动力学中三种典型物理模型

合集下载

动力学问题中三种典型物理模型

动力学问题中三种典型物理模型

专题强化四动力学中三种典型物理模型专题解读 1.本专题是动力学方法在三类典型模型问题中的应用,其中等时圆模型常在选择题中考查,而滑块—木板模型和传送带模型常以计算题压轴题的形式命题.2.通过本专题的学习,可以培养同学们的审题能力、建模能力、分析推理能力和规范表达等物理学科素养,针对性的专题强化,通过题型特点和解题方法的分析,能帮助同学们迅速提高解题能力.3.用到的相关知识有:匀变速直线运动规律、牛顿运动定律、相对运动的有关知识.1.两种模型(如图1)2.等时性的证明设某一条光滑弦与水平方向的夹角为α,圆的直径为d,如图1所示.根据物体沿光滑弦做初速度为零的匀加速直线运动,加速度为a=g sin α,位移为x=d sin α,所以运动时间为t0=2xa=2d sin αg sin α=2dg.即沿同一起点或终点的各条光滑弦运动具有等时性,运动时间与弦的倾角、长短无关.例1如图2所示,PQ为圆的竖直直径,AQ、BQ、CQ为三个光滑斜面轨道,分别与圆相交于A、B、C三点.现让三个小球(可以看作质点)分别沿着AQ、BQ、CQ轨道自端点由静止滑到Q点,运动的平均速度分别为v1、v2和v3.则有:()A.v2>v1>v3B.v1>v2>v3C.v3>v1>v2D.v1>v3>v2变式1如图3所示,竖直半圆环中有多条起始于A点的光滑轨道,其中AB通过环心O并保持竖直.一质点分别自A点沿各条轨道下滑,初速度均为零.那么,质点沿各轨道下滑的时间相比较()A.无论沿图中哪条轨道下滑,所用的时间均相同B.质点沿着与AB夹角越大的轨道下滑,时间越短C.质点沿着轨道AB下滑,时间最短D.轨道与AB夹角越小(AB除外),质点沿其下滑的时间越短1.水平传送带模型项目图示滑块可能的运动情况情景1①可能一直加速②可能先加速后匀速情景2①v0>v,可能一直减速,也可能先减速再匀速②v0=v,一直匀速③v0<v,可能一直加速,也可能先加速再匀速情景3①传送带较短时,滑块一直减速到达左端②传送带较长时,滑块还要被传送带传回右端.若v0>v,返回时速度为v,若v0<v,返回时速度为v02.项目图示滑块可能的运动情况情景1①可能一直加速②可能先加速后匀速情景2①可能一直匀速②可能一直加速3.模型特点传送带问题的实质是相对运动问题,这样的相对运动将直接影响摩擦力的方向.4.解题关键(1)理清物体与传送带间的相对运动方向及摩擦力方向是解决传送带问题的关键.(2)传送带问题还常常涉及临界问题,即物体与传送带达到相同速度,这时会出现摩擦力改变的临界状态,对这一临界状态进行分析往往是解题的突破口.例2(多选)(2019·福建泉州市5月第二次质检)如图4,一足够长的倾斜传送带顺时针匀速转动.一小滑块以某初速度沿传送带向下运动,滑块与传送带间的动摩擦因数恒定,则其速度v随时间t变化的图象可能是()变式2(多选)(2019·陕西榆林市第三次测试)如图5所示,绷紧的水平传送带足够长,且始终以v1=2 m/s 的恒定速率顺时针运行.初速度大小为v2=3 m/s的小墨块从与传送带等高的光滑水平地面上的A处滑上传送带.若从小墨块滑上传送带开始计时,小墨块在传送带上运动5 s后与传送带的速度相同,则() A.小墨块未与传送带速度相同时,受到的摩擦力方向水平向右B.小墨块的加速度大小为0.2 m/s2C.小墨块在传送带上的痕迹长度为4.5 mD.小墨块在传送带上的痕迹长度为12.5 m1.模型特点“滑块—木板”模型类问题中,滑动摩擦力的分析方法与“传送带”模型类似,但这类问题比传送带类问题更复杂,因为木板受到摩擦力的影响,往往做匀变速直线运动,解决此类问题要注意从速度、位移、时间等角度,寻找各运动过程之间的联系.2.解题关键(1)临界条件:使滑块不从木板的末端掉下来的临界条件是滑块到达木板末端时的速度与木板的速度恰好相同.(2)问题实质:“板—块”模型和“传送带”模型一样,本质上都是相对运动问题,要分别求出各物体相对地面的位移,再求相对位移.例3(2019·贵州毕节市适应性监测(三))一长木板置于粗糙水平地面上,木板右端放置一小物块,如图6所示.木板与地面间的动摩擦因数μ1=0.1,物块与木板间的动摩擦因数μ2=0.4.t=0时刻开始,小物块与木板一起以共同速度向墙壁运动,当t=1 s时,木板以速度v1=4 m/s与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反.运动过程中小物块第一次减速为零时恰好从木板上掉下.已知木板的质量是小物块质量的15倍,重力加速度大小g取10 m/s2.求:(1)t=0时刻木板的速度大小;(2)木板的长度.变式3(2019·江西宜春市模拟)如图7所示,在倾角θ=37°的固定斜面上放置一质量M=1 kg、长度L=0.75 m的薄平板AB.平板的上表面光滑,其下端B与斜面底端C的距离为4 m.在平板的上端A处放一质量m =0.6 kg的滑块,开始时使平板和滑块都静止,之后将它们无初速度释放.设平板与斜面间、滑块与斜面间的动摩擦因数均为μ=0.5,通过计算判断无初速度释放后薄平板是否立即开始运动,并求出滑块与薄平板下端B到达斜面底端C的时间差Δt.(sin 37°=0.6,cos 37°=0.8,g=10 m/s2)1.如图1所示,ad、bd、cd是竖直面内三根固定的光滑细杆,a、b、c、d位于同一圆周上,a点为圆周的最高点,d点为圆周的最低点.每根杆上都套着一个小滑环(图中未画出),三个滑环A、B、C分别从a、b、c处由静止开始释放,用t1、t2、t3依次表示滑环A、B、C到达d点所用的时间,则()A.t1<t2<t3B.t1>t2>t3C.t3>t1>t2D.t1=t2=t32.(2020·广东东莞市质检)如图2所示,AB和CD为两条光滑斜槽,它们各自的两个端点均分别位于半径为R和r的两个相切的圆上,且斜槽都通过切点P.设有一重物先后沿两个斜槽从静止出发,由A滑到B和由C滑到D,所用的时间分别为t1和t2,则t1与t2之比为()A.2∶1 B.1∶1C.3∶1 D.1∶33.(多选)(2019·湖北黄冈市模拟)机场使用的货物安检装置如图3所示,绷紧的传送带始终保持v =1 m/s 的恒定速率运动,AB 为传送带水平部分且长度L =2 m ,现有一质量为m =1 kg 的背包(可视为质点)无初速度地放在水平传送带的A 端,可从B 端沿斜面滑到地面.已知背包与传送带间的动摩擦因数μ=0.5,g =10 m/s 2,下列说法正确的是( )A .背包从A 运动到B 所用的时间为2.1 s B .背包从A 运动到B 所用的时间为2.3 sC .背包与传送带之间的相对位移为0.3 mD .背包与传送带之间的相对位移为0.1 m4.(多选)(2019·河南周口市上学期期末调研)如图4所示,质量M =2 kg 的足够长木板静止在光滑水平地面上,质量m =1 kg 的物块静止在长木板的左端,物块和长木板之间的动摩擦因数μ=0.1,最大静摩擦力等于滑动摩擦力,重力加速度g 取10 m/s 2.现对物块施加一水平向右的恒力F =2 N ,则下列说法正确的是( ) A .物块和长木板之间的摩擦力为1 N B .物块和长木板相对静止一起加速运动 C .物块运动的加速度大小为1 m/s 2 D .拉力F 越大,长木板的加速度越大5.(多选)(2019·江西上饶市重点中学六校第一次联考)如图5所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间动摩擦因数为μ4,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g .现对物块施加一水平向右的拉力F ,则木板加速度a 大小可能是( ) A .0 B.2μg 3 C.μg2D.F 2m -μg46.(多选)(2019·河南天一大联考上学期期末)如图6甲所示,一滑块置于足够长的长木板左端,木板放置在水平地面上.已知滑块和木板的质量均为2 kg ,现在滑块上施加一个F =0.5t (N)的变力作用,从t =0时刻开始计时,滑块所受摩擦力随时间变化的关系如图乙所示.设最大静摩擦力与滑动摩擦力相等,重力加速度g 取10 m/s 2,则下列说法正确的是( ) A .滑块与木板间的动摩擦因数为0.4 B .木板与水平地面间的动摩擦因数为0.2 C .图乙中t 2=24 sD .木板的最大加速度为2 m/s 27.如图7甲所示,倾角为37°足够长的传送带以4 m/s的速度顺时针转动,现使小物块以2 m/s的初速度沿斜面向下冲上传送带,小物块的速度随时间变化的关系如图乙所示,g=10 m/s2,sin 37°=0.6,cos 37°=0.8,试求:(1)小物块与传送带间的动摩擦因数为多大;(2)0~8 s内小物块与传送带之间的划痕为多长.。

热点专题2 第15讲 动力学中的三种典型物理模型

热点专题2 第15讲 动力学中的三种典型物理模型

第15讲动力学中的三种典型物理模型热点概述(1)本热点是动力学方法在三类典型模型问题中的应用,其中“等时圆”模型常在选择题中考查,而“滑块—木板”模型和“传送带”模型常以选择题或计算题的形式命题。

(2)通过本热点的学习,可以培养同学们的审题能力、建模能力、分析推理能力和规范表达能力等物理学科素养。

经过针对性的专题强化,通过题型特点和解题方法的分析,帮助同学们迅速提高解题能力。

(3)用到的相关知识有:匀变速直线运动规律、牛顿运动定律、相对运动的有关知识。

热点一“等时圆”模型1.“等时圆”模型设想半径为R的竖直圆内有一条光滑直轨道,该轨道是一端与竖直直径相交的弦,倾角为θ,一个物体从轨道顶端滑到底端,则下滑的加速度a=g sinθ,位移x=2R sinθ,而x=12,解得t=2R g,这也是沿竖直直径自由下落的时间。

2at总结:物体沿着位于同一竖直圆上的所有光滑细杆(或光滑斜面)由静止下滑,到达圆周的最低点(或从最高点到达同一圆周上各点)的时间相等,都等于物体沿直径做自由落体运动所用的时间。

2.三种典型情况(1)质点从竖直圆上沿不同的光滑弦上端由静止开始滑到圆的最低点所用时间相等,如图甲所示。

(2)质点从竖直圆上最高点沿不同的光滑弦由静止开始滑到下端所用时间相等,如图乙所示。

(3)两个竖直圆相切且两圆的竖直直径均过切点,质点沿不同的过切点的光滑弦从上端由静止开始滑到下端所用时间相等,如图丙所示。

如图所示,ab 、cd 是竖直平面内两根固定的光滑细杆,a 、b 、c 、d 位于同一圆周上,b 点为圆周的最低点,c 点为圆周的最高点,若每根杆上都套着一个小滑环(图中未画出),将两滑环同时从a 、c 处由静止释放,用t 1、t 2分别表示滑环从a 到b 、从c 到d 所用的时间,则( )A .t 1=t 2B .t 1>t 2C .t 1<t 2D .无法确定解析 设滑杆与竖直方向的夹角为α,圆的直径为D ,根据牛顿第二定律得滑环的加速度为a =mg cos αm =g cos α,杆的长度为x =D cos α,则根据x =12at 2得,t =2x a =2D cos αg cos α=2Dg ,可见时间t 只与圆的直径、当地的重力加速度有关,A 正确,B 、C 、D 错误。

热点专题系列(3) 动力学中三种典型物理模型

热点专题系列(3)  动力学中三种典型物理模型

热点专题系列(三)动力学中三种典型物理模型热点概述:动力学中三种典型物理模型分别是等时圆模型、传送带模型和滑块—木板模型,通过本专题的学习,可以培养审题能力、建模能力、分析推理能力。

[热点透析]等时圆模型1.模型分析如图甲、乙所示,质点沿竖直面内圆环上的任意一条光滑弦从上端由静止滑到底端,可知加速度a=g sinθ,位移x=2R sinθ,由匀加速直线运动规律有x=12,2at 得下滑时间t=2R,即沿竖直直径自由下落的时间。

图丙是甲、乙两图的组合,g不难证明有相同的结论。

2.结论模型1质点从竖直面内的圆环上沿不同的光滑弦上端由静止开始滑到环的最低点所用时间相等,如图甲所示;模型2质点从竖直面内的圆环上最高点沿不同的光滑弦由静止开始滑到下端所用时间相等,如图乙所示;模型3两个竖直面内的圆环相切且两环的竖直直径均过切点,质点沿不同的光滑弦上端由静止开始经切点滑到下端所用时间相等,如图丙所示。

3.思维模板其中模型3可以看成两个等时圆,分段按上述模板进行时间比较。

如图所示,位于竖直平面内的固定光滑圆环轨道与水平面相切于M 点,与竖直墙相切于A点。

竖直墙上另一点B与M的连线和水平面的夹角为60°,C是圆环轨道的圆心。

已知在同一时刻a、b两球分别由A、B两点从静止开始沿光滑倾斜直轨道AM、BM运动到M点;c球由C点自由下落到M点。

则()A.a球最先到达M点B.b球最先到达M点C.c球最先到达M点D.b球和c球都可能最先到达M点解析由等时圆模型知,a球运动时间小于b球运动时间,a球运动时间和沿过CM的直径的下落时间相等,所以从C点自由下落到M点的c球运动时间最短,故C正确。

答案 C传送带模型传送带模型的特征是以摩擦力为纽带关联传送带和物块的运动。

这类问题涉及滑动摩擦力和静摩擦力的转换、对地位移和二者间相对位移的区别,需要综合牛顿运动定律、运动学公式、功和能等知识求解。

题型一:物块在水平传送带上题型概述:物块在水平传送带上可分为两种情形:一是物块轻放在水平传送带上;二是物块以一定的初速度冲上水平传送带。

动力学中三类典型物理模型的分析

动力学中三类典型物理模型的分析

高考级横一^^教学参考第50卷第丨期2021年1月动力学中三类典型物理模型的分析康俊李明(河南省淮滨高级中学河南信阳464400)文章编号:l〇〇2-218X(2021)01-0038-05《普通高中物理课程标准(2020年修订)》课程 目标中明确提出学生要通过学习具有建构模型的 意识和能力;学业质量中进人高等院校相关专业学 习应达到的水平要求是4,能将实际问题中的对象 和过程转换成所学的物理模型,能对综合性物理问 题进行分析和推理,获得结论并作出解释。

《中国 高考评价体系》明确说明试题以生活实践问题情境 和学习探索问题情境为载体进行测量与评价。

通过对近年高考物理试题的研究发现,动力学 问题是每年高考必考内容之一。

“等时圆模型”“传 送带模型”“板块模型”是动力学中三类典型过程模 型,也是常考的问题情境。

本文选取这三类模型进 行深入分析,以期能在高考备考中提供一些参考。

_、等时圆模型1.真题统计(如表1)表1近十年高考物理“等时圆模型”相关试题统计年份题号命题角度2018浙江省11月选考卷13题光滑轨道2.模型分析如图1、2所示,质点沿竖直面内圆环上的任意 一条光滑弦从上端由静止滑到底端,受力分析可知 加速度a=0,位移:r=2J?sin 0,由匀加速直线运动规律:r=|加2,得出下滑时间i= 2 即沿竖直直径自由下落的时间。

图3是图1和图2的组合,不难证明有相同的结论。

图 1 图2中图分类号:G632.479文献标识码:B3.模型特征特征1质点从竖直面内的圆环上沿不同的光滑弦上端由静止开始滑到环的最低点,或从最高点由静止滑到各光滑弦下端,所用时间都相等,如图1、2所示。

特征2两个竖直面内的圆环相切且两环的竖直直径均过切点,质点沿不同的光滑弦上端由静止开始经切点滑到下端所用时间相等,如图3所示。

4.思维模型此类问题的思维方法如图4所示:图45.典题示例例1(2018年浙江省11月选考卷13题)如图5所示为某一游戏的局部简化示意图。

高中物理经典解题模型归纳

高中物理经典解题模型归纳

高中物理经典解题模型归纳高中物理24个经典模型1、"皮带"模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题.2、"斜面"模型:运动规律.三大定律.数理问题.3、"运动关联"模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系.4、"人船"模型:动量守恒定律.能量守恒定律.数理问题.5、"子弹打木块"模型:三大定律.摩擦生热.临界问题.数理问题.6、"爆炸"模型:动量守恒定律.能量守恒定律.7、"单摆"模型:简谐运动.圆周运动中的力和能问题.对称法.图象法.8.电磁场中的"双电源"模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律.9.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题.10、"平抛"模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动).11、"行星"模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.临界问题).12、"全过程"模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法.13、"质心"模型:质心(多种体育运动).集中典型运动规律.力能角度.14、"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题.15、"挂件"模型:平衡问题.死结与活结问题,采用正交分解法,图解法,三角形法则和极值法.16、"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理方法(参照物变换法.守恒法)等.17."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题.18.远距离输电升压降压的变压器模型.19、"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用.20、"电路的动态变化"模型:闭合电路的欧姆定律.判断方法和变压器的三个制约问题.21、"磁流发电机"模型:平衡与偏转.力和能问题.22、"回旋加速器"模型:加速模型(力能规律).回旋模型(圆周运动).数理问题.23、"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性.24、电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平面导轨.竖直导轨等,处理角度为力电角度.电学角度.力能角度.高中物理11种基本模型题型1:直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。

高中物理常见十种模型

高中物理常见十种模型

a2=g(sin θ-μcos θ)=2 m/s2, x2=L-x1=5.25 m,
(2 分) (1 分)
x2=v0t2+12a2t22,
(2 分)
得 t2=0.5 s,(2 分) 则煤块从 A 到 B 的时间为 t=t1+t2=1.5 s.(1 分)


(2)第一过程痕迹长 Δx1=v0t1-12a1t21=5 m,(2 分)
物理模型——传送带模型中的动力学问题 1.模型特征 一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动 的力学系统可看做“传送带”模型,如图甲、乙、丙所示.
2.建模指导 传送带模型问题包括水平传送带问题和倾斜传送带问题. (1)水平传送带问题:求解的关键在于对物体所受的摩擦力进 行正确的分析判断.根据物体与传送带的相对速度方向判断 摩擦力方向.两者速度相等是摩擦力突变的临界条件. (2)倾斜传送带问题:求解的关键在于认真分析物体与传送带 的相对运动情况,从而确定其是否受到滑动摩擦力作用.如 果受到滑动摩擦力作用应进一步确定其大小和方向,然后根 据物体的受力情况确定物体的运动情况.当物体速度与传送 带速度相等时,物体所受的摩擦力有可能发生突变.
物理模型——两种运动的合成与分解实例 一、小船渡河模型 1.模型特点 两个分运动和合运动都是匀速直线运动,其中一个分运动的 速度大小、方向都不变,另一分运动的速度大小不变,研究 其速度方向不同时对合运动的影响.这样的运动系统可看做 小船渡河模型.
2.模型分析 (1)船的实际运动是水流的运动和船相对静水的运动的合运动. (2)三种速度:v1(船在静水中的速度)、v2(水流速度)、v(船的实际 速度). (3)两个极值
[审题点睛] (1)判断两者之间是否发生滑动,要比较两者之 间的摩擦力与最大静摩擦力的关系,若f<fm,则不滑动,反 之则发生滑动. (2)两者发生相对滑动时,两者运动的位移都是对地的,注意 找位移与板长的关系.

动力学中三种典型物理模型—高考物理总复习优质PPT课件

动力学中三种典型物理模型—高考物理总复习优质PPT课件

1.(2019·合肥质检)如图所示,有一半圆,
其直径水平且与另一圆的底部相当于 O 点,
O 点恰好是下半圆的圆心,它们处在同一竖
直平面内.现有三条光滑轨道 AOB、COD、
EOF,它们的两端分别位于上下两圆的圆周上,轨道与
竖直直径的夹角关系为 α>β>θ,现让一小物块先后从三
条轨道顶端由静止下滑至底端,则小物块在每一条倾斜轨
关于物块与传送带间的动摩擦因数 μ 及物块在传送带上
运动第一次回到传送带左端的时间 t,下列计算结果正确
的是( )
A.μ=0.4
B.μ=0.2
C.t=4.5 s
D.t=3 s
[思维点拨] (1)由 v-t 图象可知,物块刚滑上传送带
的速率为 4 m/s,传送带的速率为 2 m/s.
(2)物块在传送带上所受摩擦力方向始终向左,物块
答案:B
二、“传送带”模型
1.水平传送带模型
项目
图示
滑块可能的运动情况
情景 1
①可能一直加速; ②可能先加速后匀速
①v0>v,可能一直减速,也可能 先减速再匀速;
情景 2
②v0=v,一直匀速; ③v0<v 时,可能一直加速,也可 能先加速再匀速
情景 3
①传送带较短时,滑块一直减速 到达左端; ②传送带较长时,滑块还要被传 送带传回右端.其中 v0>v 返回 时速度为 v,当 v0<v 时返回时速 度为 v0
物块经减速、反向加速到与传送带相对静止,最后匀速运 动回到传送带左端时,物块的位移为 0,由题图乙可得物 块在传送带上运动的总时间为 4.5 s,C 正确,D 错误.
答案:BC
物体在传送带上运动过程情况判断 1.若传送带较长,或物体与传送带间的动摩擦因数 较大,则物体先与传送带相对运动,后相对静止.物体 往往先加速后匀速,直至传送带端点. 2.若传送带较短,或物体与传送带间的动摩擦因数 较小,则物体与传送带一直是相对运动的,无相对静止 过程.物体往往一直加速到传送带端点.

小专题动力学中常考的物理模型PPT课件

小专题动力学中常考的物理模型PPT课件

【变式训练】
2.如图4所示,光滑细杆BC、DC和AC构成
矩形ABCD的两邻边和对角线,AC∶BC∶
DC=5∶4∶3,AC杆竖直,各杆上分别套
有一质点小球a、b、d,a、b、d三小
球的质量比为1∶2∶3,现让三小球同时从
图4
各杆的顶点由静止释放,不计空气阻力,则a、b、d三小
球在各杆上滑行的时间之比为
模型三 传送带模型 1.模型特征
(1)水平传送带模型
项目
图示
情景1
滑块可能的运动情况
(1)可能一直加速 (2)可能先加速后匀 速
情景2 情景3
(1)v0>v时,可能一直减速,也可能先减 速再匀速 (2)v0<v时,可能一直加速,也可能先加 速再匀速
(1)传送带较短时,滑块一直减速达到左 端 (2)传送带较长时,滑块还要被传送带传 回右端。其中v0>v返回时速度为v,当 v0<v返回时速度为v0

当物块的初速度为v2时,由运动学公式知
(v2)2=2asinh θ

由③④两式得 h=H4
由①③两式得 μ=(2vgH2 -1)tan θ。 答案 D
【变式训练】
1.为了使雨滴能尽快地淌离房顶,要设计好房顶的高度,
设雨滴沿房顶下淌时做无初速度无摩擦的运动,那么如
图所示的四种情况中符合要求的是
()
夹角为θ,工作时运行速度为v,粮袋与传
()
解析 如图所示,在竖直线 AC 上选取一点 O,以适当的长度 为半径画圆,使该圆过 A 点,且与斜面相切于 D 点。由等时圆 模型的特点知,由 A 点沿斜面滑到 D 点所用时间比由 A 点到 达斜面上其他各点所用时间都短。将木板下端与 D 点重合即可, 而∠COD=θ,则 α=θ2。 答案 B

动力学中三种典型物理模型 实验作业

动力学中三种典型物理模型 实验作业

热点专题系列(三)动力学中三种典型物理模型[热点集训]1. (2021·山东、湖北部分重点中学高三上12月教学质量联合检测)(多选)如图所示,光滑水平地面上有一静止的足够长质量为M的平板,质量为m的物块以水平速度v0冲上平板,因摩擦二者发生相对滑动,最终至共速,对该过程,下列说法正确的是()A.若只是v0变大,由开始运动至共速时间变长,相对运动的距离变长B.若只是m变大,由开始运动至共速时间不变,相对运动的距离不变C.若只是M变小,由开始运动至共速时间变短,相对运动的距离变短D.若只是动摩擦因数变小,由开始运动至共速时间变长,相对运动的距离变长答案ACD解析根据题意,作出物块和平板的v-t图像,如图所示。

若只是v0变大,即在图中将物块匀变速直线运动的图线平行上移,则由开始运动至共速时间变长,再根据v-t图像中图线与t轴围成的面积表示物体运动的位移可知,物块和平板相对运动的距离变长,A正确;根据牛顿第二定律,平板的加速度大小a板=μmg M,物块的加速度大小a物=μg,若只是m变大,平板的加速度变大,物块的加速度不变,结合图像可知由开始运动至共速时间变短,相对运动的距离变短,B错误;若只是M变小,平板的加速度变大,物块的加速度不变,则由开始运动至共速时间变短,相对运动的距离变短,C正确;若只是动摩擦因数变小,物块的加速度和平板的加速度均变小,则由开始运动至共速时间变长,相对运动的距离变长,D正确。

2.(2020·福建省宁德市高中同心顺联盟高三上学期期中)(多选)如图甲所示,足够长的传送带与水平面夹角为θ,在传送带上某位置轻轻放置一小木块,小木块与传送带间动摩擦因数为μ,小木块的速度随时间变化的关系如图乙所示,v 0、t 0已知,重力加速度为g ,则( )A .传送带一定逆时针转动B .μ=tan θ+v 0gt 0cos θC .t 0后木块的加速度为2g sin θ-v 0t 0D .传送带的速度大于v 0答案 AC解析 若传送带顺时针转动,当木块下滑(mg sin θ>μmg cos θ)时,将一直匀加速到底端;当木块上滑(mg sin θ<μmg cos θ)时,先匀加速运动,在速度与传送带相等后将匀速运动;两种情况均不符合图乙所示v -t 图像,则传送带一定逆时针转动,故A 正确。

专题强化四 动力学中三种典型物理模型

专题强化四 动力学中三种典型物理模型

专题强化四动力学中三种典型物理模型模型一“等时圆”模型1.“等时圆”模型所谓“等时圆”就是物体沿着位于同一竖直圆上的所有光滑细杆由静止下滑,到达圆周的最低点(或从最高点到达同一圆周上各点)的时间相等,都等于物体沿直径做自由落体运动所用的时间。

2.模型的三种情况(1)物体从竖直圆环上沿不同的光滑弦上端由静止开始滑到环的最低点所用时间相等,如图甲所示。

(2)物体从竖直圆环上最高点沿不同的光滑弦由静止开始滑到下端所用时间相等,如图乙所示。

(3)两个竖直圆环相切且两环的竖直直径均过切点,物体沿不同的光滑弦上端由静止开始滑到下端所用时间相等,如图丙所示。

【例1(2021·山东济南市二模)滑滑梯是小朋友们爱玩的游戏。

有两部直滑梯AB 和AC,A、B、C在竖直平面内的同一圆周上,且A为圆周的最高点,示意图如图1所示,已知圆周半径为R。

在圆周所在的竖直平面内有一位置P,距离A点为3R且与A等高。

各滑梯的摩擦均不计,已知重力加速度为g。

图1(1)如果小朋友由静止开始分别沿AB和AC滑下,试通过计算说明两次沿滑梯运动的时间关系;(2)若设计一部上端在P 点,下端在圆周上某点的直滑梯,则小朋友沿此滑梯由静止滑下时,在滑梯上运动的最短时间是多少?答案 (1)t AB =t AC (2)3R g 解析 (1)设AB 与水平方向夹角为θ,小朋友沿AB 下滑时的加速度a =g sin θ 又x AB =12at 2AB ,AB 间的距离为x AB =2R sin θ,解得t AB =4Rg 与角度无关,同理可知t AC =4Rg ,故t AB =t AC 。

(2)根据第一问的结论,画出以P 点为最高点的半径为r 的等时圆,如图所示当两圆相切时,运动的时间最短,由几何关系知(R +r )2=(R -r )2+(3R )2解得r =34R ,最短时间t =3Rg 。

【针对训练1】 如图2所示,PQ 为圆的竖直直径,AQ 、BQ 、CQ 为三个光滑斜面轨道,分别与圆相交于A 、B 、C 三点。

专题三 动力学中常见的“三个物理模型”

专题三 动力学中常见的“三个物理模型”

在木板与墙壁碰撞后, 木板以-v1 的初速度向左做匀变速运 动,小物块以 v1 的初速度向右做匀变速运动.设小物块的加速 度为 a2,由牛顿第二定律有 -μ2mg=ma2⑤ 由图(b)可得 v2-v1 a2= ⑥ t2-t1 式中,t2=2 s,v2=0,联立⑤⑥式并结合题给条件得 μ2=0.4⑦
[解析] 如图所示,在竖直线 AC 上选取一点 O,以适当的 长度为半径画圆,使该圆过 A 点,且与斜面相切于 B 点.由等 时圆知识可知,由 A 沿斜面滑到 B 所用时间比由 A 到达斜面上 θ 其他各点所用时间都短.而∠COB=θ,则 α=2. [答案] B
[题组训练] 1.
如图所示,几条足够长的光滑直轨道与水平面成不同角度, 从 P 点以大小不同的初速度沿各轨道发射小球, 若各小球恰好在 相同的时间内到达各自的最高点,则各小球最高点的位置( ) A.在同一水平线上 B.在同一竖直线上 C.在同一抛物线上 D.在同一圆周上
方法技巧 传送带模型中动力学问题的求解思路
模型三 滑块——木板模型 1.模型构建 上、下叠放两个物体,并且两物体在摩擦力的相互作用下发 生相对滑动.如下图所示:
2.两种位移关系 滑块由滑板的一端运动到另一端的过程中, 若滑块和滑板同 向运动,位移大小之差等于板长;反向运动时,位移大小之和等 于板长. 设板长为 L,滑块位移大小为 x1,滑板位移大小为 x2 同向运动时:L=x1-x2

答案:B
模型二 传送带模型中的动力学 问题 1.水平传送带模型
2.倾斜传送带模型
2.水平传送带被广泛地应用于机场和火车站,如图所示为一 水平传送带装置示意图.紧绷的传送带 AB 始终保持恒定的速率 v=1 m/s 运行,一质量为 m=4 kg 的行李无初速度地放在 A 处, 传送带对行李的滑动摩擦力使行李开始做匀加速直线运动, 随后 行李又以与传送带相等的速率做匀速直线运动. 设行李与传送带 之间的动摩擦因数 μ=0.1,A、B 间的距离 L=2 m,g 取 10 m/s2.

高三物理一轮复习知识点专题6动力学三大基本模型

高三物理一轮复习知识点专题6动力学三大基本模型

精品基础教育教学资料,仅供参考,需要可下载使用!高三物理一轮复习知识点专题6 动力学三大基本模型—【讲】第一部分:考点梳理考点一、传送带模型考点二、板块模型考点三、弹簧模型考点一、传送带模型传送带模型传送带问题为高中动力学问题中的难点,主要表现在两方面:其一,传送带问题往往存在多种可能结论的判定,即需要分析确定到底哪一种可能情况会发生;其二,决定因素多,包括滑块与传送带间的动摩擦因数大小、斜面倾角,传送带速度、传送方向、滑块初速度的大小及方向等。

这就需要考生对传送带问题能做出准确的动力学过程分析。

传送带模型1——水平传求解的关键在于对物体所受的摩擦力进行正确的分析判断。

物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻。

(典例应用1)如图所示,传送带保持以1 m/s的速度顺时针转动。

现将一质量m=0.5 kg的物体从离传送带很近的a点轻轻地放上去,设物体与传送带间动摩擦因数μ=0.1,a、b间的距离L=2.5 m,则物体从a 点运动到b点所经历的时间为多少?(g取10 m/s2)【答案】:g v v l μ2+或gl μ2 【解析】物块在传送带上可能经历两种运动形式,如果传送带足够长物块先匀加速到与传送带共速,然后再匀速的走完剩余的全程,如果传送带不是足够长,则物块在传送带上一直匀加速; 方式一:物块先匀加速再匀速; 对物块受力分析:g a ma mg μμ==...设物块从开始加速到与传送带共速需要的时间为t1,从共速到走完剩余全程需要的时间为t2;阶段一速度关系式:10at v +=...)(11g vt μ=; 阶段一位移关系式:)2(2)(212122221g v g v g at x μμμ=⨯== 阶段二速度关系式:)3(22vx t = 阶段二位移关系式:)4(2212g v l x l x μ-=-= 求得:)5(22gvv l t μ-=所以从AB 传送到B 的总时间为:)6(221gv v l t t t μ+=+= 方式二、物块在传送带上一直匀加速到另一端; 对物块受力分析:g a ma mg μμ==...对物体进行运动分析,如果传送带不是足够长,物块在传送带上一直匀加速;221at l =得g lt μ2=,所以物块从A 传送到B 的时间为glt μ2=或g v v l t μ2+=方法总结:如图所示是物块在传送带上的两种运行模式,分析可知,在传送带的长度一定时,把物块从A 运送到B 端的两种方式中,t0<t1结论是:如果能够保证物体在传送带上一路匀加速,那么物体到达右端所需的时间更短.(典例应用2)如图所示,一平直的传送带以速度v =2m/s 匀速运动,传送带把A 处的工件运送到B 处,A 、B 相距L =10m ,从A 处把工件无初速地放到传送带上,经过时间t =6s ,能传送到B 处,求: (1)工件在传送带上加速运动过程中的加速度大小及加速运动的时间;(2)欲用最短的时间把工件从A 处传送到B 处,求传送带的运行速度至少多大?【答案】:(1)1m/s2 (2)52【解析】:对工件受力分析:g a ma mg μμ==....对工件进行运动分析:假设工件从静止释放到与传送带共速共需要经历的时间为t 速度关系:)1...(at v =代入得2=at t=2s位移关系:)2)...(6(212t v at l -+=,代入相关参数得:a=1m/s 2如果工件在传送带上一路匀加速刚好到达B 端时的速度为V ,且刚好与传送带共速,此时传送带的速度即为其临界的最小速度。

24个物理模型总结归纳

24个物理模型总结归纳

24个物理模型总结归纳物理模型是指通过建立数学模型或者物理实验来描述和解释物理系统的方法。

在物理学的研究中,各种物理模型被广泛应用于解决各种问题,帮助我们理解和预测自然界中发生的现象和规律。

本文将对24个常见的物理模型进行总结和归纳,以帮助读者更好地理解物理学中的重要概念和原理。

一、质点模型(Particle Model)质点模型是物理学中最简单的模型之一,它将物体简化为一个质点,忽略了物体的大小和形状,仅考虑其位置和质量。

这种模型通常用于研究质点在空间中的运动规律,如自由落体、抛体运动等。

二、弹簧模型(Spring Model)弹簧模型用于描述弹性物体的行为。

它基于胡克定律,即弹簧的伸长或缩短与外力成正比,这种模型被广泛应用于弹簧振子、弹簧劲度系统等物理问题的研究。

三、电路模型(Circuit Model)电路模型用于描述电流和电压在电路中的传递和转换规律。

通过建立电路图和应用基尔霍夫定律、欧姆定律等规律,可以计算电流、电压和阻抗等电路参数,解决各种电路问题。

四、热传导模型(Heat Conduction Model)热传导模型用于描述热量在物体或介质中的传递和分布规律。

它基于热传导方程和傅里叶定律,可以计算热传导过程中的温度变化和热流量等参数,解决热传导问题。

五、光线模型(Ray Optics Model)光线模型用于描述光在直线传播时的规律。

通过光的反射、折射等现象,可以计算光线的传播路径和光的成像特性,解决光学问题,如镜子、透镜等光学器件的成像原理。

六、气体模型(Gas Model)气体模型用于描述气体的状态和行为。

它基于理想气体状态方程和玻意耳定律,可以计算气体的压力、体积和温度等参数,解决气体的扩散、压缩等问题。

七、电磁场模型(Electromagnetic Field Model)电磁场模型用于描述电荷和电流在空间中产生的电场和磁场的分布和相互作用规律。

它基于麦克斯韦方程组,可以计算电荷受力、电流感应等问题,解决电磁场中的电磁现象。

动力学中常考的“三个物理模型” (1) 共26页

动力学中常考的“三个物理模型” (1) 共26页

(2)从 t=0 时刻到物块与木板均停止运动时,物
块相对于木板的位移的大小.
解析一
返回导航页
结束放映
应用牛顿第二定律求解叠加体问题的一般思路
返回导航页
结束放映
2.(2014·芜湖市 5 月模拟)如图所示,在光滑水 平面上有一个质量为 30 kg 的静止小车 B,小车足够 长且上表面水平.车上还有一质 量为 10 kg 的静止小物块 A(可视 为质点),现对小车施加水平向右,大小恒定为 56 N 的力,使其由静止开始运动.测得小车在最初 2 s 内 运动了 3 m,求:
B 间(的2)距求行离李L做=匀2 m加,速g直取线运10动m的/s时2. 间;
(3)如果提高传送带的运行速率,行李就能被较
快地传送到 B 处,求行李从 A 处传送到 B 处的最短
时间和传送带对应的最小运行速率.
解析
返回导航页
结束放映
[审题指导] 关键词:①无初速度地放在A处.
②行李开始做匀加速直线运动. ③随后行李又以与传送带相等的速率 做匀加速直线运动.
地面上运动,在 t=0 时刻将一相对于地
面静止的物块轻放到木板上,以后木板
运动的速度—时间图象如图所示.已知
物块与木板的质量相等,物块与木板间
及木板与地面间均有摩擦,物块与木板
间的最大静摩擦力等于滑动摩擦力,且物块始终在木
板上.取重力加速度的大小 g=10 m/s2,求:
(1)物块与木板间、木板与地面间的动摩擦因数;
(1)小车 B 的加速度大小; (2)4 s 末物块 A 的速度大小.
返回导航页
解析
结束放映
1模.型常三见模传型送带模型
(1)水平传送带模型
项目
图示

2019年高考物理三轮:动力学中三种典型的模型概要

2019年高考物理三轮:动力学中三种典型的模型概要

高中物理动力学中三种典型物理模型总结一、“等时圆”模型 1.两种模型(如图1)图12.等时性的证明设某一条光滑弦与水平方向的夹角为α,圆的直径为d (如图2).根据物体沿光滑弦做初速度为零的匀加速直线运动,加速度为a =g sin α,位移为s =d sin α,所以运动时间为t 0=2sa图2即沿同一起点或终点的各条光滑弦运动具有等时性,运动时间与弦的倾角、长短无关.二、“传送带”模型1.水平传送带模型2.倾斜传送带模型三、“滑块—木板”模型1.模型特点滑块(视为质点)置于长木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生相对滑动.2.两种位移关系滑块从木板的一端运动到另一端的过程中,若滑块和木板向同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;若滑块和木板向相反方向运动,则滑块的位移和木板的位移之和等于木板的长度.【等时圆模型典例分析】【传送带模型典例分析】1.水平传送带水平传送带又分为两种情况:物体的初速度与传送带速度同向(含物体初速度为0)或反向. 在匀速运动的水平传送带上,只要物体和传送带不共速,物体就会在滑动摩擦力的作用下,朝着和传送带共速的方向变速(若v物<v传,则物体加速;若v物>v传,则物体减速),直到共速,滑动摩擦力消失,与传送带一起匀速,或由于传送带不是足够长,在匀加速或匀减速过程中始终没达到共速.计算物体与传送带间的相对路程要分两种情况:①若二者同向,则Δs=|s传-s物|;②若二者反向,则Δs=|s传|+|s物|.2.倾斜传送带物体沿倾角为θ的传送带传送时,可以分为两类:物体由底端向上运动,或者由顶端向下运动.解决倾斜传送带问题时要特别注意mg sin θ与μmg cos θ的大小和方向的关系,进一步判断物体所受合力与速度方向的关系,确定物体运动情况.【“滑块—木板”模型典例分析】如图7所示,解决此模型的基本思路如下:图7。

高考热点突破(三)——动力学中常考的“三个物理模型”

高考热点突破(三)——动力学中常考的“三个物理模型”

返回导航页
结束放映
(多选)(2014· 四川理综· 7)如图所示,水平传送带以速度 v1 匀速 运动,小物体 P、Q 由通过定滑轮且不可伸长的轻绳相连,t=0 时刻 P 在传送带左端具有速度 v2,P 与定滑轮间的绳水平,t=t0 时刻 P 离开传 送带。不计定滑轮质量和摩擦,绳足够长。正确描述小物体 P 速度随时 间变化的图象可能是( )
4 解析:小车 B 从开始
返回导航页
结束放映
[课时作业答案]
题号 答案 题号 答案 题号 答案
1 2 3
D
(1)不会
5
C BD
(1)4 N 1 m/s2
7
(1)0.50 m
4
AC
6
(2)1 s
(3)2 s 2 m/s
8
(2)3.0 m (3)33 N
返回导航页 结束放映
本节结束。 谢谢!
返回导航页
返回导航页 结束放映
3 解析:小木块刚放到传送带上时将会与传送带 发生相对滑动,加速度 a1=gsin θ+μgcos θ,当小木 块与传送带达到共同速度 v 后, 由于 μ<tan θ, 小木 块将会相对于传送带向下滑动,加速度 a2=gsin θ- μgcos θ;由于 a1>a2,选项 D 正确。 答案: D
返回导航页
结束放映
1 .常见模型 模型三 传送带模型 (1)水平传送带模型 项目 图示
v0 0
滑块可能的运动情况
v
情景 1
v0
v
情景 2
v
v0
情景 3
(1)可能一直加速 (2)可能先加速后匀速 (1)v 传送带较短时,滑块一 ⑴ 0 > v 时,可能一直减速, 直减速达到左端 也可能先减速再匀速 (2)v 传送带较长时,滑块还 0<v时,可能一直加速, 要被传送带传回右端.其 也可能先加速再匀速 中v0>v返回时速度为v,当 v0<v返回时速度为v0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题强化四 动力学中三种典型物理模型专题解读 1.本专题是动力学方法在三类典型模型问题中的应用,其中等时圆模型常在选择题中考查,而滑块—木板模型和传送带模型常以计算题压轴题的形式命题.2.通过本专题的学习,可以培养同学们审题能力、建模能力、分析推理能力和规范表达等物理学科素养,针对性的专题强化,通过题型特点和解题方法的分析,能帮助同学们迅速提高解题能力.3.用到的相关知识有:匀变速直线运动规律、牛顿运动定律、相对运动的有关知识.一、“等时圆”模型 1.两种模型(如图1)图12.等时性的证明设某一条光滑弦与水平方向的夹角为α,圆的直径为d (如图2).根据物体沿光滑弦做初速度为零的匀加速直线运动,加速度为a =g sin α,位移为s =d sin α,所以运动时间为t 0=2s a=图2即沿同一起点或终点的各条光滑弦运动具有等时性,运动时间与弦的倾角、长短无关.二、“传送带”模型1.水平传送带模型2.倾斜传送带模型三、“滑块—木板”模型1.模型特点滑块(视为质点)置于长木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生相对滑动.2.两种位移关系滑块从木板的一端运动到另一端的过程中,若滑块和木板向同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;若滑块和木板向相反方向运动,则滑块的位移和木板的位移之和等于木板的长度.命题点一 “等时圆”模型例1 如图3所示,ad 、bd 、cd 是竖直面内三根固定的光滑细杆,a 、b 、c 、d 位于同一圆周上,a 点为圆周的最高点,d 点为圆周的最低点.每根杆上都套着一个小滑环(图中未画出),三个滑环A 、B 、C 分别从a 、b 、c 处由静止开始释放,用t 1、t 2、t 3依次表示滑环A 、B 、C 到达d 点所用的时间,则( )图3A.t 1<t 2<t 3B.t 1>t 2>t 3C.t 3>t 1>t 2D.t 1=t 2=t 3 答案 D解析 如图所示,滑环在下滑过程中受到重力mg 和杆的支持力F N 作用.设杆与水平方向的夹角为θ,根据牛顿第二定律有mg sin θ=ma ,得加速度大小a =g sin θ.设圆周的直径为D ,则滑环沿杆滑到d 点的位移大小x =D sin θ,x =12at 2,解得t =2Dg.可见,滑环滑到d 点的时间t 与杆的倾角θ无关,即三个滑环滑行到d 点所用的时间相等,选项D 正确.变式1如图4所示,位于竖直平面内的固定光滑圆环轨道与水平面相切于M点,与竖直墙相切于A点.竖直墙上另一点B与M的连线和水平面的夹角为60°,C是圆环轨道的圆心.已知在同一时刻a、b两球分别由A、B两点从静止开始沿光滑倾斜直轨道AM、BM运动到M 点;c球由C点自由下落到M点.则()图4A.a球最先到达M点B.b球最先到达M点C.c球最先到达M点D.b球和c球都可能最先到达M点答案 C解析设圆轨道半径为R,据“等时圆”理论,t a=4Rg=2Rg,t b>t a,c球做自由落体运动t c=2Rg,C选项正确.命题点二“传送带”模型1.水平传送带水平传送带又分为两种情况:物体的初速度与传送带速度同向(含物体初速度为0)或反向.在匀速运动的水平传送带上,只要物体和传送带不共速,物体就会在滑动摩擦力的作用下,朝着和传送带共速的方向变速(若v物<v传,则物体加速;若v物>v传,则物体减速),直到共速,滑动摩擦力消失,与传送带一起匀速,或由于传送带不是足够长,在匀加速或匀减速过程中始终没达到共速.计算物体与传送带间的相对路程要分两种情况:①若二者同向,则Δs=|s传-s物|;②若二者反向,则Δs=|s传|+|s物|.2.倾斜传送带物体沿倾角为θ的传送带传送时,可以分为两类:物体由底端向上运动,或者由顶端向下运动.解决倾斜传送带问题时要特别注意mg sin θ与μmg cos θ的大小和方向的关系,进一步判断物体所受合力与速度方向的关系,确定物体运动情况.例2 如图5所示为车站使用的水平传送带模型,其A 、B 两端的距离L =8 m ,它与水平台面平滑连接.现有物块以v 0=10 m/s 的初速度从A 端水平地滑上传送带.已知物块与传送带间的动摩擦因数为μ=0.6.试求:图5(1)若传送带保持静止,物块滑到B 端时的速度大小?(2)若传送带顺时针匀速转动的速率恒为12 m/s ,则物块到达B 端时的速度大小?(3)若传送带逆时针匀速转动的速率恒为4 m/s ,且物块初速度变为v 0′=6 m/s ,仍从A 端滑上传送带,求物块从滑上传送带到离开传送带的总时间? 答案 (1)2 m/s (2)12 m/s (3)2512s解析 (1)设物块的加速度大小为a ,由受力分析可知 F N =mg ,F f =ma ,F f =μF N 得a =6 m/s 2传送带静止,物块从A 到B 做匀减速直线运动,又x =v 202a =253m>L =8 m ,则由v B 2-v 02=-2aL 得v B =2 m/s(2)由题意知,物块先加速到v 1=12 m/s 由v 12-v 02=2ax 1,得x 1=113 m<L =8 m故物块先加速后匀速运动即物块到达B 时的速度为v B ′=v 1=12 m/s (3)由题意可知,物块先向右减速后向左加速 ①向右减速到v 2=0时由v 22-v 0′2=-2ax 2得x 2=3 m 由v 2=v 0′-at 1得t 1=1 s ②向左加速到v 3=4 m/s 时由v 32-v 22=2ax 3得x 3=43 m<x 2=3 m故向左先加速后匀速 由v 3=v 2+at 2得t 2=23 s③向左匀速运动v 4=v 3=4 m/s x 4=x 2-x 3=53 m由x 4=v 4t 3得t 3=512 s故t =t 1+t 2+t 3=2512s变式2 (2018·湖北荆州模拟)如图6所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为θ=37°,传送带AB 足够长,传送皮带轮以大小为v =2 m/s 的恒定速率顺时针转动.一包货物以v 0=12 m/s 的初速度从A 端滑上倾斜传送带,若货物与皮带之间的动摩擦因数μ=0.5,且可将货物视为质点.(g =10 m/s 2,已知sin 37°=0.6,cos 37°=0.8)图6(1)求货物刚滑上传送带时加速度为多大?(2)经过多长时间货物的速度和传送带的速度相同?这时货物相对于地面运动了多远? (3)从货物滑上传送带开始计时,货物再次滑回A 端共用了多长时间? 答案 (1)10 m/s 2,方向沿传送带向下 (2)1 s 7 m (3)(2+22) s解析 (1)设货物刚滑上传送带时加速度为a 1,货物受力如图所示:根据牛顿第二定律得沿传送带方向:mg sin θ+F f =ma 1 垂直传送带方向:mg cos θ=F N 又F f =μF N由以上三式得:a 1=g (sin θ+μcos θ)=10×(0.6+0.5×0.8) m/s 2=10 m/s 2,方向沿传送带向下. (2)货物速度从v 0减至传送带速度v 所用时间设为t 1,位移设为x 1,则有: t 1=v -v 0-a 1=1 s ,x 1=v 0+v 2t 1=7 m(3)当货物速度与传送带速度相等时,由于mg sin θ>μmg cos θ,此后货物所受摩擦力沿传送带向上,设货物加速度大小为a 2,则有mg sin θ-μmg cos θ=ma 2, 得:a 2=g (sin θ-μcos θ)=2 m/s 2,方向沿传送带向下. 设货物再经时间t 2,速度减为零,则t 2=0-v-a 2=1 s货物沿传送带向上滑的位移x 2=v +02t 2=1 m则货物上滑的总距离为x =x 1+x 2=8 m.货物到达最高点后将沿传送带匀加速下滑,下滑加速度大小等于a 2.设下滑时间为t 3,则x =12a 2t 32,代入解得t 3=2 2 s. 所以货物从A 端滑上传送带到再次滑回A 端的总时间为t =t 1+t 2+t 3=(2+22) s.命题点三 “滑块—木板”模型如图7所示,解决此模型的基本思路如下:图7例3 (2017·全国卷Ⅲ·25)如图8,两个滑块A 和B 的质量分别为m A =1 kg 和m B =5 kg ,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m =4 kg ,与地面间的动摩擦因数为μ2=0.1.某时刻A 、B 两滑块开始相向滑动,初速度大小均为v 0=3 m/s.A 、B 相遇时,A 与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g =10 m/s 2.求:图8(1)B 与木板相对静止时,木板的速度; (2)A 、B 开始运动时,两者之间的距离.答案 (1)1 m/s ,方向与B 的初速度方向相同 (2)1.9 m解析 (1)滑块A 和B 在木板上滑动时,木板也在地面上滑动.设A 、B 和木板所受的摩擦力大小分别为F f1、F f2和F f3,A 和B 相对于地面的加速度大小分别为a A 和a B ,木板相对于地面的加速度大小为a 1.在滑块B 与木板达到共同速度前有 F f1=μ1m A g ① F f2=μ1m B g② F f3=μ2(m +m A +m B )g③由牛顿第二定律得 F f1=m A a A④ F f2=m B a B⑤F f2-F f1-F f3=ma 1⑥设在t 1时刻,B 与木板达到共同速度,其大小为v 1.由运动学公式有 v 1=v 0-a B t 1⑦ v 1=a 1t 1⑧联立①②③④⑤⑥⑦⑧式,代入已知数据得 v 1=1 m/s ,方向与B 的初速度方向相同⑨(2)在t 1时间间隔内,B 相对于地面移动的距离为 s B =v 0t 1-12a B t 12⑩设在B 与木板达到共同速度v 1后,木板的加速度大小为a 2.对于B 与木板组成的系统,由牛顿第二定律有 F f1+F f3=(m B +m )a 2⑪由①②④⑤式知,a A =a B ;再由⑦⑧式知,B 与木板达到共同速度时,A 的速度大小也为v 1,但运动方向与木板相反.由题意知,A 和B 相遇时,A 与木板的速度相同,设其大小为v 2.设A 的速度大小从v 1变到v 2所用的时间为t 2,则由运动学公式,对木板有 v 2=v 1-a 2t 2⑫ 对A 有:v 2=-v 1+a A t 2⑬在t 2时间间隔内,B (以及木板)相对地面移动的距离为 s 1=v 1t 2-12a 2t 22⑭在(t 1+t 2)时间间隔内,A 相对地面移动的距离为 s A =v 0(t 1+t 2)-12a A (t 1+t 2)2⑮A 和B 相遇时,A 与木板的速度也恰好相同.因此A 和B 开始运动时,两者之间的距离为 s 0=s A +s 1+s B⑯联立以上各式,并代入数据得 s 0=1.9 m⑰(也可用如图所示的速度—时间图线求解)变式3 如图9所示,质量m =1 kg 的物块A 放在质量M =4 kg 木板B 的左端,起初A 、B 静止在水平地面上.现用一水平向左的力F 作用在木板B 上,已知A 、B 之间的动摩擦因数为μ1=0.4,地面与B 之间的动摩擦因数为μ2=0.1,假设最大静摩擦力等于滑动摩擦力,g =10 m/s 2,求:图9(1)能使A 、B 发生相对滑动的F 的最小值;(2)若F =30 N ,作用1 s 后撤去,要想A 不从B 上滑落,则木板至少多长;从开始到A 、B 均静止,A 的总位移是多少. 答案 (1)25 N (2)0.75 m 14.4 m解析 (1)对于A ,最大加速度由A 、B 间的最大静摩擦力决定,即 μ1mg =ma m ,a m =4 m/s 2对A 、B 整体F -μ2(M +m )g =(M +m )a m ,解得F =25 N(2)设F 作用在B 上时A 、B 的加速度分别为a 1、a 2,撤掉F 时速度分别为v 1、v 2,撤去外力F 后加速度分别为a 1′、a 2′,A 、B 共同运动时速度为v 3,加速度为a 3, 对于A μ1mg =ma 1,得a 1=4 m/s 2,v 1=a 1t 1=4 m/s 对于B F -μ1mg -μ2(M +m )g =Ma 2, 得a 2=5.25 m/s 2,v 2=a 2t 1=5.25 m/s撤去外力a 1′=a 1=4 m/s ,a 2′=μ1mg +μ2(M +m )gM =2.25 m/s 2经过t 2时间后A 、B 速度相等v 1+a 1′t 2=v 2-a 2′t 2 解得t 2=0.2 s共同速度v 3=v 1+a 1′t 2=4.8 m/s从开始到A 、B 相对静止,A 、B 的相对位移即为木板最短的长度LL=x B-x A=v222a2+v23-v22-2a2′-12a1(t1+t2)2=0.75 mA、B速度相等后共同在水平面上匀减速运动,加速度a3=μ2g=1 m/s2从v3至最终静止位移为x=v2 32a3=11.52 m所以A的总位移为x A总=x A+x=14.4 m.1.(2018·广东东莞质检)如图1所示,AB和CD为两条光滑斜槽,它们各自的两个端点均分别位于半径R和r的两个相切的圆上,且斜槽都通过切点P.设有一重物先后沿两个斜槽从静止出发,由A滑到B和由C滑到D,所用的时间分别为t1和t2,则t1与t2之比为()图1A.2∶1B.1∶1C.3∶1D.1∶ 3答案 B2.如图2所示,水平方向的传送带顺时针转动,传送带速度大小恒为v=2 m/s,两端A、B间距离为3 m.一物块从B端以初速度v0=4 m/s滑上传送带,物块与传送带间的动摩擦因数μ=0.4,g取10 m/s2.物块从滑上传送带至离开传送带的过程中,速度随时间变化的图象是图中的()图2答案 B3.(多选)如图3所示,一足够长的木板静止在粗糙的水平面上,t=0时刻滑块从木板的左端以速度v 0水平向右滑行,木板与滑块之间存在摩擦,且最大静摩擦力等于滑动摩擦力,则滑块的v -t 图象可能是下列图中的( )图3答案 BD4.(多选)如图4所示,表面粗糙、质量M =2 kg 的木板,t =0时在水平恒力F 的作用下从静止开始沿水平面向右做匀加速直线运动,加速度a =2.5 m/s 2,t =0.5 s 时,将一个质量m =1 kg 的小铁块(可视为质点)无初速度地放在木板最右端,铁块从木板上掉下时速度是木板速度的一半.已知铁块和木板之间的动摩擦因数μ1=0.1,木板和地面之间的动摩擦因数μ2=0.25,g =10 m/s 2,则( )图4A.水平恒力F 的大小为10 NB.铁块放上木板后,木板的加速度为2 m/s 2C.铁块在木板上运动的时间为1 sD.木板的长度为1.625 m 答案 AC解析 未放铁块时,对木板由牛顿第二定律:F -μ2Mg =Ma ,解得F =10 N ,选项A 正确;铁块放上木板后,对木板:F -μ1mg -μ2(M +m )g =Ma ′,解得:a ′=0.75 m/s 2,选项B 错误;0.5 s 时木板的速度v 0=at 1=2.5×0.5 m/s =1.25 m/s ,铁块滑离木板时,木板的速度:v 1=v 0+a ′t 2=1.25+0.75t 2,铁块的速度v ′=a铁t 2=μ1gt 2=t 2,由题意:v ′=12v 1,解得t 2=1 s ,选项C 正确;铁块滑离木板时,木板的速度v 1=2 m/s ,铁块的速度v ′=1 m/s ,则木板的长度为:L =v 0+v 12t 2-v ′2t 2=1.25+22×1 m -12×1 m =1.125 m ,选项D 错误;故选A 、C.5.如图5所示为粮袋的传送装置,已知A 、B 两端间的距离为L ,传送带与水平方向的夹角为θ,工作时运行速度为v ,粮袋与传送带间的动摩擦因数为μ,正常工作时工人在A 端将粮袋放到运行中的传送带上.设最大静摩擦力与滑动摩擦力大小相等,重力加速度大小为g .关于粮袋从A 到B 的运动,以下说法正确的是( )图5A.粮袋到达B 端的速度与v 比较,可能大,可能小也可能相等B.粮袋开始运动的加速度为g (sin θ-μcos θ),若L 足够大,则以后将以速度v 做匀速运动C.若μ≥tan θ,则粮袋从A 端到B 端一定是一直做加速运动D.不论μ大小如何,粮袋从Α到Β端一直做匀加速运动,且加速度a ≥g sin θ 答案 A解析 若传送带较短,粮袋在传送带上可能一直做匀加速运动,到达B 端时的速度小于v ;若传送带较长,μ≥tan θ,则粮袋先做匀加速运动,当速度与传送带的速度相同后,做匀速运动,到达B 端时速度与v 相同;若μ<tan θ,则粮袋先做加速度为g (sin θ+μcos θ)的匀加速运动,当速度与传送带相同后做加速度为g (sin θ-μcos θ)的匀加速运动,到达B 端时的速度大于v ,选项A 正确;粮袋开始时速度小于传送带的速度,相对传送带的运动方向是沿传送带向上,所以受到沿传送带向下的滑动摩擦力,大小为μmg cos θ,根据牛顿第二定律得加速度a =mg sin θ+μmg cos θm =g (sin θ+μcos θ),选项B 错误;若μ≥tan θ,粮袋从A 到B 可能是一直做匀加速运动,也可能先匀加速运动,当速度与传送带的速度相同后,做匀速运动,选项C 、D 均错误.6.如图6所示,倾角为θ=37°的传送带始终保持以v =5 m/s 的速率顺时针匀速转动,AB 两端距离d =15.25 m.现将一物块(可视为质点)无初速度从A 端放上传送带,物块与传送带间的动摩擦因数μ=0.5,取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,求物块到达B 端时的速度大小和物块从A 端运动到B 端所用的时间.图6答案 9 m/s 2.5 s解析 设物块由静止运动到传送带速度v =5 m/s 的过程,其加速度为a 1,运动时间为t 1,位移为x 1,由牛顿第二定律和运动学规律有 mg sin θ+μmg cos θ=ma 1 v =a 1t 1 x 1=12a 1t 12代入数据解得a 1=10 m/s 2,t 1=0.5 s ,x 1=1.25 m由于x 1=1.25 m<d =15.25 m ,当物块的速度等于传送带速度时,因为mg sin 37°>μmg cos 37°,物块将继续向下做匀加速运动.设物块此后运动的加速度为a 2,运动时间为t 2,位移为x 2,到B 端的速度为v B ,由牛顿第二定律和运动学规律,有 mg sin θ-μmg cos θ=ma 2 x 2=d -x 1=v t 2+12a 2t 22v B =v +a 2t 2代入数据解得a 2=2 m/s 2,t 2=2 s ,v B =9 m/s物块从A 端运动到B 端所用时间为t ,有t =t 1+t 2=2.5 s7.(2018·青海西宁调研)图7甲为一转动的传送带AB ,传送带以恒定的速率v 逆时针转动.在传送带的左侧边缘的B 点有一滑块,若让滑块以初速度v 1=3 m/s 冲上传送带,滑块运动的v -t 图象如图乙中a 所示,若让滑块以初速度v 2=6 m/s 冲上传送带,滑块运动的v -t 图象如图乙中b 所示.g 取10 m/s 2,试求:图7(1)传送带的长度l 和传送带与物块之间的动摩擦因数μ; (2)滑块以初速度v 1=3 m/s 冲上传送带时,滑块返回B 点的时间. 答案 (1)32 m 0.05 (2)12.5 s解析(1)根据v-t图象,滑块以初速度v2=6 m/s冲上传送带时,在t=8 s时刻,到达A点,所以传送带的长度l=12×(6+2)×8 m=32 m根据图线a或者图线b,滑块的加速度大小为a=ΔvΔt=0.5 m/s2根据牛顿第二定律得μmg=ma解得传送带与滑块之间的动摩擦因数μ=0.05(2)滑块在0~6 s和6~t s内的位移大小相等,方向相反12×6×3 m=12×(t-6+t-10)×2 m滑块返回B点的时间t=12.5 s.8.如图8所示,质量M=1 kg的木板A静止在水平地面上,在木板的左端放置一个质量m =1 kg的铁块B(大小可忽略),铁块与木块间的动摩擦因数μ1=0.3,木板长L=1 m,用F=5 N的水平恒力作用在铁块上,g取10 m/s2.图8(1)若水平地面光滑,计算说明铁块与木板间是否会发生相对滑动;(2)若木板与水平地面间的动摩擦因数μ2=0.1,求铁块运动到木板右端所用的时间.答案见解析解析(1)A、B之间的最大静摩擦力为F fm>μ1mg=0.3×1×10 N=3 N假设A、B之间不发生相对滑动则对A、B整体:F=(M+m)a对B:F f AB=ma解得:F f AB=2.5 N因F f AB<F fm,故A、B之间不发生相对滑动(2)A、B之间发生相对滑动,则对B:F-μ1mg=ma B对A:μ1mg-μ2(M+m)g=Ma A据题意:x B -x A =L ;x A =12a A t 2;x B =12a B t 2解得:t = 2 s.。

相关文档
最新文档