中,将直线y =x 与直线x =1及x 轴所围成的图形绕x 轴旋转一周得到一个圆锥,圆锥的体积V 圆锥=⎠⎛01πx 2d x =π3x 3⎪⎪⎪10=π3.据此类比:将曲线y =2 ln x 与直线y =1及x 轴、y 轴所围成的图形绕y 轴旋转一周得到一个旋转体,该旋转体的体积V =________.解析 类比已知结论,将曲线y =2ln x 与直线y =1及x 轴、y 轴所围成的图形绕y 轴旋转一周得到旋转体的体积应为一定积分,被积函数为π(e y2)2=πe y ,积分变量为y ,积分区间为[0,1],即V =⎠⎛01πe y d y =πe y ⎪⎪⎪10=π(e -1).答案 π(e -1)。

3第三节定积分的计算

3第三节定积分的计算

t
tan x , 2
dx 2 dt, 1 t2
x
π 3
,
π 2
t
1 3
,1 .
1 2t
1 sin x
1 t2
sin x (1 cos x )
1
2t t
2
1
1 1
t t
2 2
(1 2t t2 )(1 t2 ) 4t
π 2 π
3
sin
1 x
sin x (1 cos
则有换元公式
b
a
f
(
x
)dx
f [ (t)] (t)dt .
目录 上一页 下一页 退 出
证 设F ( x)是 f ( x)的一个原函数,
b
a f ( x)dx F (b) F (a),
(t) F[(t)],
(t) dF dx f ( x) (t) f [(t )](t),
dx dt
(t)是 f [ (t )] (t )的一个原函数.
2
x
x3
2
x
x 1
8
4
3
.
x3 x
x x 1 x 1

3 x 5 x 4 8 dx 2 x3 x
3 2
x
2
x
1
8 x
x
4 1
x
3
1
dx
1 3
x
3
1 2
x
2
x
8ln x
4ln x
1 3ln x
1
3 2
9 5 12ln3 19ln2 6
目录 上一页 下一页 退 出
例11 求
设函数u( x)、v( x) 在区间a,b上具有连续
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,
1
2 x
1
(1 ln )dx dx 2 ,
1
2 x
1
1 x 2 (e x e x 1) dx 2 1 x2 dx 2 .
1
0
3
13
例11 设 f ( x) 是以 T 为周期的连续函数,证明:
aT f ( x)dx
T f ( x)dx .
a
0
aT

f (x)dx
a
0
T
第三节 定积分的计算方法
一、定积分的换元积分法
定理 设 f ( x) 在[a,b] 上连续;函数x (t) 满足条件 (1) ( ) a、 ( ) b; (2)(t) 在[, ] 或[ ,] 上单调,且有连续导数,
b
则有 f ( x)dx f [(t)] (t)dt
a
1
b
a f ( x)dx f [(t)] (t)dt
0
0
1 cos6 x / 2 1 .
6
0
6
例2 3
dx
2
3d
x 2arctan
3 2 x .
0 x (1 x) 0 1 x
03
例3 2 x dx 1 2 1 dx2
0 1 x2
2 0 1 x2
2
1 x2 5 1.
0
4
例4 计算 sin x sin3 x dx . 0
1 a2 sin2 x b2 cos 2 x
奇函数
1 (x
1 x2 )2 dx
1 ( x2 2x 1 x2 1 x2 )dx
1
1
1
1dx
1
2x
1 x2 dx 2 .
1
1
奇函数 奇函数
1 ln( x
1 x2 )dx 0 ,
1
1
(
1
1 2x
1
1 ) dx
2
0

a
f ( x)dx
a
f ( x)dx
0 f ( x)dx ,
a
0
a
0
x t
f ( x)dx
a
f (t)dt
a f ( x)dx ,
a
0
0
a
f ( x)dx
a[ f (x)来自f ( x)]dx ,
a
0
11
a
a
f ( x)dx [ f ( x) f ( x)]dx
a
0
cos 2t)dt
6
12
1 sin2t / 3
4
/6

12
所以平均值等于
12
(
3 2
1 2
)
3 1 .
12
9
例9

f
(x)
12xx, 1 x
,
x0 x0,

2
f ( x 1)dx .
0
解 令 x1 t,
原式
1
f (t)dt
1
f ( x)dx
1
1
1
0 1 x
2xdx
dx

原式
sin x cos 2 x dx
| cos x |
sin x dx
0
0
2 cos x
0
sin x dx
cos x
sin x dx
2
2 0
sin x dsin x
sin x dsin x
2
2
s
in
2 3
x
2
2
s
2
in3
x
4
.
3
03
23
5
8 dx
例5 计算
.
01 3 x
注意:
(1) 应用定积分的换元法时,与不定积分比较, 多一事:换上下限; 少一事:不必回代;
(2) x (t ) 应单调,当 t 从 变到 时, x 从 a 变 到 b,不重复,不遗漏;
(3) 逆用上述公式,即为“凑微分法”,不必换限.
3
例1 / 2 cos 5 x sin x dx / 2 cos 5 x d cos x
(1 cos 2t)dt
0
20
1 sin2t /4 1 .
84
0 84
8
例8 求函数 y x2 在区间[1 , 3 ] 上的平均值.
1 x2
22

3
2 1
2
x2 dx x sint 1 x2
3 6
sin2 t cos t
cos t
dt
3
sin2
t
dt
6
1 2
3
(1
解 令 3 x t ,x t 3 ,dx 3t 2dt , x : 0 8, t : 0 2,
原式
2 3t 2
2 t2 11
dt 3
dt
01 t
0 1 t
2
1
30 (t 1 1 t )dt
3( 1 2
t2
t
ln | 1
t
|
)2 0
3ln 3 .
6
例6 计算 ln3 e x 1 dx . 0
aT
a f ( x)dx 0 f (x)dx T f (x)dx ,
aT f ( x)dx x T t
a
f (t T )dt
T
0
a
0
0 f (t)dt a f ( x)dx ,
a T
T
a f ( x)dx 0 f ( x)dx .
14
例12 设 f (x) 在[0,1] 上连续,证明:
2(2 2 ) ln 3 2 ln( 2 1) .
7
例7
计算
1 x2 0 (1 x 2 )2 dx .
解 令 x tant, dx sec2t dt , t : 0
4
原式
/4 tan 2 t sec2 t
0
sec4 t dt
/ 4 sin2 t dt 1
/4
证 因为 f ( x) 在 [a, b] 上连续,故原函数存在,设 F(x)是 f (x) 的一个原函数,则有
f [(t)](t)dt f [(t)]d(t)
F[(t)]
F [ (
)]
F[( )]
b
F(b) F(a) a f ( x)dx .
2
b
a f ( x)dx f [(t)] (t)dt
解 令 ex 1 t ,e x 1 t 2 ,x ln(t 2 1) ,
dx
2t t2
1
dt
,x
:0
ln 3 ,
t
:
2 2,
原式
2 2t
2
1
2
t
t2
dt 1
2
2
(1
t
2
) dt 1
2(2 2) ln t 1 2 2(2 2) ln 1 ln
t1 2
3
2 1 2 1
0
1 1 x
x2 1
0
(1
2 )dx
0
1
1 x
1 1 2ln(1 x) 0 2 ln 2 . 1 10
利用函数的奇偶性简化计算.
设 f (x) 在[a, a] 上连续,那么
a
a
(1) 若 f ( x) 为偶函数,则 f ( x)dx 2 f ( x)dx ;
a
0
a
(2) 若 f ( x) 为奇函数,则 f ( x) dx 0 . a
(1) f ( x)为偶函数, 则
y y f (x)
f (x) f (x),
a
a
f ( x) dx 2 f ( x) dx
a
0
(2) f ( x)为奇函数, 则
o
x
y y f (x)
f (x) f (x),
a
f ( x)dx 0 . a
o
x
12
sin x cos x
例10
dx 0 .
相关文档
最新文档