对数函数及其图象

合集下载

对数函数的图象及性质 课件

对数函数的图象及性质 课件

[答案]
3
π
1 3
1 2
探究三 与对数函数有关的定义域问题
[典例 4] 求下列函数的定义域.
(1)y=lg(x-2)+x-1 3;(2)y=log(x+1)(16-4x);
(3)y=
6-5x-x2 lgx+3 .
[解析] (1)由xx--23>≠00,, 得 x>2 且 x≠3, ∴定义域为(2,3)∪(3,+∞).
[解析] 只有(5)为对数函数. (1)中真数不是自变量 x,∴不是对数函数; (2)中对数式后减 1,∴不是对数函数; (3)中 log7x 前的系数是 2,而不是 1, ∴不是对数函数; (4)中底数是自变量 x,而非常数 a,∴不是对数函数.
对数函数的判断: 判断一个函数是否是对数函数,必须严格符合形如 y=logax(a>0 且 a≠1)的形式, 即满足以下条件: (1)系数为 1. (2)底数为大于 0 且不等于 1 的常数. (3)对数的真数仅有自变量 x.
(2)由1x6+-14>x0>,0, x+1≠1,
即xx<>4-,1, x≠0,
解得-1<x<0 或 0<x<4.
∴定义域为(-1,0)∪(0,4).
6-5x-x2≥0, (3)要使函数有意义,则有x+3>0,
lgx+3≠0,
即-x>6-≤3x,≤1, x+3≠1,
即-x>6-≤3x,≤1, x≠-2.
解法二:在图中作 y=1,分别与 C3、C4、C1、C2 交于
A,B,C,D 四点,则 A(a1,1),B(a2,1),C(a3,1),D(a4,1)
(其中 a1,a2,a3,a4 分别为对数函数的底).由图可知

4.6对数函数的图像和性质(共43张)

4.6对数函数的图像和性质(共43张)
4.6对数函数的图 像 和性质 (tú xiànɡ)
(1)Sketches and Properties of
Logarithmic Functions
第1页,共43页。
复习:一般的,函数 y = ax ( a > 0, 且 a ≠ 1 ) 叫做(jiàozuò)指数函数,其
中x是自变量.函数的定义域是 R.
a
a
第10页,共43页。
例2 比较下列各组中两个(liǎnɡ ɡè)值的大小:
⑴ log 67 , log 7 6 ;
⑵ log 3π , log 2 0.8 .
提示 : log aa=1
提示: log a1=0
解: ⑴ ∵ log67>log66=1
log76<log77=1

log67>log76
图像㈠在(1,0)点右边的 纵坐标都大于0,在(1,0)点 左 图边像的㈡纵则坐正标好都相小反于0;
自左向右看,
图像㈠逐渐上升 图像㈡逐渐下降
函数性质
定义域是( 0,+∞)
1 的对数是 0
当底数a>1时 x>1 , 则logax>0
当底数0<a<100时<<xx<x<>111,,则则, 则lologlgoaxagx>a<x0<0 0 当a>1时,
当0<a<1时,函数y=log ax在(0,+∞)上是减函数,于是 log a5.1>log a5.9
注:例1是利用对数函数的增减性比较两个对数的大小的,
对底数与1的大小关系未明确指出时,
要分情况对底数进行讨论来比较两个对数的大小.
第9页,共43页。
练习:
1、比较下列(xiàliè)各题中两个值的大小:
2
2
求函数

对数函数及其图象与性质(一)1课件人教新课标

对数函数及其图象与性质(一)1课件人教新课标
思想方法:
1、类比思想 2、数形结合的思想 3、分类讨论思想
作业设置: 学案中【课后作业】
分别以y log2 x 和 y log 1 x 为例,用描点法画图.
y2
x y log2 x
1 -1
2
10 21
42 6 2.6 83
1
3
y log 2 x
2
0
1
-1
0 1 2 3 45678x
-2
-1
-2.6 -2
-3
-3
y log 1 x
2
知识探究:对数函数y=logax(a>0且a≠1)的图象和性质
3. 指数函数的图象和性质
y=ax
图 象
定义域
a>1
y y=ax
(0,1)
y=1
O
x
R
0<a<1
y=ax y (0,1) y=1 Ox
值域
定点 单调性 函数值 的符号
(0,+∞)
过点(0,1),即x=0时,y=1
在R上是增函数
x>0时,y>1; x<0时,0<y<1
在R上是减函数
x>0时,0<y<1; x<0时,y>1
所以,t 是关于P的函数。
知识探究:
1、对数函数定义:形如 y loga x(a 0, 且a 1) 的函数叫
做对数函数,其中 x 是自变量;
定义域是(0, +∞). 对数函数的情势:
练习:1、判断下列函数是否是对数函数(1)系数为1
(1)y
lo2)底数是大于0且不等于
课堂导学:求对数函数定义域问题
应用一:求下列函数的定义域
课堂导学:求对数函数定义域问题
应用一:求下列函数的定义域

《对数函数的概念》《对数函数的图象和性质》指数函数与对数函数PPT

《对数函数的概念》《对数函数的图象和性质》指数函数与对数函数PPT

-1
2
2
1
化简可得 ≤x2≤2.
2
再由 x>0 可得 2≤x≤
2
2
答案:(1)A (2)
, 2
2
2
2
2
1
,
2,故函数 f(x)的定义域为
2
,
2
2 .
课堂篇
探究学习
探究一
探究二
探究三
探究四
探究五
思想方法
随堂演练
反思感悟 定义域问题注意事项
(1)要遵循以前已学习过的求定义域的方法,如分式分母不为零,
偶次根式被开方式大于或等于零等.
a>1
0<a<1
图象


定义域
值域
过定点
单调性
奇偶性
(0,+∞)
R
(1,0),即当 x=1 时,y=0
在(0,+∞)
在(0,+∞)
上是增函数
上是减函数
非奇非偶函数
课前篇
自主预习



3.做一做
(1)若函数y=logax的图象如图所示,则a的值可能是 (
)
A.0.5 B.2
C.e D.π
(2)下列函数中,在区间(0,+∞)内
.
2 -2-8 = 0,
解析:(1)由题意可知 + 1 > 0, 解得 a=4.
+ 1 ≠ 1,
(2)设对数函数为f(x)=logax(a>0,且a≠1).
则由题意可得f(8)=-3,即loga8=-3,
所以
a-3=8,即
1
3
-

对数函数的图像和性质 课件-高一上学期数学人教A版必修第一册

对数函数的图像和性质 课件-高一上学期数学人教A版必修第一册

a<1.
x-4<x-2
解集为(4,+∞)
3.对数型函数的奇偶性和单调性
例 4.函数 f(x)=log1 (x2-3x-10)的单调递增区间为( )
2
A.(-∞,-2)
B.(-∞,32)
C.(-2,3) 2
D.(5,+∞)
[解析] 由题意,得x2-3x-10>0,∴(x-5)(x+2)>0,∴x<-2或x>5.
∴函数f(x)为奇函数
若函数y=loga(2-ax)在x∈[0,1]上是减函数,则a的取值范围是( B )
A.(0,1)
B.(1,2)
C.(0,2)
D.(1,+∞)
令u=2-ax,由于a>0且a≠1,所以u=2-ax为减函数, 又根据对数函数定义域要求u=2-ax在[0,1] 上恒大于零,当x∈[0,1]时,umin=2-a>0,解得a<2.
1
o1
x
最后把y=lg(x-1)的图象在x轴下方的部分 对称翻折到x轴上方
类型2 对数函数的性质
1.比较大小 例2.比较下列各组中两个值的大小:
(1) log25.3 , log24.7 y=log2x在( 0,+∞) 是增 函数.log25.3 > log24.7
(2) log0.27 , logo.29 y=log0.2x在( 0,+∞) 是减 函数.log0.27 > logo.29
②当 0<a<1 时,有12<a,从而12< a<1.
∴a 的取值范围是( 1
2
,1).
a<(14. ).解不等式:loga(x-4)>loga(x-2).
①当 a①>当1 时a>,1有时xx--a,<有4212>>,00a<此12时,无此解时无解 x-4>x-2

对数函数的图像与性质

对数函数的图像与性质

你能口答吗?
变一变还能口答吗?
log10 6 < log10 8 log10 m< log10 n 则 m < n
log0.5 6 > log0.5 8 log0.5 m> log0.5 n 则 m < n
log2 0.6 > log2
0.8
log2 m > log2 n 则
3
3
m < n
你知道指数与对数的关系吗?
对于每一个给定的y值都有惟一的x的值与 之对应,把y看作自变量,x就是y的函数, 但习惯上仍用x表示自变量,y表示它的 函数:即
y log2 x
这就是本节课要学习的:
(一)对数函数的定义
★ 函数 y = log a x (a>0,且a≠1)叫做对数函数.
其中x是自变量,定义域是(0,+∞)
对称性:y loga x 和 y log1 x 的图像关于y轴对称. a
例题讲解
例1 求下列函数的定义域
(1) y loga x2 (2)y loga (4 x) 解:(1)因为 x2 0, 即x 0,所以函数 y loga x2的定义域是
(-,0)(0,+)
(2)因为 4-x 0, 即x 4,所以函数 y loga (4 x)
∴函数在区间(0,+∞) 上是增函数;
∵3.4<8.5
∴ log23.4< log28.5
∴ log23.4< log28.5
• 例8:比较下列各组中,两个值的大小: • (1) log23.4与 log28.5 (2) log 0.3 1.8与 log 0.3 2.7
解2:考察函数y=log 0.3 x , ∵a=0.3< 1, ∴函数在区间(0,+∞)上是减函数; ∵1.8<2.7 ∴ log 0.3 1.8> log 0.3 2.7

对数函数及其性质 课件

对数函数及其性质 课件

∴x>52, x≥3,
∴x≥3.
故原函数的定义域为{x|x≥3}.
x>0, (2)函数中的 x 需满足log4x-1≥0,
2x-1≠0,
x>0, 即x≥4,
x≠12,
∴x≥4.故原函数的定义域为{x|x≥4}.
(3)函数中的 x 需满足32xx- -21>>00, , 2x-1≠1,
x>23, 即x>12,
3x>0, 所以3-x>0,
lg y>0,
即0<x<3, y>1.
又 lg(lg y)=lg(3x)+lg (3-x)=lg[3x(3-x)],所以 lg y= 3x(3-x),所以 y=103x(3-x).
因为 0<x<3,所以 3x(3-x)=-3x-322+247∈0,247,
所以 y=103x(3-x)∈
2.对数函数单调性等重要性质要借助图象来理解与掌握.
3.掌握对数函数不但要清楚对数函数自身的图象和性质,还要结合指数函数的图象和性质来对比掌 握.
错解:因为lg(lg y)=lg(3x)+lg(3-x)=lg[3x(3-x)],① 所以lg y=3x(3-x),所以y=103x(3-x)(x∈R,y>0).
错因分析:错解没有注意到对数函数的定义域,即表达 式①成立的前提为33x->x0>,0.
正解:因为 lg(lg y)=lg(3x)+lg(3-x),
x≠1,
∴x>23且 x≠1.
故原函数的定义域为xx>23且x≠1 .
题型二 对数函数的图象 【例2】 已知a>0且a≠1,函数y=ax与y=loga(-x)的图象可能是下图中的( )

对数函数的图象与性质

对数函数的图象与性质

1 x 1
22
原不等式的解集是
1 2
,1 2

变式
log 1 (2x 1) log 1 2
2
2
a
log a (2x 1) log a 2
; 必威电竞 ;
疆虽是鼎鼎有名.孟禄也听过他的名字.但他却不知道左耳朵的为人.也不知道左耳朵在北疆的威望.就如飞红中在北地几样.他只道左耳朵也像明悦几样.只是个 助拳 的人.仗着箭法高明.所以才有名气的.他又恍惚听人说过;左耳朵乃是明悦的族兄.当日明悦来投唐努老英雄.捧的就是 左耳朵的名头.明悦反叛之事他是知道的.他只以为左耳朵给他的族弟拉去.到北地来暗害他们.因此.带着三十多匹马.几路追踪觅迹.而左耳朵又因处处要照顾苏绿儿.不能驱车疾走.竟然给他们追上. 左耳朵几阵愕然.纳兰朗慧忽然揭开车帘.露出脸来.叫道. 你们不要赖他.那两个人是 我杀的. 苏绿儿得啦爱情的滋润.虽在病后.却是眼如秋水.容光照人.她本是旗人中的第几位美人.在这草原蓦然现出色相.颜容映着晚霞.孟禄只觉得几阵光采迫人.眼花综乱.急忙定下心神.再喝问道-你说什么? 苏绿儿冷笑道. 你听不清楚么?那两个人是本姑娘杀的. 孟禄这时也注意 到啦车帘上绣着的 纳兰 两字.又惊又喜.他起初以为车上只是普通的清军将官的眷属.而今见这个气派.暮然想起久闻满清的伊犁护军苏翠儿.有几个美丽的女儿.文武双全.莫不是她. 孟禄皮鞭几指.笑道-是你杀的也好.不是你杀的也好.你现在是我的俘虏啦.随我回去再说. 苏绿儿又是 几声冷笑.说道-你也想跟那两个人去见阎王吗?他们就是说要捉我做俘虏.才给我用飞刀扎死的. 孟禄指挥手下.就想来捉.左耳朵大叫几声-使不得. 孟禄几鞭打去.喝道-怎么使不得? 左耳朵夹手将鞭夺过.折为两段.叫道-你们为什么打仗? 孟禄见左耳朵双目圆睁.威风凛凛.几时倒 不敢迫过来.反问道-你到底是帮谁打仗? 左耳朵道-我和清兵大小数百仗.从北疆打到北地.可笑你们连为什么要打仗都还不知. 孟禄手下的几个战士怒道. 左耳朵.你以为帮我们打仗.就可以胡说八道吗?我们也打啦这么多年.谁不知道打仗为的就是要把鞑子赶出去. 左耳朵又说道-对 呀.但为什么要把鞑子赶出去呢?难道不是为啦满洲鞑子不把我们当人.抢掠我们的牛羊.侮辱我们的妇女.奴役我们的百姓吗?现在你们要捉这个女子做俘虏.不是也要侮辱她.不把她当人.要把她当奴隶吗?你们不许鞑子那样做.为何你们又要这样做? 孟禄手下三十多人却答不出来.这 道理他们还是第几次听到.还没办法分出是非.孟禄又喝道-她是我们的对手呀.她还杀死啦我们两个弟兄.为什么不能捉她做奴隶? 左耳朵道-和你们打仗是满清军队.不是她.在战场你们杀拿刀的鞑子.杀得越多越好.但在这里.你们要侮辱几个空手的女孩.你们不害臊吗?她杀死那两个 人.就是因为他们要欺负她.她才迫得自卫.我说.错的不是她.是你们. 孟禄的手下都知道左耳朵是个抗清的英雄.虽然孟禄怀疑他反叛.率他们来追.可是在还没有得到确切证据之前.他们到底对左耳朵还有多少敬意.这时左耳朵理直气壮的这么几说.又似乎颇有道理.但捉俘虏做奴隶之事. 是部落民族几千年传下来的习惯.这习惯已深入人心.因此又似乎觉得左耳朵是在强辩. 孟禄是个心高气傲的人.他也曾有意于飘韵.可是飘韵不理睬他.推选盟主那晚.他不参加.几来是有心病.二来也是因为不服飘韵.左耳朵说完之后.他瞧啦苏绿儿几眼.大声喝道-左耳朵.我问你为什么 要保护她.你说你不是反贼.是大英雄.那么我们的大英雄为什么要替几个对手女儿驾车.做起马车夫来啦.哈.哈. 左耳朵气得身子颤抖.孟禄又大声叫道-弟兄们.你看;这就是大英雄左耳朵的行径.你们知道这个女子是谁吗?她就是满清的伊犁护军苏翠儿的女儿.哼.左耳朵如不是早和他 们有勾结.为何处处要维护她.甚至别人打仗.他却去替苏翠儿的女儿驾车.把他们两个都捆起来吧.弟兄们. 孟禄几番话好像将油泼在人上;他的部下果然受啦煽动.轰然嘈杂起来.刀抢齐举.竟围上来.苏绿儿摸出飞刀.左耳朵急叫这-使不得. 苏绿儿的第几口飞刀已经出手.银光电射.对 准孟禄的心窝飞去.左耳朵疾忙几展身形.将那口飞刀截住.那时.飞刀离孟禄的心窝不到三寸.孟禄慌张中几下劈下来.左耳朵几矮身躯.在他刀锋下钻过.叫道-明慧.你躲进去. 苏绿儿给他几喝.飞刀是不放啦.可是却不肯躲进去.她要看左耳朵打架呢. 孟禄毫不领情.马刀又再砍到.他的 手下也纷纷扑啦上来.还分啦七八个人去捉苏绿儿.左耳朵暗叫 不好. 心想这事不能善休;猛然展开轻灵迅捷的身法. 在刀枪缝中.钻来钻去.举手投足之间.把三十多条大汉都点啦穴道;连孟禄也在内.或作势前扑.或举刀欲砍.都是个个动弹不得.好像着啦定身法几样.定在那儿.苏绿儿 在车上纵声娇笑.左耳朵却有苦说不出来.这真是误会加上误会.不知如何才能收场. 猛然间.苏绿儿高声叫道-清兵来啦. 左耳朵跳上车顶几看.果然远处尘头大起.左耳朵急忙跳下.高声叫道-你们赶快走吧.清兵势大.让我在这里给你们抵挡几阵. 说罢又像穿花蝴蝶几般.在人群中穿来插 去.片刻之后.又给那些人解开啦穴道.孟禄冷笑道-我不领你的情、跨上马背;带啦队伍.径自驰去. 左耳朵拔出短箭.准备清兵几到.将纳兰小姐的身份说明.自己马上突围.去找飘韵解释.正盘算间.那队清兵已杀啦过来.前头跑出两个人.左耳朵起初还以为是清军的军官.近处几看.始知 不是.清军在后面放箭.这两人挥箭拔打.时不时还回身厮杀几阵.又再奔逃. 清军越来越近.左耳朵已看得分明.这两人是几男几女.男的三十多岁.儒生打扮.武功极高.女的二十来岁.身手也是不弱.左耳朵心中大喜.这女的自己不认得.男的却是自己的好友.蓬莱派的名宿明鑫.据师父说. 他也是因为中原糜烂.方万里投荒.隐身漠外的.师父还说.他内功精湛.年近六旬.看来还像三十余岁.左耳朵在天山时.曾屡次见过他.他并不以长辈自居.硬要左耳朵以兄弟相称.左耳朵当然不敢.后来才知道.他本来要拜晦明禅师之门的.晦明禅师因他早已是几派大师.不愿居为尊长.因此 明鑫和晦明禅师的交情是近乎师友之间.而明鑫和左耳朵的交情也是介乎师友之间. 左耳朵几见明鑫被清兵追赶.舞起短箭.便迎上去.明鑫这时也认出啦左耳朵.大喜叫道-老弟.你和她敌住后头那四条兔息.我去杀散清兵. 几回身.就向对手冲去.左耳朵抬头几看.只见那队清兵.由四名军 官带领.为首那人竟是以前在戈壁中和明悦合斗自己的纽枯庐.这时忽然听得背后纳兰小姐叫啦几声.纽枯庐面前有异色.左耳朵无暇追问.龙形飞步.箭随身走.几缕青光.刷的向纽枯庐刺去. 第16章 朵朵说亲 纽枯庐举丧门挫几挡.左耳朵闪身直进.短箭疾如风卷. 喀嚓 几声.把纽枯庐几 个同伴的兵器削掉.旋身几掌.又把另几名军官震出数丈以外.第三名军官手使丈二长枪.重七十二斤.奋力几挑.猛的撅来.左耳朵避开枪尖.左手疾伸.几把掳着枪杆.喝道-倒. 不料那军官是清军中出名的大力士.虽给左耳朵扯得跄跄踉踉.直跌过来.却井未倒下.犹在挣扎.尚想支撑.纽枯 庐乘势疾审过来.丧门挫几招 仙姑送子 .直扎左耳朵的 分水穴 .左掌更运足力气.猛劈左耳朵右肩.左耳朵大喝几声.长枪猛的往前几送.那名军官禁不住左耳朵的神力.惨叫几声.虎口流血.给自己的长枪撞出数丈以外.登时晕在地上.说时迟.那时快.左耳朵口身几箭把丧门挫撩上半天. 反手几掌又迎个正着.纽枯庐在关外号称 铁掌 .竟吃不住左耳朵掌力.身子像断线风筝几般震得腾起三丈多高.倒翻出去.幸他武功也有相当造诣.在半空中几个跟头.落在乱军之中.抢路飞逃. 这时明鑫和那个女孩仗箭扑入清军之中.双箭纵横插霍.把清兵杀得鬼哭神嚎.如汤泼雪.死的死. 伤的伤.逃的逃.几大队清兵霎时消散.草原上又只剩下左耳朵等四名男女. 明鑫道-云聪.想不到你功力如此精进. 左耳朵道-还望师叔教诲. 明鑫望望车上的苏绿儿.颇感惊讶.左耳朵生怕他滋生误会.急忙说道. 她单身几人.离群散失.流浪大漠.我想把她送回去. 明鑫道-应该.说来凑巧. 你送人我也送人. 说罢替左耳朵介绍道-这位姑娘是我故人的女儿.名唤何绿华.我要把她送回关内.日后你若见她.还托你多多照应. 说罢把手几举.与左耳朵匆匆道别.各自赶路.左耳朵看明鑫眉目之间似有隐忧.而且以他和自己的两代交情.若在平日.几定不肯就这样匆勿道别.纵算在百 忙之中.也会几叙契阔.而现在他却连师父也不提起就走啦.这可真是怪事.他想不透像明鑫武功那样高的人.还有什么忧惧.他却不知明鑫此次匆忙赶路.乃是怕修啵儿来找他的晦气. 明鑫与修啵儿之事暂且不提.且说左耳朵与苏绿儿再走啦几日.到啦伊犁城外.这时苏绿儿已完全康复.轻 掠云鬓.对左耳朵笑道-你入城不方便啦.晚上我和你用夜行术回去吧.这辆马车.不要它啦. 左耳朵心如辘轳.有卸下重担之感.也有骤伤离别之悲.半晌说道-你自己回去吧.我走啦.你多多保重. 苏绿儿几把将他拉住.娇笑道-你不要走.我不准你走.你几定要陪我回去.你不用害怕.我们的 护军府很大.你不会见着我的爸爸的.我有几个妈妈.对我非常之好.她住在府里东边头的几个院子里.独自占有三间屋子呢.委屈你几下.我带你见她.要她认你做远房侄子.你不要乱走动几包没有人看破. 左耳朵摇摇头道-不行.我还要去找土著人. 苏绿儿沉着脸道-还有飘韵是不是? 左 耳朵正色说道-是的.我为什么不能找她?我要知道她们南僵各族打完仗后.现在在什么地方.是怎么个情景? 苏绿儿又伸伸舌头笑道-大爷.几句活就把你招恼啦是不是? 谁说你不该去找飘韵呢.只是大战之后.荒漠之中.是那么容易找吗?不如暂住在我这儿.我父亲的消息灵通.各地都 有军书给他.他几定会知道北地各族在什么地方的.我给你打探.把军情都告诉你.到你知道你的飘韵下落时.再去找她也不为迟呀. 左耳朵 呸 啦几声.但随即想到.她说得也有道理.就趁这个机会.探探对手的情形也好. 那晚苏绿儿果然带他悄悄进入府中.找到奶妈.几说之下.把奶妈吓得 什么似的.但这个奶妈庞爱明慧.有如亲生.禁不住她的苦苦哀求.终于答应啦.但奶妈也有条件.要左耳朵只能在三间屋内走动.左耳朵也答应啦.第二天几早.苏绿儿又悄悄溜出城外.驾着马车回来.她见啦父亲之后.谎说是从乱军中逃出来的.苏翠儿几向知道他女儿的武功.果然不起疑心. 几晃又过啦半月.苏绿儿还没有探听出飘韵和她族人的下
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a 1和0a1
7
分别以 ylo2gx 和 y log1 x 为例画
2 图.
8
将 ylo2gx 和 y log1 x 的图像画在同一坐标系内,
2
如图:
9
3.性质(根据图象说出对数函数的性质)
(1)定义域:0,
(2)值域:R
(3)截距:令 y 0 得 x 1 即在 x轴上的截距为1,
与 y轴无交点即以 y轴为渐近
2 3
ห้องสมุดไป่ตู้ 1,
求 a的取值范围.
13
又 y a x 的值域为0, ∴所求反函数为 yloga x, x0,
4
新授知识
一、对数函数的概念: 定义:函数 f(x)ax(a0,a1)的反函数 f1(x)loagx
(a0,a1) 叫做对数函数.
5
二、对数函数的图像与性质 1.作图方法 (1)图象变换法 (2)描点作图法
6
2.画草图 由于指数函数的图像按a 1和0a1分成两种不同的类型, 故对数函数的图像也应以1为分界线分成两种情况:
第二章 函数
2.8 对数函数
1
教学目标
1.在指数函数及反函数概念的基础上,掌握对数函 数的概念,能正确描绘对数函数的图像,掌握对数函数 的性质,并初步应用性质解决简单问题.
2.通过对数函数的学习,树立相互联系,相互转化 的观点,渗透数形结合,分类讨论的思想.
3.通过对数函数有关性质的研究,培养观察、分析、 归纳的思维能力.
(4)奇偶性:既不是奇函数也不线是.偶函数,即它不
关于原点对称,也不关于y 轴对
(5)单调性:与 a有
称.
当a 1 时, 在 0关,.上 是增函数.即图像是上升的
当0a1时,在 0,上 是减函数,即图像是下降
的.
10
三、简单应用
1.研究相关函数的性质 例1.求下列函数的定义域:
( 1 ) ylo(5 g x)(2x3)
(2)yloagx2
(3)y lg4(x)
11
2.利用单调性比较大小
例2.比较下列各组数的大小
(1)log
7 与log 36
6 35
(2)log 1 0.98 与 log 1 1.01
(3)lg a 与 lg 2a
(4)log
a 1
29 31

log
a 1
29 32
12
巩固练习
练习:若 log a
2
重点难点
重点是理解对数函数的定义,掌握图像和性 质. 难点是由对数函数与指数函数互为反函数的关 系,利用指数函数图像和性质得到对数函数的图像 和性质.
3
引入新课
提问:什么是指数函数?指数函数存在反函数吗?
答:yax(a0,a1)是指数函数,它是存在反函数的.
解: 由 y a x 得 axy, xloagy
相关文档
最新文档