信号与系统第八章答案

合集下载

信号与系统 陈后金 第二版 课后习题答案(完整版)

信号与系统 陈后金 第二版 课后习题答案(完整版)

(1) f (t) = 3sin 2t + 6 sinπ t
(2) f (t) = (a sin t) 2
(8)
f
(k)
=
cos⎜⎛ ⎝
πk 4
⎟⎞ ⎠
+
sin⎜⎛ ⎝
πk 8
⎟⎞ ⎠

2
cos⎜⎛ ⎝
πk 2
⎟⎞ ⎠
解:(1)因为 sin 2t 的周期为π ,而 sin πt 的周期为 2 。
显然,使方程
−∞
0
2-10 已知信号 f (t) 的波形如题 2-10 图所示,绘出下列信号的波形。
f (t)
2
1
−1 0
t 2
题 2-10 图
(3) f (5 − 3t) (7) f ′(t) 解:(3)将 f (t) 表示成如下的数学表达式
(5) f (t)u(1 − t)
由此得
⎧2
f
(t)
=
⎪ ⎨ ⎪ ⎩
f (t)u(1− t) 2
1
0.5
t
−1 0
1
(7)方法 1:几何法。由于 f (t) 的波形在 t = −1处有一个幅度为 2 的正跳变,所以 f ′(t) 在 此处会形成一个强度为 2 的冲激信号。同理,在 t = 0 处 f ′(t) 会形成一个强度为 1 的冲激信 号(方向向下,因为是负跳变),而在 0 < t < 2 的区间内有 f ′(t) = −0.5 (由 f (t) 的表达式可
第 1 页 共 27 页
《信号与系统》(陈后金等编)作业参考解答
(2)显然,该系统为非线性系统。 由于
T{f (t − t0 )}= Kf (t − t0 ) + f 2 (t − t0 ) = y(t − t0 )

《信号与系统》第8章

《信号与系统》第8章

) RC
(is
(t
)
iL
(t
))
经整理:
x1
(t
)
x2
(t
)
0
1 L
x1 (t )
1 C
RC L
x2 (t) RL x2 (t)
1 C
RC L
f1 (t )
f1(t)
1 L
f2 (t)
(3)建立输出方程
iuC((tt))uC
(t) iS
(t
RCiL (t) ) iL (t)
RC
iS
RC
iS
(t)
RC
iL (t)......... ...(3)
状态变量与系统输入变量的关系(状态方程):
duC (t
dt diL (t)
)
1
dt L
uC
(t)
1 L
1 C (RL
RCiL (t) )iL 源自t)1C RC L
iS (t)(4) iS (t).........(5)
1H
x1
1F
+ -
x2
1F
i2
+
+-x3
2
u(t)
-
把该式代入上式,得:
x2
f
x1 x2 x3 (t) x2 x2
x3
x1
x3
x1
1 2
x3
x2
x3
x1 0 x2 x3 0
x2
1 3
x1
2 3
x2
1 6
x3
2 3
f (t)
x3
1 3
x1
1 3
x2
1 3

数字信号处理学习指导与课后答案第8章

数字信号处理学习指导与课后答案第8章

xˆa (t) xa (t) δ(t nT ) n
第8章 上机实验
对上式进行傅里叶变换, 得到
Xˆ a ( j )

[xa (t)

δ(t nT )]e j tdt
n



xa
(t
)δ(t

nT
)e

j
t
dt
n
在上式的积分号内只有当t=nT时, 才有非零值, 因此
第8章 上机实验
2. 实验原理与方法
1)
时域采样定理的要点是:
(1) 对模拟信号xa(t)以T进行时域等间隔理想采样, 形成 的采样信号的频谱 Xˆ ( j ) 会以采样角频率Ωs(Ωs=2π/T)为 周期进行周期延拓。 公式为
Xˆ a ( j ) FT[xˆa (t)]
ห้องสมุดไป่ตู้

1 T

X a ( j
第8章 上机实验
8.1 实验一:
8.1.1
1. (1) 掌握求系统响应的方法。 (2) 掌握时域离散系统的时域特性。 (3) 分析、 观察及检验系统的稳定性。
第8章 上机实验
2. 在时域中, 描写系统特性的方法是差分方程和单位脉 冲响应, 在频域可以用系统函数描述系统特性。 已知输入 信号可以由差分方程、 单位脉冲响应或系统函数求出系统对 于该输入信号的响应。 本实验仅在时域求解。 在计算机上 适合用递推法求差分方程的解, 最简单的方法是采用 MATLAB语言的工具箱函数filter函数。 也可以用MATLAB 语言的工具箱函数conv函数计算输入信号和系统的单位脉冲 响应的线性卷积, 求出系统的响应。
第8章 上机实验
8.1.2

《信号与系统》第八章知识要点+典型例题

《信号与系统》第八章知识要点+典型例题
y(t) 8x1 2x2
再稍作变换,写出矩阵形式的动态方程为

x 1 x 2


0 2
1 3

x1 x2


0 1
f
y 8
2

x1 x2

(8.6) (8.7)
2
3、 连续系统状态方程的求解 求解状态方程有时域解法和变换域解法两种。变换域解法比较简单,其求解步骤如下: 一 n 阶连续系统状态方程与输出方程的一般形式分别为
(8.3)
1
若式(8.3)中仅包含状态变量与输入变量,符合状态方程的标准形式,状态方程的编
写到此完成。若式(8.3)中还含有不需要的中间变量,再应用 KCL、KVL 方程消除中间变
量,整理成状态方程的标准形式。
输出方程的编写,要根据电路的具体输出情况而定。有的,可以由状态变量与输入直接
就能简便写出;有的,需要再应用某些 KCL、KVL 及欧姆定律,消除不需要的中间变量而
相连节点的 KCL 方程、电感 L 所在回路的 KVL 方程,即
ìïïïïíïïïïîiucL((t
) = C duc (t ) dt
t ) = L diL(t ) dt
=+ =+
整理以上方程组,有
ìïïïïíïïïïî
duc (t ) dt
diL (t ) dt
= =
1 C 1 L
( + ) ( + )
【分析】本题主要考察状态方程的求解。
5
【解】 故
(s)

sI

A 1

s
1
1
s 4 2

信号与系统课后习题答案

信号与系统课后习题答案

习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。

因此,公共周期3110==f T s 。

(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。

因此,公共周期5110==f T s 。

(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。

所以是非周期的。

(d) 两个分量是同频率的,基频 =0f 1/π Hz 。

因此,公共周期π==01f T s 。

1-2 解 (a) 波形如图1-2(a)所示。

显然是功率信号。

t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。

显然是能量信号。

3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。

1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。

信号与系统课后答案第八章作业答案后半部分

信号与系统课后答案第八章作业答案后半部分
(2)因为 H (z) 的收敛域为| z |> 1 ,所以 H (z) 在单位圆上收敛。 3
频率响应为
H
(e jΩ
)
=
H
(z)
|z = e jΩ
=
4 ⎡⎣ejΩ −1⎤⎦
3
⎡⎢⎣e
jΩ

1 3
⎤ ⎥⎦
经计算得极点为 p = 1 ,零点为 z = 1。 3
H(e jΩ)
(Ω)
幅频响应图(横坐标进行了归一化处理)
(c)Yx (z) =
y(−1) + 2 y(−2) + 2 y(−1)z−1 1− z−1 − 2z−2
=
8⋅ z +1⋅ 3 z−2 3
z, z +1
z
>2
其逆
z
变换即零输入响应为
yx
(n)
=
8 3

2n
u(n)
+
1 3

(−1)n
u(n)
(d)根据上面计算的零输入和零状态响应可知系统的完全响应为
f (n) = (−1)n u(n) , y(−1) = 0 , y(−2) = 1;
解:(1)将原式两边取单边 Z 变换得,
Y (z) −[z−1Y (z) + y(−1)] − 2[z−2Y (z) + y(−2) + y(−1)z−1] = F (z) + z−1F (z)
整理得:
Y (z)
=
题图 8-23
根据系统框图可得 h(n) = h1(n) ∗[h2 (n) + h3 (n)] ,故 h(n) = δ (n) ∗[h2 (n) + h3(n)] = u(n) + u(n − 2)

信号与系统-8

信号与系统-8

信号与系统-8(总分:100.00,做题时间:90分钟)一、(总题数:23,分数:100.00)1.某单输入单输出的因果LTI 系统,当激励为e 1 (t)时,相应的零状态响应为r zs1 (t)=(8e -4t -9e -3t +e -t )ε(t);当激励为e 2 (t)时,相应的零状态响应为r zs2 (t)=(e -4t -4e -3t +3e -2tε(t)。

其中e 1 (t)≠e2 (t),且e 1 (t)和e 2 (t)均为指数单调衰减的有始函数。

若已知r(0 - )=7,r"(0 - )=-25,求该系统的零输入响应r zp (t)。

(分数:2.50)__________________________________________________________________________________________ 正确答案:()解析:4e -4t +3e -3t,t≥02.某线性非时变系统,其系统函数零极点图如下图所示。

试指出H(s)的可能收敛域,并对每一种收敛域确定系统的因果性,稳定性。

(分数:2.50) __________________________________________________________________________________________ 正确答案:()解析:ROC 1 :Re[s]<-2,系统是反因果的,不稳定的 ROC 2 :-2<Re[s]<-1,系统是非因果的,不稳定的ROC 3 :-1<Re[s]<2,系统是非因果的,稳定的ROC 4 :Re[s]>2,系统是因果的、不稳定的已知某线性非时变系统,在激励信号e(t)=δ(t)-4e 2t ε(-t)作用下产生的零状态响应为一双边信号r(t),其拉氏变换为,(分数:10.00) (1).求系统函数H(s)及其收敛域;(分数:5.00)__________________________________________________________________________________________ 正确答案:()(2).若对于所有t ,e(t)=e 2t ,求响应r(t)。

信号与系统第七、八章课后习题

信号与系统第七、八章课后习题

N k

2
2.线性时不变离散时间系统 ①线性 线性=叠加性+均匀性(齐次性)
c1 x1 (n) c2 x2 (n)
系统
c1 y1 (n) c2 y2 (n)
②时不变
x(n N )
系统
y (n N )
x ( n)
1 E
y ( n)
y ( n)

a
ay(n)
单位延时
1 T D z ( )
已知激励初始状态y(-1)=0,y(-2)=1/2, fk=2ku(k),求系统 的零输入响应,零状态响应和全响应. 解: (1) 零输入响应 根据定义,零输入响应满足方程:
yx (k ) 3 yx (k 1) 2 yx (k 2) 0
其初始状态
1 yx (1) y (1) 0, yx 2 y 2 2
x(n)(n n0 ) x(n0 )(n n0 )
n
x(n)(n) x(0) (n) x(0)
n


n
x(n)(n n ) x(n ) (n n ) x(n )
0 0 n 0 0

x ( n)
k k 零状态响应
2 1 k k k (1) (2) (2) , k 0 3 3
离散时间系统的单位样值响应
(n)
零状态系统
h( n)
单位样值响应h(n)是系统在零状态时,由单位样值信 号作用之下产生的响应。因此,它是一个零状态响应。
同样,单位样值信号δ(n)仅在n=0时刻等于1,其它时 刻δ(n)=0,因此系统在n>0时的响应是零输入响应。

信号与系统(郑君里)课后答案 第八章习题解答

信号与系统(郑君里)课后答案  第八章习题解答

=
z
z −
1

z
z −
2
2

z
>
2 时为右边序列 x (n)
=
⎡⎛ 1 ⎞n ⎢⎢⎣⎜⎝ 2 ⎟⎠

2n
⎤ ⎥
u
(
n
)
⎥⎦

z
<
0.5 时为左边序列
x(n)
=
⎡ ⎢2n ⎢⎣

⎛ ⎜⎝
1 2
⎞n ⎟⎠
⎤ ⎥ ⎥⎦
u
(
−n

1)
当 0.5 <
z
<
2 时为右边序列 x (n)
=
⎛ ⎜⎝
1 2
⎞ ⎟⎠
n
u
(
n
)
+
2n
u
(
−n

1)
8-18 解题过程:
因为 H ( z) =
Z ⎡⎣h (n)⎤⎦
=
z(
z−a
z
> a)
X
(z) =
Z
⎡⎣x (n)⎤⎦
=
z− z −1
( z−N +1
z −1
z
> 1)
Y ( z) = X ( z) H ( z) = z ( ) ⋅ z − z−N+1 z > 1
z − a z −1
(
2
z
)n
⎤ ⎦
∑ = 1−

( 2z )n
n=0
=1− 1 1− 2z
= −2z 1− 2z
=
z
z −
1
⎛ ⎜⎝
z

《信号与系统》第八章--考研及期末考试

《信号与系统》第八章--考研及期末考试

x(n)第8章 离散傅里叶变换
1
0.5
0
0
5
| X (e jΩ ) |
4 3 2 1 0
0
| X (k) |
4 3 2 1 0
0
| X (k) |
4 3 2 1 0
0
10 (a)
π (b)
8 (c)
16 (d)
n 15
Ω 2π
k 15
k 31
图6-1 DFT与DTFT的关系13
信号分析与处理
第8章 离散傅里叶变换
X (k)
DFT[
x(n)]
N 1
j 2 π kn
x(n)e N
N 1
x(
n)W
nk N
n0
n0
k=0,1,…, N-1
x(n)
IDFT[
X (k)]
1 N
N 1
j 2 π kn
X(k)e N
k0
1 N
N 1
X
(k
)W
nk N
k0
➢DFT与DFS的关系:
n=0,1,…, N-1
DFT并不是一个新的傅里叶变换形式,只不过是将DFS变换对中的
n0
j 2 (1k )8
1e 8
j 2 (1k )
1e 8
0,
k7
7 j2 π (1k )n
e 8
8, k 7
n0

18
信号分析与处理
第8章 离散傅里叶变换
当k=1时,
j
X (1) e 6
7 j2π (11)n
j
e8
0 j4e 6
2 j n0
X(0)=X(2)=X(3)=X(4)=X(5)=X(6)=0

信号与系统选择题

信号与系统选择题

【课程信息】课程名称:信号与系统课程编码:任课教师:王秀贞【录入】王秀贞【章节】第一章信号的函数表示与系统分析方法【知识点】1、信号的函数表示说明:连续函数和奇异函数、信号分解2、系统数学模型说明:系统性质【单选题】1、f(5-2t )是如下运算的结果( )。

A .f (—2t )右移5B .f (—2t )左移5C .f (—2t )右移25D .f(—2t)左移25答案:C难度:1分值:2知识点:1【判断题】1.偶函数加上直流后仍为偶函数。

( )答案:T2。

不同的系统具有不同的数学模型。

( )答案:F3. 任何信号都可以分解为偶分量与奇分量之和。

( )答案:T4.奇谐函数一定是奇函数。

( )答案:T【简答题】1.信号、信息与消息的差别?答案:信号:随时间变化的物理量;消息:待传送的一种以收发双方事先约定的方式组成的符号,如语言、文字、图像、数据等信息:所接收到的未知内容的消息,即传输的信号是带有信息的。

2.单位冲激信号的物理意义及其取样性质?答案:冲激信号:它是一种奇异函数,可以由一些常规函数的广义极限而得到. 它表达的是一类幅度很强,但作用时间很短的物理现象。

其重要特性是筛选性,即:()()()(0)(0)t x t dt t x dt x δδ∞∞-∞-∞==⎰⎰【录入】王秀贞【章节】第二章连续时间系统的时域分析【知识点】【单选题】1.系统微分方程式),()(),(2)(2)(t u t x t x t y dtt dy ==+若 34)0(=-y ,解得完全响应y (t )=)0(,1312≥+-t e t当 则零输入响应分量为 ( )。

A .te 231-B .21133t e --C .t e 234-D .12+--t e答案:C难度:1分值:2知识点:12.已知)()(),()(21t u e t f t u t f at -==,可以求得=)(*)(21t f t f ()。

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第8章 z变换、离散时间系统的z域分

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第8章 z变换、离散时间系统的z域分

(7)
X
z
1 2
n
u
n
u
n
10
z
n
9 n0
1 2
n
z
n
9 n0
1 2z
n
1
1 2z
1 1
10
z 0
2z
X(z)的零、极点分布图如图 8-2-1(g)所示。
(8)
8 / 75
圣才电子书
十万种考研考证电子书、题库视频学习平

X
z
n台
1 2
圣才电子书
十万种考研考证电子书、题库视频学习平


第 8 章 z 变换、离散时间系统的 z 域分析
8.1 复习笔记
从本章开始陆续讨论 Z 变换的定义、性质以及它与拉氏变换、傅氏变换的联系。在此 基础上研究离散时间系统的 z 域分析,给出离散系统的系统函数与频率响应的概念。通过 本章,读者应掌握对于离散时间信号与系统的研究,是先介绍 z 变换,然后引出序列的傅 里叶变换以及离散傅里叶变换(第九章)。
4 / 75
圣才电子书
十万种考研考证电子书、题库视频学习平


于实轴的直线映射到 z 平面是负实轴;
(3)在 s 平面上沿虚轴移动对应于 z 平面上沿单位圆周期性旋转,每平移 ωs,则沿
单位圆转一圈。
2.z 变换与拉氏变换表达式
Z
x nT X z zesT X s Z
n
u
n
1 3
n
u
n
z
n
n
(3)
X
z
n
1 3
n
u
n
z
n
n0

信号与系统选择题

信号与系统选择题

【课程信息】课程名称:信号与系统课程编码:任课教师:王秀贞【录入】王秀贞【章节】第一章信号的函数表示与系统分析方法【知识点】1、信号的函数表示说明:连续函数和奇异函数、信号分解2、系统数学模型说明:系统性质【单选题】1、f (5-2t )是如下运算的结果( )。

A .f (-2t )右移5B .f (-2t )左移5C .f (-2t )右移25D .f (-2t )左移25答案:C难度:1分值:2知识点:1【判断题】1.偶函数加上直流后仍为偶函数。

( )答案:T2. 不同的系统具有不同的数学模型。

( )答案:F3. 任何信号都可以分解为偶分量与奇分量之和。

( )答案:T4.奇谐函数一定是奇函数。

( )答案:T【简答题】1.信号、信息与消息的差别?答案:信号:随时间变化的物理量;消息:待传送的一种以收发双方事先约定的方式组成的符号,如语言、文字、图像、数据等信息:所接收到的未知内容的消息,即传输的信号是带有信息的。

2.单位冲激信号的物理意义及其取样性质?答案:冲激信号:它是一种奇异函数,可以由一些常规函数的广义极限而得到。

它表达的是一类幅度很强,但作用时间很短的物理现象。

其重要特性是筛选性,即:()()()(0)(0)t x t dt t x dt x δδ∞∞-∞-∞==⎰⎰【录入】王秀贞【章节】第二章连续时间系统的时域分析【知识点】【单选题】1.系统微分方程式),()(),(2)(2)(t u t x t x t y dtt dy ==+若 34)0(=-y ,解得完全响应y (t )=)0(,1312≥+-t e t 当 则零输入响应分量为 ( )。

A .t e 231-B .21133t e --C .te 234-D .12+--t e答案:C难度:1分值:2知识点:12.已知)()(),()(21t u e t f t u t f at -==,可以求得=)(*)(21t f t f ()。

信号与线性系统-8

信号与线性系统-8

信号与线性系统-8(总分:100.00,做题时间:90分钟)一、计算题(总题数:22,分数:100.00)绘出下列离散信号的图形。

(分数:8.00)2.00)__________________________________________________________________________________________ 正确答案:()解析:解是一个公比为的等比序列,且该序列起始于k=0。

其图形如图(a)所示。

(2).2δ(k)-ε(k)(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:解此序列也是起始于k=0的,其图形如图(b)所示。

2.00)__________________________________________________________________________________________ 正确答案:()解析:解此序列可看做是对连续时间信号(1+sin(2πt))ε(t)以每周期取16个样本点而得到的,故其图形如图(c)所示。

(4).k(2) -kε(k)(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:解此序列起始于k=1,其图形如图(d)所示。

绘出下列离散信号的图形。

(分数:8.00)(1).k[ε(k+4)-ε(k-4)](分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:解因故此信号的图形如图(a)所示。

信号与线,性系统分析,(吴大正,全8章),习题答案

信号与线,性系统分析,(吴大正,全8章),习题答案

西安电子科技大学844信号与系统第一章 信号与系统(二)1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f =(7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))(sin )(t r t f =(7))(2)(k t f k ε=(10))(])1(1[)(k k f k ε-+=1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k---=εε 解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=kkkkfεεπ(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

信号与系统课后习题参考答案

信号与系统课后习题参考答案

信号与系统课后习题参考答案1试分别指出以下波形就是属于哪种信号?题图1-11-2试写出题1-1图中信号得函数表达式。

1-3已知信号与波形如题图1-3中所⽰,试作出下列各信号得波形图,并加以标注。

题图1-3⑴⑵⑶⑷⑸⑹⑺⑻⑼1-4已知信号与波形如题图1-4中所⽰,试作出下列各信号得波形图,并加以标注。

题图1-4⑴⑵⑶⑷⑸⑹⑺⑻⑼1-5已知信号得波形如题图1-5所⽰,试作出信号得波形图,并加以标注。

题图1-51-6试画出下列信号得波形图:⑴⑵⑶⑷1-7试画出下列信号得波形图:⑴⑵⑶⑷⑸⑹1-8试求出以下复变函数得模与幅⾓,并画出模与幅⾓得波形图。

⑴⑵⑶⑷1-9已知信号,求出下列信号,并画出它们得波形图。

1-10试作出下列波形得奇分量、偶分量与⾮零区间上得平均分量与交流分量。

题图1-101-11试求下列积分:⑴⑵⑶⑷⑸⑹1-12试求下列积分:⑴⑵⑴(均为常数)⑵⑶⑷⑸⑹⑺⑻1-14如题图1-14中已知⼀线性时不变系统当输⼊为时,响应为。

试做出当输⼊为时,响应得波形图。

题图1-14 1-15已知系统得信号流图如下,试写出各⾃系统得输⼊输出⽅程。

题图1-151-16已知系统⽅程如下,试分别画出她们得系统模拟框图。

⑴⑵⑶1-17已知⼀线性时不变系统⽆起始储能,当输⼊信号时,响应,试求出输⼊分别为与时得系统响应。

第⼆章习题2-1试计算下列各对信号得卷积积分:。

⑴(对与两种情况)⑵⑶⑷⑸⑹2-2试计算下列各对信号得卷积与:。

⑴(对与两种情况)⑵⑶⑷⑸⑹2-3试计算下图中各对信号得卷积积分:,并作出结果得图形。

题图2-32-4试计算下图中各对信号得卷积与:,并作出结果得图形。

题图2-42-5已知,试求:⑴⑵⑶2-7系统如题图2-7所⽰,试求系统得单位冲激响应。

已知其中各⼦系统得单位冲激响应分别为:题图2-72-8设已知LTI 系统得单位冲激响应,试求在激励作⽤下得零状态响应。

2-9⼀LTI 系统如题图2-9所⽰,由三个因果LTI ⼦系统级联⽽成,且已知系统得单位样值响应如图中。

2020年智慧树知道网课《信号与系统(山东联盟-山东师范大学)》课后章节测试满分答案

2020年智慧树知道网课《信号与系统(山东联盟-山东师范大学)》课后章节测试满分答案

第一章测试1【判断题】(10分)正弦连续函数一定是周期信号A.对B.错2【判断题】(10分)正弦离散函数一定是周期序列。

A.错B.对3【判断题】(10分)余弦连续函数一定是周期信号。

A.错B.对4【判断题】(10分)余弦离散序列一定是周期的A.对B.错5【判断题】(10分)两个离散周期序列的和一定是周期信号。

A.对B.错6【判断题】(10分)两个连续周期函数的和一定是周期信号。

A.对B.错7【判断题】(10分)两个连续正弦函数的和不一定是周期函数。

A.对B.错8【判断题】(10分)取样信号属于功率信号。

A.对B.错9【判断题】(10分)门信号属于能量信号。

A.错B.对10【判断题】(10分)两个连续余弦函数的和不一定是周期函数。

A.错B.对第二章测试1【判断题】(10分)微分方程的齐次解称为自由响应。

A.对B.错2【判断题】(10分)微分方程的特解称为强迫响应。

A.错B.对3【判断题】(10分)微分方程的零状态响应是稳态响应的一部分A.对B.错4【判断题】(10分)微分方程的零输入响应是稳态响应的一部分A.对B.错5【判断题】(10分)微分方程的零状态响应包含齐次解部分和特解两部分。

A.错B.对6【判断题】(10分)微分方程的零状态响应中的特解部分与微分方程的强迫响应相等。

A.错B.对7【判断题】(10分)对LTI连续系统,当输入信号含有冲激信号及其各阶导数,系统的初始值往往会发生跳变。

A.对B.错8【判断题】(10分)对线性时不变连续系统,当输入信号含有阶跃信号,系统的初始值往往会发生跳变A.对B.错9【判断题】(10分)冲激函数匹配法是用于由零负初始值求解零正初始值。

A.对B.错10【判断题】(10分)LTI连续系统的全响应是单位冲激响应与单位阶跃响应的和。

A.对B.错第三章测试1【判断题】(10分)LTI离散系统的响应等于自由响应加上强迫响应。

A.错B.对2【判断题】(10分)LTI离散系统的响应等于齐次解加上零状态响应的和。

信号与系统课后习题答案第8章

信号与系统课后习题答案第8章

7
第8章 系统的状态空间分析
题图 8.2
8
第8章 系统的状态空间分析
9
第8章 系统的状态空间分析
题解图 8.2
10
第8章 系统的状态空间分析
(2)
11
第8章 系统的状态空间分析
8.3 作为练习,请用MATLAB软件绘制x1(t)、x2(t)波形图 和x(t)的状态轨迹。
8.4 同题8.3。
代入元件值,整理得状态方程:
观察网络,直接写出输出方程:
32
第8章 系统的状态空间分析
题解图 8.10
33
第8章 系统的状态空间分析
34
第8章 系统的状态空间分析
35
第8章 系统的状态空间分析
36
第8章 系统的状态空间分析
37
第8章 系统的状态空间分析
8.11 列出题图 8.9 网络的状态空间方程(以uC、iL为状态变 量;i0、u0为输出)。
144
第8章 系统的状态空间分析
题解图 8.29
145
第8章 系统的状态空间分析
在系统输出端写出输出方程:
整理成矩阵形式,有
146
第8章 系统的状态空间分析
147
第8章 系统的状态空间分析
148
第8章 系统的状态空间分析
149
第8章 系统的状态空间分析
150
第8章 系统的状态空间分析
8.31 已知离散时间系统的模拟框图如题图 8.14 所示,试建 立其状态空间方程,并求出输入为
99
第8章 系统的状态空间分析
100
第8章 系统的状态空间分析
101
第8章 系统的状态空间分析
102
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档