2016上海市浦东新区一模数学试卷word(详解版)
2016年上海浦东新区初三一模数学试卷答案
⎧ 4a − 2b + c43; c = −5
⎨ b = −2
⎩
⎩
c = −8
c = −8
∴二次函数的解析式为y
=
2 x
−
2x
−
8
.
(2) 写出抛物线顶点坐标和对称轴.
学生版
教师版
答案版
答 案 顶点坐标为(1, −9),对称轴为x = 1.
答案 D
解 析 A.有一个顶角(或底角)相等的两个等腰三角形相似,所以A选项错误.
B.两边对应成比例且它们的夹角相等的两个三角形相似,所以B选项错误.
C.四个内角都对应相等的两个四边形不一定相似,所以C选项错误.
D.斜边和一条直角边对应成比例的两个直角三角形相似,所以D选项正确.
故选D.
填空题(本大题共12小题,每题4分,满分48分)
∴ , −−→
2
GA = − a ⃗
3
2018/12/04 −−→
∴用向量a表⃗ 示向量GA为−
2
. a ⃗
3
14. 如图,在△ABC 中,AC = , 6 BC = , 是 9 D △ABC 的边BC 上的点,且∠C AD = ∠B,那么C D的长是
.
答案 4
解析
∵ , , ∠C = ∠C ∠C AD = ∠B
∴ ∽ , △AC D △BC A
∴ , AC
CD
=
BC
AC
即 , 6
CD
=
9
6
∴C D的长是4,
故答案为:4.
15.
如图,直线 ,如果 AA1//BB1//C C1
AB
=
1 ,AA1 = , 2 C C1 = 6,那么线段BB1的长是
2016年上海中考数学一模试卷和答案含奉贤,浦东,青浦,静安,闸北,嘉定,宝山,虹口,黄浦9区试卷和答案
2016年奉贤区调研测试九年级数学2016.01(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)1.用一个4倍放大镜照△ABC ,下列说法错误的是(▲) A .△ABC 放大后,∠B 是原来的4倍; B .△ABC 放大后,边AB 是原来的4倍; C .△ABC 放大后,周长是原来的4倍; D .△ABC 放大后,面积是原来的16倍2.抛物线()212y x =-+的对称轴是(▲)A .直线2x =;B .直线2x =-;C .直线1x =;D .直线1x =-.3.抛物线223y x x =--与x 轴的交点个数是(▲) A . 0个 ; B .1个; C . 2个 ; D . 3个.4.在△ABC 中,点D 、E 分别是边AB 、AC 上的点,且有12AD AE DB EC ==,BC =18,那么DE 的值为(▲)A .3 ;B .6 ;C .9 ;D .12. 5.已知△ABC 中,∠C =90°,BC =3,AB =4,那么下列说法正确的是(▲) A .3sin 5B =; B . 3cos 4B = ; C .4tan 3B =; D .3cot 4B =6.下列关于圆的说法,正确的是(▲) A .相等的圆心角所对的弦相等;B .过圆心且平分弦的直线一定垂直于该弦;C .经过半径的端点且垂直于该半径的直线是圆的切线;D .相交两圆的连心线一定垂直且平分公共弦.二.填空题:(本大题共12题,每题4分,满分48分) 7.已知3x =2y ,那么xy=▲; . 8.二次函数342+=x y 的顶点坐标为▲;9. 一条斜坡长4米,高度为2米,那么这条斜坡坡比i =▲;10.如果抛物线k x k y -+=2)2(的开口向下,那么k 的取值范围是▲;11.从观测点A 处观察到楼顶B 的仰角为35°,那么从楼顶B 观察观测点A 的俯角为▲; 12.在以O 为坐标原点的直角坐标平面内有一点A (-1,3),如果AO 与y 轴正半轴的夹角为α,那么角α的余弦值为▲;13.如图,△ABC 中,BE 平分∠ABC ,DE//BC ,若DE =2AD ,AE=2,那么EC =▲; 14.线段AB 长10cm ,点P 在线段AB 上,且满足BP APAP AB=,那么AP 的长为▲cm ;. 15.⊙O 1的半径11r =,⊙O 2的半径22r =,若此两圆有且仅有一个交点,那么这两圆的圆心距d =▲;16.已知抛物线(4)y ax x =+,经过点A (5,9)和点B (m,9),那么m =▲;17.如图,△ABC 中,AB =4,AC =6,点D 在BC 边上,∠DAC =∠B ,且有AD =3,那么BD的长为▲;18.如图,已知平行四边形ABCD 中,AB=AD =6,cotB =21,将边AB 绕点A 旋转,使得点B 落在平行四边形ABCD 的边上,其对应点为B ’(点B ’不与点B 重合),那么 sin ∠CAB ’=▲. 三、解答题(本大题共7题,满分78分) 19.(本题满分10分)计算:︒+︒--︒+︒60sin 260tan 2130cos 45sin 422.第13题图BA DC E第17题图B ADC第18题图B20.(本题满分10分,每小题5分)如图,已知AB//CD//EF ,AB:CD:EF=2:3:5,=. (1)=BD (用a 来表示);(2)求作向量AE 在AB 、BF 方向上的分向量. (不要求写作法,但要指出所作图中表示结论的向量)21.(本题满分10分,每小题5分)为方便市民通行,某广场计划对坡角为30°,坡长为60米的斜坡AB 进行改造,在斜坡中点D 处挖去部分坡体(阴影表示),修建一个平行于水平线CA 的平台DE 和一条新的斜坡BE .(1)若修建的斜坡BE 的坡角为36°,则平台DE 的长约为多少米?(2)在距离坡角A 点27米远的G 处是商场主楼,小明在D 点测得主楼顶部H 的仰角为30°,那么主楼GH 高约为多少米?(结果取整数,参考数据:sin 36°=0.6,cos 36°=22.(本题满分10分,每小题5分)如图,在⊙O 中,AB 为直径,点B 为CD 的中点,CD =AE =5. (1)求⊙O 半径r 的值;(2)点F 在直径AB 上,联结CF ,当∠FCD =∠DOB 时,求AF 的长.E AB F第20题图CD第21题图F E ABOCD23.(本题满分12分,第(1)小题6分,第(2)小题6分) 已知:在梯形ABCD 中,AD //BC ,AB ⊥BC ,∠AEB =∠ADC . (1)求证:△ADE ∽△DBC ;(2)联结EC,若2CD AD BC =⋅,求证:∠DCE =∠ADB .24.(本题满分12分,第(1)小题4分,第(2)小题8分)如图,二次函数2y x bx c =++图像经过原点和点A (2,0),直线AB 与抛物线交于点B , 且∠BAO =45°.(1)求二次函数解析式及其顶点C 的坐标; (2)在直线AB 上是否存在点D ,使得△BCD为直角三角形.若存在,求出点D 的坐标, 若不存在,说明理由.25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) 已知:如图,Rt △ABC 中,∠ACB =90°,AB =5,BC =3,点D 是斜边AB 上任意一点,联结DC ,过点C 作CE ⊥CD ,垂足为点C ,联结DE ,使得∠EDC =∠A ,联结BE . (1)求证:AC BE BC AD ⋅=⋅;(2)设AD =x ,四边形BDCE 的面积为S ,求S 与x 之间的函数关系式及x 的取值范围; (3)当ABC BDE S S ∆=41△时,求tan ∠BCE 的值.EA B第20题图CDAE第25题备用图A2016学年九年级第一学期期末测试参考答案与评分标准 2016.01一、选择题:(本大题共6题,每题4分,满分24分)1.A ; 2.C ; 3.C ; 4.B ; 5.B ; 6.D . 二、填空题:(本大题共12题,每题4分,满分48分)7.23; 8.(0,3);9.2k <-; 10.1 11.35°; 12.10103; 13.4; 14.5; 15.1或3; 16.-9; 17.72; 18.1010或2.三、解答题:(本大题共7题,满分78分)19.(1)原式=2+24222⎛⨯ ⎝⎭...................................(4分)=(13+244-+(4分) = -1 .......................(2分) 20.解:(1)13a …………………………………………………(5分)(2)向量AE 在AB 、BF 方向上的分向量分别为GE 、AG.图形准确……………………………………………(3分) 结论正确……………………………………………(2分)21.解:(1)由题意得,AB =60米,∠BAC =30°,∠BEF =36°,FM//CG∵点D 是AB 的中点 ∴BD =AD =12AB =30................................................(1分) ∵DF//AC 交BC 、HG 分别于点F 、M , ∴∠BDF =∠A=30°,∠BFE =∠C=90° 在Rt △BFD 中,∠BFD =90°,cos BDF DF BD ∠=,30DF =, 25.5DF =≈............(1分) sin BF BDF BD∠=1230BF =. 15BF =…………………………(1分)在Rt △BFE 中,∠BFE =90°,tan BEF BFEF ∠=,0.715EF =,EF =21.4………(1分) ∴DE=DF-EF =25.5-21.4=4.1≈4(米)答:平台DE 的长约为4米. ………………………………………………………(1分)(2)由题意得,∠HDM =30°,AG =27米,过点D 作DN ⊥AC 于点N在Rt △DNA 中,∠DNA =90°cos DAC AN AD ∠=30AN =AN =(1分)sin DN DAN AD∠= 1230DN = 15DN =...................(1分)∴27DM NG AN AG ==+=……………………………………(1分)在Rt △HMD 中,∠HMD =90° tan HDM HMDM ∠=15HM =+453930153915≈+=++=+=MG HM HG 米…(1分)答:主楼GH 的高约为45米………………………………………………………(1分) 22.解:(1) ∵OB 是半径,点B 是CD 的中点∴OB ⊥CD ,CE=DE =12CD =…(2分)∴222ODED OE =+ ∴()()2225-5r r =+ 解得 r =3…………(3分)(2) ∵OB ⊥CD ∴∠OEC=∠OED =90°……………………………………………(1分) 又∵∠FCE=∠DOE ∴△FCE ∽△DOE ∴EF CEED OE=…………………………(2分)= 得52EF =……………………………………………………(1分)∴ 52AF AE EF =-=……………………………………………………………(1分) 23.(1)证明:∵AD ∥BC ∴∠ADB =∠DBC ………………………………………(2分) ∵ ∠ADC+∠C=180° ∠AEB+∠AED=180°又∵∠AEB =∠ADC ∴∠C =∠AED …………………………………………(2分) ∴△ADE ∽△DBC ……………………………………………………………(2分) (2) ∵△ADE ∽△DBC∴AD DBDE BC =∴AD BC DB DE ⋅=⋅…………………………………………(1分) ∵2CD AD BC =⋅ ∴2CD DB DE =⋅∴CD DEDB CD =………………………………………………………………………(1分) ∵∠CDB =∠CDE∴△CDE ∽△BDC ………………………………………………………………(2分) ∴ ∠DCE =∠DBC ………………………………………………………………(1分) ∵∠ADB =∠DBC∴∠DCE =∠ADB ………………………………………………………………(1分)24.解:(1)将原点(0,0)和点A (2,0)代入2y x bx c =++中0042cb c=⎧⎨=++⎩ 解得20b c =-⎧⎨=⎩ 22y x x =-………………………(3分)∴顶点C 的坐标为(1,﹣1(2)过点B 作BG ⊥x 轴,垂足为点G ∵∠BGA =90°,∠A =45° ∴∠GBA=45° 设点A (x ,22x x -) 则22x x -=2-x ∴点B (-1,3设直线AB : 0y kx b k =+≠() 将点A (2,0)、B (-1,3)代入203k b k b +=⎧⎨-+=⎩解得12k b =-⎧⎨=⎩ 直线AB :y =设点D (x ,2x -+)则BC =CD =BD 若△BCD 为直角三角形①∠BCD =90° ∴222BC CD BD += 即(222+= 解得73x =∴7133D ⎛⎫⎪⎝⎭点,-……………………………………………(2分)② ∠BDC =90°∴222BDCD BC += 即(222+=解得 1221x x ==-,(舍去) ∴点D (2,0)…………………(2分)综上所述:()712,033D ⎛⎫ ⎪⎝⎭点,-或25.解:(1)∵CE ⊥CD ∴∠DCE =∠BCA =90︒∵∠EDC =∠A ∴△EDC ∽△BAC ∴EC BCDC AC=……………(2分) ∵∠DCE =∠BCA ∴∠DCE -∠BCD =∠BCA -∠BCD 即∠BCE=∠DCA ……(1分)∵ECBCDC AC = ∴△BCE ∽△ACD ………………………………(1分)∴BCACBEAD= 即AC BE BC AD ⋅=⋅………………………………………(1分) (2)∵△BCE ∽△ACD ∴∠CBE =∠A ∵∠BCA=90° ∴4AC ,∠ABC+∠A=90°∴∠CBE+∠ABC=90°即∠DBE=90°……………………(1分)∴DE ==∵BC AC BE AD =,34BE x = ∴ 3=4BE x ()2113153==52248BDE x x S BD BE x x ∆-⋅-⋅=……………………………………(1分) ∵ △CDE ∽△CAB ∴22121165CDE ABC S DE x x S AB ∆∆⎛⎫==-+ ⎪⎝⎭ ∵11==43=622ABC S BC AC ∆⋅⨯⨯ ∴2312=685CDE S x x ∆-+……………………(1分) 即()21=S 60540BDE CDE S S x x ∆∆+=-<<……………………………(2分) (3)11==43=622ABC S BC AC ∆⋅⨯⨯ 由14ABC S S ∆=得 21531684x x -=⨯ ∴2540x x -+=1214x x ==,…………………………(1分)过点D 作DF ⊥AC 于点F ∴∠DFA=∠BCA =90°∴ DF ∥BC ∴DF AD AFBC AB AC == 当x =1时,3455DF AF ==,,165CF AC AF =-=………………………………(1分) 在Rt △DFC 中,∠DFC =90° t a n 3DF DCF ==∠∵∠BCE=∠DCA ∴3an 16t BCE =∠当x =4时,得121655DF AF ==, CF =3tan DCF DFCF∠==,即tan ∠∴综上所述:6an 331t BCE =∠或.2016浦东一模一. 选择题1. 如果两个相似三角形对应边之比是1:4,那么它们的对应边上的中线之比是( ) A. 1:2; B. 1:4; C. 1:8; D. 1:16;2. 在Rt △ABC 中,90C ︒∠=,若5AB =,4BC =,则sin A 的值为( )A.34; B. 35; C. 45; D. 43; 3. 如图,点D 、E 分别在AB 、AC 上,以下能推得DE ∥BC 的条件是( ) A. ::AD AB DE BC =; B. ::AD DB DE BC =; C. ::AD DB AE EC =; D. ::AE AC AD DB =;4. 已知二次函数2y ax bx c =++的图像如图所示,那么a 、b 、c 的符号为( ) A. 0a <,0b <,0c >; B. 0a <,0b <,0c <; C. 0a >,0b >,0c >; D. 0a >,0b >,0c <;5. 如图,Rt △ABC 中,90ACB ︒∠=,CD AB ⊥于点D ,下列结论中错误的是( )A. 2AC AD AB =⋅;B. 2CD CA CB =⋅; C. 2CD AD DB =⋅; D. 2BC BD BA =⋅; 6. 下列命题是真命题的是( )A. 有一个角相等的两个等腰三角形相似;B. 两边对应成比例且有一个角相等的两个三角形相似;C. 四个内角都对应相等的两个四边形相似;D. 斜边和一条直角边对应成比例的两个直角三角形相似;二. 填空题7. 已知13x y =,那么x x y =+ ; 8. 计算:123()3a ab -+=;9. 上海与杭州的实际距离约200千米,在比例尺为1:5000000的地图上,上海与杭州的图 上距离约 厘米;10. 某滑雪运动员沿着坡比为100米,则运动员下降的垂直高度为 米;11. 将抛物线2(1)y x =+向下平移2个单位,得到新抛物线的函数解析式是 ; 12. 二次函数2y ax bx c =++的图像如图所示,对称轴为直线2x =,若此抛物线与x 轴的 一个交点为(6,0),则抛物线与x 轴的另一个交点坐标是 ;13. 如图,已知AD 是△ABC 的中线,点G 是△ABC 的重心,AD a = ,那么用向量a表示向量AG为 ;14. 如图,△ABC 中,6AC =,9BC =,D 是△ABC 的边BC 上的点,且CAD B ∠=∠, 那么CD 的长是 ;15. 如图,直线1AA ∥1BB ∥1CC ,如果13AB BC =,12AA =,16CC =,那么线段1BB 的 长是 ;16. 如图是小明在建筑物AB 上用激光仪测量另一建筑物CD 高度的示意图,在地面点P 处 水平放置一平面镜,一束激光从点A 射出经平面镜上的点P 反射后刚好射到建筑物CD 的 顶端C 处;已知AB BD ⊥,CD BD ⊥,且测得15AB =米,20BP =米,32PD =米,B 、P 、D 在一条直线上,那么建筑物CD 的高度是 米;17. 若抛物线2y ax c =+与x 轴交于点(,0)A m 、(,0)B n ,与y 轴交于点(0,)C c ,则称 △ABC 为“抛物三角形”;特别地,当0mnc <时,称△ABC 为“正抛物三角形”;当0mnc > 时,称△ABC 为“倒抛物三角形”;那么,当△ABC 为“倒抛物三角形”时,a 、c 应分 别满足条件 ;18. 在△ABC 中,5AB =,4AC =,3BC =,D 是边AB 上的一点,E 是边AC 上的 一点(D 、E 均与端点不重合),如果△CDE 与△ABC 相似,那么CE = ;三. 解答题19. 456tan302cos30︒︒︒+-;20. 二次函数2y ax bx c =++的变量x 与变量y 的部分对应值如下表:(1)求此二次函数的解析式; (2)写出抛物线顶点坐标和对称轴;21. 如图,梯形ABCD 中,AD ∥BC ,点E 是边AD 的中点,联结BE 并延长交CD 的延 长线于点F ,交AC 于点G ;(1)若2FD =,13ED BC =,求线段DC 的长; (2)求证:EF GB BF GE ⋅=⋅;22. 如图,l 为一条东西方向的笔直公路,一辆小汽车在这段限速为80千米/小时的公路上 由西向东匀速行驶,依次经过点A 、B 、C ,P 是一个观测点,PC l ⊥,PC =60米,4tan 3APC ∠=,45BPC ︒∠=,测得该车从点A 行驶到点B 所用时间为1秒; (1)求A 、B 两点间的距离;(2)试说明该车是否超过限速;23. 如图,在△ABC 中,D 是BC 边的中点,DE BC ⊥交AB 于点E ,AD AC =,EC 交AD 于点F ;(1)求证:△ABC ∽△FCD ; (2)求证:3FC EF =;24. 如图,抛物线22y ax ax c =++(0)a >与x 轴交于(3,0)A -、B 两点(A 在B 的左侧), 与y 轴交于点(0,3)C -,抛物线的顶点为M ;(1)求a 、c 的值; (2)求tan MAC ∠的值;(3)若点P 是线段AC 上一个动点,联结OP ; 问是否存在点P ,使得以点O 、C 、P 为顶点的 三角形与△ABC 相似?若存在,求出P 点坐标; 若不存在,请说明理由;25. 如图,在边长为6的正方形ABCD 中,点E 为AD 边上的一个动点(与点A 、D 不重合),45EBM ︒∠=,BE 交对角线AC 于点F ,BM 交对角线AC 于点G ,交CD 于点M ;(1)如图1,联结BD ,求证:△DEB ∽△CGB ,并写出DECG的值; (2)联结EG ,如图2,设AE x =,EG y =,求y 关于x 的函数解析式,并写出定义域; (3)当M 为边DC 的三等分点时,求EGF S 的面积;21、22、23、24、25、2016青浦、静安一模一. 选择题 1.的相反数是( )A.B. C.2; D. 2-; 2. 下列方程中,有实数解的是( )A. 210x x -+=; B. 1x =-;C.210x x x -=-; D. 211xx x-=-; 3. 化简11(1)x ---的结果是( ) A.1x x -; B. 1xx -; C. 1x -; D. 1x -; 4. 如果点(2,)A m 在抛物线2y x =上,将此抛物线向右平移3个单位后,点A 同时平移到 点A ',那么A '坐标为( )A. (2,1);B. (2,7);C. (5,4);D. (1,4)-;5. 在Rt △ABC 中,90C ∠=︒,CD 是高,如果AD m =,A α∠=,那么BC 的长为( )A. tan cos m αα⋅⋅;B. cot cos m αα⋅⋅;C.tan cos m αα⋅; D. tan sin m αα⋅;6. 如图,在△ABC 与△ADE 中,BAC D ∠=∠,要使△ABC 与△ADE 相似,还需满 足下列条件中的( )A. AC AB AD AE =;B. AC BC AD DE =;C. AC AB AD DE =;D. AC BCAD AE=;二. 填空题7. 计算:23(2)a -= ; 8. 函数3()2x f x x -=+的定义域为 ;9. 1x =-的根为 ;10. 如果函数(3)1y m x m =-+-的图像经过第二、三、四象限,那么常数m 的取值范围为 ;11. 二次函数261y x x =-+的图像的顶点坐标是 ;12. 如果抛物线225y ax ax =-+与y 轴交于点A ,那么点A 关于此抛物线对称轴的对称点坐标是 ;13. 如图,已知D 、E 分别是△ABC 的边AB 和AC 上的点,DE ∥BC ,BE 与CD 相交于点F ,如果1AE =,2CE =,那么:EF BF 等于 ;14. 在Rt △ABC 中,90C ∠=︒,点G 是重心,如果1sin 3A =,2BC =,那么GC 的长 等于 ;15. 已知在梯形ABCD 中,AD ∥BC ,2BC AD =,设AB a = ,BC b = ,那么CD =(用向量a 、b的式子表示);16. 在△ABC 中,点D 、E 分别在边AB 、AC 上,AED B ∠=∠,6AB =,5BC =,4AC =,如果四边形DBCE 的周长为10,那么AD 的长等于 ;17. 如图,在平行四边形ABCD 中,AE BC ⊥,垂足为E ,如果5AB =,8BC =,4sin 5B =,那么tan CDE ∠= ; 18. 将平行四边形ABCD (如图)绕点A 旋转后,点D 落在边AB 上的点D ',点C 落到C ',且点C '、B 、C 在一直线上,如果13AB =,3AD =,那么A ∠的余弦值为 ;三. 解答题19. 化简:222266942x x x x x x x---++--,并求当123x =时的值;20. 用配方法解方程:22330x x --=;21. 如图,直线43y x =与反比例函数的图像交于点(3,)A a ,第一象限内的点B 在这个反比 例函数图像上,OB 与x 轴正半轴的夹角为α,且1tan 3α=:(1)求点B 的坐标;(2)求OAB ∆的面积;22. 如图,从地面上的点A 看一山坡上的电线杆PQ ,测得杆顶端点P 的仰角是26.6°,向 前走30米到达B 点,测得杆顶端点P 和杆底端点Q 的仰角分别是45°和33.7°,求该电 线杆PQ 的高度(结果精确到1米);(备用数据:sin 26.60.45︒=,cos 26.60.89︒=,tan 26.60.50︒=,cot 26.6 2.00︒=,sin 33.70.55︒=,cos33.70.83︒=,tan 33.70.67︒=,cot 33.7 1.50︒=)23. 已知,如图,在△ABC 中,点D 、E 分别在边BC 、AB 上,BD AD AC ==,AD 与CE 相交于点F ,2AE EF EC =⋅; (1)求证:ADC DCE EAF ∠=∠+∠;(2)求证:AF AD AB EF ⋅=⋅;2124. 如图,直线112y x =+与x 轴、y 轴分别相交于点A 、B ,二次函数的图像与y 轴相 交于点C ,与直线112y x =+相交于点A 、D ,CD ∥x 轴,CDA OCA ∠=∠;(1)求点C 的坐标;(2)求这个二次函数的解析式;25. 已知:在梯形ABCD 中,AD ∥BC ,10AC BC ==,4cos 5ACB ∠=,点E 在对角 线AC 上,且CE AD =,BE 的延长线与射线AD 、射线CD 分别相交于点F 、G ,设AD x =,△AEF 的面积为y ;(1)求证:DCA EBC ∠=∠;(2)如图,当点G 在线段CD 上时,求y 关于x 的函数解析式,并写出它的定义域; (3)如果△DFG 是直角三角形,求△AEF 的面积;22静安区2015学年第一学期期末教学质量调研 九年级数学试卷参考答案及评分说明2016.1一、选择题:1.D ; 2.D ; 3.A ; 4.C ; 5.C ; 6.C . 二、填空题:7.68a -; 8.2-≠x ; 9.4=x ; 10.31<<m ; 11.(3, -8); 12.(2, 5); 13.31; 14.2; 15.b a 21--; 16.2; 17.21; 18.135. 三、解答题:19.解:原式= )2()3()2)(2()3)(2(2--÷-+-+x x x x x x x ············································································ (4分) =)3()2()2)(2()3)(2(--⋅-+-+x x x x x x x ··············································································· (1分) =3-x x. ········································································································ (2分) 当3321==x时,原式=231311333+-=-=-. ································· (3分) 20.解:023232=--x x , ····································································································· (1分) 23232=-x x , ············································································································ (1分) 16923)43(2322+=+-x x , ······················································································· (2分) 1633)43(2=-x , ·········································································································· (2分) 43343±=-x , ········································································································· (2分)433231+=x ,433232-=x . ·············································································· (2分)2321.解:(1)∵直线x y 34=与反比例函数的图像交于点A (3,a ), ∴334⨯=a =4,∴点的坐标A (3,4). ······························································ (1分) 设反比例函数解析式为xky =, ············································································· (1分)∴12,34==k k ,∴反比例函数解析式为xy 12=. ··········································· (1分)过点B 作BH ⊥x 轴,垂足为H , 由31tan ==OB BH α,设BH =m ,则OB =m 3,∴B (m 3,m ) ························ (1分) ∴mm 312=,2±=m (负值舍去), ······································································ (1分) ∴点B 的坐标为(6,2). ······················································································ (1分)(1) ····································· 过点A 作AE ⊥x 轴,垂足为E ,OBH AEHB OAE OAB S S S S ∆∆∆-+=梯形············································································ (1分) =BH OH EH BH AE OE AE ⋅-⋅++⋅21)(2121 ··············································· (1分) ==⨯⨯-⨯++⨯⨯26213)24(2143219. ······················································ (2分)22.解:延长PQ 交直线AB 于点H ,由题意得.由题意,得PH ⊥AB ,AB =30,∠PAH =26 .6°,∠PBH =45°,∠Q BH =33.7°, 在Rt △QBH 中,50.1cot ==∠QHBHQBH ,设QH =x ,BH =x 5.1, ···················· (2分) 在Rt △PBH 中,∵∠PBH =45°,∴PH = BH =x 5.1,··············································· (2分) 在Rt △PAH 中,00.2cot ==∠PHAHPAH ,AH =2PH =x 3, ··································· (2分) ∵AH –BH =AB ,∴305.13=-x x ,20=x . ························································· (2分) ∴PQ =PH –QH =105.05.1==-x x x . ····································································· (1分) 答:该电线杆PQ 的高度为10米. ················································································· (1分)2423.证明:(1)∵EC EF AE ⋅=2,∴AEECEF AE =. ·························································· (1分) 又∵∠AEF =∠CEA ,∴△AEF ∽△CEA . ······················································· (2分) ∴∠EAF =∠ECA , ··························································································· (1分) ∵AD =AC ,∴∠ADC =∠ACD , ······································································· (1分) ∵∠ACD =∠DCE +∠ECA =∠DCE +∠EAF . ····················································· (1分)(2)∵△AEF ∽△CEA ,∴∠AEC =∠ACB . ······························································· (1分)∵DA =DB ,∴∠EAF =∠B . ················································································ (1分) ∴△EAF ∽△CBA . ····························································································· (1分)∴ACEFBA AF =. ··································································································· (1分) ∵AC =AD ,∴ADEFBA AF =. ················································································ (1分) ∴EF AB AD AF ⋅=⋅. ···················································································· (1分)24.解:(1)∵直线121+=x y 与x 轴、y 轴分别相交于点A 、B , ∴A (–2,0)、B (0,1).∴OA =2,OB =1. ······················································ (2分) ∵CD //x 轴,∴∠OAB =∠CDA ,∵∠CDA =∠OCA ,∴∠OAB =∠OCA . ············· (1分) ∴tan ∠OAB =tan ∠OCA , ························································································· (1分) ∴OCOA OA OB =,∴OC 221=, ·················································································· (1分) ∴4=OC ,∴点C 的坐标为(0,4). ································································ (1分) (2)∵CD //x 轴,∴BOBCAO CD =. ················································································· (1分) ∵BC =OC –OB=4–1=3,∴132=CD ,∴CD =6,∴点D (6,4). ························ (1分) 设二次函数的解析式为42++=bx ax y , ···························································· (1分)⎩⎨⎧++=+-=,46364,4240b a b a ………………(1分) ⎪⎩⎪⎨⎧=-=.23,41b a ········································· (1分) ∴这个二次函数的解析式是423412++-=x x y . ················································· (1分)25.解:(1)∵AD ∥BC ,∴∠DAC =∠ECB . ········································································ (1分)又∵AD =CE ,AC =CB ,∴△DAC ≌△ECB . ······························································ (2分) ∴∠DCA =∠EBC . ··································································································· (1分) (2)过点E 作EH ⊥BC ,垂足为H .AE =AC –CE =x -10.。
2016上海市各区县初三一模数学试题及答案
2016上海市各区县初三一模数学试题及答案2016上海长宁区初三数学一模试题(满分150分) 2016.1.6一、选择题。
(本题共6个小题,每题4分,共24分)1、如果两个三角形的相似比是1:2,那么他们的面积比是( ).A.1:2B.1:4C.1:2D.2:1 2、如图,在△ABC 中,∠ADE=∠B ,DE:BC=2:3,则下列结论正确的是( ).A.AD:AB=2:3B.AE:AC=2:5C.AD:DB=2:3D.CE:AE=3:23、在Rt △ABC 中,∠C=90°,AB=2,AC=1,则sinB 的值是( ).A.22B.23C.21 D.2 4、在△ABC 中,若cosA=22,tanB=3,则这个三角形一定是( ).A.直角三角形B.等腰三角形C.钝角三角形 D.锐角三角形5、已知⊙O 1的半径r 为3cm ,⊙O 2的半径R 为4cm ,两圆的圆心距O O 21为1cm ,则这两个圆的位置关系的( ).A.相交B.内含C.内切D.外切6二次函数1)2(2-+=x y 的图像可以由二次函数2x y =的图像平移得到,下列平移正确的是( ).A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位二、填空题。
(本大题共12小题,每题4分,满分48分)7、已知抛物线12+=x y 的顶点坐标是( ).8、已知抛物线32++=bx x y 的对称轴为直线x=1,则实数b 的值为( ) 9、已知二次函数bxax y +=2,阅读下面表格信息,由此可知y 与x 的函数关系式是( ).10、已知二次函数2)3(-=x y 图像上的两点A (3,a )和B(x,b),则a和b的大小关系是a()b.11、圆是轴对称图形,它的对称轴是().12、已知⊙O的弦AB=8cm,弦心距OC=3cm,那么该圆的半径是()cm.13、如图,AB是⊙O的直径,弦CD垂直AB,已知AC=1,BC=22,那么sin∠ACD的值是().14、王小勇操纵一辆遥控汽车从A处沿北偏西60°方向走10m到B处,再从B处向正南方走20m到C处,此时遥控汽车离A处()m.15、已知△ABC中,AD是中线,G是重心,设mAD ,那么用表示=().16、如图,已知AB⊥BD,ED⊥BD,C是线段BD 的中点,且AC⊥CE,ED=1,BD=4,那么AB=( ).17、如果把两条邻边中较短边与较长边的比值为215-的矩形称作黄金矩形。
最新浦东新区初三数学一模试卷加答案(精准校对完整版)
浦东新区2016年一模数学试卷(含答案详解)(总分150)2016一、选择题:(本大题共6小题,每题4分,满分24分)1.如果两个相似三角形对应边之比是1:4,那么它们的对应边上的中线之比是( ) A. 1:2 B. 1:4 C. 1:8 D. 1:162.在Rt △ABC 中,∠C=90°,AB=5,BC=4,则sinA 的值为( )A. B. C. D.3.如图,点D 、E 分别在AB 、AC 上,以下能推得DE//BC 的条件是( ) A. AD:AB=DE:BC ; B. AD:DB=DE:BC ; C. AD:DB=AE:EC ; D. AE:AC=AD:DB.4.已知二次函数y=ax 2+bx+c 的图像如图所示,那么a 、b 、c 的符号为( ) A. a <0,b <0,c >0; B. a <0,b <0,c <0;C. a >0,b >0,c >0;D. a >0,b >0,c <0.5.如图,Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,下列结论中错误的是( ) A. AC 2=AD ·AB ; B. CD 2=CA ·CB ; C. CD 2=AD ·DB ; D. BC 2=BD ·BA.6.下列命题是真命题的是( )A. 有一个角相等的两个等腰三角形相似;B. 两边对应成比例且有一个角相等的两个三角形相似;34354543BAC. 四个内角都对应相等的两个四边形相似;D. 斜边和一条直角边对应成比例的两个直角三角形相似.二、填空题(本大题共12小题,每题4分,满分48分)7.已知,那么 .8.计算: .9.上海与杭州的实际距离约200千米,在比例尺1:5000 000的地图上,上海与杭州的图上距离约厘米.10.某滑雪运动员沿着坡比为1:的斜坡向下滑行了100m,则运动员下降的垂直高度是米.11.将抛物线y=(x+1)2向下平移2个单位,得到新抛物线的函数解析式是 .12.二次函数y=ax2+bx+c 的图像如图所示,对称轴为直线x=2,若此抛物线与x轴的一个交点为(6,0),则抛物线与x轴的另一个交点坐标是 .13.如图,已知AD是△ABC的中点,点G是△ABC的重心,,那么用向量表示向量为 .14.如图,在△ABC中,AC=6,BC=9,D是△ABC的边BC上的点,且∠CAD=∠B,那么CD的长是 .15.如图,直线AA1//BB1//CC1,如果 ,AA1=2,CC1=6,那么线段BB1的长为 .x y =13xx+y=133AB = a aABBC=13AG第12题图 第13题图 第14题图 第15题16.如图是小明在建筑物AB 上用激光仪测量另一建筑物CD 高度的示意图,在地面点P 处水平放置一平面镜.一束激光从点A 射出经平面镜上的点P 反射后刚好射到建筑物CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=15米,BP=20米,PD=32米,B 、P 、D 在一条直线上,那么建筑物CD 的高度是 米.17.若抛物线y=ax 2+c 与x 轴交于点A (m ,0),B (n ,0),与y 轴交于点C (0,c ),则称△ABC 为“抛物三角形”.特别地,当mnc <0时,称△ABC 为“倒抛物三角形”时,a 、c 应分别满足条件 .18.在△ABC 中,AB=5,AC=4,BC=3,D 是边AB 上的一点,E 是边AC 上的一点(D 、E 均与端点不重合),如果△CDE 与△ABC 相似,那么CE= .三、解答题(本大题共7小题,满分78分) 19.(本题满分10分)计算: sin45°+6tan30°-2cos30°.20.(本题满分10分,第(1)小题6分,第(2)小题4分) 二次函数y=ax 2+bx+c 的变量x 与变量y 的部分对应值如下表: x…-3-2-115…GDBADCBC1B1A1CBA 2(1)求此二次函数的解析式;(2)写出抛物线顶点坐标和对称轴.21. (本题满分10分,每小题8分)如图,梯形ABCD中,AD//BC,点E是边AD的中点,联结BE并延长交CD的延长线于点F,交AC于点G.(1)若FD=2,ED:BC=1:3,求线段DC的长;(2)求证:EF·GB=BF·GE.B22. (本题满分10分,第(1)小题6分,第(2)小题4分) 如图,l 为一条东西方向的笔直公路,一辆小汽车在这段限速为80千米/小时的公路上由西向东匀速行驶,依次经过点A 、B 、C. P 是一个观测点,PC ⊥l ,PC=60米, tan ∠APC= ,∠BPC=45°,测得该车从点A 行驶到点B所用时间为1秒.(1)求A 、B 两点间的距离; (2)试说明该车是否超过限速.4323. (本题满分12分,每小题6分)如图,在△ABC 中,D 是BC 边的中点,DE ⊥BC 交AB 于点E ,AD=AC ,EC 交AD 于点F. (1)求证:△ABC ∽△FCD ; (2)求证:FC=3EF.24. (本题满分12分,每小题4分)如图,抛物线y=ax 2+2ax+c (a >0)与x 轴交于A (-3,0)、B 两点(A 在B 的左侧),与y 轴交于点CBAC(0,-3),抛物线的顶点为M.(1)求a、c的值;(2)求tan∠MAC的值;(3)若点P是线段AC上一个动点,联结OP.问:是否存在点P,使得以点O、C、P为顶点的三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由.25. (本题满分14分,第(1)(2)小题,每题5分,第(3)小题4分)如图,在边长为6的正方形ABCD 中,点E 为AD 边上的一个动点(与点A 、D 不重合),∠EBM=45°,BE 交对角线AC 于点F ,BM 交对角线AC 于点G ,交CD 于点M. (1)如图1,联结BD ,求证:△DEB ∽△CGB ,并写出DE:CG 的值;(2)联结EG ,如图2,若设AE=x ,EG=y ,求y 关于x 的函数解析式,并写出函数的定义域; (3)当M 为边DC 的三等分点时,求S △EGF 的面积.备用图CE浦东新区2016学年一模数学试卷(答案详解)。
2015,2016学年上海浦东新区初三一模试题及答案汇总
中考网为大家提供2015-2016学年上海浦东新区初三一模试题及答案汇总 ,更多中考化学复习资料请关注我们网站的更新!
1
上海浦东新区2016年度中考语文一模试题
2
上海浦东新区2016年度中考语文一模试题答案
3
浦东新区2015-2016初三数学质量检测试卷及答案
4
浦东新区2015-2016第一学期初三英语试卷及答案
5
浦东新区2015-2016第一学期初三物理质量检ห้องสมุดไป่ตู้试卷
6
浦东新区2015-2016第一学期初三物理质量检测试卷答案
7
2016浦东中考化学一模试题及答案
中考频道整理
2016届上海市浦东区高三一模数学试卷(word版)
上海市浦东新区2016届高三一模数学试卷2016.01一. 填空题(本大题共12题,每题3分,共36分)1. 已知集合{|3}A x x =≤,{|2}B x x =<,则R A C B = ;2. 已知向量(2,1)a =- ,(1,)b m =平行,则m = ;3. 关于,x y 的一元二次方程组23122x y x y +=⎧⎨-=⎩的系数矩阵 ;4. 计算:1132lim 32n nnn n ++→∞-=+ ; 5. 若复数z 满足1012ii z=-(i 为虚数单位),则||z = ; 6. 10(21)x +的二项展开式中的第八项为 ;7. 某船在海平面A 处测得灯塔B 在北偏东30︒方向,与A 相距6.0海里,船由A 向正北方 向航行8.1海里达到C 处,这时灯塔B 与船相距 海里;(精确到0.1海里) 8. 已知3cos()25πα-=,(,)2παπ∈,则sin()3πα+= ; 9. 如图,已知正方体1111ABCD A BC D -,12AA =,E 为棱1CC 的中点,则AE 与平面11B BCC 所成的角为 ;(结果用反三角表示)10. 已知函数()f x 的图像与()2xg x =的图像关于直线y x =对称,()(1||)h x f x =-,则关于函数()h x 有下列命题:①()h x 的图像关于原点对称;②()h x的图像关于y 轴对称;③()h x 的最大值为0;④()h x 在区间(1,1)-上单调递增; 其中正确命题的序号为 ;(写出所有正确命题的序号)11. 有一列向量{}n a :111(,)a x y = ,222(,)a x y = ,…,(,)n n n a x y =,如果从第二项起,每一项与前一项的差都等于同一个向量,那么这列向量称为等差向量列,已知等差向量列{}n a ,满足1(20,13)a =- ,3(18,15)a =- ,那么这列向量{}n a中模最小的向量的序号n = ;12. 已知函数()2sin f x x π=,()g x =()f x 与()g x 图像交点的横坐标之和为 ;二. 选择题(本大题共12题,每题3分,共36分)13. 如果0a b >>,那么下列不等式中不正确的是( ) A.11a b < B. 11a b> C. 2ab b > D. 2a ab > 14. 设:1x α=且2y =,:3x y β+=,α是β成立的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分也非必要条件15. 方程2244kx y k +=表示焦点在x 轴的椭圆,则实数k 的取值范围是( ) A. 4k > B. 4k = C. 4k < D. 04k << 16. 甲、乙、丙、丁四人排成一排,其中甲、乙两人相邻的概率是( ) A.14 B. 13 C. 12 D. 1617. 直线0ax by +=与圆220x y ax by +++=的位置关系是( ) A. 相交 B. 相切 C. 相离 D. 不能确定18. 某人5次上班途中所花的时间(单位:分钟)分别为,,10,11,9x y ,已知这组数据的平均数为10,方差为2,则||x y -的值为( ) A. 4 B. 3 C. 2 D. 119. 设函数()f x ()x R ∈满足()()sin f x f x x π+=+,当0x π≤<时,()0f x =,则23()6f π=( )A. 12B.C. 0D. 12-20. 如果底面直径和高相等的圆柱的侧面积是S ,那么圆柱的体积等于( )A.B. C. D. 21. 已知函数()f x 存在反函数1()f x -,若函数(1)y f x =+过点(3,3),则函数1()f x -恒过点( )A. (4,3)B. (3,4)C. (3,2)D. (2,3) 22. 一个弹性小球从10米高处自由落下,着地后反弹到原来高度的45处,再自由落下,又 弹回到上一次高度的45处,这个小球能无限次反弹,则这个小球在这次运动中所经过的总路程为( )A. 50B. 80C. 90D. 10023. 符合以下性质的函数称为“S 函数”:① 定义域为R ;② ()f x 是奇函数;③ ()f x a < (常数0a >);④ ()f x 在(0,)+∞上单调递增;⑤ 对任意一个小于a 的正数d ,至少存在一个自变量0x ,使0()f x d >;下列四个函数中:12()arctan af x x π=,22||()1ax x f x x =+, 31,0()0,01,0a x x f x x a x x ⎧->⎪⎪==⎨⎪⎪--<⎩,421()()21x xf x a -=⋅+中“S 函数”的个数为( ) A. 1个 B. 2个 C. 3个 D. 4个 24. 将一圆的六个等分点分成两组相间的三点,它们所构成 的两个正三角形扣除内部六条线段后可以形成一正六角星,如图所示的正六角星的中心为点O ,其中x 、y分别为点O 到两个顶点的向量;若将点O 到正六角星12个顶点的向量,都写成ax by +的形式,则a b +的最大值为( )A. 3B. 4C. 5D. 6三. 解答题(本大题共8题,共8+8+8+10+14+6+12+12=78分)25. 已知OA 、OB 、OC 交于点O ,AD //=12OB ,E 、F 分别为BC 、OC 的中点; 求证:DE ∥平面AOC ;26. 已知函数()2sin f x x =,将函数()y f x =的图像向右平移6π个单位,再把横坐标缩短 到原来的12(纵坐标不变),得到函数()y g x =的图像,求函数()y g x =的解析式,并写 出它的单调递增区间;27. 已知两个向量22(1log ,log )a x x =+ ,2(log ,1)b x =;(1)若a b ⊥,求实数x 的值;(2)求函数()f x a b =⋅ ,1[,2]4x ∈的值域;28. 已知数列{}n a 的前n 项和为23122n S n n =-*()n N ∈; (1)求{}n a 的通项公式; (2)当2n ≥时,1n na a λλ++≥恒成立,求实数λ的取值范围;29. 在平面直角坐标系xOy 中,对于点00(,)P x y ,直线:0l ax by c ++=,我们称δ=为点00(,)P x y 到直线:0l ax by c ++=的方向距离;(1)设椭圆2214x y +=上的任意一点(,)P x y 到直线1:20l x y -=、2:20l x y +=的方向 距离分别为1δ、2δ,求12δδ的取值范围;(2)设点(,0)E t -、(,0)F t 到直线:cos 2sin 20l x y αα+-=的方向距离分别为1η、2η, 试问是否存在实数t ,对任意的α都有121ηη=成立?若存在,求出t 的值;若不存在,请 说明理由;(3)已知直线:0l mx y n -+=和椭圆2222:1x y H a b+=(0)a b >>,设椭圆H 的两个焦点1F 、2F 到直线l 的方向距离分别为1λ、2λ满足212b λλ>,且直线l 与x 轴的交点为A ,与 y 轴的交点为B ,试比较||AB 的长与a b +的大小;30. 如图,点(1,0)A -、(1,0)B ,点C 在x 轴正半轴上,过线段BC 的n 等分点i D (1,2,i =3,...,1)n -作与BC 垂直的射线i l ,在i l 上的动点P 使APB ∠取得最大值的位置记作i P ;是否存在一条圆锥曲线,对任意的正整数2n ≥,点i P 都在这条曲线上?说明理由;31. 定义符号函数1,0sgn()1,0x x x ≥⎧=⎨-<⎩,已知,a b R ∈,()||sgn(1)f x x x a x b =--+;(1)求(2)(1)f f -关于a 的表达式,并求(2)(1)f f -的最小值; (2)当12b =时,函数()f x 在(0,1)上有唯一零点,求a 的取值范围; (3)已知存在a ,使得()0f x <对任意的[1,2]x ∈恒成立,求b 的取值范围;32. 已知两个无穷数列{}n a 、{}n b 分别满足111||2n n a a a +=⎧⎨-=⎩、111||2n nb b b +=-⎧⎪⎨=⎪⎩,其中*n N ∈,设数列{}n a 、{}n b 的前n 项和分别为n S 、n T ;(1)若数列{}n a 、{}n b 都为递增数列,求数列{}n a 、{}n b 的通项公式;(2)若数列{}n c 满足:存在唯一的正整数k (2)k ≥,使得1k k c c -<,称数列{}n c 为“k 坠点数列”;① 若数列{}n a 为“5坠点数列”,求n S ;② 若数列{}n a 为“p 坠点数列”,数列{}n b 为“q 坠点数列”,是否存在正整数m ,使得1m m S T +=,若存在,求m 的最大值;若不存在,说明理由;。
2016上海市各区县初三一模数学试题及答案
2016上海长宁区初三数学一模试题(满分150分) 2016.1.6 一、选择题。
(本题共6个小题,每题4分,共24分)1、如果两个三角形的相似比是1:2,那么他们的面积比是( ). A.1:2 B.1:4 C.1:2 D.2:12、如图,在△ABC 中,∠ADE=∠B ,DE:BC=2:3,则下列结论正确的是( ). A.AD:AB=2:3 B.AE:AC=2:5 C.AD:DB=2:3 D.CE:AE=3:23、在Rt △ABC 中,∠C=90°,AB=2,AC=1,则sinB 的值是( ). A.22 B.23 C.21 D.2 4、在△ABC 中,若cosA=22,tanB=3,则这个三角形一定是( ). A.直角三角形 B.等腰三角形 C.钝角三角形 D.锐角三角形 5、已知⊙O 1的半径r 为3cm ,⊙O2的半径R 为4cm ,两圆的圆心距O O 21为1cm ,则这两个圆的位置关系的( ).A.相交B.内含C.内切D.外切6二次函数1)2(2-+=x y 的图像可以由二次函数2x y =的图像平移得到,下列平移正确的是( ).A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位 二、填空题。
(本大题共12小题,每题4分,满分48分) 7、已知抛物线12+=x y 的顶点坐标是( ).8、已知抛物线32++=bx x y 的对称轴为直线x=1,则实数b 的值为( ) 9、已知二次函数bx ax y +=2,阅读下面表格信息,由此可知y 与x 的函数关系式是( ).10、已知二次函数2)3(-=x y 图像上的两点A (3,a )和B (x ,b ),则a 和b 的大小关系是a ( )b.11、圆是轴对称图形,它的对称轴是( ).12、已知⊙O 的弦AB=8cm ,弦心距OC=3cm ,那么该圆的半径是( )cm.13、如图,AB 是⊙O 的直径,弦CD 垂直AB ,已知AC=1,BC=22,那么sin ∠ACD 的值是( ).14、王小勇操纵一辆遥控汽车从A 处沿北偏西60°方向走10m 到B 处,再从B 处向正南方走20m 到C 处,此时遥控汽车离A 处( )m.15、已知△ABC 中,AD 是中线,G 是重心,设m AD =,那么用m 表示AG =( ). 16、如图,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED=1,BD=4,那么AB=( ).17、如果把两条邻边中较短边与较长边的比值为215-的矩形称作黄金矩形。
学年浦东新区初三数学一模试卷
2016学年浦东新区初三一模数学试卷数学试卷数学试卷 2017/1/12(满分:150分,考试时间:100分钟)考生注意:1. 本试卷含三个大题,共25题2. 答题时,考生务必按答题要求在答题纸规定位置上作答,在草稿纸,本试卷上大题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤。
一、选择题(本大题共6题,每题4分,满分24分).1.在下列y 关于x 的函数中,一定是二次函数的是………………………………………………( ) (A )22y x =; (B )22y x =-; (C )2y ax =; (D )2a y x =. 2.如果向量a b x 、、满足32()23x a a b +=-,那么x 用a b 、表示正确的…………………( ) (A )2a b -; (B )52a b -; (C )23a b -; (D )12a b -3.已知在Rt ABC ∆中,90O C ∠=,A α∠=,2BC =,那么AB 的长等于( ) (A )2sin α; (B )2sin α; (C )2cos α; (D )2cos α#4.在ABC ∆中,点D E 、分别在边AB AC 、,如果2AD =,=4BD ,那么由下列条件能够判断DE BC ∥的是( ) (A )12AE AC =; (B )13DE BC =; (C )13AE AC =; (D )12DE BC =5.如图,ABC ∆的两条中线AD CE 、交于点G ,且AD CE ⊥.联结BG 并延长与AC 交于点F ,如果912AD CE ==,,那么下列结论不正确的是( )(A ) 10AC =; (B )15AB =; (C )10BG =; (D )15BF =—6.如果抛物线21A y x =-:通过左右平移得到抛物线B ,再通过上下平移抛物线B 得到抛物线222C y x x =-+:,那么抛物线B 的表达式为( )(A )22y x =+; (B )221y x x =--; (C )22y x x =- ; (D )221y x x =-+;…二、填空题(本大题共12题,每题4分,满分48分)7.已知线段34a cm b cm ==,,那么线段a b 、的比例中项等于 cm ; 8.已知P 是线段AB 上的黄金分割点,PB PA >,=2PB ,那么=PA ; 9.已知24a b ==,,且b 和a 反向,用向量a 表示b = ; 10.如果抛物线2(3)2y mx m x m =+--+经过原点,那么m = ; 11.如果抛物线2(3)2y a x =--有最低点,那么a 的取值范围是 。
2016年上海市浦东新区中考数学一模试卷
6.(4 分)(2016•浦东新区一模)下列命题是真命题的是( )
A.有一个角相等的两个等腰三角形相似
B.两边对应成比例且有一个角相等的两个三角形相似
C.四个内角都对应相等的两个四边形相似
D.斜边和一条直角边对应成比例的两个直角三角形相似
【分析】根据相等的角可能为顶角或底角可对 A 进行判断;根据相似三角形的判
A.AC2=AD•AB B.CD2=CA•CB C.CD2=AD•DB D.BC2=BD•BA 6.(4 分)下列命题是真命题的是( )
第 1页(共 25页)
A.有一个角相等的两个等腰三角形相似 B.两边对应成比例且有一个角相等的两个三角形相似 C.四个内角都对应相等的两个四边形相似 D.斜边和一条直角边对应成比例的两个直角三角形相似
13.(4 分)已知 AD 是△ABC 的中线,点 G 是△ABC 的重心, = ,那么用向 量 表示向量 为 . 14.(4 分)如图,在△ABC 中,AC=6,BC=9,D 是△ABC 的边 BC 上的点,且∠ CAD=∠B,那么 CD 的长是 .
第 2页(共 25页)
15.(4 分)如图,直线 AA1∥BB1∥CC1,如果 BB1 的长是 .
第 7页(共 25页)
又∵对称轴 x=﹣ <0, ∴b<0, 所以 A 正确. 故选 A. 【点评】考查二次函数 y=ax2+bx+c 系数符号的确定.
5.(4 分)(2016•浦东新区一模)如图,Rt△ABC 中,∠ACB=90°,CD⊥AB 于点 D,下列结论中错误的是( )
A.AC2=AD•AB B.CD2=CA•CB C.CD2=AD•DB D.BC2=BD•BA 【分析】直接根据射影定理对各选项进行判断. 【解答】解:∵∠ACB=90°,CD⊥AB 于点 D, ∴AC2=AD•AB,CD2=DA•DB,BC2=BD•BA. 故选 B. 【点评】本题考查了射影定理:直角三角形中,斜边上的高是两直角边在斜边上 射影的比例中项;每一条直角边是这条直角边在斜边上的射影和斜边的比例中 项.
2016上海市各区县初三一模数学试题及答案
2016上海长宁区初三数学一模试题(满分150分) 2016.1.6 一、选择题。
(本题共6个小题,每题4分,共24分)1、如果两个三角形的相似比是1:2,那么他们的面积比是( ). A.1:2 B.1:4 C.1:2 D.2:12、如图,在△ABC 中,∠ADE=∠B ,DE:BC=2:3,则下列结论正确的是( ). A.AD:AB=2:3 B.AE:AC=2:5 C.AD:DB=2:3 D.CE:AE=3:23、在Rt △ABC 中,∠C=90°,AB=2,AC=1,则sinB 的值是( ). A.22 B.23 C.21 D.2 4、在△ABC 中,若cosA=22,tanB=3,则这个三角形一定是( ). A.直角三角形 B.等腰三角形 C.钝角三角形 D.锐角三角形 5、已知⊙O 1的半径r 为3cm ,⊙O2的半径R 为4cm ,两圆的圆心距O O 21为1cm ,则这两个圆的位置关系的( ).A.相交B.内含C.内切D.外切6二次函数1)2(2-+=x y 的图像可以由二次函数2x y =的图像平移得到,下列平移正确的是( ).A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位 二、填空题。
(本大题共12小题,每题4分,满分48分) 7、已知抛物线12+=x y 的顶点坐标是( ).8、已知抛物线32++=bx x y 的对称轴为直线x=1,则实数b 的值为( ) 9、已知二次函数bx ax y +=2,阅读下面表格信息,由此可知y 和x 的函数关系式是( ).10、已知二次函数2)3(-=x y 图像上的两点A (3,a )和B (x ,b ),则a 和b 的大小关系是a ( )b.11、圆是轴对称图形,它的对称轴是( ).12、已知⊙O 的弦AB=8cm ,弦心距OC=3cm ,那么该圆的半径是( )cm.13、如图,AB 是⊙O 的直径,弦CD 垂直AB ,已知AC=1,BC=22,那么sin ∠ACD 的值是( ).14、王小勇操纵一辆遥控汽车从A 处沿北偏西60°方向走10m 到B 处,再从B 处向正南方走20m 到C 处,此时遥控汽车离A 处( )m.15、已知△ABC 中,AD 是中线,G 是重心,设m AD =,那么用m 表示AG =( ). 16、如图,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED=1,BD=4,那么AB=( ).17、如果把两条邻边中较短边和较长边的比值为215-的矩形称作黄金矩形。
【数学】2016年上海市浦东新区中考一模数学试卷含解析
A.AC2=AD•AB B.CD2=CA•CB
C.CD2=AD•DB D.BC2=BD•BA
第 1 页(共 24 页)
6. (4 分)下列命题是真命题的是(
)
A.有一个角相等的两个等腰三角形相似 B.两边对应成比例且有一个角相等的两个三角形相似 C.四个内角都对应相等的两个四边形相似 D.斜边和一条直角边对应成比例的两个直角三角形相似 二、填空题(本大题共 12 小题,每题 4 分,满分 48 分)7.已知,那么. 7. (4 分)已知 ,那么 = + )= . .
25. (14 分)如图,在边长为 6 的正方形 ABCD 中,点 E 为 AD 边上的一个动点 (与点 A、D 不重合) ,∠EBM=45°,BE 交对角线 AC 于点 F,BM 交对角 线 AC 于点 G,交 CD 于点 M. (1)如图 1,联结 BD,求证:△DEB∽△CGB,并写出 DE:CG 的值; (2)联结 EG,如图 2,若设 AE=x,EG=y,求 y 关于 x 的函数解析式,并写 出函数的定义域; (3)当 M 为边 DC 的三等分点时,求 S△EGF 的面积.
23. (12 分)如图,在△ABC 中,D 是 BC 边的中点,DE⊥BC 交 AB 于点 E, AD=AC,EC 交 AD 于点 F. (1)求证:△ABC∽△FCD; (2)求证:FC=3EF.
第 4 页(共 24 页)
24. (12 分)如图,抛物线 y=ax2+2ax+c(a>0)与 x 轴交于 A(﹣3,0) 、B 两 点(A 在 B 的左侧) ,与 y 轴交于点 C(0,﹣3) ,抛物线的顶点为 M. (1)求 a、c 的值; (2)求 tan∠MAC 的值; (3)若点 P 是线段 AC 上一个动点,联结 OP.问:是否存在点 P,使得以点 O、 C、P 为顶点的三角形与△ABC 相似?若存在,求出 P 点的坐标;若不存在, 请说明理由.
高考数学一模试题浦东2016届高三一模数学卷(附答案)
浦东新区2015学年度第一学期期末质量测试高三数学试卷 (含答案) 2016.1注意:1. 答卷前,考生务必在答题纸上指定位置将学校、姓名、考号填写清楚. 2. 本试卷共有32道试题,满分150分,考试时间130分钟.一、填空题(本大题共有12题,满分36分)只要求直接填写结果,每个空格填对得3分,否则一律得零分. 注:填写其他等价形式则得分1.已知集合{}{}=3,2A x x B x x ≤=<,则R A C B =I []2,32.已知向量()2,1,(1,)a b m =-=r r 平行,则m = 12-3.关于,x y 的一元二次方程组23122x y x y +=⎧⎨-=⎩的系数矩阵 2312⎛⎫⎪-⎝⎭4.计算:1132lim 32n nnn n ++→∞-+ 3 5.若复数z 满足1012ii z=-(i 为虚数单位),则z6.()1021x +的二项展开式中的第八项为 3960x7.某船在海平面A 处测得灯塔B 在北偏东30︒方向,与A 相距6.0海里.船由A 向正北方向航行8.1海里达到C 处,这时灯塔B 与船相距_____4.2______海里(精确到0.1海里) 8.已知3cos(),,252ππααπ⎛⎫-=∈ ⎪⎝⎭,则sin 3πα⎛⎫+= ⎪⎝⎭9.如图,已知正方体1111D C B A ABCD -,21=AA ,E 为棱1CC 的中点,则AE与平面11BCC B 所成的角为552arctan .(2arcsin 3,)(结果用反三角表示)10.已知函数()f x 的图像与()2xg x =的图像关于直线y x =对称,令()(1)h x f x =-,则关于函数()h x 有下列命题:①()h x 的图像关于原点对称; ②()h x 的图像关于y 轴对称; ③()h x 的最大值为0; ④()h x 在区间(1,1)-上单调递增。
其中正确命题的序号为____②③_____(写出所有正确命题的序号)。
09-16年上海浦东区数学一模考点汇编及试卷
平面向量
求此二次函数的解析式
21
解直角三角形的应用-仰角俯角问题
相似三角形的判定与性质
22
特殊角的三角函数值
解直角三角形的应用
23
相似三角形的判定与性质
相似三角形的判定与性质
24
二次函数综合题
二次函数综合题
25
相似形综合题;等腰三角形的性质;勾股定理;矩形的性质;锐角三角函数的定义
相似形综合题
2009
09-16 年上海市浦东新区数学一模考点&试卷
2009 年上海市浦东新区数学一模试卷
2010 年上海市浦东新区数学一模试卷
选择题
题号
考察知识点
考察知识点
1
锐角三角函数的定义
锐角三角函数的定义
2
解直角三角形的应用-坡度坡角问题
相似三角形的判定与性质;比例的性质.
3
二次函数图象与几何变换
二次函数的最值
4
平行线分线段成比例
二次函数的性质.
13
平面向量
平面向量;三角形中位线定理
14
三角形的重心;等腰三角形的性质
锐角三角函数的定义.
15
比例线段
相似三角形的性质.
16
锐角三角函数的定义;坐标与图形性质;勾 股定理
三角形的重心.
17
解直角三角形的应用-仰角俯角问题
解直角三角形的应用-仰角俯角问题
18
二次函数的性质
黄金分割
17
二次函数的解析式
二次函数图像及性质
18
抛物线的平移
翻折问题
解答题
19
三角函数的计算
抛物线的表达式
向量线性运算,向量三角形、平行四边形法则
2016届上海浦东新区初三数学一模试卷加答案(完美word版)
浦东新区2015学年第一学期初三教学质量检测数学试卷(完卷时间100分钟,满分150分)考生注意: 1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸...规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸...的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【每小题只有一个正确选项,在答题纸的相应题号的选项上用2 B 铅笔填涂】1.如果两个相似三角形对应边之比是1∶4,那么它们的对应边上的中线之比是( ▲ ). (A)1∶2; (B)1∶4; (C )1∶8; (D )1∶16.2.在Rt △ABC 中,∠C =90°,若AB =5,BC =4,则sin A 的值为( ▲ )。
(A )43; (B )53; (C) 45; (D )43.3.如图,点D 、E 分别在AB 、AC 上,能推得DE ∥BC 的条件是( ▲ ). (A )AD ∶AB =DE ∶BC ; (B )AD ∶DB =DE ∶BC ; (C )AD ∶DB =AE ∶EC ; (D)AE ∶AC =AD ∶DB .4.已知二次函数c bx ax y ++=2的图像如图所示,那么a 、b 、c 的符号为( ▲ ). (A )a <0,b <0,c >0; (B)a <0,b <0,c <0; (C )a >0,b >0,c >0; (D)a >0,b >0,c <0.5.如图,Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,下列结论中错误的是( ▲ ).(A )2AC AD AB =⋅; (B ) 2CD AC BC =⋅; (C ) 2CD AD DB =⋅;(D ) 2BC BD BA =⋅.6.下列命题是真命题的是( ▲ ).(A )有一个角相等的两个等腰三角形相似;(B)两边对应成比例且有一个角相等的两个三角形相似; (C)四个内角都对应相等的两个四边形相似;(D )斜边与一条直角边对应成比例的两个直角三角形相似.第4题图第5题图BACD第3题图E D CBA二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】 7.已知13x y =,那么yx x += ▲ . 8.计算:1233a ab ⎛⎫-+ ⎪⎝⎭=▲ .9.上海与杭州的实际距离约200千米,在比例尺为1:5 000 000的地图上,上海与杭州的图上距离约▲ 厘米. 10.某滑雪运动员沿着坡比为1:3的斜坡向下滑行了100米,则运动员下降的垂直高度为_▲_米. 11.将抛物线2)1(+=x y 向下平移2个单位,得到新抛物线的函数解析式是 ▲ .12.二次函数y=ax 2+bx+c 的图像如图所示,对称轴为直线x =2,若此抛物线与x 轴的一个交点为(6,0),则抛物线与x 轴的另一个交点坐标是 ▲ 。
上海市浦东新区届中考数学一模及答案
--浦东新区2017学年第一学期初三教学质量检测数 学 试 卷(完卷时间:100分钟,满分:150分)2018.1一、选择题:(本大题共6题,每题4分,满分24分)1.如果把一个锐角三角形三边的长都扩大为原来的两倍,那么锐角A 的余切值(A)扩大为原来的两倍; ﻩ(B)缩小为原来的21; (C)不变; ﻩ(D)不能确定. 2.下列函数中,二次函数是(A)54+-=x y ; (B))32(-=x x y ; (C)22)4(x x y -+=;(D )21xy =. 3.已知在Rt △A BC 中,∠C =90°,A B=7,BC =5,那么下列式子中正确的是(A)75sin =A ; (B )75cos =A ; ﻩ(C)75tan =A ; (D )75cot =A . 4.已知非零向量a ,b ,c ,下列条件中,不能判定向量a与向量b 平行的是(A )c a //,c b //; (=; ﻩ(C)c a =,c b 2=; (D)0=+b a . 5.如果二次函数2y ax bx c =++的图像全部在x轴的下方,那么下列判断中正确的是 (A)0<a ,0<b ; ﻩﻩ ﻩ (B)0>a ,0<b ; (C)0<a ,0>c ;ﻩﻩ(D)0<a ,0<c .6.如图,已知点D 、F在△A BC 的边AB 上,点E 在边AC 上,且DE ∥BC ,要使得EF∥CD ,还需添加一个条件,这个条件可以是(A)EF ADCD AB=; ﻩ (B)AE AD AC AB =; (C)AF AD AD AB =; ﻩﻩﻩ(D )AF AD AD DB =.二、填空题:(本大题共12题,每题4分,满分48分)7.已知23=y x ,则yx y x +-的值是 . 8.已知线段MN 的长是4cm ,点P 是线段MN 的黄金分割点,则较长线段MP 的长是 c m. 9.已知△ABC ∽△A 1B 1C 1,△A BC 的周长与△A 1B 1C1的周长的比值是23,BE 、B 1E1分别是它 们对应边上的中线,且BE =6,则B 1E 1= .BA F E CD (第6题图)--10.计算:132()2a ab +-= . 11.计算:3tan30sin45︒+︒= .12.抛物线432-=x y 的最低点坐标是 .13.将抛物线22x y =向下平移3个单位,所得的抛物线的表达式是 . 14.如图,已知直线l 1、l2、l 3分别交直线l 4于点A 、B、C ,交直线l5于点D 、E 、F ,且l1∥l 2∥l 3,AB =4,A C=6,DF =9,则DE = .15.如图,用长为10米的篱笆,一面靠墙(墙的长度超过10米),围成一个矩形花圃,设矩形垂直于墙的一边长为x米,花圃面积为S 平方米,则S 关于x 的函数解析式是 . (不写定义域).16.如图,湖心岛上有一凉亭B ,在凉亭B的正东湖边有一棵大树A ,在湖边的C 处测得B在北偏西45°方向上,测得A在北偏东30°方向上,又测得A、C 之间的距离为100米,则A 、B 之间的距离是 米(结果保留根号形式).17.已知点(-1,m )、(2,n )在二次函数122--=ax ax y 的图像上,如果m >n ,那么a 0(用“>”或“<”连接).18.如图,已知在Rt △A BC 中,∠A CB =90°,54cos =B ,BC=8,点D 在边BC 上,将 △ABC 沿着过点D 的一条直线翻折,使点B 落在AB 边上的点E 处,联结CE 、D E,当∠BDE =∠A EC 时,则BE 的长是 .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)将抛物线542+-=x x y 向左平移4个单位,求平移后抛物线的表达式、顶点坐标 和对称轴.(第15题图) A DEB CFl 1 l 2 l 3l 4(第14题图)l 5 (第16题图)CB A45° 30° CBA(第18题图)20.(本题满分10分,每小题5分)如图,已知△AB C中,点D 、E 分别在边AB 和AC 上,D E∥BC , 且DE 经过△ABC 的重心,设BC a =.(1)=DE .(用向量a 表示); (2)设AB b =,在图中求作12b a +.(不要求写作法,但要指出所作图中表示结论的向量.)21.(本题满分10分,其中第(1)小题4分,第(2)小题6分)ﻩ如图,已知G 、H 分别是□ABCD 对边AD 、BC 上的点,直线GH 分别交BA 和DC 的延长线于点E 、F.(1)当81=∆CDGHCFH S S 四边形时,求DGCH 的值; (2)联结BD 交EF 于点M ,求证:MG ME MF MH ⋅=⋅.22.(本题满分10分,其中第(1)小题4分,第(2)小题6分)如图,为测量学校旗杆A B的高度,小明从旗杆正前方3米处的点C 出发,沿坡度为3:1=i 的斜坡C D前进32米到达点D,在点D处放置测角仪,测得旗杆顶部A 的仰角为37°,量得测角仪DE 的高为1.5米.A、B 、C 、D 、E 在同一平面内,且旗杆和测角仪都与地面垂直. (1)求点D 的铅垂高度(结果保留根号); (2)求旗杆AB 的高度(精确到0.1).(参考数据:sin 37°≈0.60,cos37°≈0.80,t an37°≈0.75,73.13≈.)(第20题图)ABC DE(第22题图)(第21题图)AHF EC G D23.(本题满分12分,其中第(1)小题6分,第(2)小题6分)如图,已知,在锐角△AB C中,C E⊥AB 于点E ,点D在边AC 上, 联结B D交CE 于点F ,且DF FB FC EF ⋅=⋅. (1)求证:BD ⊥AC ;(2)联结AF ,求证:AF BE BC EF ⋅=⋅.24.(本题满分12分,每小题4分)已知抛物线y=ax 2+b x+5与x 轴交于点A (1,0)和点B (5,0),顶点为M .点C在x 轴的负半轴上,且AC =AB ,点D的坐标为(0,3),直线l 经过点C 、D . (1)求抛物线的表达式;(2)点P 是直线l在第三象限上的点,联结AP ,且线段CP 是线段CA 、C B的比例中项,求tan ∠C PA 的值;(3)在(2)的条件下,联结AM 、BM ,在直线PM 上是否存在点E,使得∠AE M=∠AM B.若存在,求出点E 的坐标;若不存在,请说明理由.A (第23题图)DEFBC(第24题图)25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,已知在△A BC中,∠AC B=90°,BC=2,AC =4,点D在射线BC 上,以点D 为圆心,B D为半径画弧交边AB 于点E ,过点E作EF ⊥AB 交边AC 于点F ,射线ED 交射线A C于点G . (1)求证:△EFG ∽△AE G;(2)设FG =x ,△EFG 的面积为y ,求y关于x 的函数解析式并写出定义域; (3)联结D F,当△EFD 是等腰三角形时,请直接..写出FG 的长度.(第25题备用图)ABC(第25题备用图)ABC浦东新区2017学年度第一学期初三教学质量检测数学试卷参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.C; 2.B ; 3.A ; 4.B ; 5.D; 6.C.二、填空题:(本大题共12题,每题4分,满分48分)7.51;8.252-; 9.4;10.5a b -;11.223+;12.(0,-4);13.322-=x y ; 14.6; 15.x x S 1022+-=;16.50350+;17.>;18.539.三、解答题:(本大题共7题,满分78分)19.解:∵54442+-+-=x x y =1)2(2+-x .…………………………………(3分) ∴平移后的函数解析式是1)2(2++=x y .………………………………(3分)顶点坐标是(-2,1).……………………………………………………(2分) 对称轴是直线2x =-.………………………………………………… (2分)20.解:(1)=23a .……………………………(5分)(2)图正确得4分,结论:AF 就是所要求作的向量. …(1分).21.(1)解:∵81=∆CDGH CFHS S 四边形, ∴ 91=∆∆DFG CFH S S .……………………………………………………(1分)∵ □ABCD 中,AD //BC ,∴ △CFH ∽△DFG . ………………………………………………(1分)∴ 91)(2==∆∆DG CH S S DFG CFH .…………………………………………… (1分)∴ 31=DG CH . …………………………………………………………(1分)(2)证明:∵ □AB CD 中,AD //BC , ∴ MGMH MD MB =. ……………………………………(2分) ∵ □AB CD中,AB//C D, ∴ MD MB MF ME =.……………………………………(2分) ∴ MG MH MF ME =.……………………………………(1分) ∴ MH MF ME MG ⋅=⋅. ……………………………(1分) 22.解:(1)延长ED 交射线BC 于点H .由题意得DH ⊥BC .(第21题图) A BHFEC GD M(第20题图)B在Rt △CD H中,∠DHC =90°,tan ∠DCH=1:i =……………(1分) ∴ ∠DCH =30°.∴ CD =2DH .……………………………(1分) ∵ CD=∴ DHCH =3 .……………………(1分) 答:点D 的铅垂高度是3米.…………(1分)(2)过点E 作EF ⊥AB 于F.由题意得,∠AE F即为点E 观察点A时的仰角,∴ ∠AEF =37°. ∵ EF ⊥AB ,AB ⊥BC ,ED ⊥B C, ∴ ∠BFE =∠B =∠B HE =90°. ∴ 四边形FBHE 为矩形.∴ EF =BH =BC +C H=6. ……………………………………………(1分)F B=EH =ED +DH =1.5+3. ……………………………………(1分) 在Rt △AEF 中,∠AFE =90°,5.475.06tan ≈⨯≈∠⋅=AEF EF AF .(1分) ∴ AB =AF +FB =6+3 ………………………………………………(1分) 7.773.16≈+≈. ……………………………………………(1分) 答:旗杆AB 的高度约为7.7米. …………………………………(1分)23.证明:(1)∵ DF FB FC EF ⋅=⋅,∴FCFBDF EF =. ………………………(1分) ∵ ∠EF B=∠DFC , …………………(1分)∴ △E FB ∽△DF C. …………………(1分) ∴ ∠FEB =∠FDC . ………………… (1分) ∵ CE ⊥AB , ∴ ∠FEB = 90°.……………………… (1分) ∴ ∠FDC= 90°. ∴ BD ⊥AC. ………………………… (1分) (2)∵ △EFB ∽△DFC ,∴ ∠ABD =∠ACE . …………………………………………… (1分)∵ CE ⊥A B,∴ ∠FEB = ∠A EC= 90°.∴ △AE C∽△FEB . ……………………………………………(1分)∴ EBECFE AE =.……………………………………………………(1分) (第22题图)A (第23题图) D EF B C∴EBFEEC AE =. …………………………………………………(1分) ∵ ∠AEC =∠FEB = 90°,∴ △AEF ∽△CEB .………………………………………………(1分)∴ EBEFCB AF =,∴ AF BE BC EF ⋅=⋅. ………………………(1分) 24.解:(1)∵ 抛物线52++=bx ax y 与x 轴交于点A (1,0),B (5,0),∴ ⎩⎨⎧=++=++.0552505b a b a ;………………………解得⎩⎨⎧-==.61b a ;∴ 抛物线的解析式为562+-=x x y .……(1 (2)∵ A (1,0),B(5,0),∴ OA=1,A B=4.∵ AC =AB 且点C 在点A 的左侧,∴ A C=4 .∴ CB =CA+A B=8. ………………………………………………(1分) ∵ 线段CP 是线段CA 、CB 的比例中项,∴CBCPCP CA =. ∴ CP =24. ……………………………………………………(1分)又 ∵ ∠PCB 是公共角,∴ △CP A ∽△C BP .∴ ∠CPA= ∠CB P. ………………………………………………(1分)过P 作PH ⊥x 轴于H .∵ O C=OD=3,∠D OC=90°,∴ ∠DC O=45°.∴ ∠PC H=45°∴ PH=C H=C P 45sin =4,∴ H(-7,0),BH=12. ∴ P (-7,-4).∴ 31tan ==∠BH PH CBP ,31tan =∠CPA . ………………………(1分) (3) ∵ 抛物线的顶点是M (3,-4),………………………………… (1分) 又 ∵ P (-7,-4),∴ P M∥x轴 .当点E 在M 左侧, 则∠B AM =∠A ME . ∵ ∠AEM=∠AMB ,∴ △AEM ∽△B MA .…………………………………………………(1分)∴BA AM AM ME =. ∴45252=ME . (第24题图)∴ ME=5,∴ E(-2,-4). …………………………………(1分) 过点A作AN ⊥PM 于点N ,则N (1,-4).当点E在M 右侧时,记为点E ', ∵ ∠A E 'N=∠AE N,∴ 点E '与E 关于直线AN 对称,则E '(4,-4).………………(1分) 综上所述,E的坐标为(-2,-4)或(4,-4).25.解:(1)∵ ED =B D,∴ ∠B =∠BED .………………………………(1∵ ∠ACB =90°, ∴ ∠B +∠A=90°. ∵ EF ⊥AB ,∴ ∠B EF =90°. ∴ ∠BED +∠GEF =90°.∴ ∠A =∠G EF . ………………………………(1分∵ ∠G是公共角, ……………………………(1分) ∴ △EFG ∽△A EG . (2)作EH⊥AF 于点H.∵ 在Rt △ABC 中,∠ACB =90°,BC=2,AC =4, ∴ 21tan ==AC BC A . ∴ 在Rt △AEF 中,∠AEF =90°,21tan ==AE EF A . ∵ △EFG ∽△AEG, ∴21===AE EF GA GE EG FG .……………………………………………(1分) ∵ FG =x ,∴ EG =2x,AG =4x .∴ A F=3x . ……………………………………………………………(1分) ∵ EH ⊥AF ,∴ ∠A HE =∠EHF =90°. ∴ ∠EF A+∠FEH =90°. ∵ ∠AEF =90°, ∴ ∠A +∠EF A =90°. ∴ ∠A =∠F EH .∴ tan A =tan ∠F EH .∴ 在Rt △EH F中,∠EH F=90°,21tan ==∠EH HF FEH .∴ EH =2HF.∵ 在R t△AEH 中,∠AHE =90°,21tan ==AH EH A .∴ AH =2EH . ∴ AH =4HF . ∴ AF=5HF .∴ HF =x 53.∴ x EH 56=.…………………………………………………………(1分)∴ 253562121x x x EH FG y =⋅⋅=⋅⋅=.………………………………(1分) 定义域:(340≤<x ).……………………………………………(1分)(3)当△E FD 为等腰三角形时,FG的长度是:254,273.……(5分)。
上海市浦东新区2016届九年级数学下学期第一次段考试卷(含解析)新人教版
2015-2016学年上海市九年级(下)第一次段考数学试卷一、选择题(每题4分,共24分)1.若两圆的半径分别是2cm和3cm,圆心距为5cm,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切2.如图,在直角坐标系中,⊙O的半径为1,则直线y=﹣x+与⊙O的位置关系是()A.相离 B.相交C.相切 D.以下三种情形都有可能3.对于一个正多边形,下列四个命题中,错误的是()A.正多边形是轴对称图形,每条边的垂直平分线是它的对称轴B.正多边形是中心对称图形,正多边形的中心是它的对称中心C.正多边形每一个外角都等于正多边形的中心角D.正多边形每一个内角都与正多边形的中心角互补4.某厂生产了5000个零件,从中抽取了50个零件做质量检查,在这一问题中()A.5000个零件是总体B.50个样本C.抽取的50个零件的质量是一个样本D.50个零件是样本容量5.将甲乙两数据进行比较,如果甲的波动性大,那么()A.甲的标准差小 B.乙的方差小C.甲的平均数大 D.乙的中位数小6.在频率分布直方图中,以下说法错误的是()A.每个小长方形的面积等于频数B.每个小长方形的面积等于频率C.频率=D.各个小长方形面积和等于1二、填空题(每题4分,共48分)7.有2个1,3个6,5个8,这些数的中位数是.8.一组数据6,3,4,3,4的方差是.9.过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是.10.如果正n边形中的一个内角等于一个外角的2倍,则n= .11.三角形的外心是三角形的交点.12.两个圆的半径分别是8cm和x cm,圆心距为5cm,如果两圆内切,则x的值是cm.13.直角三角形的两条边长分别为3和4,那么这个三角形的外接圆半径等于.14.如果外切两圆O1和O2的半径分别为2cm和4cm,那么半径为8cm与O1和O2都相切的圆有个.15.在Rt△ABC中,∠C=90°,AC=6,BC=8,点D在AB上,若以点D为圆心,AD为半径的圆与BC相切,则⊙D的半径为.16.一个圆弧形门拱的拱高为8米,跨度为24米,那么这个门拱的半径为米.17.矩形ABCD中,AB=3,BC=4,如果分别以A、C为圆心的两圆外切,点D在圆C内,点B 在圆C外,那么圆A的半径r的取值范围是.18.在△ABC中,AB=AC=10,cosB=,如果圆O的半径为2,且经过点B、C,那么线段AO的长等于.三、解答题19.本区某校对学生开展“不闯红灯,珍爱生命”的教育,为此校学生会委员在某天到市中心某十字路口,观察、统计上午7:00~12:00之间闯红灯的人次,制作了如下两个统计图:(1)图一中各时段闯红灯人次的平均数为人次;(2)图一中各时段闯红灯人次的中位数是人次;(3)该路口这一天上午7:00~12:00之间闯红灯的未成年人有人次;(4)估计一周(七天)内该路口上午7:00~12:00之间闯红灯的中青年约有人次;(5)是否能以此估计全市这一天上午7:00~12:00之间所有路口闯红灯的人次?答:.为什么?答:.20.某校团委为了了解今年春节时学生自由支配的压岁钱数目,从初三年级中随机抽取了部分学生进行调查,并将这部分学生自由支配的压岁钱数目绘制成频率分布直方图.已知图中从左至右的第一组人数为8名.请根据所给的信息回答:(1)被抽取调查的学生人数为名;(2)从左至右第五组的频率是;(3)若该校初三有280名学生,请估计初三年级约有名学生能自由支配400﹣500元的压岁钱;(4)若该校共有1000名学生,请问“该校约有350名学生能自由支配400﹣500元的压岁钱.”这个结论是否正确,说明理由.21.如图,在△ABC中,∠ACB=90°,CD是高,BD=1,∠CBD的正切值为2.(1)求AD的长;(2)如果点E在以B为圆心BA为半径的弧上,CE∥AB,求sin∠EBA的值.22.已知:如图,BC是⊙O的弦,点A在⊙O上,AB=AC=10,.求:(1)弦BC的长;(2)∠OBC的正切的值.23.已知:如图,M是的中点,过点M的弦MN交AB于点C,设⊙O的半径为4cm,MN= cm.(1)求圆心O到弦MN的距离;(2)求∠ACM的度数.24.如图,在平面直角坐标系中,直线分别与x轴、y轴交于点A和点B,二次函数y=ax2﹣4ax+c的图象经过点B和点C(﹣1,0),顶点为P.(1)求这个二次函数的解析式,并求出P点坐标;(2)若点D在二次函数图象的对称轴上,且AD∥BP,求PD的长;(3)在(2)的条件下,如果以PD为直径的圆与圆O相切,求圆O的半径.25.如图,已知AB⊥MN,垂足为点B,P是射线BN上的一个动点,AC⊥AP,∠ACP=∠BAP,AB=4,BP=x,CP=y,点C到MN的距离为线段CD的长.(1)求y关于x的函数解析式,并写出它的定义域;(2)在点P的运动过程中,点C到MN的距离是否会发生变化?如果发生变化,请用x的代数式表示这段距离;如果不发生变化,请求出这段距离;(3)如果圆C与直线MN相切,且与以BP为半径的圆P也相切,求BP:PD的值.2015-2016学年上海市侨光中学九年级(下)第一次段考数学试卷参考答案与试题解析一、选择题(每题4分,共24分)1.若两圆的半径分别是2cm和3cm,圆心距为5cm,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切【考点】圆与圆的位置关系.【分析】由两圆的半径分别为3cm和2cm,圆心距为5cm,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.【解答】解:∵两圆的半径分别为3cm和2cm,圆心距为5cm,又∵3+2=5,∴两圆的位置关系是外切.故选D.2.如图,在直角坐标系中,⊙O的半径为1,则直线y=﹣x+与⊙O的位置关系是()A.相离 B.相交C.相切 D.以下三种情形都有可能【考点】直线与圆的位置关系;一次函数综合题.【分析】只需求得圆心到直线的距离,再根据圆心到直线的距离和圆的半径之间的大小关系进行分析.【解答】解:圆心O到直线y=﹣x+的距离是1,它等于圆的半径1,则直线和圆相切.故选C.3.对于一个正多边形,下列四个命题中,错误的是()A.正多边形是轴对称图形,每条边的垂直平分线是它的对称轴B.正多边形是中心对称图形,正多边形的中心是它的对称中心C.正多边形每一个外角都等于正多边形的中心角D.正多边形每一个内角都与正多边形的中心角互补【考点】正多边形和圆.【分析】利用正多边形的对称轴的性质、对称性、中心角的定义及中心角的性质作出判断即可.【解答】解:A、正多边形是轴对称图形,每条边的垂直平分线是它的对称轴,正确,故此选项错误;B、正奇数多边形多边形不是中心对称图形,错误,故本选项正确;C、正多边形每一个外角都等于正多边形的中心角,正确,故本选项错误;D、正多边形每一个内角都与正多边形的中心角互补,正确,故本选项错误.故选B.4.某厂生产了5000个零件,从中抽取了50个零件做质量检查,在这一问题中()A.5000个零件是总体B.50个样本C.抽取的50个零件的质量是一个样本D.50个零件是样本容量【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、5000个零件的质量是总体,故A错误;B、50个零件质量的质量是样本,故B错误;C、抽取的50个零件的质量是一个样本,故C正确;D、50是样本容量,故D错误;故选:C.5.将甲乙两数据进行比较,如果甲的波动性大,那么()A.甲的标准差小 B.乙的方差小C.甲的平均数大 D.乙的中位数小【考点】标准差;算术平均数;中位数;方差.【分析】根据方差的意义即方差大小代表数据的波动大小,方差越大代表这组数据波动越大,方差越小波动越小,从而得出答案.【解答】解:甲乙两数据进行比较,如果甲的波动性大,就说明甲的方差大,乙的方差小;故选B.6.在频率分布直方图中,以下说法错误的是()A.每个小长方形的面积等于频数B.每个小长方形的面积等于频率C.频率=D.各个小长方形面积和等于1【考点】频数(率)分布直方图.【分析】根据频率和小长方形的面积关系以及频率公式得出A错误,B、C、D正确,即可得出结果.【解答】解:A、每个小长方形的面积等于频数,错误;B、每个小长方形的面积等于频率,正确;C、频率=,正确;D、各个小长方形面积和等于1,正确;故选:A.二、填空题(每题4分,共48分)7.有2个1,3个6,5个8,这些数的中位数是7 .【考点】中位数.【分析】确定数据的个数,然后利用中位数的定义求解即可.【解答】解:∵共有2+3+5=10个数,最中间两个数为6和8,所以这组数据的中位数为7.故答案为7.8.一组数据6,3,4,3,4的方差是.【考点】方差.【分析】结合方差公式先求出这组数据的平均数,然后代入公式求出即可.【解答】解:平均数为:(6+3+4+3+4)÷5=4,S2= [(6﹣4)2+(3﹣4)2+(4﹣4)2+(3﹣4)2+(4﹣4)2]=.故答案为:.9.过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是10 .【考点】多边形的对角线.【分析】经过n边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形,根据此关系式求边数.【解答】解:设多边形有n条边,则n﹣2=8,解得n=10.所以这个多边形的边数是10.10.如果正n边形中的一个内角等于一个外角的2倍,则n= 6 .【考点】多边形内角与外角.【分析】正n边形的每个内角都相等,而内角等于一个外角的2倍,即可求得外角的度数,根据外角和定理即可求得多边形的边数.【解答】解:设多边形的外角是x度,则内角是2x°.则x+2x=180°,解得x=60°.∴n==6.11.三角形的外心是三角形三条边垂直平分线的交点.【考点】三角形的外接圆与外心.【分析】根据三角形外接圆的圆心是三角形三条边垂直平分线的交点,解答即可.【解答】证明:如图,∵OA=OB=OC,∴点O是△ABC三边垂直平分线的交点;(线段的垂直平分线上的点到线段两端点的距离相等)故答案为:三条边垂直平分线.12.两个圆的半径分别是8cm和x cm,圆心距为5cm,如果两圆内切,则x的值是3或13 cm.【考点】圆与圆的位置关系.【分析】本题可根据两圆内切得出:|8﹣x|=5,将方程化简即可得出x的值.【解答】解:依题意得:|8﹣x|=5即8﹣x=5或x﹣8=5解得:x=3或13.13.直角三角形的两条边长分别为3和4,那么这个三角形的外接圆半径等于或2 .【考点】三角形的外接圆与外心;勾股定理.【分析】本题应分两种情况进行讨论:当4是直角边时,根据勾股定理得到斜边是5,这个直角三角形外接圆的直径是5,半径是;当4是斜边时,直角三角形外接圆直径是4,半径是2.【解答】解:当4是直角边时,斜边是5,这个直角三角形外接圆的直径是5,半径是;当4是斜边时,直角三角形外接圆直径是4,半径是2.所以这个三角形的外接圆半径等于或2.14.如果外切两圆O1和O2的半径分别为2cm和4cm,那么半径为8cm与O1和O2都相切的圆有 6 个.【考点】圆与圆的位置关系.【分析】所求圆与已知圆相切,分为内切和外切两种,根据本题情况,画出图形,求出所有可能的个数.【解答】解:⊙O1和⊙O2外切,半径分别为2cm和4cm,两圆心距为6cm,半径为8cm的圆都外切的有两个;和一圆外切一圆内切的有两个;和两圆都内切的有两个;则两圆两两相切,则可知一共有6个.故答案为:6.15.在Rt△ABC中,∠C=90°,AC=6,BC=8,点D在AB上,若以点D为圆心,AD为半径的圆与BC相切,则⊙D的半径为.【考点】切线的性质;勾股定理;相似三角形的判定与性质.【分析】先画图,过点D作DE⊥BC,则△BDE∽△BAC,根据相似三角形的性质,可求得⊙D 的半径.【解答】解:过点D作DE⊥BC,∵∠C=90°,∴DE∥AC,∴△BDE∽△BAC,∴=,设⊙D的半径为r,∵AC=6,BC=8,∴AB=10,即,解得r=,故答案为.16.一个圆弧形门拱的拱高为8米,跨度为24米,那么这个门拱的半径为13 米.【考点】垂径定理的应用.【分析】根据题意画出图形,利用垂径定理得出AC=BC,以及CO=AO﹣8,再利用勾股定理解答.【解答】解:作DO⊥AB交AB于点C,∴AC=CB,∴AC2+CO2=AO2,设半径为x,∴CO=x﹣8,则根据勾股定理求出可知:x2=122+(x﹣8)2,解得x=13.故答案为:13.17.矩形ABCD中,AB=3,BC=4,如果分别以A、C为圆心的两圆外切,点D在圆C内,点B 在圆C外,那么圆A的半径r的取值范围是8<r<9或1<r<2 .【考点】圆与圆的位置关系.【分析】首先根据点D在⊙C内,点B在⊙C外,求得⊙C的半径是大于3而小于4;再根据勾股定理求得AC=5,最后根据两圆的位置关系得到其数量关系.【解答】解:∵在矩形ABCD中,AB=3,BC=4,∴AC==5,∵点D在⊙C内,点B在⊙C外,∴⊙C的半径R的取值范围为:3<R<4,∴当⊙A和⊙C内切时,圆心距等于两圆半径之差,则r的取值范围是8<r<9;当⊙A和⊙C外切时,圆心距等于两圆半径之和是5,设⊙C的半径是R c,即R c+r=5,又∵3<R c<4,则r的取值范围是1<r<2.所以半径r的取值范围是8<r<9或1<r<2.故答案为:8<r<9或1<r<2.18.在△ABC中,AB=AC=10,cosB=,如果圆O的半径为2,且经过点B、C,那么线段AO的长等于 6 .【考点】垂径定理;等腰三角形的性质;解直角三角形.【分析】作AD⊥BC于D,如图,利用等腰三角形的性质可判断AD垂直平分BC,则根据垂径定理得到点O在AD上,连接OB,如图,根据余弦的定义可计算出BD=6,则利用勾股定理可计算出AD=8,OD=2,所以OA=AD﹣OD=6.【解答】解:作AD⊥BC于D,如图,∵AB=AC,∴AD垂直平分BC,∴点O在AD上,连接OB,如图,在Rt△ABD中,cosB==,∴BD=10×=6,∴AD==8,在Rt△BOD中,OD==2,∴OA=AD﹣OD=8﹣2=6.故答案为6.三、解答题19.本区某校对学生开展“不闯红灯,珍爱生命”的教育,为此校学生会委员在某天到市中心某十字路口,观察、统计上午7:00~12:00之间闯红灯的人次,制作了如下两个统计图:(1)图一中各时段闯红灯人次的平均数为20 人次;(2)图一中各时段闯红灯人次的中位数是15 人次;(3)该路口这一天上午7:00~12:00之间闯红灯的未成年人有35 人次;(4)估计一周(七天)内该路口上午7:00~12:00之间闯红灯的中青年约有350 人次;(5)是否能以此估计全市这一天上午7:00~12:00之间所有路口闯红灯的人次?答:不能.为什么?答:不知道全市红绿灯的个数调查太片面.【考点】条形统计图;用样本估计总体;扇形统计图;加权平均数;中位数.【分析】(1)根据图表得出五个时间段内总次数,即可得出平均次数;(2)根据中位数定义从大到小排列即可得出中位数;(3)根据闯红灯总人数,得出上午7:00~12:00之间闯红灯的未成年人即可;(4)根据闯红灯总人数,即可得出这一天该路口上午7:00~12:00之间闯红灯的中青年约有:100×50%=50,即可得出答案;(5)利用样本估计总体应注意的事项即可得出答案.【解答】解:(1)(20+15+10+15+40)÷5=20次;(2)根据数据按大小排列:10,15,15,20,40.中位数是:15;(3)∵闯红灯总人数为:(20+15+10+15+40)=100,上午7:00~12:00之间闯红灯的未成年人有:100×35%=35;(4)∵闯红灯总人数为:(20+15+10+15+40)=100,∴这一天该路口上午7:00~12:00之间闯红灯的中青年约有:100×50%=50,7×50=350;(5)不能,不知道全市红绿灯的个数调查太片面.20.某校团委为了了解今年春节时学生自由支配的压岁钱数目,从初三年级中随机抽取了部分学生进行调查,并将这部分学生自由支配的压岁钱数目绘制成频率分布直方图.已知图中从左至右的第一组人数为8名.请根据所给的信息回答:(1)被抽取调查的学生人数为80 名;(2)从左至右第五组的频率是0.05 ;(3)若该校初三有280名学生,请估计初三年级约有84 名学生能自由支配400﹣500元的压岁钱;(4)若该校共有1000名学生,请问“该校约有350名学生能自由支配400﹣500元的压岁钱.”这个结论是否正确,说明理由.【考点】频数(率)分布直方图;抽样调查的可靠性;用样本估计总体.【分析】(1)由图知:每组的组距为100,易求得第一组所在矩形的面积,即可得到它的频率,已知了第一组的人数为8名,除以该组的频率即可得到总的人数.(2)分别求出前四组的频率,由于五组的频率和为1,可据此求得第五组的频率.(3)先求出400~500这一组所占的频率,然后乘以总体即可得所求的结论.(4)显然不合适,初三年纪的随机样本不能代表全校学生.【解答】解:(1)由频率分布直方图知,第一组的频率为:100×0.0010=0.1;所以总的人数为:8÷0.1=80(人);故答案为:80.(2)同(1)可求得:第二组频率:100×0.0020=0.2,第三组频率:100×0.0035=0.35,第四组频率:100×0.0030=0.3;所以第五组的频率为:1﹣0.1﹣0.2﹣0.35﹣0.3=0.05;故答案为:0.05.(3)由(2)知,能自由分配400~500元的学生数所占的频率为0.3;因此所占的人数为:280×0.3=84(人);故答案为:84.(4)不合理,初三年级学生的随机样本不能代表该校全体学生.21.如图,在△ABC中,∠ACB=90°,CD是高,BD=1,∠CBD的正切值为2.(1)求AD的长;(2)如果点E在以B为圆心BA为半径的弧上,CE∥AB,求sin∠EBA的值.【考点】解直角三角形.【分析】(1)由已知△ABC中,∠ACB=90°,CD是高,所以∠ACD+∠BCD=∠CBD+∠BCD=90°,则∠ACD=∠CBD,由两个直角三角形△BCD和△ACD求出AD.(2)过点E作EH⊥AB,垂足为H,由已知可得EH=CD,CD在(1)中已求出,又由已知和(1)求出的AD可求出BE,从而求出sin∠EBA的值.【解答】解:(1)在△ABC中,∵∠ACB=90°,CD是高,∴∠ACD+∠BCD=∠CBD+∠BCD=90°,∴∠ACD=∠CBD,∴tan∠ACD=tan∠CBD=2.在Rt△BCD中,CD=BD•tan∠CBD=1×2=2.在Rt△ACD中,AD=CD•tan∠ACD=2×2=4.(2)过点E作EH⊥AB,垂足为H,∵CE∥AB,CD⊥AB,∴EH=CD=2,∵点E在以B为圆心BA为半径的弧上,∴BE=AB=AD+BD=5,∴sin∠EBA=.22.已知:如图,BC是⊙O的弦,点A在⊙O上,AB=AC=10,.求:(1)弦BC的长;(2)∠OBC的正切的值.【考点】解直角三角形;垂径定理.【分析】(1)根据圆心角定理,得出,利用三角函数关系求出AD的长,进而求出BC 的长;(2)设⊙O的半径OB=r,由OA=OB=r,得OD=8﹣r,利用勾股定理得出r的长,从而求出∠OBC的正切的值.【解答】解:(1)连接AO,AO的延长线与弦BC相交于点D.在⊙O中,∵AB=AC,∴.又∵AD经过圆心O,∴AD⊥BC,BC=2BD.在Rt△ABD中,AB=10,,∴AD=ABsin∠ABC=10×=8.于是,由勾股定理得:.∴BC=12.(2)设⊙O的半径OB=r.在⊙O中,由OA=OB=r,得OD=8﹣r.在Rt△OBD中,利用勾股定理,得BD2+OD2=OB2,即得36+(8﹣r)2=r2.解得.∴.∴.∴.23.已知:如图,M是的中点,过点M的弦MN交AB于点C,设⊙O的半径为4cm,MN= cm.(1)求圆心O到弦MN的距离;(2)求∠ACM的度数.【考点】垂径定理;圆周角定理;解直角三角形.【分析】(1)连接OM,作OD⊥MN于D.根据垂径定理和勾股定理求解;(2)根据(1)中的直角三角形的边求得∠M的度数.再根据垂径定理的推论发现OM⊥AB,即可解决问题.【解答】解:(1)连接OM,∵点M是的中点,∴OM⊥AB,过点O作OD⊥MN于点D,由垂径定理,得MD=MN=2,在Rt△ODM中,OM=4,MD=2,∴OD==2,故圆心O到弦MN的距离为2cm;(2)cos∠OMD=,∴∠OMD=30°,∵M为弧AB中点,OM过O,∴AB⊥OM,∴∠MPC=90°,∴∠ACM=60°.24.如图,在平面直角坐标系中,直线分别与x轴、y轴交于点A和点B,二次函数y=ax2﹣4ax+c的图象经过点B和点C(﹣1,0),顶点为P.(1)求这个二次函数的解析式,并求出P点坐标;(2)若点D在二次函数图象的对称轴上,且AD∥BP,求PD的长;(3)在(2)的条件下,如果以PD为直径的圆与圆O相切,求圆O的半径.【考点】二次函数综合题.【分析】(1)根据已知直线的解析式,可求得A、B的坐标,然后将B、C的坐标代入抛物线的解析式中,即可求得待定系数的值,从而确定该抛物线的解析式;利用配方法将所得抛物线解析式化为顶点坐标式,进而可求得顶点P的坐标;(2)由(1)的P点坐标知:抛物线的对称轴为x=2,因此抛物线对称轴经过AB的中点,设此交点为E,若BP∥AD,那么PE=DE,根据抛物线的对称轴方程易求得E点坐标,从而可得到PE的长,根据PD=2PE即可得解;(3)由(2)知E是PD的中点,OE的长易求得,比较ED、OE的大小后发现,DE>OE,若⊙E、⊙O相切,那么只有内切一种情况,故两圆的半径差等于圆心距,由此求得⊙O的半径.【解答】解:(1)因为直线分别与x轴、y轴交于点A和点B;由x=0,得y=3,y=0,得x=4,所以A(4,0),B(0,3);把C(﹣1,0),B(0,3)代入y=ax2﹣4ax+c中,得,解得;∴这个二次函数的解析式为;,P点坐标为P;(2)设二次函数图象的对称轴与直线交于E点,与x轴交于F点;把x=2代入得,,∴,∴;∵PE∥OB,OF=AF,∴BE=AE,∵AD∥BP,∴PE=DE,;(3)∵,∴,∴ED>OE;设圆O的半径为r,以PD为直径的圆与圆O相切时,只有内切,∴|﹣r|=,解得:,,即圆O的半径为或.25.如图,已知AB⊥MN,垂足为点B,P是射线BN上的一个动点,AC⊥AP,∠ACP=∠BAP,AB=4,BP=x,CP=y,点C到MN的距离为线段CD的长.(1)求y关于x的函数解析式,并写出它的定义域;(2)在点P的运动过程中,点C到MN的距离是否会发生变化?如果发生变化,请用x的代数式表示这段距离;如果不发生变化,请求出这段距离;(3)如果圆C与直线MN相切,且与以BP为半径的圆P也相切,求BP:PD的值.【考点】直线与圆的位置关系;平行线的性质;圆与圆的位置关系;相似三角形的判定与性质.【分析】(1)求y关于x的函数解析式,可以证明△ABP∽△CAP,根据相似比得出;(2)C到MN的距离,即CD的长,可以延长CA交直线MN于点E,证明AB∥CD,由平行线的性质得出;(3)圆C与直线MN相切,且与以BP为半径的圆P也相切,根据圆与圆的位置关系有(i)当圆C与圆P外切时,CP=PB+CD,即y=x+8,(ii)当圆C与圆P内切时,CP=|PB﹣CD|,即y=|x﹣8|,结合(1),(2)求出BP:PD的值.【解答】解:(1)∵AB⊥MN,AC⊥AP,∴∠ABP=∠CAP=90°.又∵∠ACP=∠BAP,∴△ABP∽△CAP.∴.即.∴所求的函数解析式为(x>0).(2)CD的长不会发生变化.延长CA交直线MN于点E.∵AC⊥AP,∴∠PAE=∠PAC=90°.∵∠ACP=∠BAP,∴∠APC=∠APE.∴∠AEP=∠ACP.∴PE=PC.∴AE=AC.∵AB⊥MN,CD⊥MN,∴AB∥CD.∴.∵AB=4,∴CD=8.(3)∵圆C与直线MN相切,∴圆C的半径为8.(i)当圆C与圆P外切时,CP=PB+CD,即y=x+8,∴,∴x=2,∴BP=2,∴CP=y=2+8=10,根据勾股定理得PD=6∴BP:PD=.(ii)当圆C与圆P内切时,CP=|PB﹣CD|,即y=|x﹣8|,∴.∴或.∴x=﹣2(不合题意,舍去)或无实数解.∴综上所述BP:PD=.。
2015-2016年上海九年级数学一模汇总包含答案
2015-2016学年第一学期徐汇区学习能力诊断卷数学一、选择题1. 下列两个图形一定相似的是( )A.两个菱形;B.两个矩形;C.两个正方形;D.两个等腰梯形.2. 如图1,如果AB ∥CD ∥EF ,那么下列结论正确的是( )A.;B.;C.;D.. 3. 将抛物线向右平移2个单位,再向上平移2个单位后所得的抛物线的表达式是()A.;B.;C.;D.4. 点G 是△ABC 的重心,如果AB=AC=5,BC=8,那么AG 的长是()A.1;B.2;C.3;D.4.5. 如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向;B.南偏西60°方向;C.南偏东30°方向;D.南偏东60°方向.6. 如图2,梯形ABCD 中,AD ∥BC ,∠DAC =90°,AB=AC ,点E 是边AB 上一点,∠ECD =45°,那么下列结论错误的是( )A.∠AED=∠ECB ;B. ∠ADE=∠ACE ;C.BE=AD ;D.BC=CE. 一、 填空题7. 计算:=______________;8. 如果,那么=__________;9. 已知二次函数,如果y 随x 的增大而增大,那么x 的取值范围是_________;10. 如果两个相似三角形的面积比是4:9,那么它们对应高的比是_____________;11. 如图3所示,一皮带轮的坡比是1:2.4,如果将货物从地面用皮带轮送到离地10米高的平台,那么该货物经过的路程是_______米; 12. 已知点M (1,4)在抛物线上,如果点N 和点M 关于该抛物线的对称轴对称,那么点N 的坐标是__________;图2 图3B13. 点D 在△ABC 的边AB 上,AC=3,AB =4,∠ACD=∠B ,那么AD 的长是__________;14. 如图4,在平行四边形ABCD 中,AB=6,AD =4,∠BAD 的平分线AE 分别交BD 、CD 于F 、E ,那么=________; 15. 如图5,在△ABC 中,AH ⊥BC 于H ,正方形DEFG 内接于△ABC ,点D 、E 分别在边AB 、AC 上,点G 、F 在边BC 上,如果BC=20,正方形DEFG 的面积为25,那么AH 的长是________;16. 如图6,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,tan ∠ACD =,AB=5,那么CD 的长是_________;17. 如图7,在梯形ABCD 中,AD ∥BC ,BC=2AD ,点E 是CD 的中点,AC 与BE 交于点F ,那么△ABF 和△CEF的面积比是___________;18. 如图8,在Rt △ABC 中,∠BAC=90°,AB=3,cosB=,将△ABC 绕着点A 旋转得△ADE ,点B 的对应点D落在边BC 上,联结CE ,那么CE 的长是________.二、 解答题19. 计算:4sin45°-2tan30°cos30°+20. 抛物线经过点(2,1).(1) 求抛物线的顶点坐标;(2) 将抛物线沿y 轴向下平移后,所得新抛物线与x 轴交于A 、B 两点,如果AB =2,求新抛物线的表达式。
(word完整版)2016年上海市各区县中考数学一模压轴题图文解析第24、25题
2016年上海市各区县中考数学一模压轴题图文解析目录第一部分第24、25题图文解析2016年上海市崇明县中考数学一模第24、25题 / 22016年上海市奉贤区中考数学一模第24、25题 / 52016年上海市虹口区中考数学一模第24、25题 / 82016年上海市黄浦区中考数学一模第24、25题 / 112016年上海市嘉定区中考数学一模第24、25题 / 142016年上海市静安区青浦区中考数学一模第24、25题 / 172016年上海市闵行区中考数学一模第24、25题 / 202016年上海市浦东新区中考数学一模第24、25题 / 242016年上海市普陀区中考数学一模第24、25题 / 282016年上海市松江区中考数学一模第24、25题 / 312016年上海市徐汇区中考数学一模第24、25题 / 342016年上海市杨浦区中考数学一模第24、25题 / 382016年上海市闸北区中考数学一模第24、25题 / 412016年上海市长宁区金山区中考数学一模第24、25题 / 452016年上海市宝山区中考数学一模第25、26题 / 48如图1,在直角坐标系中,一条抛物线与x轴交于A、B两点,与y轴交于点C,其中B(3, 0),C(0, 4),点A在x轴的负半轴上,OC=4OA.(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC、BC,点P是x轴正半轴上的一个动点,过点P作PM//BC交射线AC于M,联结CP,若△CPM的面积为2,则请求出点P的坐标.图1动感体验请打开几何画板文件名“16崇明一模24”,拖动点P在x轴的正半轴上运动,可以体验到,有两个时刻,△CPM的面积为2.满分解答(1)由C(0, 4),OC=4OA,得OA=1,A(-1, 0).设抛物线的解析式为y=a(x+1)(x-3),代入点C(0, 4),得4=-3a.解得43a=-.所以244(1)(3)(23)33y x x x x=-+-=---2416(1)33x=--+.顶点坐标为16 (1)3,.(2)如图2,设P(m, 0),那么AP=m+1.所以S△CPA=12AP CO⋅=1(1)42m+⨯=2m+2.由PM//BC,得CM BPCA BA=.又因为CPMCPAS CMS CA=△△,所以S△CPM =(22)BPmBA+.①如图2,当点P在AB上时,BP=3-m.解方程3(22)4mm-+=2,得m=1.此时P(1, 0).②如图3,当点P在AB的延长线上时,BP=m-3.解方程3(22)4mm-+=2,得122m=±.此时P(122,0)+.图2 图3如图1,已知矩形ABCD中,AB=6,BC=8,点E是BC边上一点(不与B、C重合),过点E作EF⊥AE交AC、CD于点M、F,过点B作BG⊥AC,垂足为G,BG交AE于点H.(1)求证:△ABH∽△ECM;(2)设BE=x,EHEM=y,求y关于x的函数解析式,并写出定义域;(3)当△BHE为等腰三角形时,求BE的长.图1 备用图动感体验请打开几何画板文件名“16崇明一模25”,拖动点E在BC上运动,可以体验到,有三个时刻,△BHE可以成为为等腰三角形.满分解答(1)如图2,因为∠1和∠2都是∠BAC的余角,所以∠1=∠2.又因为∠BAH和∠CEM都是∠AEB的余角,所以∠BAH=∠CEM.所以△ABH∽△ECM.图2 图3(2)如图3,延长BG交AD于N.在Rt△ABC中,AB=6,BC=8,所以AC=10.在Rt△ABN中,AB=6,所以AN=AB tan∠1=34AB=92,BN=152.如图2,由AD//BC,得92AH ANEH BE x==.由△ABH∽△ECM,得68AH ABEM EC x==-.所以y=EHEM=AH AHEM EH÷=6982x x÷-=12729xx-.定义域是0<x<8.(3)如图2,由AD//BC,得92NH ANBH BE x==.所以292BN xBH x+=.所以215292xBHx=⨯+=1529xx+.在△BHE中,BE=x,cos∠HBE=35,1529xBHx=+.分三种情况讨论等腰三角形BHE:①如图4,当BE=BH时,解方程1529xxx=+,得x=3.②如图5,当HB=HE时,1cos2BE BH B=⋅∠.解方程11532295xxx=⨯+,得92x=.③如图6,当EB=EH时,1cos2BH BE B=⋅∠.解方程11532295xxx⨯=+,得74x=.图4 图5 图6如图1,二次函数y=x2+bx+c的图像经过原点和点A(2, 0),直线AB与抛物线交于点B,且∠BAO=45°.(1)求二次函数的解析式及顶点C的坐标;(2)在直线AB上是否存在点D,使得△BCD为直角三角形,若存在,求出点D的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“16奉贤一模24”,可以体验到,以BC为直径的圆恰好经过点A,直角三角形BCD 存在两种情况.满分解答(1)因为抛物线y=x2+bx+c与x轴交于O、A(2, 0)两点,所以y=x(x-2)=(x-1)2-1.顶点C的坐标为(1,-1).(2)如图2,作BH⊥x轴于H.设B(x, x2-2x).由于∠BAH=45°,所以BH=AH.解方程x2-2x=2-x,得x=-1,或x=2.所以点B的坐标为(-1, 3).图2①∠BDC=90°.如图3,由A(2, 0)、C(1,-1),可得∠CAO=45°.因此∠BAC=90°.所以当点D与点A(2, 0)重合时,△BCD是直角三角形.②∠BCD=90°.由A(2, 0)、B(-1, 3),可得直线AB的解析式为y=-x+2.【解法一】如图4,过点C作BC的垂线与直线AB交于点D.设D(m,-m+2 ).由BD2=BC2+CD2,得(m+1)2+(-m-1)2=22+42+(m-1)2+(-m+3)2.解得73m=.此时点D的坐标为71(,)33-.【解法二】构造△BMC∽△CND,由BM CNMC ND=,得4123mm-=-+.解得73m=.图2 图3 图4如图1,在Rt△ABC中,∠ACB=90°,AB=5,BC=3,点D是斜边AB上任意一点,联结DC,过点C作CE ⊥CD,联结DE,使得∠EDC=∠A,联结BE.(1)求证:AC·BE=BC·AD;(2)设AD=x,四边形BDCE的面积为S,求S与x之间的函数关系式,并写出定义域;(3)当S△BDE=14S△ABC时,求tan∠BCE的值.图1 备用图动感体验请打开几何画板文件名“16奉贤一模25”,拖动点E在AD边上运动,可以体验到,△ABC与△DEC保持相似,△ACD与△BCE保持相似,△BDE是直角三角形.满分解答(1)如图2,在Rt△BAC和Rt△EDC中,由tan∠A=tan∠EDC,得BC EC AC DC=.如图3,已知∠ACB=∠DCE=90°,所以∠1=∠2.所以△ACD∽△BCE.所以AC BCAD BE=.因此AC·BE=BC·AD.图2 图3(2)在Rt△ABC中,AB=5,BC=3,所以AC=4.所以S△ABC=6.如图3,由于△ABC与△ADC是同高三角形,所以S△ADC∶S△ABC=AD∶AB=x∶5.所以S△ADC=65x.所以S△BDC=665x-.由△ADC∽△BEC,得S△ADC∶S△BEC=AC2∶BC2=16∶9.所以S△BEC=916S△ADC=96165x⨯=2740x.所以S=S四边形BDCE=S△BDC+S△BEC=6276540x x-+=21640x-+.定义域是0<x<5.(3)如图3,由△ACD∽△BCE,得AC BCAD BE=,∠A=∠CBE.由43x BE=,得BE=34x.由∠A=∠CBE,∠A与∠ABC互余,得∠ABE=90°(如图4).所以S△BDE=1133(5)(5) 2248BD BE x x x x⋅=-⨯=--.当S△BDE=14S△ABC=13642⨯=时,解方程33(5)82x x--=,得x=1,或x=4.图4 图5 图6作DH⊥AC于H.①如图5,当x=AD=1时,在Rt△ADH中,DH=35AD=35,AH=45AD=45.在Rt△CDH中,CH=AC-AH=416455-=,所以tan∠HCD=DHCH=316.②如图6,当x=AD=4时,在Rt△ADH中,DH=35AD=125,AH=45AD=165.在Rt△CDH中,CH=AC-AH=164455-=,所以tan∠HCD=DHCH=3.综合①、②,当S△BDE=14S△ABC时, tan∠BCE的值为316或3.如图1,在平面直角坐标系中,抛物线y =ax 2+bx +3与x 轴分别交于点A (2, 0)、点B (点B 在点A 的右侧),与y 轴交于点C ,tan ∠CBA =12.(1)求该抛物线的表达式;(2)设该抛物线的顶点为D ,求四边形ACBD 的面积;(3)设抛物线上的点E 在第一象限,△BCE 是以BC 为一条直角边的直角三角形,请直接写出点E 的坐标.图1动感体验请打开几何画板文件名“16虹口一模24”,可以体验到,以BC 为直角边的直角三角形BCE 有2个.满分解答(1)由y =ax 2+bx +3,得C (0, 3),OC =3.由tan ∠CBA =OC OB =12,得OB =6,B (6, 0).将A (2, 0)、B (6, 0)分别代入y =ax 2+bx +3,得4230,36630.a b a b ++=⎧⎨++=⎩解得14a =,b =-2.所以221123(4)144y x x x =-+=--. (2)如图2,顶点D 的坐标为(4,-1).S 四边形ACBD =S △ABC +S △ABD =1123+2122⨯⨯⨯⨯=4.(3)如图3,点E 的坐标为(10, 8)或(16, 35).思路如下:设E 21(,23)4x x x -+.当∠CBE =90°时,过点E 作EF ⊥x 轴于F ,那么2EF BOBF CO==.所以EF =2BF .解方程21232(4)4x x x -+=-,得x =10,或x =4.此时E (10, 8).当∠BCE =90°时,EF =2CF .解方程21224x x x -=,得x =16,或x =0.此时E (16, 35).图2 图3如图1,在平行四边形ABCD 中,E 为BC 的中点,F 为线段AE 上一点,联结BF 并延长交边AD 于点G ,过点G 作AE 的平行线,交射线DC 于点H .设AD EFx AB AF==.(1)当x =1时,求AG ∶AB 的值;(2)设GDHEBAS S △△=y ,求y 关于x 的函数关系式,并写出x 的取值范围; (3)当DH =3HC 时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16虹口一模25”,拖动点B 可以改变平行四边形的邻边比,可以体验到,当菱形ABCD 时,G 是AD 的中点,△GDH 与△EBA 保持相似.还可以体验到,DH =3HC 存在两种情况.满分解答(1)如图2,当x =1时,AD =AB ,F 是AE 的中点.因为AD //CB ,所以AG =BE =12BC =12AD =12AB .所以AG ∶AB =1∶2.(2)如图3,已知AD EF x AB AF ==,设AB =m ,那么AD =xm ,BE =12xm .由AD //BC ,得BE EFx AG AF ==.所以12BE AG m x ==.所以DG =12xm m -.图2 图3 图4 如图4,延长AE 交DC 的延长线于M . 因为GH //AE ,所以△GDH ∽△ADM . 因为DM //AB ,所以△EBA ∽△ADM . 所以△GDH ∽△EBA .所以y =GDH EBAS S △△=2()DG BE =2211()()22xm m xm -÷=22(21)x x -. (3)如图5,因为GH //AM ,所以11()2122DH DG xm m m x HM GA ==-÷=-. 因为DM //AB ,E 是BC 的中点,所以MC =AB =DC .DH =3HC 存在两种情况:如图5,当H 在DC 上时,35DH HM =.解方程3215x -=,得45x =. 如图6,当H 在DC 的延长线上时,3DH HM =.解方程213x -=,得45x =.图5 图6如图1,在平面直角坐标系中,抛物线y =ax 2-3ax +c 与x 轴交于A (-1, 0)、B 两点(点A 在点B 左侧),与y 轴交于点C (0, 2).(1)求抛物线的对称轴及点B 的坐标; (2)求证:∠CAO =∠BCO ;(3)点D 是射线BC 上一点(不与B 、C 重合),联结OD ,过点B 作BE⊥OD ,垂足为△BOD 外一点E ,若△BDE 与△ABC相似,求点D 的坐标.图1动感体验请打开几何画板文件名“16黄浦一模24",拖动点D 在射线BC 上运动,可以体验到,当点E 在△BOD 外时,有两个时刻,Rt △BDE 的两条直角边的比为1∶2.满分解答(1)由y =ax 2-3ax +c ,得抛物线的对称轴为直线32x =. 因此点A (-1, 0)关于直线32x =的对称点B 的坐标为(4, 0). (2)如图2,因为tan ∠CAO =2CO AO =,tan ∠BCO =2BOCO=,所以∠CAO =∠BCO .(3)由B (4, 0)、C (0, 2),得直线BC 的解析式为122y x =-+.设D 1(,2)2x x -+.以∠ABC (∠OBC )为分类标准,分两种情况讨论:①如图3,当∠OBC =∠DBE 时,由于∠OBC 与∠OCB 互余,∠DBE 与∠ODC 互余,所以∠OCB =∠ODC .此时OD =OC =2.根据OD 2=4,列方程221+(2)42x x -+=.解得x =0,或85x =.此时D 86(,)55.②如图4,当∠OBC =∠EDB 时,OD =OB =4.根据OD 2=16,列方程221+(2)162x x -+=.解得x =4,或125x =-.此时D 1216(,)55-.图2 图3 图4如图1,已知直线l1//l2,点A是l1上的点,B、C是l2上的点,AC⊥BC,∠ABC=60°,AB=4,O是AB的中点,D是CB的延长线上的点,将△DOC沿直线CO翻折,点D与点D′重合.(1)如图1,当点D落在直线l1上时,求DB的长;(2)延长DO交直线l1于点E,直线OD′分别交直线l1、l2于点M、N.①如图2,当点E在线段AM上时,设AE=x,DN=y,求y关于x的解析式及定义域;②若△DON的面积为332,求AE的长.图1 图2动感体验请打开几何画板文件名“16黄浦一模25”,拖动点D在CB的延长线上运动,可以体验到,CD′与AB保持平行,△BON与△BDO保持相似.还可以体验到,有两个时刻DN=3.满分解答(1)如图3,在Rt△ABC中,∠ABC=60°,AB=4,O是AB的中点,所以△OBC是边长为2的等边三角形.又因为△DOC与△D′OC关于CO对称,所以∠BCD′=120°,CD′=CD.所以AB//D′C.当点D′ 落在直线l1上时, AD′//BC.所以四边形ABCD′是平行四边形.所以CD′=BA=4.此时BD=CD-CB=CD′-CB=4-2=2.图3(2)①如图4,由于AE//BD,O是AB的中点,所以AE=BD=x.因为AB//D′C,所以∠AOM=∠2.又因为∠AOM=∠BON,∠2=∠1,所以∠BON=∠1.又因为∠OBN=∠DBO,所以△BON∽△BDO.所以BO BDBN BO=.因此22xx y=+.于是得到24xyx-=.定义域是0<x≤2.②在△DON中,DN边上的高为3.当S△DON=332时,DN=3.有两种情形:情形1,如图4,当D在BN上时,DN=24xyx-==3,解得x=1,或x=-4.此时AE=1.情形2,如图5,当D在BN的延长线上时,由BO BDBN BO=,得22xx y=-.于是得到24xyx-=.当DN=24xyx-==3时,解得x=4,或x=-1.此时AE=4.图4 图5如图1,在平面直角坐标系中,抛物线212y x bx c =++经过点A (4,0)、点C (0,-4),点B 与点A 关于这条抛物线的对称轴对称.(1)用配方法求这条抛物线的顶点坐标; (2)联结AC 、BC ,求∠ACB 的正弦值; (3)点P 是这条抛物线上的一个动点,设点P 的横坐标为m (m >0),过点P 作y 轴的垂线PQ ,垂足为Q ,如果∠QPO =∠BCO ,求m 的值.图1动感体验请打开几何画板文件名“16嘉定一模24”,可以体验到,QO ∶QP =OB ∶OC .满分解答(1)将A (4, 0)、C (0,-4)分别代入212y x bx c =++,得840,4.b c c ++=⎧⎨=-⎩ 解得b =-1,c =-4.所以2142y x x =--=1(2)(4)2x x +-=219(1)22x --. 点B 的坐标是(-2, 0),顶点坐标是9(1,)2-.(2)由A (4, 0)、B (-2, 0)、C (0,-4),得AC =42,BC =25,AB =6,CO =4. 作BH ⊥AC 于H .由S △ABC =12AB CO ⋅=12AC BH ⋅.得AB CO BH AC ⋅==2442=32.因此sin ∠ACB =BH BC =3225=31010. (3)点P 的坐标可以表示为21(,4)2m m m --.由tan ∠QPO =tan ∠BCO ,得12QO OB QP OC ==.所以QP =2QO .解方程212(4)2m m m =--,得3412m ±=. 图2所以点P 的横坐标m =3412+.如图1,已知△ABC 中,∠ABC =90°,tan ∠BAC =12.点D 在AC 边的延长线上,且DB 2=DC ·DA .(1)求DCCA的值;(2)如果点E 在线段BC 的延长线上,联结AE ,过点B 作AC 的垂线,交AC 于点F ,交AE 于点G .①如图2,当CE =3BC 时,求BFFG的值;②如图3,当CE =BC 时,求BCDBEGS S △△的值.图1动感体验请打开几何画板文件名“16嘉定一模25",拖动点E 运动,可以体验到,当CE =3BC 时,BD //AE ,BG 是直角三角形ABE 斜边上的中线.当CE =BC 时,△ABF ≌△BEH ,AF =2EH =4CF .满分解答(1)如图1,由DB 2=DC ·DA ,得DB DADC DB=. 又因为∠D 是公共角,所以△DBC ∽△DAB .所以DB BC CDDA AB BD==. 又因为tan ∠BAC =BC AB =12,所以12CD BD =,12BD DA =.所以14CD DA =.所以13DC CA =.(2)①如图4,由△DBC ∽△DAB ,得∠1=∠2.当BF ⊥CA 时,∠1=∠3,所以∠2=∠3. 因为13DC CA =,当CE =3BC 时,得DC BC CA CE =.所以BD //AE . 所以13BD EA =,∠2=∠E .所以∠3=∠E .所以GB =GE .于是可得G B 是Rt △ABE 斜边上的中线.所以23BD GA =.所以23BF BD FG GA ==.②如图5,作EH ⊥BG ,垂足为H .当CE=BC时,CF是△BEH的中位线,BF=FH.设CF=m.由tan∠1=tan∠3=12,得BF=2m,AF=4m.所以FH=2m,EH=2m,DC=1533CA m=.因此422FG AF mHG EH m===.所以2433FG FH m==.所以103BG m=.于是5121321102323BCDBEGm mDC BFSS BG EH m m⨯⋅===⋅⨯△△.图4 图5如图1,直线121+=x y 与x 轴、y 轴分别相交于点A 、B ,二次函数的图像与y 轴相交于点C ,与直线121+=x y 相交于点A 、D ,CD //x 轴,∠CDA =∠OCA .(1)求点C 的坐标;(2)求这个二次函数的解析式.图1动感体验请打开几何画板文件名“16静安青浦一模24”,可以体验到,△AOB 与△COA 相似.满分解答(1)由121+=x y ,得A (-2, 0),B (0, 1).所以OA =2,OB =1. 由于CD //x 轴,所以∠CDA =∠1.又已知∠CDA =∠OCA ,所以∠1=∠OCA .由tan ∠1=tan ∠OCA ,得OB OAOA OC=. 所以122OC=.解得OC =4.所以C (0, 4).(2)因为CD //x 轴,所以y D =y C =4. 图2解方程1142x +=,得x =6.所以D (6, 4).所以抛物线的对称轴为直线x =3.因此点A (-2, 0)关于直线x =3的对称点为(8, 0). 设抛物线的解析式为y =a (x +2)(x -8).代入点C (0, 4),得4=-16a .解得14a =-.所以2113(2)(8)4442y x x x x =-+-=-++.如图1,在梯形ABCD 中,AD //BC ,AC =BC =10,cos ∠ACB =45,点E 在对角线AC 上,且CE =AD ,BE 的延长线与射线AD 、射线CD 分别相交于点F 、G .设AD =x ,△AEF 的面积为y .(1)求证:∠DCA =∠EBC ;(2)当点G 在线段CD 上时,求y 关于x 的函数解析式,并写出它的定义域; (3)如果△DFG 是直角三角形,求△AEF 的面积.图1动感体验请打开几何画板文件名“16静安青浦一模25”,拖动点D 运动,可以体验到,直角三角形DFG 存在两种情况.满分解答(1)如图2,因为AD //BC ,所以∠DAC =∠ECB .又因为AC =CB ,AD =CE ,所以△ADC ≌△CEB .所以∠DCA =∠EBC . (2)如图3,作EH ⊥BC 于H .在Rt △EHC 中,CE =x ,cos ∠ECB =45,所以CH =45x ,EH =35x .所以S △CEB =12BC EH ⋅=131025x ⨯⨯=3x .因为AD //BC ,所以△AEF ∽△CEB .所以2()AEF CEB S AE S CE=△△. 所以22103(10)()3AEF x x y S x x x--==⨯=△.定义域是0<x ≤555-. 定义域中x =555-的几何意义如图4,D 、F 重合,根据AD AE CB CE =,列方程1010x xx-=.图2 图3 图4(3)①如图5,如果∠FGD =90°,那么在Rt △BCG 和Rt △BEH 中,tan∠GBC=335104504xGC HE xGB HB x x ===--.由(1)得∠ACD=∠CBE.由cos∠ACD=cos∠CBE,得GC GBCE BC=.所以10GC CE xGB BC==.因此350410x xx=-.解得x=5.此时S△AEF=23(10)15xyx-==.②如图6,如果∠FDG=90°,那么在Rt△ADC中,AD=AC cos∠CAD=4105⨯=8.此时S△AEF=23(10)32xyx-==.图5 图6例 2016年上海市闵行区中考一模第24题如图1,在平面直角坐标系中,二次函数y=x2+bx+c的图像与x轴交于A、B两点,点B的坐标为(3, 0),与y轴交于点C(0,-3),点P是直线BC下方的抛物线上的任意一点.(1)求这个二次函数的解析式;(2)联结PO,PC,并将△POC沿y轴对折,得到四边形POP′C,如果四边形POP′C为菱形,求点P的坐标;(3)如果点P在运动过程中,使得以P、C、B为顶点的三角形与△AOC相似,请求出此时点P的坐标.图1动感体验请打开几何画板文件名“16闵行一模24",拖动点P在直线BC下方的抛物线上运动,可以体验到,当四边形POP′C为菱形时,PP′垂直平分OC.还可以体验到,当点P与抛物线的顶点重合时,或者点P落在以BC 为直径的圆上时,△PCB是直角三角形.满分解答(1)将B(3, 0)、C(0,-3)分别代入y=x2+bx+c,得930,3.b cc++=⎧⎨=-⎩.解得b=-2,c=-3.所以二次函数的解析式为y=x2-2x-3.(2)如图2,如果四边形POP′C为菱形,那么PP′垂直平分OC,所以y P=32 -.解方程23 232x x--=-,得2102x±=.所以点P的坐标为2103(,)22+-.图2 图3 图4(3)由y=x2-2x-3=(x+1)(x-3)=(x-1)2-4,得A(-1, 0),顶点M(1,-4).在Rt△AOC中,OA∶OC=1∶3.分两种情况讨论△PCB与△AOC相似:①如图3,作MN⊥y轴于N.由B(3, 0)、C(0,-3),M(1,-4),可得∠BOC=∠MCN=45°,所以∠BCM=90°.又因为CM∶CB=1∶3,所以当点P与点M(1,-4)重合时,△PCB∽△AOC.②如图4,当∠BPC=90°时,构造△AEP∽△PFB,那么CE PF EP FB=.设P(x, x2-2x-3),那么22(3)(23)3(23)x x xx x x-----=---.化简,得1(2)1xx--=+.解得x=.此时点P的横坐标为x=.而2(23)32CB NB x xxCP MP x x---===-++是个无理数,所以当∠BPC=90°时,△PCB与△AOC不相似.例 2016年上海市闵行区中考一模第25题如图1,在直角梯形ABCD中,AB//CD,∠ABC=90°,对角线AC、BD交于点G,已知AB=BC=3,tan∠BDC=12,点E是射线BC上任意一点,过点B作BF⊥DE,垂足为F,交射线AC于点M,交射线DC于点H.(1)当点F是线段BH的中点时,求线段CH的长;(2)当点E在线段BC上时(点E不与B、C重合),设BE=x,CM=y,求y关于x的函数解析式,并指出x的取值范围;(3)联结GF,如果线段GF与直角梯形ABCD中的一条边(AD除外)垂直时,求x的值.图1 备用图动感体验请打开几何画板文件名“16闵行一模25”,拖动点E在射线BC上运动,可以体验到,点G是BD的一个三等分点,CH始终都有CE的一半.还可以体验到,GF可以与BC垂直,也可以与DC垂直.满分解答(1)在Rt△BCD中,BC=3,tan∠BDC=BCDC=12,所以DC=6,DB=35.如图2,当点F是线段BH的中点时,DF垂直平分BH,所以DH=DB=35.此时CH=DB-DC=356.图2 图3(2)如图3,因为∠CBH与∠CDE都是∠BHD的余角,所以∠CBH=∠CDE.由tan ∠CBH =tan ∠CDE ,得CH CE CB CD =,即336CH x-=. 又因为CH //AB ,所以CH MC AB MA =,即332CH y y =+. 因此3632x yy -=+.整理,得32(3)3x y x -=+.x 的取值范围是0<x <3. (3)如图4,不论点E 在BC 上,还是在BC 的延长线上,都有12BG AB GD DC ==, 12CH CE =. ①如图5,如果GF ⊥BC 于P ,那么AB //GF //DH .所以13BP PF BG BC CH BD ===.所以BP =1,111(3)366PF CH CE x ===-.由PF //DC ,得PF PE DC CE =,即12(3)(3)363x x x ---=-. 整理,得242450x x -+=.解得21611x =±.此时21611BE =-. ②如图6,如果GF ⊥DC 于Q ,那么GF //BE .所以23QF DQ DG CE DC DB ===.所以DQ =4,2(3)3QF x =-.由QF //BC ,得QF QH BC CH =,即21(3)2(3)3213(3)2x x x ---=-. 整理,得223450x x --=.解得33414x ±=.此时33414BE +=.图4 图5 图6如图1,抛物线y=ax2+2ax+c(a>0)与x轴交于A(-3,0)、B两点(A在B的左侧),与y轴交于点C(0,-3),抛物线的顶点为M.(1)求a、c的值;(2)求tan∠MAC的值;(3)若点P是线段AC上的一个动点,联结OP.问:是否存在点P,使得以点O、C、P为顶点的三角形与△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“16浦东一模24",拖动点P在线段AC上运动,可以体验到,△COP与△ABC相似存在两种情况.满分解答(1)将A(-3,0)、C(0,-3)分别代入y=ax2+2ax+c,得960,3.a a cc-+=⎧⎨=-⎩解得a=1,c=-3.(2)由y=x2+2x-3=(x+1)2-4,得顶点M的坐标为(-1,-4).如图2,作MN⊥y轴于N.由A(-3,0)、C(0,-3)、M(-1,-4),可得OA=OC=3,NC=NM=1.所以∠ACO=∠MCN=45°,AC=32,MC=2.所以∠ACM=90°.因此tan∠MAC=MCAC=13.(3)由y=x2+2x-3=(x+3)(x-1),得B(1, 0).所以AB=4.如图3,在△COP与△ABC中,∠OCP=∠BAC=45°,分两种情况讨论它们相似:当CP ABCO AC=时,4332CP=.解得22CP=.此时点P的坐标为(-2,-1).当CP ACCO AB=时,3234CP=.解得924CP=.此时点P的坐标为93(,)44--.图2 图3如图1,在边长为6的正方形ABCD 中,点E 为AD 边上的一个动点(与A 、D 不重合),∠EBM =45°,BE 交对角线AC 于点F ,BM 交对角线于点G ,交CD 于点M .(1)如图1,联结BD ,求证:△DEB ∽△CGB ,并写出DECG的值; (2)如图2,联结EG ,设AE =x ,EG =y ,求y 关于x 的函数解析式,并写出函数的定义域; (3)当M 为边DC 的三等分点时,求S △EGF 的面积.图1 图2动感体验请打开几何画板文件名“16浦东一模25",拖动点E 在AD 边上运动,可以体验到, △EBD 与△GBC 保持相似,△EBG 保持等腰直角三角形.满分解答(1)如图3,因为∠EBM =∠DBC =45°,所以∠1=∠2. 又因为∠EDB =∠GCB =45°,所以△DEB ∽△CGB .因此2DE DB CG CB==.图3 图4 (2)如图3,由△DEB ∽△CGB ,得EB DBGB CB=. 又因为∠EBM =∠DBC =45°,所以△EBG ∽△DBC (如图4). 所以△EBG 是等腰直角三角形.如图4,在Rt △ABE 中,AB =6,AE =x ,所以BE 236x +所以y =EG 222362x +2272x + 定义域是0<x <6.(3)如图5,由于S △EGB =12EG 2=2364x +,EGF EGB S EFS EB=△△,所以2364EGFEF x S EB +=⨯△. 由(1)知,DE =2CG ,所以 x =AE =AD -DE =62CG -.①如图6,当13CM CD =时,13CG CM AG AB ==. 所以113622442CG CA ==⨯=.此时x =AE =62CG -=3.所以3162EF AE BF CB ===.所以13EF EB =.所以2364EGF EF x S EB +=⨯△=2133634+⨯=154. ②如图7,当23CM CD =时,23CG CM AG AB ==.所以2212622555CG CA ==⨯=.此时x =AE =62CG -=65.所以61655EF AE BF CB ==÷=.所以16EF EB =.所以2364EGFEF x S EB +=⨯△=26()361564+⨯=3925.图5 图6 图7第(2)题也可以这样证明等腰直角三角形EBG : 如图8,作GH ⊥EB 于H ,那么△GBH 是等腰直角三角形. 一方面22GB CB EB DB ==,另一方面2cos 452HB GB =︒=GB HB EB GB =. 于是可得△EBG ∽△GBH .所以△EBG 是等腰直角三角形. 如图9,第(2)题也可以构造Rt △EGN 来求斜边EG =y : 在Rt △AEN 中,AE =x ,所以AN =EN =22x . 又因为CG 2=2(6)2x -,所以GN =AC -AN -CG =32所以y =EG =22EN GN +=222()(32)2x +=22722x +. 如图10,第(2)题如果构造Rt △EGQ 和Rt △CGP ,也可以求斜边EG =y : 由于CG =22DE =2(6)2x -,所以CP =GP =22CG =1(6)2x -=132x -.所以GQ =PD =16(3)2x --=132x +,EQ =16(3)2x x ---=132x -.所以y =EG =22GQ EQ +=2211(3)(3)22x x ++-=22722x +.图8 图9 图10例 2016年上海市普陀区中考一模第24题如图1,已知二次函数273y ax x c =-+的图像经过A (0, 8)、B (6, 2)、C (9, m )三点,延长AC 交x 轴于点D .(1)求这个二次函数的解析式及m 的值; (2)求∠ADO 的余切值;(3)过点B 的直线分别与y 轴的正半轴、x 轴、线段AD 交于点P (点A 的上方)、M 、Q ,使以点P 、A 、Q 为顶点的三角形与△MDQ 相似,求此时点P 的坐标. 图1动感体验请打开几何画板文件名“16普陀一模24”,拖动点Q 在线段AD 上运动,可以体验到,△APQ 与△MDQ 相似只存在一种情况.满分解答(1)将A (0, 8)、B (6, 2)分别代入273y ax x c =-+,得8,3614 2.c a c =⎧⎨-+=⎩解得29a =,c =8.所以二次函数的解析式为227893y x x =-+. 所以227(9)818218593m f x x ==-+=-+=.(2)由A (0, 8)、C (9, 5),可得直线AC 的解析式为183y x =-+.所以D (24, 0).因此cot ∠ADO =OD OA =248=3.(3)如图2,如果△APQ 与△MDQ 相似,由于∠AQP =∠MQD ,∠PAQ 与∠DMQ 是钝角,因此只存在一种情况,△APQ ∽△MDQ .因此∠APQ =∠D .作BN ⊥y 轴于N ,那么∠BPN =∠D .因此cot ∠BPN =cot ∠D =3.所以PN =3BN =18.此时点P 的坐标为(0, 20).图2例 2016年上海市普陀区中考一模第25题如图1,已知锐角∠MBN 的正切值等于3,△PBD 中,∠BDP =90°,点D 在∠MBN 的边BN 上,点P 在∠MBN内,PD =3,BD =9.直线l 经过点P ,并绕点P 旋转,交射线BM 于点A ,交射线DN 于点C ,设CAx CP=.(1)求x =2时,点A 到BN 的距离;(2)设△ABC 的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; (3)当△ABC 因l 的旋转成为等腰三角形时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16普陀一模25",拖动点C 运动,可以体验到,AH 与BH 的比值=tan ∠B =3为定值,AH 与PD 的比值=CA ∶CP =x .满分解答(1)如图2,作AH ⊥BC 于H ,那么PD //AH .因此2AH CA x PD CP===.所以AH =2PD =6,即点A 到BN 的距离为6.图2 图3(2)如图3,由AH CAx PD CP==,得AH =xPD =3x . 又因为tan ∠MBN =AHBH =3,所以BH =x .设BC =m .由CH CA x CD CP ==,得9m xx m -=-.整理,得81xm x =-.所以y =S △ABC =12BC AH ⋅=18321x x x ⨯⨯-=2121x x -. 定义域是0<x ≤9.x =9的几何意义是点C 与点H 重合,此时CA =27,CP =3.(3)在△ABC中,BA=10x,cos∠ABC=1010,BC=81xx-.①如图4,当BA=BC时,解方程8101xxx=-,得41105x=+.②如图5,当AB=AC时,BC=2BH.解方程821xxx=-,得x=5.③如图6,当CA=CB时,由cos∠ABC=1010,得110210AB BC=.解方程1108102101xxx⨯=⨯-,得135x=.图4 图5 图6如图1,已知抛物线y =ax 2+bx -3与x 轴交于A 、B 两点,与y 轴交于点C ,O 是坐标原点,已知点B 的坐标是(3, 0),tan ∠OAC =3.(1)求该抛物线的函数表达式;(2)点P 在x 轴上方的抛物线上,且∠PAB =∠CAB ,求点P 的坐标; (3)点D 是y 轴上的一动点,若以D 、C 、B 为顶点的三角形与△ABC 相似,求出符合条件的点D 的坐标.图1动感体验请打开几何画板文件名“16松江一模24”,拖动点D 在y 轴正半轴上运动,可以体验到,△BCD 与△ABC 相似存在两种情况.满分解答(1)由y =ax 2+bx -3,得C (0,-3),OC =3. 由tan ∠OAC =3,得OA =1,A (-1, 0).因为抛物线与x 轴交于A (-1, 0)、B (3, 0)两点,设y =a (x +1)(x -3). 代入点C (0,-3),得a =1.所以y =(x +1)(x -3)=x 2-2x -3. (2)如图2,作PH ⊥x 轴于H .设P (x , (x +1)(x -3)).由tan ∠PAB =tan ∠CAB ,得3PH CO AH AO ==.所以(1)(3)31x x x +-=+.解得x =6.所以点P 的坐标为(6, 21).(3)由A (-1, 0)、B (3, 0)、C (0,-3),得BA =4,BC =32,∠ABC =∠BCO =45°. 当点D 在点C 上方时,∠ABC =∠BCD =45°.分两种情况讨论△BCD 与△ABC 相似:如图3,当CD BACB BC =时,CD =BA =4.此时D (0, 1). 如图4,当CD BC CB BA =时,32432CD =.解得92CD =.此时D 3(0,)2.图2 图3 图4已知等腰梯形ABCD中,AD//BC,∠B=∠BCD=45°,AD=3,BC=9,点P是对角线AC上的一个动点,且∠APE=∠B,PE分别交射线AD和射线CD于点E和点G.(1)如图1,当点E、D重合时,求AP的长;(2)如图2,当点E在AD的延长线上时,设AP=x,DE=y,求y关于x的函数解析式,并写出它的定义域;(3)当线段DG=2时,求AE的长.图1 图2动感体验请打开几何画板文件名“16松江一模25”,拖动点P在AC上运动,可以体验到,DG=2存在两种情况,对应的DE也存在两种情况.满分解答(1)如图3,作AM⊥BC,DN⊥BC,垂足分别为M、N,那么MN=AD=3.在Rt△ABM中,BM=3,∠B=45°,所以AM=3,AB=32.在Rt△AMC中,AM=3,MC=6,所以CA=35.如图4,由AD//BC,得∠1=∠2.又因为∠APE=∠B,当E、D重合时,△APD∽△CBA.所以AP CBAD CA=.因此9335AP=.解得此时AP=955.(2)如图5,设(1)中E、D重合时点P的对应点为F.因为∠AFD=∠APE=45°,所以FD//PE.所以AF ADAP AE=,即95353x y=+.因此533y x=-.定义域是955<x≤35.图3 图4 图5(3)如图6,因为35CA =,955AF =,所以655FC =. 由DF //PE ,得21332FP DG FC DC ===.所以255FP =. 由DF //PE ,95259552AD AF DE FP ==÷=.所以2293DE AD ==.①如图6,当P 在AF 的延长线上时,233AE AD DE =+=.②如图7,当P 在AF 上时,123AE AD DE =-=.图6 图7例 2016年上海市徐汇区中考一模第24题如图1,在Rt △AOB 中,∠AOB =90°,已知点A (-1,-1),点B 在第二象限,OB =22,抛物线235y x bx c =++经过点A 和B . (1)求点B 的坐标;(2)求抛物线235y x bx c =++的对称轴;(3)如果该抛物线的对称轴分别和边AO 、BO 的延长线交于点C 、D ,设点E 在直线AB 上,当△BOE 和△BCD 相似时,直接写出点E 的坐标.图1动感体验请打开几何画板文件名“16徐汇一模24",拖动点E 在射线BA 上运动,可以体验到,△BOE 和△BCD 相似存在两种情况.满分解答(1)由A (-1,-1),得OA 与x 轴负半轴的夹角为45°. 又因为∠AOB =90°,所以OB 与x 轴负半轴的夹角也为45°. 当OB =22,点B 到x 轴、y 轴的距离都为2. 所以点B 的坐标为(-2,2).(2)将A (-1,-1)、B (-2,2)分别代入235y x bx c =++,得31,5122 2.5b c b c ⎧-+=-⎪⎪⎨⎪-+=⎪⎩解得65b =-,145c =-.所以23614555y x x =--.抛物线的对称轴是直线x =1.(3)如图2,由A (-1,-1)、B (-2,2)、C (1, 1)、D (1,-1),以及∠AOB =90°,可得BO 垂直平分AC ,BO =2BA =BC 10BD =32如图3,过点A 、E 作y 轴的平行线,过点B 作y 轴的垂线,构造Rt △ABM 和Rt △EBN ,那么BA BM MABE BN NE==. 设点E 的坐标为(x , y )101322x y==+-.图2 图3当点E 在射线BA 上时,∠EBO =∠DBC .分两种情况讨论相似: ①当BE BC BO BD =时,102232BE =.解得2103BE =. 此时1013222103x y==+-.解得x =43-,y =0.所以E 4(,0)3-(如图4). ②当BE BD BO BC =时,322210BE =.解得6105BE =. 此时1013622105x y==+-.解得x =45-,y =85-.所以E 48(,)55--(如图5).图4 图5例 2016年上海市徐汇区中考一模第25题如图1,四边形ABCD中,∠C=60°,AB=AD=5,CB=CD=8,点P、Q分别是边AD、BC上的动点,AQ与BP交于点E,且∠BEQ=90°-12∠BAD.设A、P两点间的距离为x.(1)求∠BEQ的正切值;(2)设AEPE=y,求y关于x的函数解析式及定义域;(3)当△AEP是等腰三角形时,求B、Q两点间的距离.图1动感体验请打开几何画板文件名“16徐汇一模25”,拖动点P在AD边上运动,可以体验到,∠AEP=∠BEQ=∠ABH=∠ADH,△ABF∽△BEF∽△BDP,△AEP∽△ADF.满分解答(1)如图2,联结BD、AC交于点H.因为AB=AD,CB=CD,所以A、C在BD的垂直平分线上.所以AC垂直平分BD.因此∠BAH=12∠BAD.因为∠BEQ=90°-12∠BAD,所以∠BEQ=90°-∠BAH=∠ABH.在Rt△ABH中,AB=5,BH=4,所以AH=3.所以tan∠BEQ=tan∠ABH=34.图2(2)如图3,由于∠BEQ=∠ABH,∠BEQ=∠AEP,∠ABH=∠ADH,所以∠AEP=∠BEQ=∠ABH=∠ADH.图3 图4 图5如图3,因为∠BFA 是公共角,所以△BEF ∽△ABF .如图4,因为∠DBP 是公共角,所以△BEF ∽△BDP .所以△ABF ∽△BDP .所以AB BD BF DP =.因此585BF x=-. 所以5(5)8BF x =-.所以518(5)(539)88FD BD BF x x =-=--=+.如图5,因为∠DAF 是公共角,所以△AEP ∽△ADF .所以5401539(539)8AE AD y PE FD x x ====++.定义域是0≤x ≤5.(3)分三种情况讨论等腰△AEP :①当EP =EA 时,由于△AEP ∽△ADF ,所以DF =DA =5(如图6). 此时BF =3,HF =1. 作QM ⊥BD 于M .在Rt △BMQ 中,∠QBM =60°,设BQ =m ,那么12BM m =,32QM m =. 在Rt △FMQ 中,132FM m =-,tan ∠MFQ =tan ∠HFA =3,所以QM =3FM .解方程313(3)22m m =-,得BQ =m =933-. ②如图7,当AE =AP 时,E 与B 重合,P 与D 重合,此时Q 与B 重合,BQ =0. ③不存在PE =PA 的情况,因为∠PAE >∠PAH >∠AEP .图6 图7例 2016年上海市杨浦区中考一模第24题如图1,在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,直线y=x +4经过A 、C 两点.(1)求抛物线的表达式;(2)如果点P 、Q 在抛物线上(点P 在对称轴左边),且PQ //AO ,PQ =2AO ,求点P 、Q 的坐标;(3)动点M 在直线y =x +4上,且△ABC 与△COM相似,求点M 的坐标. 图1动感体验请打开几何画板文件名“16杨浦一模24”,拖动点M 在射线CA 上运动,可以体验到,△ABC 与△COM 相似存在两种情况.满分解答(1)由y =x +4,得A (-4, 0),C (0, 4).将A (-4, 0)、C (0, 4)分别代入212y x bx c =-++,得840,4.b c c --+=⎧⎨=⎩解得b =-1,c =4.所以抛物线的表达式为2142y x x =--+.(2)如图2,因为PQ //AO ,所以P 、Q 关于抛物线的对称轴对称.因为抛物线的对称轴是直线x =-1,PQ =2AO =8,所以x P =-5,x Q =3.当x =3时,2142y x x =--+=72-.所以P 7(5,)2--,Q 7(3,)2-.(3)由2114(4)(2)22y x x x x =--+=-+-,得B (2, 0).由A (-4, 0)、B (2, 0)、C (0, 4),得AB =6,AC =42,CO =4.当点M 在射线CA 上时,由于∠MCO =∠BAC =45°,所以分两种情况讨论相似:①当CM AB CO AC =时,6442CM =.解得32CM =.此时M (-3, 1)(如图3). ②当CM AC CO AB =时,4246CM =.解得823CM =.此时M 84(,)33-(如图4).图2 图3 图4例 2016年上海市杨浦区中考一模第25题如图1,已知菱形ABCD的边长为5,对角线AC的长为6,点E为边AB上的动点,点F在射线AD上,且∠ECF=∠B,直线CF交直线AB于点M.(1)求∠B的余弦值;(2)当点E与点A重合时,试画出符合题意的图,并求BM的长;(3)当点M在AB的延长线上时,设BE=x,BM=y,求y关于x的函数解析式,并写出定义域.图1 备用图动感体验请打开几何画板文件名“16杨浦一模25",拖动点E在AB上慢慢运动,可以体验到,∠1=∠2=∠3,△MCE与△MBC保持相似.满分解答(1)如图2,作AN⊥BC于N,联结BD交AC于O,那么BO垂直平分AC.在Rt△ABO中,AB=5,AO=3,所以BO=4.因为S菱形ABCD=12AC BD⋅=BC AN⋅,所以64=5AN⨯⨯.解得AN=245.在Rt△ABN中,AB=5,AN=245,所以BN=75.因此cos∠B=BNAB=725.(2)如图3,当点E与点A重合时,由于∠ECF=∠B,∠FEC=∠1,所以△ECF∽△ABC.所以EF ACEC AB=,即665EF=.解得365EF=.由BC//AF,得AM AFBM BC=,即53625BMBM+=.解得12511BM=.图2 图3(3)如图4,因为∠ECF =∠ABC ,根据等角的邻补角相等,得∠MCE =∠MBC . 如图5,因为∠M 是公共角,所以△MCE ∽△MBC .所以MC MB ME MC=.因此22()MC MB ME y x y xy y =⋅=+=+. 作MH ⊥BC ,垂足为H .在Rt △MBH 中,MB =y ,cos ∠MBH =725,所以BH =725y ,MH =2425y .在Rt △MCH 中,根据勾股定理,得MC 2=MH 2+CH 2.因此222247()(5)2525xy y y y +=++.整理,得125514y x =-.定义域是145<x ≤5.定义域中x =145的几何意义如图6所示,此时D 、F 重合,AB //CF .由CF =CE ,CF =CB ,得CE =CB .所以1cos 2BE BC B =⋅.解得BE =72525⨯⨯=145.图4 图5 图6例 2016年上海市闸北区中考一模第24题如图1,在平面直角坐标系中,已知抛物线与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0, 2),对称轴为直线x =1,对称轴交x 轴于点E .(1)求该抛物线的表达式,并写出顶点D 的坐标;(2)设点F 在抛物线上,如果四边形AEFD 是梯形,求点F 的坐标; (3)联结BD ,设点P 在线段BD 上,若△EBP 与△ABD 相似,求点P 的坐标.图1动感体验请打开几何画板文件名“16闸北一模24",梯形AEFD 只存在一种情况.拖动点P 在BD 边上运动,可以体验到,△EBP 与△ABD 相似存在两种情况.满分解答(1)点A (-1,0)关于直线x =1的对称点B 的坐标为(3, 0).设抛物线的解析式为y =a (x +1)(x -3),代入点C (0, 2),得2=-3a .解得23a =-.所以2222428(1)(3)2(1)33333y x x x x x =-+-=-++=--+.顶点D 的坐标为8(1,)3.(2)过△ADE 的三个顶点分别画对边的平行线,只有经过点E 的直线与抛物线有另外的交点,在第一象限内的交点就是梯形AEFD 的顶点F .设F 224(,2)33x x x -++.作FH ⊥x 轴于H ,那么∠FEH =∠DAE .由tan ∠FEH =tan ∠DAE ,得43FH DE EH AE ==.所以43FH EH =.解方程22442(1)333x x x -++=-,得5x =±.所以F 454(5,)3-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浦东新区2015-2016学年一模数学试卷(含详解)
一、选择题:(本大题共6小题,每题4分,满分24分)
1.如果两个相似三角形对应边之比是1:4,那么它们的对应边上的中线之比是( )
A. 1:2
B. 1:4
C. 1:8
D. 1:16
2.在Rt △ABC 中,∠C=90°,AB=5,BC=4,则sinA 的值为( ) A. B. C. D.
3.如图,点D 、E 分别在AB 、AC 上,以下能推得DE//BC 的条件是( )
A. AD:AB=DE:BC ;
B. AD:DB=DE:BC ;
C. AD:DB=AE:EC ;
D. AE:AC=AD:DB.
4.已知二次函数y=ax 2+bx+c 的图像如图所示,那么
a 、
b 、
c 的符号为( )
A. a <0,b <0,c >0;
B. a <0,b <0,c <0;
C. a >0,b >0,c >0;
D. a >0,b >0,c <0.
5.如图,Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,下列结论中错误的是( )
A. AC 2=AD ·AB ;
B. CD 2=CA ·CB ;
C. CD 2=AD ·DB ;
D. BC 2=BD ·BA.
6.下列命题是真命题的是( )
A. 有一个角相等的两个等腰三角形相似;
B. 两边对应成比例且有一个角相等的两个三角形相似;
C. 四个内角都对应相等的两个四边形相似;
D. 斜边和一条直角边对应成比例的两个直角三角形相似.
二、填空题(本大题共12小题,每题4分,满分48分)
7.已知 ,那么 . 8.计算: .
9.上海与杭州的实际距离约200千米,在比例尺1:5000 000的地图上,上海与杭州的图上距离约 厘米.
10.某滑雪运动员沿着坡比为1: 的斜坡向下滑行了100m ,则运动员下降的垂直高度是 米.
11.将抛物线y=(x+1)2向下平移2个单位,得到新抛物线的函数解析式是 .
12.二次函数y=ax 2+bx+c 的图像如图所示,对称轴为直线x=2,若此抛物线与x 轴的一个交点为(6,0),则抛物线与x 轴的另一个交点坐标是 .
13.如图,已知AD 是△ABC 的中点,点G 是△ABC 的重心, ,那么用向量 表示向量
为 .
14.如图,在△ABC 中,AC=6,BC=9,D 是△ABC 的边BC 上的点,且∠CAD=∠B ,那么CD 的长是 . 34354543x y =13x x+y =2 a- 3(13a+b)=3AB = a a B A AG
第12题图 第13题图 第14题图 第15题
16.如图是小明在建筑物AB 上用激光仪测量另一建筑物CD 高度的示意图,
在地面点P 处水平放置一平面镜.一束激光从点A 射出经平面镜上的点P
反射后刚好射到建筑物CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=15
米,BP=20米,PD=32米,B 、P 、D 在一条直线上,那么建筑物CD 的高度
是 米.
17.若抛物线y=ax 2+c 与x 轴交于点A (m ,0),B (n ,0),与y 轴交于点C (0,c ),则称△ABC 为“抛物三角形”.特别地,当mnc <0时,称△ABC 为“倒抛物三角形”时,a 、c 应分别满足条件 .
18.在△ABC 中,AB=5,AC=4,BC=3,D 是边AB 上的一点,E 是边AC 上的一点(D 、E 均与端点不重合),如果△CDE 与△ABC 相似,那么CE= .
三、解答题(本大题共7小题,满分78分)
19.(本题满分10分)
计算: sin45°+6tan30°-2cos30°.
20.(本题满分10分,第(1)小题6分,第(2)小题4分)
2x … -3 -2 -1 0 1 5 …
y … 7 0 -5 -8 -9 7 …
(2)写出抛物线顶点坐标和对称轴.
G
D B A D C B C1B1A1C B A 2
F G E D C
B A 21. (本题满分10分,每小题8分)
如图,梯形ABCD 中,AD//BC ,点E 是边AD 的中点,联结BE 并延长交
CD 的延长线于点F ,交AC 于点G.
(1)若FD=2,ED:BC=1:3,求线段DC 的长;
(2)求证:EF ·GB=BF ·GE.
22. (本题满分10分,第(1)小题6分,第(2)小题4分)
如图,l 为一条东西方向的笔直公路,一辆小汽车在这段
限速为80千米/小时的公路上由西向东匀速行驶,依次经
过点A 、B 、C. P 是一个观测点,PC ⊥l ,PC=60米,
tan ∠APC=
,∠BPC=45°,测得该车从点A 行驶到点B
所用时间为1秒.
(1)求A 、B 两点间的距离;
(2)试说明该车是否超过限速.
43
23. (本题满分12分,每小题6分)
如图,在△ABC 中,D 是BC 边的中点,DE ⊥BC 交AB 于点E ,AD=AC ,EC 交AD 于点F.
(1)求证:△ABC ∽△FCD ; (2)求证:FC=3EF.
24. (本题满分12分,每小题4分)
如图,抛物线y=ax 2+2ax+c (a >0)与x 轴交于A (-3,0)、B 两点(A 在B 的左侧),与y 轴交于点 C (0,-3),抛物线的顶点为M.
(1)求a 、c 的值;
(2)求tan ∠MAC 的值;
(3)若点P 是线段AC 上一个动点,联结OP.问:是否存在点P ,使得以点O 、C 、P 为顶点的三角形与△ABC 相似?若存在,求出P 点的坐标;若不存在,请说明理由.
F E D C B A
25. (本题满分14分,第(1)(2)小题,每题5分,第(3)小题4分)
如图,在边长为6的正方形ABCD 中,点E 为AD 边上的一个动点(与点A 、D 不重合),∠EBM=45°,BE 交对角线AC 于点F ,BM 交对角线AC 于点G ,交CD 于点M.
(1)如图1,联结BD ,求证:△DEB ∽△CGB ,并写出DE:CG 的值;
(2)联结EG ,如图2,若设AE=x ,EG=y ,求y 关于x 的函数解析式,并写出函数的定义域;
(3)当M 为边DC 的三等分点时,求S △EGF 的面积.
备用图
C
E。