不定积分的计算方法(I)

合集下载

不定积分的计算

不定积分的计算

5 u 4 du u 5 c sin 5 2 x c. 引出凑公式法: Th 若 f ( x) dx F ( x) c,
u sin 2 x
(x )
连续可导,

f [ (t)] ( t) dt F [ (t )] c.
该定理可叙述为: 若函数 g (t ) 能分解为 g ( t ) f [ ( t )] (t ) 则有
们就可以用分部积分把不容易积分的 例4 若令
u (x )v (x )dx
计算出来
u x , v cos x v sin x , 代入分部积分公式
x cos xdx x sin x sin xdx x sin x cos x C
但若令 u cos x , v x v x 2 / 2 , 代入分部积分公式 x2 1 x cos xdx cos x x 2 sin xdx 2 2 比原积分还复杂
x ln xdx
u ln x , v x v x 2 / 2
相比之下显然, x 容易积分,所以取
x2 1 x2 x2 x2 x ln xdx 2 ln x x 2 dx 2 ln x 4 C
由此可知,在用分部积分公式时,u, v 的选择不是随意的,那 个作 u , 那个作 v ,应适当选取,否则有可能计算很复杂甚至计 算不出来。 分析分不积分公式,我们可总结出下面一个原则: 一般应把 (相比之下) 容易积分, 积分后比较简单的函数作为 v , 积分较难或积分后比较复杂的函数作为 u 例 4
2 arctgtdarctgt ( arctgt ) 2 c ( arctg x ) 2 c . 其他凑法举例: 例 18 e x e x d (e x e x ) dx x ln( e x e x ) c . e x e x e ex ln x 1 d ( x ln x ) (x ln x ) 2 dx (x ln x )2

不定积分计算的各种方法

不定积分计算的各种方法

不定积分计算的各种方法不定积分是微积分中的重要概念,用于求解函数的原函数。

计算不定积分的方法有很多种,下面将介绍其中常用的几种方法。

1.替换法(换元法):替换法是求不定积分最常用的方法之一、通过引入一个新的变量代替原函数中的一部分,使得被积函数被替换为新变量的导数形式。

然后将积分转化为新变量的积分,最后再将结果换回原变量。

替换法适用于当被积函数具有其中一种特殊形式时,例如三角函数、指数函数、对数函数等。

2.分部积分法:分部积分法是求不定积分的另一种常用方法。

它通过将被积函数拆分成两个函数的乘积形式,然后将积分转化为其中一个函数的积分和另一个函数的导数的积分。

这个方法适用于当被积函数是两个函数的乘积形式时。

3.微分方程法:微分方程法适用于求解一些具有特殊形式的微分方程的原函数。

通过将微分方程转化为不定积分形式,并通过求解该不定积分得到原函数。

4.图像法:图像法适用于当被积函数的几何意义或图像特点已知时。

通过观察被积函数的几何性质,可以直接得出不定积分的结果。

5.线性代数法:线性代数法是一种较为复杂的计算不定积分的方法,适用于一些特殊的被积函数形式。

它通过将被积函数视为多项式的线性组合形式,并利用线性代数中的方法求解。

6.对称性法:对称性法适用于具有对称性质的被积函数。

通过利用函数的对称性质,可以将不定积分简化为更容易处理的形式。

7.勾股定理法:勾股定理法适用于当被积函数具有勾股定理形式时。

通过利用勾股定理,可以将不定积分转化为勾股定理的逆定理的形式,然后求解。

8.换项法:换项法适用于当被积函数的形式与换项公式相似时。

通过将被积函数拆分成一个或多个项的和的形式,然后通过换项公式对其中的其中一项进行换项,从而简化积分计算。

综上所述,计算不定积分时常用的方法有替换法、分部积分法、微分方程法、图像法、线性代数法、对称性法、勾股定理法和换项法等。

在实际计算中,可以根据被积函数的特点选择相应的方法,以简化计算过程并求得准确的结果。

不定积分的计算方法

不定积分的计算方法

不定积分的计算方法不定积分是微积分中的一个重要概念,它是求解函数的原函数的过程。

在数学中,不定积分是求解一个函数的原函数,即找到一个函数,它的导函数恰好是给定函数。

不定积分可以帮助我们求解一些复杂的函数,以及解决一些实际问题。

本文将介绍几种常用的不定积分计算方法。

一、代数法代数法是一种常见的不定积分计算方法。

根据函数的性质和常用的积分公式,我们可以通过代数运算的方式进行计算。

例如,对于函数f(x) = x^2,我们可以使用幂函数的不定积分公式进行计算。

根据公式,我们知道幂函数的不定积分是这样的形式:∫x^ndx = (1/(n+1)) * x^(n+1) + C,其中C是一个常数。

所以根据上述公式,对于函数f(x) = x^2,我们可以得到∫x^2 dx =(1/3) * x^3 + C。

二、分部积分法分部积分法是另一种常用的不定积分计算方法。

它基于积分的乘积法则,可以将复杂的积分问题转化为简单的积分问题。

分部积分法的公式可以表示为∫u dv = uv - ∫v du。

其中,u和v是两个可微的函数。

例如,对于函数f(x) = x * cos(x),我们可以使用分部积分法进行计算。

首先,我们选择u = x,dv = cos(x) dx,然后对u和dv进行求导和积分,得到du = dx 和 v = sin(x)。

根据分部积分法的公式,我们可以得到∫x * cos(x) dx = x * sin(x) - ∫sin(x) dx。

进一步计算,我们可以得到∫x * cos(x) dx = x * sin(x) + cos(x) + C,其中C是一个常数。

三、换元法换元法是一种基于函数的复合运算关系的不定积分计算方法。

它通过变量替换的方式,将复杂的函数转化为简单的函数,从而进行积分计算。

换元法的基本思想是将积分中的自变量进行替换,使得原函数变得更简单。

常见的换元法中,我们可以使用简单代换和三角代换来求解不定积分。

第二讲不定积分的计算方法I

第二讲不定积分的计算方法I

第二讲不定积分的计算方法I在上一讲中,我们介绍了不定积分的概念及其基本性质。

本次讲座中,我们将继续探讨不定积分的计算方法,并会用到一些基本的积分公式和技巧。

一、基本积分公式1.幂函数的不定积分对于幂函数$f(x) = x^n (n \neq -1)$,我们有如下公式:$$\int x^n dx = \frac{1}{n+1}x^{n+1} + C$$其中,$C$为常数。

特殊地,对于$n=-1$的情况,我们有:$$\int \frac{1}{x} dx = \ln ,x, + C$$2.指数函数和对数函数的不定积分指数函数和对数函数也有一些基本的不定积分公式:$$\int a^xdx = \frac{1}{\ln a}a^x + C$$$$\int \frac{1}{x} dx = \ln ,x, + C$$其中,$a$为正实数,且$a \neq 1$。

3.三角函数的不定积分对于三角函数,有如下的不定积分公式:$$\int \sin x dx = -\cos x + C$$$$\int \cos x dx = \sin x + C$$$$\int \sec^2 x dx = \tan x + C$$$$\int \csc^2 x dx = -\cot x + C$$$$\int \sec x \tan x dx = \sec x + C$$$$\int \csc x \cot x dx = -\csc x + C$$二、基本的不定积分技巧1.基本积分表达式的组合不同的函数可以通过基本的积分公式组合而成。

例如,要计算$\int(2x^3+3x^2+5x+6)dx$,我们可以分别计算$x^4$、$x^3$、$x^2$和$x$的积分,然后将它们相加,即得到结果。

2.分解复杂函数对于一些较为复杂的函数,我们可以通过分解来简化计算。

例如,对于$\int \sin^2 x dx$,我们可以将其分解为$\int (1-\cos^2 x) dx$,然后再计算这两个部分的积分。

不定积分的计算方法I

不定积分的计算方法I

不定积分的计算方法I不定积分是微积分中的一个重要概念,它是求函数的原函数过程中的一个步骤。

不定积分也叫作反导函数,即给定一个函数f(x),求它的原函数F(x)。

在数学中,原函数与给定函数的导函数相等。

不定积分的计算方法有很多,下面我将介绍几种常见的计算方法。

1.基本积分法:基本积分法是一种基于已知函数的简单积分表格,通过查表得到积分结果的方法。

对于一些常见的函数,我们可以通过查找积分表格来得到它们的积分结果。

例如常见的幂函数、指数函数、三角函数等。

当然,这些函数在求导的时候也是通过已知的导函数公式求得的。

2.分部积分法:分部积分法是一种适用于乘积函数的积分法则。

给定两个函数u(x)和v(x),我们可以通过分部积分法计算积分∫u(x)v(x)dx。

分部积分法的公式表达为∫u(x)v'(x)dx = u(x)v(x) - ∫v(x)u'(x)dx。

通过选择适当的u(x)和v'(x),我们可以将这个积分化简为更容易求解的形式。

3.代换法:代换法也叫变量代换法,是一种通过变量代换来改变积分变量从而简化积分运算的方法。

对于一些复杂的函数积分,我们可以通过合理地选择变量代换来将积分变为更简单的形式。

例如,对于形如∫f(g(x))g'(x)dx 的积分,我们可以选择u=g(x)来进行变量代换,从而将积分转化为∫f(u)du的形式。

4.部分分式分解法:部分分式分解法是一种将一个有理函数拆解为若干简单的分式相加的方法,从而简化积分运算的方法。

对于一些有理函数,我们可以通过部分分式分解将其分解为一系列分式相加的形式,再对每一项分式进行不定积分。

5.定积分的性质:在计算不定积分时,我们也可以利用定积分的性质来进行简化。

例如,如果需要计算∫(f(x)+g(x))dx,我们可以先计算∫f(x)dx和∫g(x)dx,然后将两个结果相加。

类似地,对于∫f(x)g'(x)dx,我们可以利用定积分的性质将其转化为∫f(x)dg(x)dx。

[全]高等数学之不定积分的计算方法总结[下载全]

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。

不定积分是计算定积分和求解一阶线性微分方程的基础,所以掌握不定积分的计算方法很重要。

不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。

不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。

不定积分的计算方法主要有以下三种:
(1)第一换元积分法,即不定积分的凑微分求积分法;
(2)第二换元积分法
(3)分部积分法
常见的几种典型类型的换元法:
常见的几种典型类型的换元法
题型一:利用第一换元积分法求不定积分例1:
分析:
解:
题型二:利用第二换元积分法求不定积分例2:
解:
题型三:利用分部积分法求不定积分
分析:
例3:
解:。

不定积分与定积分的计算方法

不定积分与定积分的计算方法

不定积分与定积分的计算方法在数学中,积分是求解函数定积分和不定积分的一种重要方法。

不定积分和定积分之间有着不同的计算方法和应用场景。

本文将介绍不定积分和定积分的计算方法及其应用。

一、不定积分的计算方法不定积分,又称为原函数,是求解函数的反导函数。

不定积分记作∫f(x)dx,其中f(x)为被积函数,dx表示对x的积分。

不定积分的计算方法主要有以下几种:1. 常数项法则:如果f(x)是常函数,即f(x) = C,那么∫f(x)dx = Cx + k,其中k为常数。

2. 幂函数法则:对于幂函数f(x) = x^n,其中n≠-1,那么∫f(x)dx = (1/(n+1))x^(n+1) + k。

3. 三角函数法则:对于三角函数f(x) = sin x、cos x、tan x等,以及其倒数,可以利用基本积分公式进行计算。

4. 代换法则:当被积函数比较复杂时,可以通过代换变量来简化计算过程。

常用的代换包括三角代换、指数代换、倒数代换等。

二、定积分的计算方法定积分是对给定区间上的函数进行积分,可以得到一个数值结果。

定积分记作∫[a,b]f(x)dx,表示在区间[a,b]上对函数f(x)进行积分。

定积分的计算方法主要有以下几种:1. 几何意义法:定积分可以表示函数f(x)与x轴之间的有向面积,利用几何图形的面积计算方法来求解定积分。

2. 分割求和法:将积分区间[a,b]分成若干个小区间,通过求和来逼近定积分的值。

常用的分割求和方法有矩形法、梯形法、辛普森法等。

3. 牛顿-莱布尼兹公式:如果函数F(x)是f(x)的一个原函数,那么∫[a,b]f(x)dx = F(b) - F(a)。

利用牛顿-莱布尼兹公式,可以通过求解原函数来计算定积分。

三、不定积分与定积分的应用不定积分和定积分在数学和各个应用领域都有广泛的应用。

1. 几何应用:定积分被广泛用于计算曲线与x轴之间的面积、曲线长度、曲线的旋转体体积等几何问题。

2. 物理学应用:定积分在物理学中有着重要的应用,例如计算质点的位移、速度、加速度等问题。

不定积分的计算

不定积分的计算

不定义:如果在区间I 上,可导函数F (x )的导函数为f (x ),即对任一x ∈I ,都有()()dF(x)=f(x)dx F x f x '=或那么函数F(x)就称为f(x)(或f(x)dx)在区间I 上连续,那么在区间I 上存在可导函数F (x ),使对任一x I ∈都有()()F x f x '=简单地说:连续函数一定有原函数。

一、换元积分法 1、第一类换元法定理:设f (u )具有原函数,()u x ϕ=可导,则有换元公式:()[()]()[()]u x f x x dx f u ϕϕϕ='=⎰,设要求()g x dx ⎰,如果函数g (x )可以化为g x [()]()x x ϕϕ'⎰()=的形式,那么()()[()]()[()]u x g x dx f x x dx f u du ϕϕϕ='==⎰⎰.这样,函数g (x )的积分即化为函数f (u )的积分,如果能求得f (u )的原函数,那么也就求出了g(x)的原函数。

例,求⎰解:被积函数中,cos2x 是一个复合函数:cos2x=cosu ,u=2x ,常数因子恰好是中间变量u 的导数,因此,作变换u2x ,便有:2cos 2cos 22cos 22()cos sin 22cos 2sin 2xdx x dx x x dxudu u c u x xdx x c=∙=∙==+==+⎰⎰⎰⎰⎰即 将代入得2、第二类换元法定理:设()x t ϕ=是单调的可导的函数,并且()0t ϕ'≠,又设[()]()f t t ϕϕ'具有原函数,则有换元公式:1x ()[[()]()]t f x dx f t t dt ϕϕϕ-='=⎰⎰() (2)其中1x ϕ-()是()x t ϕ=的反函数。

证明:设[()]()f t t ϕϕ'的原函数为()t Φ,记1[()](x F x ϕ-Φ=),利用复合函数及反函数的求导法则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档