信号与系统第八章答案
信号与系统 陈后金 第二版 课后习题答案(完整版)

(1) f (t) = 3sin 2t + 6 sinπ t
(2) f (t) = (a sin t) 2
(8)
f
(k)
=
cos⎜⎛ ⎝
πk 4
⎟⎞ ⎠
+
sin⎜⎛ ⎝
πk 8
⎟⎞ ⎠
−
2
cos⎜⎛ ⎝
πk 2
⎟⎞ ⎠
解:(1)因为 sin 2t 的周期为π ,而 sin πt 的周期为 2 。
显然,使方程
−∞
0
2-10 已知信号 f (t) 的波形如题 2-10 图所示,绘出下列信号的波形。
f (t)
2
1
−1 0
t 2
题 2-10 图
(3) f (5 − 3t) (7) f ′(t) 解:(3)将 f (t) 表示成如下的数学表达式
(5) f (t)u(1 − t)
由此得
⎧2
f
(t)
=
⎪ ⎨ ⎪ ⎩
f (t)u(1− t) 2
1
0.5
t
−1 0
1
(7)方法 1:几何法。由于 f (t) 的波形在 t = −1处有一个幅度为 2 的正跳变,所以 f ′(t) 在 此处会形成一个强度为 2 的冲激信号。同理,在 t = 0 处 f ′(t) 会形成一个强度为 1 的冲激信 号(方向向下,因为是负跳变),而在 0 < t < 2 的区间内有 f ′(t) = −0.5 (由 f (t) 的表达式可
第 1 页 共 27 页
《信号与系统》(陈后金等编)作业参考解答
(2)显然,该系统为非线性系统。 由于
T{f (t − t0 )}= Kf (t − t0 ) + f 2 (t − t0 ) = y(t − t0 )
《信号与系统》第8章

) RC
(is
(t
)
iL
(t
))
经整理:
x1
(t
)
x2
(t
)
0
1 L
x1 (t )
1 C
RC L
x2 (t) RL x2 (t)
1 C
RC L
f1 (t )
f1(t)
1 L
f2 (t)
(3)建立输出方程
iuC((tt))uC
(t) iS
(t
RCiL (t) ) iL (t)
RC
iS
RC
iS
(t)
RC
iL (t)......... ...(3)
状态变量与系统输入变量的关系(状态方程):
duC (t
dt diL (t)
)
1
dt L
uC
(t)
1 L
1 C (RL
RCiL (t) )iL 源自t)1C RC L
iS (t)(4) iS (t).........(5)
1H
x1
1F
+ -
x2
1F
i2
+
+-x3
2
u(t)
-
把该式代入上式,得:
x2
f
x1 x2 x3 (t) x2 x2
x3
x1
x3
x1
1 2
x3
x2
x3
x1 0 x2 x3 0
x2
1 3
x1
2 3
x2
1 6
x3
2 3
f (t)
x3
1 3
x1
1 3
x2
1 3
数字信号处理学习指导与课后答案第8章

xˆa (t) xa (t) δ(t nT ) n
第8章 上机实验
对上式进行傅里叶变换, 得到
Xˆ a ( j )
[xa (t)
δ(t nT )]e j tdt
n
=
xa
(t
)δ(t
nT
)e
j
t
dt
n
在上式的积分号内只有当t=nT时, 才有非零值, 因此
第8章 上机实验
2. 实验原理与方法
1)
时域采样定理的要点是:
(1) 对模拟信号xa(t)以T进行时域等间隔理想采样, 形成 的采样信号的频谱 Xˆ ( j ) 会以采样角频率Ωs(Ωs=2π/T)为 周期进行周期延拓。 公式为
Xˆ a ( j ) FT[xˆa (t)]
ห้องสมุดไป่ตู้
1 T
X a ( j
第8章 上机实验
8.1 实验一:
8.1.1
1. (1) 掌握求系统响应的方法。 (2) 掌握时域离散系统的时域特性。 (3) 分析、 观察及检验系统的稳定性。
第8章 上机实验
2. 在时域中, 描写系统特性的方法是差分方程和单位脉 冲响应, 在频域可以用系统函数描述系统特性。 已知输入 信号可以由差分方程、 单位脉冲响应或系统函数求出系统对 于该输入信号的响应。 本实验仅在时域求解。 在计算机上 适合用递推法求差分方程的解, 最简单的方法是采用 MATLAB语言的工具箱函数filter函数。 也可以用MATLAB 语言的工具箱函数conv函数计算输入信号和系统的单位脉冲 响应的线性卷积, 求出系统的响应。
第8章 上机实验
8.1.2
《信号与系统》第八章知识要点+典型例题

再稍作变换,写出矩阵形式的动态方程为
x 1 x 2
0 2
1 3
x1 x2
0 1
f
y 8
2
x1 x2
(8.6) (8.7)
2
3、 连续系统状态方程的求解 求解状态方程有时域解法和变换域解法两种。变换域解法比较简单,其求解步骤如下: 一 n 阶连续系统状态方程与输出方程的一般形式分别为
(8.3)
1
若式(8.3)中仅包含状态变量与输入变量,符合状态方程的标准形式,状态方程的编
写到此完成。若式(8.3)中还含有不需要的中间变量,再应用 KCL、KVL 方程消除中间变
量,整理成状态方程的标准形式。
输出方程的编写,要根据电路的具体输出情况而定。有的,可以由状态变量与输入直接
就能简便写出;有的,需要再应用某些 KCL、KVL 及欧姆定律,消除不需要的中间变量而
相连节点的 KCL 方程、电感 L 所在回路的 KVL 方程,即
ìïïïïíïïïïîiucL((t
) = C duc (t ) dt
t ) = L diL(t ) dt
=+ =+
整理以上方程组,有
ìïïïïíïïïïî
duc (t ) dt
diL (t ) dt
= =
1 C 1 L
( + ) ( + )
【分析】本题主要考察状态方程的求解。
5
【解】 故
(s)
sI
A 1
s
1
1
s 4 2
信号与系统课后习题答案

习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。
因此,公共周期3110==f T s 。
(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。
因此,公共周期5110==f T s 。
(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。
所以是非周期的。
(d) 两个分量是同频率的,基频 =0f 1/π Hz 。
因此,公共周期π==01f T s 。
1-2 解 (a) 波形如图1-2(a)所示。
显然是功率信号。
t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。
显然是能量信号。
3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。
1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。
信号与系统课后答案第八章作业答案后半部分

频率响应为
H
(e jΩ
)
=
H
(z)
|z = e jΩ
=
4 ⎡⎣ejΩ −1⎤⎦
3
⎡⎢⎣e
jΩ
−
1 3
⎤ ⎥⎦
经计算得极点为 p = 1 ,零点为 z = 1。 3
H(e jΩ)
(Ω)
幅频响应图(横坐标进行了归一化处理)
(c)Yx (z) =
y(−1) + 2 y(−2) + 2 y(−1)z−1 1− z−1 − 2z−2
=
8⋅ z +1⋅ 3 z−2 3
z, z +1
z
>2
其逆
z
变换即零输入响应为
yx
(n)
=
8 3
⋅
2n
u(n)
+
1 3
⋅
(−1)n
u(n)
(d)根据上面计算的零输入和零状态响应可知系统的完全响应为
f (n) = (−1)n u(n) , y(−1) = 0 , y(−2) = 1;
解:(1)将原式两边取单边 Z 变换得,
Y (z) −[z−1Y (z) + y(−1)] − 2[z−2Y (z) + y(−2) + y(−1)z−1] = F (z) + z−1F (z)
整理得:
Y (z)
=
题图 8-23
根据系统框图可得 h(n) = h1(n) ∗[h2 (n) + h3 (n)] ,故 h(n) = δ (n) ∗[h2 (n) + h3(n)] = u(n) + u(n − 2)
信号与系统-8

信号与系统-8(总分:100.00,做题时间:90分钟)一、(总题数:23,分数:100.00)1.某单输入单输出的因果LTI 系统,当激励为e 1 (t)时,相应的零状态响应为r zs1 (t)=(8e -4t -9e -3t +e -t )ε(t);当激励为e 2 (t)时,相应的零状态响应为r zs2 (t)=(e -4t -4e -3t +3e -2tε(t)。
其中e 1 (t)≠e2 (t),且e 1 (t)和e 2 (t)均为指数单调衰减的有始函数。
若已知r(0 - )=7,r"(0 - )=-25,求该系统的零输入响应r zp (t)。
(分数:2.50)__________________________________________________________________________________________ 正确答案:()解析:4e -4t +3e -3t,t≥02.某线性非时变系统,其系统函数零极点图如下图所示。
试指出H(s)的可能收敛域,并对每一种收敛域确定系统的因果性,稳定性。
(分数:2.50) __________________________________________________________________________________________ 正确答案:()解析:ROC 1 :Re[s]<-2,系统是反因果的,不稳定的 ROC 2 :-2<Re[s]<-1,系统是非因果的,不稳定的ROC 3 :-1<Re[s]<2,系统是非因果的,稳定的ROC 4 :Re[s]>2,系统是因果的、不稳定的已知某线性非时变系统,在激励信号e(t)=δ(t)-4e 2t ε(-t)作用下产生的零状态响应为一双边信号r(t),其拉氏变换为,(分数:10.00) (1).求系统函数H(s)及其收敛域;(分数:5.00)__________________________________________________________________________________________ 正确答案:()(2).若对于所有t ,e(t)=e 2t ,求响应r(t)。
信号与系统第七、八章课后习题

N k
当
2
2.线性时不变离散时间系统 ①线性 线性=叠加性+均匀性(齐次性)
c1 x1 (n) c2 x2 (n)
系统
c1 y1 (n) c2 y2 (n)
②时不变
x(n N )
系统
y (n N )
x ( n)
1 E
y ( n)
y ( n)
a
ay(n)
单位延时
1 T D z ( )
已知激励初始状态y(-1)=0,y(-2)=1/2, fk=2ku(k),求系统 的零输入响应,零状态响应和全响应. 解: (1) 零输入响应 根据定义,零输入响应满足方程:
yx (k ) 3 yx (k 1) 2 yx (k 2) 0
其初始状态
1 yx (1) y (1) 0, yx 2 y 2 2
x(n)(n n0 ) x(n0 )(n n0 )
n
x(n)(n) x(0) (n) x(0)
n
n
x(n)(n n ) x(n ) (n n ) x(n )
0 0 n 0 0
x ( n)
k k 零状态响应
2 1 k k k (1) (2) (2) , k 0 3 3
离散时间系统的单位样值响应
(n)
零状态系统
h( n)
单位样值响应h(n)是系统在零状态时,由单位样值信 号作用之下产生的响应。因此,它是一个零状态响应。
同样,单位样值信号δ(n)仅在n=0时刻等于1,其它时 刻δ(n)=0,因此系统在n>0时的响应是零输入响应。
信号与系统(郑君里)课后答案 第八章习题解答

=
z
z −
1
−
z
z −
2
2
当
z
>
2 时为右边序列 x (n)
=
⎡⎛ 1 ⎞n ⎢⎢⎣⎜⎝ 2 ⎟⎠
−
2n
⎤ ⎥
u
(
n
)
⎥⎦
当
z
<
0.5 时为左边序列
x(n)
=
⎡ ⎢2n ⎢⎣
−
⎛ ⎜⎝
1 2
⎞n ⎟⎠
⎤ ⎥ ⎥⎦
u
(
−n
−
1)
当 0.5 <
z
<
2 时为右边序列 x (n)
=
⎛ ⎜⎝
1 2
⎞ ⎟⎠
n
u
(
n
)
+
2n
u
(
−n
−
1)
8-18 解题过程:
因为 H ( z) =
Z ⎡⎣h (n)⎤⎦
=
z(
z−a
z
> a)
X
(z) =
Z
⎡⎣x (n)⎤⎦
=
z− z −1
( z−N +1
z −1
z
> 1)
Y ( z) = X ( z) H ( z) = z ( ) ⋅ z − z−N+1 z > 1
z − a z −1
(
2
z
)n
⎤ ⎦
∑ = 1−
∞
( 2z )n
n=0
=1− 1 1− 2z
= −2z 1− 2z
=
z
z −
1
⎛ ⎜⎝
z
《信号与系统》第八章--考研及期末考试

x(n)第8章 离散傅里叶变换
1
0.5
0
0
5
| X (e jΩ ) |
4 3 2 1 0
0
| X (k) |
4 3 2 1 0
0
| X (k) |
4 3 2 1 0
0
10 (a)
π (b)
8 (c)
16 (d)
n 15
Ω 2π
k 15
k 31
图6-1 DFT与DTFT的关系13
信号分析与处理
第8章 离散傅里叶变换
X (k)
DFT[
x(n)]
N 1
j 2 π kn
x(n)e N
N 1
x(
n)W
nk N
n0
n0
k=0,1,…, N-1
x(n)
IDFT[
X (k)]
1 N
N 1
j 2 π kn
X(k)e N
k0
1 N
N 1
X
(k
)W
nk N
k0
➢DFT与DFS的关系:
n=0,1,…, N-1
DFT并不是一个新的傅里叶变换形式,只不过是将DFS变换对中的
n0
j 2 (1k )8
1e 8
j 2 (1k )
1e 8
0,
k7
7 j2 π (1k )n
e 8
8, k 7
n0
■
18
信号分析与处理
第8章 离散傅里叶变换
当k=1时,
j
X (1) e 6
7 j2π (11)n
j
e8
0 j4e 6
2 j n0
X(0)=X(2)=X(3)=X(4)=X(5)=X(6)=0
信号与系统选择题

【课程信息】课程名称:信号与系统课程编码:任课教师:王秀贞【录入】王秀贞【章节】第一章信号的函数表示与系统分析方法【知识点】1、信号的函数表示说明:连续函数和奇异函数、信号分解2、系统数学模型说明:系统性质【单选题】1、f(5-2t )是如下运算的结果( )。
A .f (—2t )右移5B .f (—2t )左移5C .f (—2t )右移25D .f(—2t)左移25答案:C难度:1分值:2知识点:1【判断题】1.偶函数加上直流后仍为偶函数。
( )答案:T2。
不同的系统具有不同的数学模型。
( )答案:F3. 任何信号都可以分解为偶分量与奇分量之和。
( )答案:T4.奇谐函数一定是奇函数。
( )答案:T【简答题】1.信号、信息与消息的差别?答案:信号:随时间变化的物理量;消息:待传送的一种以收发双方事先约定的方式组成的符号,如语言、文字、图像、数据等信息:所接收到的未知内容的消息,即传输的信号是带有信息的。
2.单位冲激信号的物理意义及其取样性质?答案:冲激信号:它是一种奇异函数,可以由一些常规函数的广义极限而得到. 它表达的是一类幅度很强,但作用时间很短的物理现象。
其重要特性是筛选性,即:()()()(0)(0)t x t dt t x dt x δδ∞∞-∞-∞==⎰⎰【录入】王秀贞【章节】第二章连续时间系统的时域分析【知识点】【单选题】1.系统微分方程式),()(),(2)(2)(t u t x t x t y dtt dy ==+若 34)0(=-y ,解得完全响应y (t )=)0(,1312≥+-t e t当 则零输入响应分量为 ( )。
A .te 231-B .21133t e --C .t e 234-D .12+--t e答案:C难度:1分值:2知识点:12.已知)()(),()(21t u e t f t u t f at -==,可以求得=)(*)(21t f t f ()。
郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第8章 z变换、离散时间系统的z域分

(7)
X
z
1 2
n
u
n
u
n
10
z
n
9 n0
1 2
n
z
n
9 n0
1 2z
n
1
1 2z
1 1
10
z 0
2z
X(z)的零、极点分布图如图 8-2-1(g)所示。
(8)
8 / 75
圣才电子书
十万种考研考证电子书、题库视频学习平
X
z
n台
1 2
圣才电子书
十万种考研考证电子书、题库视频学习平
台
第 8 章 z 变换、离散时间系统的 z 域分析
8.1 复习笔记
从本章开始陆续讨论 Z 变换的定义、性质以及它与拉氏变换、傅氏变换的联系。在此 基础上研究离散时间系统的 z 域分析,给出离散系统的系统函数与频率响应的概念。通过 本章,读者应掌握对于离散时间信号与系统的研究,是先介绍 z 变换,然后引出序列的傅 里叶变换以及离散傅里叶变换(第九章)。
4 / 75
圣才电子书
十万种考研考证电子书、题库视频学习平
台
于实轴的直线映射到 z 平面是负实轴;
(3)在 s 平面上沿虚轴移动对应于 z 平面上沿单位圆周期性旋转,每平移 ωs,则沿
单位圆转一圈。
2.z 变换与拉氏变换表达式
Z
x nT X z zesT X s Z
n
u
n
1 3
n
u
n
z
n
n
(3)
X
z
n
1 3
n
u
n
z
n
n0
信号与系统选择题

【课程信息】课程名称:信号与系统课程编码:任课教师:王秀贞【录入】王秀贞【章节】第一章信号的函数表示与系统分析方法【知识点】1、信号的函数表示说明:连续函数和奇异函数、信号分解2、系统数学模型说明:系统性质【单选题】1、f (5-2t )是如下运算的结果( )。
A .f (-2t )右移5B .f (-2t )左移5C .f (-2t )右移25D .f (-2t )左移25答案:C难度:1分值:2知识点:1【判断题】1.偶函数加上直流后仍为偶函数。
( )答案:T2. 不同的系统具有不同的数学模型。
( )答案:F3. 任何信号都可以分解为偶分量与奇分量之和。
( )答案:T4.奇谐函数一定是奇函数。
( )答案:T【简答题】1.信号、信息与消息的差别?答案:信号:随时间变化的物理量;消息:待传送的一种以收发双方事先约定的方式组成的符号,如语言、文字、图像、数据等信息:所接收到的未知内容的消息,即传输的信号是带有信息的。
2.单位冲激信号的物理意义及其取样性质?答案:冲激信号:它是一种奇异函数,可以由一些常规函数的广义极限而得到。
它表达的是一类幅度很强,但作用时间很短的物理现象。
其重要特性是筛选性,即:()()()(0)(0)t x t dt t x dt x δδ∞∞-∞-∞==⎰⎰【录入】王秀贞【章节】第二章连续时间系统的时域分析【知识点】【单选题】1.系统微分方程式),()(),(2)(2)(t u t x t x t y dtt dy ==+若 34)0(=-y ,解得完全响应y (t )=)0(,1312≥+-t e t 当 则零输入响应分量为 ( )。
A .t e 231-B .21133t e --C .te 234-D .12+--t e答案:C难度:1分值:2知识点:12.已知)()(),()(21t u e t f t u t f at -==,可以求得=)(*)(21t f t f ()。
信号与线性系统-8

信号与线性系统-8(总分:100.00,做题时间:90分钟)一、计算题(总题数:22,分数:100.00)绘出下列离散信号的图形。
(分数:8.00)2.00)__________________________________________________________________________________________ 正确答案:()解析:解是一个公比为的等比序列,且该序列起始于k=0。
其图形如图(a)所示。
(2).2δ(k)-ε(k)(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:解此序列也是起始于k=0的,其图形如图(b)所示。
2.00)__________________________________________________________________________________________ 正确答案:()解析:解此序列可看做是对连续时间信号(1+sin(2πt))ε(t)以每周期取16个样本点而得到的,故其图形如图(c)所示。
(4).k(2) -kε(k)(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:解此序列起始于k=1,其图形如图(d)所示。
绘出下列离散信号的图形。
(分数:8.00)(1).k[ε(k+4)-ε(k-4)](分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:解因故此信号的图形如图(a)所示。
信号与线,性系统分析,(吴大正,全8章),习题答案

西安电子科技大学844信号与系统第一章 信号与系统(二)1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。
(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f =(7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))(sin )(t r t f =(7))(2)(k t f k ε=(10))(])1(1[)(k k f k ε-+=1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k---=εε 解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=kkkkfεεπ(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
1-5 判别下列各序列是否为周期性的。
信号与系统课后习题参考答案

信号与系统课后习题参考答案1试分别指出以下波形就是属于哪种信号?题图1-11-2试写出题1-1图中信号得函数表达式。
1-3已知信号与波形如题图1-3中所⽰,试作出下列各信号得波形图,并加以标注。
题图1-3⑴⑵⑶⑷⑸⑹⑺⑻⑼1-4已知信号与波形如题图1-4中所⽰,试作出下列各信号得波形图,并加以标注。
题图1-4⑴⑵⑶⑷⑸⑹⑺⑻⑼1-5已知信号得波形如题图1-5所⽰,试作出信号得波形图,并加以标注。
题图1-51-6试画出下列信号得波形图:⑴⑵⑶⑷1-7试画出下列信号得波形图:⑴⑵⑶⑷⑸⑹1-8试求出以下复变函数得模与幅⾓,并画出模与幅⾓得波形图。
⑴⑵⑶⑷1-9已知信号,求出下列信号,并画出它们得波形图。
1-10试作出下列波形得奇分量、偶分量与⾮零区间上得平均分量与交流分量。
题图1-101-11试求下列积分:⑴⑵⑶⑷⑸⑹1-12试求下列积分:⑴⑵⑴(均为常数)⑵⑶⑷⑸⑹⑺⑻1-14如题图1-14中已知⼀线性时不变系统当输⼊为时,响应为。
试做出当输⼊为时,响应得波形图。
题图1-14 1-15已知系统得信号流图如下,试写出各⾃系统得输⼊输出⽅程。
题图1-151-16已知系统⽅程如下,试分别画出她们得系统模拟框图。
⑴⑵⑶1-17已知⼀线性时不变系统⽆起始储能,当输⼊信号时,响应,试求出输⼊分别为与时得系统响应。
第⼆章习题2-1试计算下列各对信号得卷积积分:。
⑴(对与两种情况)⑵⑶⑷⑸⑹2-2试计算下列各对信号得卷积与:。
⑴(对与两种情况)⑵⑶⑷⑸⑹2-3试计算下图中各对信号得卷积积分:,并作出结果得图形。
题图2-32-4试计算下图中各对信号得卷积与:,并作出结果得图形。
题图2-42-5已知,试求:⑴⑵⑶2-7系统如题图2-7所⽰,试求系统得单位冲激响应。
已知其中各⼦系统得单位冲激响应分别为:题图2-72-8设已知LTI 系统得单位冲激响应,试求在激励作⽤下得零状态响应。
2-9⼀LTI 系统如题图2-9所⽰,由三个因果LTI ⼦系统级联⽽成,且已知系统得单位样值响应如图中。
2020年智慧树知道网课《信号与系统(山东联盟-山东师范大学)》课后章节测试满分答案

第一章测试1【判断题】(10分)正弦连续函数一定是周期信号A.对B.错2【判断题】(10分)正弦离散函数一定是周期序列。
A.错B.对3【判断题】(10分)余弦连续函数一定是周期信号。
A.错B.对4【判断题】(10分)余弦离散序列一定是周期的A.对B.错5【判断题】(10分)两个离散周期序列的和一定是周期信号。
A.对B.错6【判断题】(10分)两个连续周期函数的和一定是周期信号。
A.对B.错7【判断题】(10分)两个连续正弦函数的和不一定是周期函数。
A.对B.错8【判断题】(10分)取样信号属于功率信号。
A.对B.错9【判断题】(10分)门信号属于能量信号。
A.错B.对10【判断题】(10分)两个连续余弦函数的和不一定是周期函数。
A.错B.对第二章测试1【判断题】(10分)微分方程的齐次解称为自由响应。
A.对B.错2【判断题】(10分)微分方程的特解称为强迫响应。
A.错B.对3【判断题】(10分)微分方程的零状态响应是稳态响应的一部分A.对B.错4【判断题】(10分)微分方程的零输入响应是稳态响应的一部分A.对B.错5【判断题】(10分)微分方程的零状态响应包含齐次解部分和特解两部分。
A.错B.对6【判断题】(10分)微分方程的零状态响应中的特解部分与微分方程的强迫响应相等。
A.错B.对7【判断题】(10分)对LTI连续系统,当输入信号含有冲激信号及其各阶导数,系统的初始值往往会发生跳变。
A.对B.错8【判断题】(10分)对线性时不变连续系统,当输入信号含有阶跃信号,系统的初始值往往会发生跳变A.对B.错9【判断题】(10分)冲激函数匹配法是用于由零负初始值求解零正初始值。
A.对B.错10【判断题】(10分)LTI连续系统的全响应是单位冲激响应与单位阶跃响应的和。
A.对B.错第三章测试1【判断题】(10分)LTI离散系统的响应等于自由响应加上强迫响应。
A.错B.对2【判断题】(10分)LTI离散系统的响应等于齐次解加上零状态响应的和。
信号与系统课后习题答案第8章

7
第8章 系统的状态空间分析
题图 8.2
8
第8章 系统的状态空间分析
9
第8章 系统的状态空间分析
题解图 8.2
10
第8章 系统的状态空间分析
(2)
11
第8章 系统的状态空间分析
8.3 作为练习,请用MATLAB软件绘制x1(t)、x2(t)波形图 和x(t)的状态轨迹。
8.4 同题8.3。
代入元件值,整理得状态方程:
观察网络,直接写出输出方程:
32
第8章 系统的状态空间分析
题解图 8.10
33
第8章 系统的状态空间分析
34
第8章 系统的状态空间分析
35
第8章 系统的状态空间分析
36
第8章 系统的状态空间分析
37
第8章 系统的状态空间分析
8.11 列出题图 8.9 网络的状态空间方程(以uC、iL为状态变 量;i0、u0为输出)。
144
第8章 系统的状态空间分析
题解图 8.29
145
第8章 系统的状态空间分析
在系统输出端写出输出方程:
整理成矩阵形式,有
146
第8章 系统的状态空间分析
147
第8章 系统的状态空间分析
148
第8章 系统的状态空间分析
149
第8章 系统的状态空间分析
150
第8章 系统的状态空间分析
8.31 已知离散时间系统的模拟框图如题图 8.14 所示,试建 立其状态空间方程,并求出输入为
99
第8章 系统的状态空间分析
100
第8章 系统的状态空间分析
101
第8章 系统的状态空间分析
102