高考理科数学必考知识内容

合集下载

高考数学必背知识点及公式归纳总结大全

高考数学必背知识点及公式归纳总结大全

高考数学必背知识点及公式归纳总结大全高考数学必背知识点及公式归纳总结大全高中数学理科是10本书,其中的数学公式非常多,那么关于高考数学的公式及知识点有哪些呢?以下是小编准备的一些高考数学必背知识点及公式归纳总结,仅供参考。

高考数学必考知识点归纳必修一:1、集合与函数的概念(部分知识抽象,较难理解);2、基本的初等函数(指数函数、对数函数);3、函数的性质及应用(比较抽象,较难理解)。

必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。

这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。

这部分知识高考占22---27分。

2、直线方程:高考时不单独命题,易和圆锥曲线结合命题。

3、圆方程:必修三:1、算法初步:高考必考内容,5分(选择或填空);2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。

必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。

2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。

09年理科占到5分,文科占到13分。

必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右;2、数列:高考必考,17---22分;3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。

高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

文科:选修1—1、1—2。

选修1--1:重点:高考占30分。

1、逻辑用语:一般不考,若考也是和集合放一块考;2、圆锥曲线;3、导数、导数的应用(高考必考)。

选修1--2:1、统计;2、推理证明:一般不考,若考会是填空题;3、复数:(新课标比老课本难的多,高考必考内容)。

理科:选修2—1、2—2、2—3。

选修2--1:1、逻辑用语;2、圆锥曲线;3、空间向量:(利用空间向量可以把立体几何做题简便化)。

高考数学理科知识点总结归纳

高考数学理科知识点总结归纳

高考数学理科知识点总结归纳一、代数与函数1.1 基本代数运算法则1.1.1 加法与减法法则1.1.2 乘法与除法法则1.1.3 幂运算法则1.1.4 开方与根号法则1.2 一次函数与二次函数1.2.1 一次函数的定义与性质1.2.2 二次函数的定义与性质1.2.3 一次函数与二次函数的图像特征1.2.4 一次函数与二次函数的应用1.3 指数与对数1.3.1 指数的定义与性质1.3.2 对数的定义与性质1.3.3 指数方程与对数方程的解法1.3.4 指数模型与对数模型的应用1.4 不等式与绝对值1.4.1 不等式的定义与性质1.4.2 一元一次不等式的解法1.4.3 一元一次绝对值不等式的解法1.4.4 二次不等式与绝对值不等式的解法二、几何与空间2.1 平面几何2.1.1 直线、线段与射线的定义与性质 2.1.2 角的定义与性质2.1.3 三角形的性质与判定定理2.1.4 一些重要的平面几何定理与问题2.2 空间几何2.2.1 基本空间几何对象的定义与性质 2.2.2 直线与平面的关系2.2.3 空间中的角与面的性质2.2.4 空间几何的应用2.3 立体几何2.3.1 立体图形的分类与性质2.3.2 体积与表面积的计算2.3.3 空间向量与几何问题的解决2.3.4 立体几何的应用三、概率与统计3.1 随机事件与概率3.1.1 随机事件的定义与性质3.1.2 概率的基本性质与计算方法3.1.3 互斥事件与相关事件的概率计算 3.1.4 概率模型与概率分布的应用3.2 统计与统计图3.2.1 数据的收集与处理3.2.2 统计图的绘制与分析3.2.3 随机变量与概率分布的描述3.2.4 统计与概率的应用于问题的解决3.3 抽样与推断3.3.1 抽样与抽样误差的定义与性质3.3.2 点估计与区间估计的方法与应用3.3.3 假设检验与均值差的检验3.3.4 统计推断在现实问题中的应用结语:通过对高考数学理科知识点的总结与归纳,我们可以清晰地掌握重点知识,提高解题能力。

数学高考全国卷知识点考察

数学高考全国卷知识点考察

数学高考全国卷知识点考察数学是一门理科学科,是人们在解决实际问题时所使用的一种重要工具。

在高考中,数学是必考科目之一,对于考生来说,熟练掌握数学知识点,具备解决问题的能力至关重要。

下面将从不同的数学知识点来论述数学高考全国卷的考察情况。

1. 函数与方程函数与方程是数学中重要的基础概念,也是高考数学试卷中常见的考察内容。

在函数与方程的知识点中,常考察的内容包括函数的性质、图像的绘制与性质分析、方程的解法等。

考生需要熟悉各种函数的图像与性质,掌握二次方程、一次方程等的解法,能够准确应用到实际问题中。

2. 三角函数三角函数是数学中的重要部分,高考试卷中也常考察与三角函数相关的知识点。

考生需要了解三角函数的定义、性质、图像等,掌握三角函数的基本关系式以及解三角方程的方法。

同时,还要能将三角函数应用到几何问题中,如求解三角形的边长、角度等。

3. 数列与数学归纳法数列与数学归纳法是数学中的重要概念,也是高考数学试卷中容易考察的内容。

考生需要了解数列的概念与性质,能够求解数列的通项公式、前n项和以及判断数列的一致性和递增性等。

此外,还需掌握数学归纳法的基本原理与应用方法,能够利用数学归纳法证明数学命题。

4. 三角比与导数三角比与导数是数学高级知识点,也是高考数学试卷中较难考察的内容。

在三角比知识点中,考生需要熟悉各种三角比的定义、性质与应用,能够解三角形的各种问题。

而在导数的知识点中,考生需要掌握导数的定义、性质与计算方法,能够求解函数的最值、切线与凹凸区间等问题。

5. 空间几何与立体几何空间几何与立体几何是数学中与几何图形有关的重要内容,也是高考数学试卷中常考察的知识点。

考生需要熟悉空间几何图形的性质、判断图形的位置关系以及解决空间几何问题的方法。

同时,在立体几何的知识点中,考生需要了解立体图形的性质、体积、表面积等,掌握计算各种立体图形的方法。

综上所述,数学高考全国卷主要考察的知识点包括函数与方程、三角函数、数列与数学归纳法、三角比与导数、空间几何与立体几何等。

高1数学知识点总结(精选6篇)

高1数学知识点总结(精选6篇)

高1数学知识点总结第1篇1.函数知识:基本初等函数性质的考查,以导数知识为背景的函数问题;以向量知识为背景的函数问题;从具体函数的考查转向抽象函数考查;从重结果考查转向重过程考查;从熟悉情景的考查转向新颖情景的考查。

2.向量知识:向量具有数与形的双重性,高考中向量试题的命题趋向:考查平面向量的基本概念和运算律;考查平面向量的坐标运算;考查平面向量与几何、三角、代数等学科的综合性问题。

3.不等式知识:突出工具性,淡化独立性,突出解,是不等式命题的新取向。

高考中不等式试题的命题趋向:基本的线性规划问题为必考内容,不等式的性质与指数函数、对数函数、三角函数、二交函数等结合起来,考查不等式的性质、最值、函数的单调性等;证明不等式的试题,多以函数、数列、解析几何等知识为背景,在知识网络的交汇处命题,综合性强,能力要求高;解不等式的试题,往往与公式、根式和参数的讨论联系在一起。

考查学生的等价转化能力和分类讨论能力;以当前经济、社会生产、生活为背景与不等式综合的应用题仍将是高考的热点,主要考查学生阅读理解能力以及分析问题、解决问题的能力。

4.立体几何知识:20xx年已经变得简单,20xx年难度依然不大,基本的三视图的考查难点不大,以及球与几何体的组合体,涉及切,接的问题,线面垂直、平行位置关系的考查,已经线面角,面面角和几何体的体积计算等问题,都是重点考查内容。

5.解析几何知识:小题主要涉及圆锥曲线方程,和直线与圆的'位置关系,以及圆锥曲线几何性质的考查,极坐标下的解析几何知识,解答题主要考查直线和圆的知识,直线与圆锥曲线的知识,涉及圆锥曲线方程,直线与圆锥曲线方程联立,定点,定值,范围的考查,考试的难度降低。

6.导数知识:导数的考查还是以理科19题,文科20题的形式给出,从常见函数入手,导数工具作用(切线和单调性)的考查,综合性强,能力要求高;往往与公式、导数往往与参数的讨论联系在一起,考查转化与化归能力,但今年的难点整体偏低。

高考理科数学知识点整理

高考理科数学知识点整理

高考理科数学知识点整理高考理科数学知识点整理在学习中,说起知识点,应该没有人不熟悉吧?知识点就是一些常考的内容,或者考试经常出题的地方。

哪些才是我们真正需要的知识点呢?下面是店铺整理的高考理科数学知识点整理,仅供参考,大家一起来看看吧。

高考理科数学知识点整理 1一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/ax1.x2=c/a注:韦达定理判别式b2-4a=0注:方程有相等的两实根b2-4ac>0注:方程有两个不相等的个实根b2-4ac<0注:方程有共轭复数根立体图形及平面图形的公式圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程y2=2pxy2=-2px-x2=2pyx2=-2py直棱柱侧面积S=c.h斜棱柱侧面积S=c.h正棱锥侧面积S=1/2c.h正棱台侧面积S=1/2(c+c)h圆台侧面积S=1/2(c+c)l=pi(R+r)l球的表面积S=4pi.r2圆柱侧面积S=c.h=2pi.h圆锥侧面积S=1/2.c.l=pi.r.l弧长公式l=a.ra是圆心角的弧度数r>0扇形面积公式s=1/2.l.r 锥体体积公式V=1/3.S.H圆锥体体积公式V=1/3.pi.r2h斜棱柱体积V=SL注:其中,S是直截面面积,L是侧棱长柱体体积公式V=s.h圆柱体V=pi.r2h图形周长、面积、体积公式长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长高考理科数学知识点整理 2高考理科数学知识点之导数公式1.y=c(c为常数) y=02.y=x^n y=nx^(n-1)3.y=a^x y=a^xlnay=e^x y=e^x4.y=logax y=logae/xy=lnx y=1/x5.y=sinx y=cosx6.y=cosx y=-sinx7.y=tanx y=1/cos^2x8.y=cotx y=-1/sin^2x9.y=arcsinx y=1/√1-x^210.y=arccosx y=-1/√1-x^211.y=arctanx y=1/1+x^212.y=arccotx y=-1/1+x^2高考理科数学知识点整理 3定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

数学一考什么

数学一考什么

数学一考什么数学一,是高考中的一门科目。

它是考查考生对于数学基本知识、数学思维能力和解题能力的一门科目。

数学一是高考理科考生必考科目之一,也是多数高校理科专业录取的必要条件之一。

数学一的主要考查内容包括:代数与初等函数、几何与初等几何、数列与数学归纳法、解析几何、概率与统计、数与式的计算等等。

数学一的考试分为选择题和解答题两部分。

选择题是单项选择题,答案在A、B、C、D四个选项中选取一个正确答案;解答题则要求考生写出解题过程,并给出答案。

解答题的答案标准一般为精确答案,有些题目也要求写出完整解答过程。

在解答题中,考生要注重解题思路的清晰和解题步骤的完整性。

下面将简要介绍数学一的各个知识点及考查要点:1. 代数与初等函数:主要包括整式、分式、坐标系与直线方程等内容。

考生需要掌握各类运算规则和基本性质,能够灵活运用代数知识解决问题。

2. 几何与初等几何:主要包括平面几何和空间几何的相关知识。

考生需要掌握几何定理和几何关系,能够灵活运用几何知识解决问题。

3. 数列与数学归纳法:主要包括等差数列、等比数列等。

考生需要掌握数列的性质和常见的数列运算规律,能够应用数学归纳法解决相关问题。

4. 解析几何:主要包括平面坐标系和空间坐标系的相关知识。

考生需要掌握直线、圆、曲线和曲面的相关性质,能够运用解析几何的知识解决相关问题。

5. 概率与统计:主要包括事件的概率、随机变量及其分布等。

考生需要掌握概率和统计的基本概念和计算方法,能够灵活运用概率与统计知识解决相关问题。

6. 数与式的计算:主要包括数的运算、解方程等。

考生需要掌握数的运算规则和方程的解法,能够灵活运用数与式的计算知识解决相关问题。

在备考过程中,考生需要掌握基本的数学知识,理解各个知识点的概念和方法,在解题过程中要注重计算的准确性和解题思路的合理性。

此外,也要注重练习和积累解题经验,在真题和模拟题中找到自己的不足,并进行针对性的练习和复习。

总之,数学一是高考中的一门重要科目,考察考生的数学能力和解题能力。

高考 理数知识点

高考 理数知识点

高考理数知识点在高考中,理科数学是不可或缺的一部分。

理科数学主要包括数学分析和几何学两大领域。

为了帮助同学们更好地备考,本文将介绍高考理数的一些重要知识点。

一、数学分析1. 函数与方程- 基本函数:线性函数、二次函数、指数函数、对数函数等。

要熟练掌握它们的性质、图像和变换规律。

- 方程与不等式:一元一次方程、一元二次方程、绝对值方程、绝对值不等式等。

要了解解的存在性、唯一性,以及求解的方法。

2. 三角函数- 基本概念:正弦、余弦、正切等三角函数的定义、性质和图像。

- 三角函数的性质:如奇偶性、周期性、单调性等。

- 三角函数的基本关系式:如诱导公式、和差化积公式等。

3. 数列与数列极限- 数列的基本概念:通项、公式、求和等。

- 数列的收敛性与发散性:如严格单调有界数列的收敛性、发散性等。

- 数列极限的相关概念与性质:如夹逼定理、单调有界原理等。

4. 导数与微分- 导数的概念:极限、变化率等。

- 导数的性质:如可导的必然连续等。

- 基本函数的导数:如常数函数、幂函数、指数函数、对数函数等的导数公式。

5. 不定积分与定积分- 不定积分的概念:原函数、不定积分等。

- 不定积分的方法:如换元积分法、分部积分法、有理函数的积分等。

- 定积分的概念与性质:如黎曼积分的定义、性质等。

二、几何学1. 平面几何- 各种图形的性质:如三角形、四边形、圆等的特点。

- 平面向量的基本概念:向量的模、方向、平行、垂直等。

- 向量的运算:如向量的加减法、数量积、向量积等。

2. 空间几何- 空间中点、直线、平面的位置关系:如点到直线的距离、点到平面的距离等。

- 空间直线与平面的交角:如直线与直线的夹角、直线与平面的夹角等。

- 空间中的立体图形:如棱柱、棱锥、球等的特点、体积和表面积公式。

3. 三角函数在几何中的应用- 直角三角形的性质:如勾股定理、正弦定理、余弦定理等。

- 一般三角形的解析法:如海伦公式等。

- 三角函数在解决几何问题中的应用。

理科高考数学必考知识点归纳

理科高考数学必考知识点归纳

理科高考数学必考知识点归纳理科高考数学是高中数学教育的重要组成部分,其知识点广泛而深入,涵盖了代数、几何、概率统计、函数等多个领域。

以下是理科高考数学必考知识点的归纳:1. 代数基础:包括实数、复数、指数和对数运算,以及代数式的简化和因式分解。

2. 方程与不等式:一元一次方程、一元二次方程、分式方程、不等式的基本解法,以及高次方程和线性方程组的解法。

3. 函数:函数的概念、性质(单调性、奇偶性、周期性)、函数的图像,包括一次函数、二次函数、幂函数、指数函数和对数函数。

4. 导数与微分:导数的定义、几何意义、基本导数公式,以及微分的概念和应用。

5. 积分:不定积分和定积分的概念、性质、计算方法,以及积分在几何和物理中的应用。

6. 三角函数:三角函数的定义、图像、性质,包括正弦、余弦、正切等函数,以及和差化积、积化和差等恒等变换。

7. 解析几何:包括直线、圆、椭圆、双曲线、抛物线等曲线的方程,以及它们的性质和位置关系。

8. 立体几何:空间直线与平面的位置关系,多面体和旋转体的体积和表面积的计算。

9. 概率与统计:随机事件的概率、条件概率、独立事件,以及统计数据的收集、描述和分析。

10. 数列:数列的概念、通项公式、求和公式,包括等差数列和等比数列。

11. 组合与排列:组合数和排列数的计算,以及二项式定理的应用。

12. 不等式证明:基本不等式的应用,如柯西不等式、詹森不等式等,以及不等式的证明方法。

13. 极限:极限的概念、性质和计算方法,以及无穷小量的比较。

14. 级数:级数的概念、收敛性判断,包括等差级数和等比级数。

15. 矩阵与行列式:矩阵的运算、行列式的性质和计算,以及线性方程组的矩阵表示。

16. 函数的极值与最值问题:利用导数研究函数的极值,以及实际问题中的最值问题求解。

17. 复数:复数的运算、性质、复平面上的表示,以及复数在几何和代数中的应用。

理科高考数学的复习是一个系统性的过程,需要对每个知识点进行深入理解和大量练习。

天津高考理科数学知识点

天津高考理科数学知识点

天津高考理科数学知识点天津高考是每年六月份进行的一项重要考试,对于理科学生来说,数学是其中最重要的一门科目。

本文将对天津高考理科数学知识点进行介绍,旨在帮助考生复习和巩固相关知识。

1. 数列与数列的表示方法数列是按照一定规律排列的一组数的集合。

常见的数列有等差数列、等比数列和斐波那契数列等。

在高考数学中,经常涉及确定数列的通项公式、求和公式、解等差数列或等比数列的问题。

2. 函数与方程在函数与方程中,常见的关系有函数的概念、函数的性质、函数的图像与性状、函数的特殊性质、方程与不等式、解方程等。

考生需要熟悉各种函数的性质和图像,并能熟练解决函数与方程相关的问题。

3. 三角函数与解三角形三角函数是一种特殊的周期函数,常用来描述角度与线段之间的关系。

在解三角形的过程中,需要掌握正弦定理、余弦定理以及解无理三角函数方程等内容。

4. 平面向量与立体几何向量是具有大小和方向的量,常用来描述物理量或几何实体的位移。

在解决空间几何问题时,经常涉及平面的方程、几何体的体积与表面积等知识。

5. 概率与数理统计概率与数理统计是数学中的一个重要分支,用于描述随机事件的发生概率以及对样本数据进行统计分析。

在高考中,常见的问题有计算概率、解析随机事件等。

6. 导数与微积分微积分是数学的一门重要分支,包括了导数和积分等内容。

导数用于描述函数在某点的变化率,常用于求函数的最值、判断函数的单调性和凹凸性等。

7. 模型与实际问题在高考数学中,经常涉及到数学模型与实际问题的应用。

通过构建数学模型,可以用数学方法解决实际问题,如最优化问题、函数拟合问题等。

总结天津高考理科数学知识点的内容较为全面,希望考生在备考过程中能够重点掌握以上知识点,并且能够熟练运用,扎实基础。

除了了解知识点,考生还需要多做习题和模拟试卷,提高解题速度和准确性。

同时,通过分析历年高考数学试卷中的命题特点和难点,可以帮助考生更好地应对考试。

最后,祝愿天津高考理科学生能够在考试中取得优异成绩,实现自己的理想。

高考理科数学重要知识点归纳

高考理科数学重要知识点归纳

高考理科数学重要知识点归纳1.数与代数-基本概念和运算:自然数、整数、有理数、实数等的概念和四则运算规则;-分数与比例:分数的概念、四则运算、混合运算、比例与比例线段的性质等;-幂与根:整数幂、零次幂、负整数幂的运算规则,根的概念和性质;-排列与组合:排列的定义和计算公式,组合的定义和计算公式,二项式定理等。

2.几何与图形-直线与角:垂线、平行线、直线与平面的位置关系,角的概念和性质,同位角、对顶角、平行线与角的性质等;-三角形与全等:三角形的定义和性质,全等三角形的判定和性质,相似三角形的判定和性质等;-圆与圆周角:圆的定义和性质,圆周角的概念和性质,割线与切线、切线与半径的性质等;-平面向量与坐标系:平面向量的定义和运算、坐标系的建立和性质,点和向量的关系等。

3.函数与方程-函数与极限:定义域、值域、图像、奇偶性等函数的性质,函数的极限概念和性质,无穷小量和无穷大量的概念和性质等;-三角函数:正弦函数、余弦函数、正切函数的定义和性质,同角三角函数的关系与变化规律等;-平面解析几何与圆锥曲线:平面直角坐标系下的点与直线、圆的方程,椭圆、双曲线、抛物线的方程和性质;-数列与数学归纳法:数列的概念和基本性质,等差数列、等比数列的通项和求和公式,数学归纳法的原理和运用等。

4.概率与统计-概率与事件:基本概念和运算,用频率确定概率的理论与应用,事件间的关系和计算;-统计描述与统计推断:平均数、中位数、众数等统计指标的计算和应用,总体和样本的概念与差异,抽样调查和推断的方法和步骤等;-随机变量与分布:随机变量的定义和性质,离散型和连续型随机变量的分布函数和概率函数,期望值、方差和标准差的计算等。

这些知识点是高考理科数学的基础,掌握了这些知识点,可以为深入学习高等数学打下坚实的基础,并在高考中取得好成绩。

当然,除了这些重要知识点,还有许多其他的知识点需要掌握,并且需要练习大量的题目来提高解题能力。

高考常考数学知识点理科

高考常考数学知识点理科

高考常考数学知识点理科高考是每个学生所面临的一场考试,而其中数学是让许多理科生感到头疼的科目之一。

为了帮助同学们更好地应对高考数学考试,本文将针对高考常考的数学知识点进行详细论述和解析,不仅涵盖基础知识,还包括一些难度稍微较高的题型。

一、函数与方程在高考数学中,函数与方程是数学的基础,也是常考的知识点之一。

函数的概念被广泛运用于各个领域,从图像的绘制到实际问题的解决。

1. 一次函数一次函数是最简单的一种函数形式,其表达式为y=ax+b,其中a 和b分别为常数,a不为0。

在考试中,经常会涉及到根据给定的一次函数方程绘制图像、求解方程或者求函数的性质等问题。

2. 二次函数二次函数是高考中的重点和难点,其表达式为y=ax²+bx+c,其中a不为0。

二次函数的图像是一个抛物线,通过抛物线的开口方向和顶点位置,我们可以判断出二次函数的性态和其他特征。

3. 反函数反函数是一个十分重要的概念,它与原函数的输入输出相反。

在考试中,我们可以通过求解反函数来确定函数的对称轴和奇偶性。

二、数列与数学归纳法数列与数学归纳法也是高考中经常出现的知识点。

数列是一系列按照规律排列的数的集合,而数学归纳法则是解决数列问题非常有效的方法。

1. 等差数列与等差中项等差数列是一个常数项之间的差值相等的数列,我们可以通过求解等差数列的公差和首项来确定数列的性质和规律。

而等差中项则是等差数列中两个给定项的中间项。

2. 等比数列与等比中项等比数列是一个常数项之间的比值相等的数列,求解等比数列的公比和首项可以确定数列的规律和性质。

而等比中项则是等比数列中两个给定项的中间项。

3. 数学归纳法数学归纳法是解决数列问题的重要方法之一,它通过验证当某个条件成立时,我们可以推断出此条件对于另一个数也成立。

在高考中,经常会考察学生对于数学归纳法的理解和应用。

三、概率与统计概率与统计是高考数学中另一个重要的知识点,它们与我们的日常生活息息相关,涉及到数据的收集、处理和分析。

高考理科各科目必考知识点

高考理科各科目必考知识点

高考理科各科目必考知识点高考是每个学生都经历的重要关卡,而理科科目又是其中难度较大的部分。

在备战高考理科科目时,掌握必考知识点是至关重要的。

本文将围绕高考理科各科目的必考知识点展开论述,帮助考生更好地备考。

一、数学1.函数与方程:对于函数与方程的熟悉是数学考试中的重中之重。

考生需掌握一元二次方程、一次函数、指数函数、对数函数等基本概念及其性质。

同时,需要理解函数与方程在实际问题中的应用。

2.几何:几何部分是数学考试中的重点内容。

考生需熟悉平面几何、立体几何的基本定义和性质,包括线段、角、圆、三角形、多边形等。

同时,要掌握相关的定理及其证明方法。

3.概率与统计:概率与统计是数学考试中的常见题型,需要考生具备一定的概率计算和统计分析的能力。

包括概率的定义、性质和计算方法,以及统计图表的制作和数据的分析。

二、物理1.力学:力学是物理考试中的重要内容,包括运动学、牛顿运动定律、力的合成与分解、动量守恒定律等。

考生需要熟悉这些基本概念及其应用,能够运用物理公式解决实际问题。

2.电磁学:电磁学是物理考试中的另一个重要方向。

考生需了解电场、磁场的基本概念,掌握库伦定律、电流、电磁感应等重要知识点,并能运用电磁学原理解答问题。

3.光学:光学是物理考试中的一门精彩的学科。

考生需要熟悉光的传播规律、光的折射、反射、光的波粒性等基本概念,掌握光学的定律和关键性实验,并能够运用光学原理解决实际问题。

三、化学1.物质的结构与性质:化学考试中,对物质的结构与性质的理解是非常重要的。

考生需掌握原子结构、元素周期表、化学键等基础知识,并能够理解物质的性质与结构之间的关系。

2.化学反应:化学反应是化学考试的核心内容。

考生需掌握化学反应的基本原理和化学方程式的书写及平衡,了解酸碱中和反应、氧化还原反应等常见反应过程。

3.溶液与化学平衡:溶液与化学平衡是化学考试中常见的题型。

考生需要熟悉溶液的浓度计算、饱和度计算等基本概念,掌握化学平衡的原理和计算方法。

高考理科数学必考知识点

高考理科数学必考知识点

高考理科数学必考知识点理科数学的考点1.【数列】【解三角形】数列与解三角形的知识点在解答题的第一题中,是非此即彼的状态,近些年的特征是大题第一题两年数列两年解三角形轮流来, 2014、2015年大题第一题考查的是数列,2016年大题第一题考查的是解三角形,故预计2017年大题第一题较大可能仍然考查解三角形。

数列主要考察数列的定义,等差数列、等比数列的性质,数列的通项公式及数列的求和。

解三角形在解答题中主要考查正、余弦定理在解三角形中的应用。

2.【立体几何】高考在解答题的第二或第三题位置考查一道立体几何题,主要考查空间线面平行、垂直的证明,求二面角等,出题比较稳定,第二问需合理建立空间直角坐标系,并正确计算。

3.【概率】高考在解答题的第二或第三题位置考查一道概率题,主要考查古典概型,几何概型,二项分布,超几何分布,回归分析与统计,近年来概率题每年考查的角度都不一样,并且题干长,是学生感到困难的一题,需正确理解题意。

4.【解析几何】高考在第20题的位置考查一道解析几何题。

主要考查圆锥曲线的定义和性质,轨迹方程问题、含参问题、定点定值问题、取值范围问题,通过点的坐标运算解决问题。

5.【导数】高考在第21题的位置考查一道导数题。

主要考查含参数的函数的切线、单调性、最值、零点、不等式证明等问题,并且含参问题一般较难,处于必做题的最后一题。

6.【选做题】今年高考几何证明选讲已经删除,选考题只剩两道,一道是坐标系与参数方程问题,另一道是不等式选讲问题。

坐标系与参数方程题主要考查曲线的极坐标方程、参数方程、直线参数方程的几何意义的应用以及范围的最值问题;不等式选讲题主要考查绝对值不等式的化简,求参数的范围及不等式的证明。

怎样提高理科数学成绩备考的方向。

很多考生觉得多做题就行了,还有一些考生进行“题海战术”,每天面对大量的习题,同时也有好像永远都做不完题,结果是成绩没有提升上去。

那么这个方向,当然也有一些考生走向了另一个极端,不喜欢做题甚至很少做题,这些考生有的觉得自己很聪明,应该能学好理科,特别是数学,结果拿到试卷后,觉得生疏,在短时间内很难把题目做好,对以上两类考生,都是属于备考方向的问题。

贵州理科数学高考知识点

贵州理科数学高考知识点

贵州理科数学高考知识点贵州省理科数学高考涉及的知识点非常广泛,包含了数学的各个领域。

在此,我将为大家总结一些重要的知识点,帮助大家更好地备考。

1. 数列与数学归纳法数列是数学中重要的概念,高考中常考的数列有等差数列、等比数列、递推数列等。

解题时需要掌握常见数列的性质和计算方法。

另外,数学归纳法也是解决数列问题的有效方法,要熟悉其基本原理以及应用。

2. 平面几何平面几何是高考数学的重点内容之一,包含了点、线、面、角等基本概念。

解题时需要掌握几何关系的性质和判定条件,常考的几何命题有平行线的判定、三角形的判定等。

此外,要熟悉平面几何的常见定理和公式,如勾股定理、相似三角形的性质等。

3. 解三角函数方程解三角函数方程需要掌握三角函数的性质和基本等式。

常见的三角函数方程有简单的一次方程、二次方程,以及高次方程,如sin(x) = a、cos²(x) + sin(x) = b等。

解题过程中要注意辅助角、换元法等技巧的运用,同时要注意解的范围的确定。

4. 导数与微分导数与微分是高等数学的重要内容,也是高考数学中的重点。

掌握导数的基本定义和性质,能够计算函数的导数,并解决导数在几何和物理问题中的应用问题。

重点掌握常见初等函数的导数公式和运算法则,如幂函数、指数函数、对数函数、三角函数等。

5. 三角函数与向量的运算三角函数与向量的运算是高考数学中的核心内容。

要熟悉三角函数的基本性质,掌握三角函数的和差化积等基本公式,了解三角函数的图像变换规律。

另外,向量的运算也是重点内容,要掌握向量的加减、数量积和向量积等运算法则,并能够解决应用问题。

6. 概率与统计概率与统计是数学高考中的重要内容,要掌握概率的基本概念、事件的概率计算和条件概率等知识。

同时,要熟悉统计学中的基本概念和常用统计量的计算方法,如均值、方差、标准差等。

以上只是贵州省理科数学高考的一部分知识点,因篇幅有限,无法详细展开每个知识点的细节。

备考时,同学们应深入理解每个知识点的原理,熟练掌握相关公式和方法,并通过大量的练习提高解题能力。

2023全国乙卷高考数学理科试题+答案(完整版)

2023全国乙卷高考数学理科试题+答案(完整版)

2023全国乙卷高考数学理科试题+答案(完整版)2023全国乙卷高考数学理科试题+答案高考数学必考知识1.终边与终边相同(的终边在终边所在射线上).终边与终边共线(的终边在终边所在直线上).终边与终边关于轴对称终边与终边关于轴对称终边与终边关于原点对称一般地:终边与终边关于角的终边对称.与的终边关系由“两等分各象限、一二三四”确定.2.弧长公式:,扇形面积公式:1弧度(1rad).3.三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正.4.三角函数线的特征是:正弦线“站在轴上(起点在轴上)”、余弦线“躺在轴上(起点是原点)”、正切线“站在点处(起点是 )”.务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’‘纵坐标’、‘余弦’‘横坐标’、‘正切’‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与值的大小变化的关系为锐角5.三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”;6.三角函数诱导公式的本质是:奇变偶不变,符号看象限.7.三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”!角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.8.三角函数性质、图像及其变换:(1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定.如的周期都是,但的周期为,y=|tanx|的周期不变,问函数y=cos|x|,,y=cos|x|是周期函数吗?(2)三角函数图像及其几何性质:(3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换.(4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法.9.三角形中的三角函数:(1)内角和定理:三角形三角和为,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形三内角都是锐角三内角的余弦值为正值任两角和都是钝角任意两边的平方和大于第三边的平方.(2)正弦定理:(R为三角形外接圆的半径).(3)余弦定理:常选用余弦定理鉴定三角形的类型.高三数学复习要点1、培养良好的学习习惯上课之前预习,是高三学生取得较好成绩的基础,争取自己在上课之前把教材弄明白,上课注意听老师的讲课思路,把握高中数学重点和难点,尽量把高中数学的难题处理在课堂上。

高中数学理科高考知识点

高中数学理科高考知识点

高中数学理科高考知识点高中数学理科是高考中的一门重要科目,它的考察内容主要包括数学的各个分支,如代数、几何、概率与统计等。

在备考过程中,熟练掌握并理解数学的基础知识点至关重要。

下面是高中数学理科高考常考的知识点。

代数1. 矩阵与行列式:包括矩阵的定义、矩阵的运算、矩阵的转置和逆矩阵;行列式的定义、行列式的性质、求行列式的值及其应用。

2. 向量:向量的定义、向量的运算、向量的数量积和向量的叉积,以及与三角形面积、平面垂直、直线夹角等的关系。

3. 一元二次方程:一元二次方程的根与系数之间的关系、方程的根的判别式、一元二次方程的应用题等。

几何1. 平面几何:点、直线、射线、线段的定义、相交关系和性质;角的定义、角的运算、平行线与角的性质;三角形的定义、分类、相似关系、全等关系和性质等。

2. 立体几何:平行四边形的定义、性质和判定;四边形的定义、性质和判定;圆的定义、性质和判定;球的定义、性质和判定;空间几何图形拆解等。

3. 三角函数:正弦、余弦、正切等三角函数的定义、性质、运算、图像和应用;同角三角函数的互相关系、倍角和半角公式等。

概率与统计1. 概率:概率的定义、基本概率公式、条件概率、事件的独立性、概率的加法定理和乘法定理;排列与组合的基本原理和应用,二项式定理和二项分布等。

2. 统计:统计中的基本概念、数据的收集整理和展示、统计图表的绘制与解读;随机事件的频率、概率、期望值等统计量的计算和应用;正态分布和正态分布的应用等。

以上仅是高中数学理科高考知识点中的部分内容,备考时需要结合教材和题目的特点进行针对性的复习和训练。

通过系统学习和不断练习,可以提高数学解题的能力和应试水平,为高考取得优异成绩奠定基础。

同时,高中数学的学习也是培养学生逻辑思维和分析问题的能力的重要途径,将对学生未来的学习和职业发展有着积极的影响。

高中数学理科的知识点是学生成功应对高考的必备工具,在认真学习和备考的过程中,学生也将获得更多的成长和进步。

江苏高考数学理科知识点

江苏高考数学理科知识点

江苏高考数学理科知识点江苏高考中的数学理科是考生们备考的一大重点。

数学理科知识点的掌握对于高分的取得至关重要。

下面我们将从数学理科的各个章节展开,深入探讨江苏高考数学理科的知识点。

一、函数与方程函数与方程是数学中的重要概念,也是高考考查频率较高的内容。

函数的概念是数学分析的基础,高考中经常涉及到函数的定义、性质和应用。

代数方程是数学与实际问题相联系的桥梁,对方程的掌握是解题的关键。

在解函数与方程的题目时,需要灵活运用数学公式和化简技巧,以快速求解方程的根。

二、数列与数学归纳法数列是高考数学中常考的重点内容,常见的数列类型有等差数列、等比数列和斐波那契数列等。

数列的求和公式以及特殊数列的性质也是考试重点。

数学归纳法是证明数学命题的一种重要方法,很多证明题目都需要灵活运用数学归纳法进行推导。

三、概率与统计概率与统计是现代科学与高考考试的重要组成部分。

在概率与统计的学习中,需要熟悉排列组合、事件概率和样本调查等基本概念。

对于概率与统计的题目解答,要善于运用计算器、表格和图表等工具,提高解题效率。

四、解析几何解析几何是高考数学中的难点,包括平面解析几何和空间解析几何。

平面解析几何涉及到直线、圆和抛物线等基本图形的性质和方程的推导。

空间解析几何则涉及到空间点、直线和平面等几何形体的相互关系和方程的求解。

五、导数与微分导数与微分是高考数学中的重点和难点,它是数学分析的核心内容。

导数的定义、性质和计算都是高考中较为常见的考点。

微分的应用多涉及到曲线的切线、极值和最值的求解,需要掌握微分的基本方法和计算技巧。

六、数学思维数学思维是解答高考数学题目的关键,它要求考生能够灵活运用各种数学知识、方法和技巧进行推理和分析。

数学思维包括数学归纳法、递归思维、抽象思维和逻辑思维等。

在解答数学题目时,要注重培养数学思维,善于归纳总结和灵活运用各种数学知识和技巧。

总结起来,江苏高考数学理科的知识点主要包括函数与方程、数列与数学归纳法、概率与统计、解析几何、导数与微分和数学思维等六个方面。

高考数学必备知识点理科

高考数学必备知识点理科

高考数学必备知识点理科高考数学是理科生的必修科目之一,是考生们进入大学的重要一关。

为了顺利应对数学考试,掌握一些必备的知识点是非常重要的。

本文将为大家介绍一些高考数学必备知识点,以帮助理科生们更好地备考和应对考试。

1. 代数与函数代数与函数是数学中的基础内容,也是高考数学的重点之一。

其中包括以下几个方面的知识点:- 线性方程组与矩阵:了解线性方程组的解法和矩阵的基本运算规则;- 二次函数与一元二次方程:掌握一元二次方程的解法和二次函数的性质;- 指数与对数:了解指数和对数函数的性质,掌握其基本运算法则;- 函数的概念与性质:了解函数的定义、分类和基本性质。

2. 三角函数三角函数是高考数学中的另一个重要知识点。

在三角函数的学习中,需要掌握以下内容:- 不同角度的三角函数值:熟练掌握各种特殊角的三角函数值;- 三角函数的性质:了解正弦、余弦、正切等函数的基本性质;- 三角函数的图像与变换:掌握三角函数的图像及其在平面坐标系中的变换。

3. 解析几何解析几何在高考数学中占据重要的地位,考察的内容也比较广泛。

解析几何的重点包括以下方面:- 坐标系与直线:了解不同坐标系下的直线方程表示方法;- 圆与圆方程:掌握圆的性质、方程以及与直线的交点等知识;- 曲线的方程:了解抛物线、椭圆、双曲线等曲线的方程和性质。

4. 排列组合与概率排列组合与概率是高考数学中的难点,但也是重点内容之一。

了解以下几个方面的知识点将有助于解决相应的题目:- 排列与组合:熟练掌握排列和组合的计算方法和应用;- 概率初步:了解基本概率模型和计算公式,掌握事件的概率计算方法。

5. 数列与数列极限数列与数列极限是高考数学的重点考点,包括以下内容:- 等差数列与等比数列:了解数列的概念和性质,熟练掌握等差数列和等比数列的通项公式和求和公式;- 数列极限初步:理解数列极限的概念、性质和计算方法。

总结通过学习和掌握上述的高考数学必备知识点,理科生们可以提高数学考试的得分率,更好地应对高考数学科目。

高考理科数学知识点归纳

高考理科数学知识点归纳

高考理科数学知识点归纳各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。

下面是作者给大家整理的一些高考理科数学的知识点,期望对大家有所帮助。

高考理科数学重要知识点总结1.数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以显现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个肯定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,明显数列与数集有本质的区分.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.2.数列的分类(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.(2)依照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.3.数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是肯定这一列数的规律,这个规律通常是用式子f(n)来表示的,这两个通项公式情势上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在情势上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能肯定的,通项公式更非.如:数列1,2,3,4,…,由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要根据数列的构成规律,多视察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.再强调对于数列通项公式的知道注意以下几点:(1)数列的通项公式实际上是一个以正整数集N.或它的有限子集{1,2,…,n}为定义域的函数的表达式.(2)如果知道了数列的通项公式,那么顺次用1,2,3,…去替换公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判定某数是否是某数列中的一项,如果是的话,是第几项.(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.(4)有的数列的通项公式,情势上不一定是的,正如举例中的:(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.4.数列的图象对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:这就是说,上面可以看成是一个序号集合到另一个数的集合的映照.因此,从映照、函数的观点看,数列可以看作是一个定义域为正整集N.(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大顺次取值时,对应的一列函数值.这里的函数是一种特别的函数,它的自变量只能取正整数.由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.数列是一种特别的函数,数列是可以用图象直观地表示的.数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情形,但不精确.高考理科数学备考知识点二倍角公式二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan2α=2tanα/[1-tan^2(α)]半角公式半角的正弦、余弦和正切公式(降幂扩角公式)sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)万能公式sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]万能公式推导附推导:sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α)).......,(由于cos^2(α)+sin^2(α)=1)再把.分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))然后用α/2代替α即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考理科数学必考知识内容(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高考理科数学必考知识内容高考理科数学必考知识内容大全高考数学作为高考考试中的一个大科目,也是难倒众人的一门科目,高考中数学必考哪些内容呢?下面是本店铺为大家整理的关于高考理科数学必考知识内容,欢迎大家来阅读。

高考理科数学的考点1.【数列】&【解三角形】数列与解三角形的知识点在解答题的第一题中,是非此即彼的状态,近些年的特征是大题第一题两年数列两年解三角形轮流来, 20__、220__大题第一题考查的是数列,220__大题第一题考查的是解三角形,故预计220__大题第一题较大可能仍然考查解三角形。

数列主要考察数列的定义,等差数列、等比数列的性质,数列的通项公式及数列的求和。

解三角形在解答题中主要考查正、余弦定理在解三角形中的应用。

2.【立体几何】高考在解答题的第二或第三题位置考查一道立体几何题,主要考查空间线面平行、垂直的证明,求二面角等,出题比较稳定,第二问需合理建立空间直角坐标系,并正确计算。

3.【概率】高考在解答题的第二或第三题位置考查一道概率题,主要考查古典概型,几何概型,二项分布,超几何分布,回归分析与统计,近年来概率题每年考查的角度都不一样,并且题干长,是学生感到困难的一题,需正确理解题意。

4.【解析几何】高考在第20题的位置考查一道解析几何题。

主要考查圆锥曲线的定义和性质,轨迹方程问题、含参问题、定点定值问题、取值范围问题,通过点的坐标运算解决问题。

5.【导数】高考在第21题的位置考查一道导数题。

主要考查含参数的函数的切线、单调性、最值、零点、不等式证明等问题,并且含参问题一般较难,处于必做题的最后一题。

6.【选做题】今年高考几何证明选讲已经删除,选考题只剩两道,一道是坐标系与参数方程问题,另一道是不等式选讲问题。

坐标系与参数方程题主要考查曲线的极坐标方程、参数方程、直线参数方程的几何意义的应用以及范围的最值问题;不等式选讲题主要考查绝对值不等式的化简,求参数的范围及不等式的证明。

高考数学必考知识点归纳圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程y2=2pxy2=-2p__2=2pyx2=-2py直棱柱侧面积S=c__h斜棱柱侧面积S=c'__h正棱锥侧面积S=1/2c__h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi__r2某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4 1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c__h 斜棱柱侧面积 S=c'__h正棱锥侧面积 S=1/2c__h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi__r2 圆柱侧面积S=c__h=2pi__h 圆锥侧面积S=1/2__c__l=pi__r__l弧长公式 l=a__r a是圆心角的弧度数r >0 扇形面积公式s=1/2__l__r锥体体积公式 V=1/3__S__H 圆锥体体积公式 V=1/3__pi__r2h 斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式 V=s__h 圆柱体 V=pi__r2h高考数学必考公式知识点1.适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A 为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2.函数的周期性问题(记忆三个):(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限 b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3.关于对称问题(无数人搞不懂的问题)总结如下:(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4.函数奇偶性:(1)对于属于R上的奇函数有f(0)=0(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5.数列爆强定律:1.等差数列中:S奇=na中,例如S 13 =13a 72.等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差3.等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4.等比数列爆强公式:S(n+m)=S(m)+q?mS(n)可以迅速求q6.数列的终极利器,特征根方程。

(如果看不懂就算了)。

首先介绍公式:对于 a n+1 =pa n +q,a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p?(n-1)+x,这是一阶特征根方程的运用。

二阶有点麻烦,且不常用。

所以不赘述。

希望同学们牢记上述公式。

当然这种类型的数列可以构造(两边同时加数)7.函数详解补充:(1)复合函数奇偶性:内偶则偶,内奇同外(2)复合函数单调性:同增异减(3)重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。

它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。

另外,必有唯一一条过该中心的直线与两旁相切。

8.常用数列bn=n×(2?n)求和Sn=(n-1)×(2?(n+1))+2记忆方法前面减去一个1,后面加一个,再整体加一个29.适用于标准方程(焦点在x轴)爆强公式k椭=-{(b?)xo}/{(a?)yo}k双={(b?)xo}/{(a?)yo}k抛=p/yo 注:(xo,yo)均为直线过圆锥曲线所截段的中点。

10.强烈推荐一个两直线垂直或平行的必杀技已知直线L1:a1x+b1y+c1=0 直线L2:a2x+b2y+c2=0若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了防止两直线重合)注:以上两公式避免了斜率是否存在的麻烦,直接必杀!。

相关文档
最新文档