(最新整理)上海交通大学2003年数学分析考研试题
2003年全国硕士入学统考数学(一)试题及答案
![2003年全国硕士入学统考数学(一)试题及答案](https://img.taocdn.com/s3/m/4c0b49d40066f5335b8121cb.png)
自己供给的文档均由自己编写如成,如对你有帮助,请下载支持!2003 年全国硕士入学统考数学( 一) 试题及答案一、填空题(此题共6 小题,每题 4 分,满分24 分 . 把答案填在题中横线上)11( 1)lim (cos x)ln(1 x2 ) = .x 0 e【剖析】 1 型不决式,化为指数函数或利用公式lim f ( x) g( x) (1 )=e lim( f ( x) 1) g ( x) 进行计算求极限均可 .1lim1 【详解 1】lim (cos x)ln(1 x2) ln cos x=e x 0 ln( 1 x2 ) , x 0ln cosx ln cos x s i nx1而lim lim lim c o sx2 2 ,x 0 ln(1 x )x 0 x x 0 2x 211 .故原式 = e2e1 1 x21【详解 2】因为lim (cos x 1) lim 2ln(1 x 2 ) x 2 ,x 0 x 0 211 .所以原式 = e2e( 2 )曲面z x 2 y2与平面 2x 4 y z 0平行的切平面的方程是2x 4 y z 5 .【剖析】待求平面的法矢量为n { 2,4, 1} ,所以只要确立切点坐标即可求出平面方程 , 而切点坐标可依据曲面z x 2 y2切平面的法矢量与n { 2,4, 1} 平行确立.【详解】令 F (x, y, z) z x2 y2,则F x 2x , F y 2 y , F z 1 .设切点坐标为 ( x0 , y0 , z0 ) ,则切平面的法矢量为{ 2x0 , 2 y0 ,1} ,其与已知平面2x 4 y z 0 平行,所以有2x 02y 0 1,241可解得x 0 1, y 0 2,相应地有z 0x 02 y 02 5.故所求的切平面方程为2( x 1) 4( y2) ( z 5) 0 ,即 2x 4y z 5 .( 3) 设 x 2a n cosnx(x) ,则 a 2 =1.n 0【剖析】将 f (x) x 2 (x) 睁开为余弦级数 x 2a n cosnx(x) ,n 0其系数计算公式为 a n2f ( x) cosnxdx .【详解】 依据余弦级数的定义,有a 22x 2 cos2xdx1x 2 d sin 2x=1[ x 2sin 2x 0 sin 2x 2xdx]= 1xd cos2x1[ xcos2xcos2xdx]=1.(4)从 R 2的基11111,21 到 基1, 2的过渡矩阵为122 3 .12【剖析】 n 维向量空间中,从基1, 2,, n 到基1,2 , , n 的过渡矩阵 P 知足[ 1,2,, n]=[1, 2,,n]P , 因 此 过 渡 矩 阵P 为 :P=[1, 2,,n]1[1, 2,, n ] .R 2的基1 , 2111【详解】依据定义,从11 到基1,2的过渡矩12阵为1P=[1, 2]1[1, 2]1 1 1 1 .0 1 1 21 1 1 123 =1 12 1 .0 2 ( 5)设二维随机变量(X,Y)的概率密度为f (x, y) 6x, 0 x y 1, 0, 其余,则P{X Y 1} 1. 4【分析】已知二维随机变量 (X,Y) 的概率密度 f(x,y) ,求知足必定条件的概率P{ g( X , Y) z0 } ,一般可转变为二重积分P{ g ( X ,Y) z0 } = f ( x, y) dxdy 进行计算.g( x, y) z0【详解】由题设,有1xP{ X Y 1} f ( x, y)dxdy 12 dx 6xdyx y 10x112x 2 ) dx 1= 2 (6x .0 4y1DO 11 x 2( 6)已知一批部件的长度X ( 单位: cm) 听从正态散布N ( ,1) ,从中随机地抽取16个部件,获得长度的均匀值为40 (cm) ,则的置信度为 0.95 的置信区间是 (39.51,40.49) .(注:标准正态散布函数值(1.96) 0.975, (1.645) 0.95.)【剖析】已知方差 2 1,对正态整体的数学希望进行预计,可依据X ~ N(0,1) ,由 P{ X u } 1 确立临界值 u ,从而确立相应的置信区间 .1n 1 2 2n【详解】由题设, 1 0.95,可见0.05. 于是查标准正态散布表知 u1.96.2此题 n=16, x 40 ,所以,依据 P{ X1.96} 0.95,有1nP{ 401.96} 0.95,即P{ 39.51,40.49} 0.95 ,故的置信度为0.95 的置116信区间是 (39.51,40.49) .二、选择题(此题共 6 小题,每题 4 分,满分 24 分 . 每题给出的四个选项中,只有一项切合题目要求,把所选项前的字母填在题后的括号内)()设函数f(x) 在 ( , ) 内连续,其导函数的图形如下图,则f(x)有1(A) 一个极小值点和两个极大值点 .(B) 两个极小值点和一个极大值点 .(C) 两个极小值点和两个极大值点 .(D) 三个极小值点和一个极大值点 . [ C ]yO x【剖析】答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共 4 个,是极大值点仍是极小值可进一步由取极值的第一或第二充足条件判断.【详解】依据导函数的图形可知,一阶导数为零的点有 3 个,而 x=0 则是导数不存在的点 . 三个一阶导数为零的点左右双侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0 左边一阶导数为正,右边一阶导数为负,可见x=0 为极大值点,故f(x) 共有两个极小值点和两个极大值点,应选(C).( 2)设{ a n}, { b n}, { c n}均为非负数列,且lim a n 0 , lim b n 1 , lim c n ,则必有n n n(A) a n b n对随意n建立. (B) b n c n对随意n建立.(C) 极限 lim a n c n不存在. (D) 极限lim b n c n不存在 . [ D ]n n【剖析】此题考察极限观点,极限值与数列前方有限项的大小没关,可立刻清除(A),(B) ;而极限lim a n c n是0 型不决式,可能存在也可能不存在,举反例说明即可;极n限 lim b n c n属 1 型,必为无量大批,即不存在 .na n 2, b n 1 ,c n1 ),则可立刻清除【详解】用举反例法,取nn(n 1,2, 2(A),(B),(C) ,所以正确选项为 (D).( 3)已知函数 f(x,y) 在点 (0,0)的某个邻域内连续,且f ( x, y) xy1 ,则lim2y 2 ) 2x 0, y 0(x(A) 点 (0,0)不是 f(x,y) 的极值点 . (B) 点 (0,0)是 f(x,y) 的极大值点 .(C)点 (0,0)是 f(x,y) 的极小值点 .(D) 依据所给条件没法判断点(0,0)能否为 f(x,y) 的极值点 .[ A]【剖析】 由题设,简单推知 f(0,0)=0 ,所以点 (0,0) 能否为 f(x,y) 的极值, 重点看在点 (0,0) 的充足小的邻域内 f(x,y) 是恒大于零、恒小于零仍是变号 .【详解】 由lim f ( x, y) xy1知,分子的极限必为零,从而有f(0,0)=0, 且y 2 ) 2x 0, y 0( x 2f ( x, y) xy( x 2 y 2 ) 2 ( x , y 充足小时),于是f (x, y)f (0,0) xy ( x 2y 2 )2 .可见当 y=x 且 x 充足小时, f ( x, y)f (0,0)x 24x 40 ;而当 y= -x 且 x 充足小时,f ( x, y) f (0,0)x 2 4x 4 0 . 故点 (0,0)不是 f(x,y) 的极值点,应选 (A).(4)设向量组 I : 1, 2,,r 可由向量组 II :1,2,, s 线性表示,则(A) 当 r s 时,向量组 II 必线性有关 . (B) 当 r s 时,向量组 II 必线性有关 . (C) 当 rs 时,向量组 I 必线性有关 . (D) 当 rs 时,向量组 I 必线性有关 .[ D ]【剖析】此题为一般教材上均有的比较两组向量个数的定理:若向量组 I : 1 , 2, ,r可由向量组 II : 1, 2,, s 线性表示,则当 rs 时,向量组 I 必线性有关 . 或其逆否命题:若向量组 I : 1,2,,r可由向量组 II : 1 ,2,, s 线性表示,且向量组 I 线性无关,则必有 rs . 可见正确选项为 (D).此题也可经过举反例用清除法找到答案.1 ,2 01,【详解】用清除法:如 1,1 01,则112 ,但 2(A) ;,111,线性没关,清除 1 0 2,10 ,则2 可由 1 线性表示,但 1 线性没关,清除 (B) ;1 ,11, 10 1,2 ,1 可由2 线性表示,但1 线性无1关,清除 (C). 故正确选项为 (D).( 5)设有齐次线性方程组 Ax=0 和 Bx=0, 此中 A,B 均为 m n 矩阵,现有 4 个命题:①若 Ax=0 的解均是 Bx=0 的解,则秩 (A) 秩(B);②若秩 (A) 秩 (B) ,则 Ax=0 的解均是 Bx=0 的解;③若 Ax=0 与 Bx=0 同解,则秩 (A)= 秩(B) ;④若秩 (A)= 秩 (B) ,则 Ax=0 与 Bx=0 同解 .以上命题中正确的选项是(A) ①② . (B) ①③ .(C) ②④ . (D) ③④ . [ B ]【剖析】此题也可找反例用清除法进行剖析,但①②两个命题的反例比较复杂一些,重点是抓住③与④,快速清除不正确的选项 .【详解】若 Ax=0 与 Bx=0 同解,则 n-秩 (A)=n - 秩 (B), 即秩 (A)= 秩 (B) ,命题③建立,1 0 可清除 (A),(C) ;但反过来,若秩 (A)= 秩(B) ,则不可以推出 Ax=0 与 Bx=0 同解,如A ,0 00 0与 Bx=0 不一样解,可见命题④不建立,清除(D),B ,则秩 (A)= 秩 (B)=1 ,但 Ax=00 1故正确选项为 (B).( 6)设随机变量X ~ t (n)( n 1),Y1,则X 2(A) Y ~ 2 (n) . (B) Y ~ 2 (n 1) .(C) Y ~ F (n,1) . (D) Y ~ F (1,n) . [ C ]【剖析】先由 t 散布的定义知X U ,此中 U ~ N (0,1),V ~ 2 ( n) ,再将其代入Vn1Y2,而后利用 F 散布的定义即可 .X【详解】由题设知, X U ,此中 U ~ N (0,1),V ~ 2 (n) ,于是Vn1 V V1Y = n n ,这里U2 ~ 2 (1) ,依据F散布的定义知 Y ~ F (n,1). 故X 2 U 2 U 2 X 21应选 (C).三、(此题满分10 分)过坐标原点作曲线y=lnx 的切线,该切线与曲线y=lnx 及 x 轴围成平面图形 D.(1) 求 D 的面积 A;(2) 求 D 绕直线 x=e 旋转一周所得旋转体的体积V.【剖析】先求出切点坐标及切线方程,再用定积分求面积A; 旋转体体积可用一大立体(圆锥)体积减去一小立体体积进行计算,为了帮助理解,可画一草图.【详解】 (1)设切点的横坐标为x,则曲线y=lnx在点 ( x ,ln x ) 处的切线方程是y ln x 01(x x 0 ).x 0由该切线过原点知 ln x 0 10 ,从而 x 0 e. 所以该切线的方程为1 yx.e平面图形 D 的面积A1 ey) dy1 e 1. (ey2( 2) 切线 y1x 与 x 轴及直线 x=e 所围成的三角形绕直线 x=e 旋转所得的圆锥体积e为V 11 e2 .3曲线 y=lnx 与 x 轴及直线 x=e 所围成的图形绕直线 x=e 旋转所得的旋转体体积为V 21(e e y ) 2 dy ,所以所求旋转体的体积为1 e2 1 e y ) 2dy(5e 2V V 1 V 2(e 12e 3).36y 1D O1ex四 、(此题满分 12 分)将函数 f ( x)arctan1 2 x睁开成 x 的幂级数,并求级数( 1) n 的和 .1 2xn 0 2n 1【剖析】 幂级数睁开有直接法与间接法,一般考察间接法睁开,即经过适合的恒等变形、求导或积分等, 转变为可利用已知幂级数睁开的情况。
2003考研数一真题及解析
![2003考研数一真题及解析](https://img.taocdn.com/s3/m/4068e24f700abb68a882fb1b.png)
2003考研数一真题及解析2003年全国硕士研究生入学统一考试数学一试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(1) 21ln(1)lim(cos )x x x +→=(2) 曲面22y x z +=与平面042=-+z y x 平行的切平面的方程是.(3) 设)(cos 02ππ≤≤-=∑∞=x nx a x n n ,则2a = .(4) 从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为 .(5) 设二维随机变量(,)X Y 的概率密度为,y x x y x f 其他,10,0,6),(≤≤≤⎩⎨⎧=则=≤+}1{Y X P.(6) 已知一批零件的长度X (单位:cm cm)服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40 (cm ),则μ的置信度为0.95的置信区间是.(注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ二、选择题:本题共6小题,每小题4分,共24分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1) 设函数()f x 在),(+∞-∞则()f x 有( )(A)一个极小值点和两个极大值点. (B)两个极小值点和一个极大值点. (C)两个极小值点和两个极大值点. (D)三个极小值点和一个极大值点.(2) 设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有( )(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立. (C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在.(3) 已知函数(,)f x y 在点(0,0)的某个邻域内连续,且1)(),(lim 2220,0=+-→→y x xyy x f y x ,则( )(A) 点(0,0)不是(,)f x y 的极值点. (B) 点(0,0)是(,)f x y 的极大值点. (C) 点(0,0)是(,)f x y 的极小值点.(D) 根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点.(4) 设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则( )(A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关.x(5) 设有齐次线性方程组0Ax =和0Bx =, 其中,A B 均为n m ⨯矩阵,现有4个命题:① 若0Ax =的解均是0Bx =的解,则秩(A )≥秩(B ); ② 若秩(A )≥秩(B ),则0Ax =的解均是0Bx =的解; ③ 若0Ax =与0Bx =同解,则秩(A )=秩(B ); ④ 若秩(A )=秩(B ), 则0Ax =与0Bx =同解. 以上命题中正确的是( )(A) ① ②. (B) ① ③.(C) ② ④. (D) ③ ④.(6) 设随机变量21),1)((~XY n n t X =>,则( )(A) )(~2n Y χ. (B) )1(~2-n Y χ.(C) )1,(~n F Y . (D) ),1(~n F Y .三 、(本题满分10分)过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D .(1)求D 的面积A ;(2)求D 绕直线x e =旋转一周所得旋转体的体积V .四 、(本题满分12分)将函数x x x f 2121arctan )(+-=展开成x 的幂级数,并求级数∑∞=+-012)1(n nn 的和.五 、(本题满分10分)已知平面区域}0,0),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界. 试证:(1) dx ye dy xe dx ye dy xe x Ly x Ly sin sin sin sin -=-⎰⎰--;(2) .22sin sin π≥--⎰dx ye dy xe x Ly六 、(本题满分10分)某建筑工程打地基时,需用汽锤将桩打进土层. 汽锤每次击打,都将克服土层对桩的阻力而作功. 设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为,0k k >).汽锤第一次击打将桩打进地下a m . 根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数(01)r r <<. 问(1) 汽锤击打桩3次后,可将桩打进地下多深? (2) 若击打次数不限,汽锤至多能将桩打进地下多深? (注:m 表示长度单位米.)七 、(本题满分12分)设函数()y y x =)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是()y y x =的反函数.(1) 试将()x x y =所满足的微分方程0))(sin (322=++dy dxx y dyx d 变换为()y y x =满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解.八 、(本题满分12分)设函数()f x 连续且恒大于零,⎰⎰⎰⎰⎰+++=Ω)(22)(222)()()(t D t d y xf dvz y x f t F σ,⎰⎰⎰-+=tt D dxx f d y x f t G 12)(22)()()(σ,其中}),,{()(2222t z y x z y x t ≤++=Ω,}.),{()(222t y x y x t D ≤+=(1) 讨论()F t 在区间),0(+∞内的单调性. (2) 证明当0t >时,).(2)(t G t F π>九 、(本题满分10分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=322232223A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100101010P ,P A P B *1-=,求2B E +的特征值与特征向量,其中*A 为A 的伴随矩阵,E 为3阶单位矩阵.十 、(本题满分8分)已知平面上三条不同直线的方程分别为1:230l ax by c ++=,2:230l bx cy a ++=,3:230l cx ay b ++=.试证: 这三条直线交于一点的充分必要条件为.0=++c b a十一 、(本题满分10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品. 从甲箱中任取3件产品放入乙箱后,求:(1) 乙箱中次品件数X 的数学期望; (2) 从乙箱中任取一件产品是次品的概率.十二 、(本题满分8分)设总体X 的概率密度为⎩⎨⎧≤>=--,,,0,2)()(2θθθx x e x f x其中0>θ是未知参数. 从总体X 中抽取简单随机样本n X X X ,,,21 ,记).,,,min(ˆ21nX X X =θ (1) 求总体X 的分布函数()F x ; (2) 求统计量θˆ的分布函数)(ˆx F θ;(3) 如果用θˆ作为θ的估计量,讨论它是否具有无偏性.2003年全国硕士研究生入学统一考试数学一试题解析一、填空题 (1)【详解】方法1:求()lim ()v x u x 型极限,一般先化为指数形式()()ln ()lim ()lim v x v x u x u x e =然后求lim ()ln ()v x u x ,再回到指数上去.)1ln(12)(cos lim x x x +→=220ln cos ln cos limln(1)ln(1)lim x xxx x x ee→++→=,而2200ln cos ln(1cos 1)limlim ln(1)ln(1)x x x x x x →→+-=++20cos 1lim x x x →-=(等价无穷小替换ln(1)x x +)220112lim 2x x x →-==-(等价无穷小替换211cos 2x x -) 故 原式=.121ee=-方法2:令21ln(1)(cos )x y x +=,有2ln cos ln ln(1)xy x =+,以下同方法1.(2)【答案】542=-+z y x【详解】由题意,只要满足所求切平面的法向量与已知平面的法向量平行即可.平面042=-+z y x 的法向量:1{2,4,1}n =-; 曲面22y x z +=在点),,(000z y x 的法向量:20000{(,),(,),1}x y n z x y z x y =-00{2,2,1}x y =-由于12//n n ,因此有00221241x y -==- 可解得,2,100==y x ,相应地有.520200=+=y x z 所求切平面过点(1,2,5),法向量为:2{2,4,1}n =-,故所求的切平面方程为0)5()2(4)1(2=---+-z y x ,即 542=-+z y x(3)【答案】1【详解】将)()(2ππ≤≤-=x x x f 展开为余弦级数20()cos ()n n f x x a nx x ππ∞===-≤≤∑,其中⎰=ππ0cos )(2nxdx x f a n .所以 x d x xdx x a 2sin 12cos 2222⎰⎰=⋅=ππππ201[sin 2sin 22]x xx xdx πππ=-⋅⎰1cos2xd x ππ=⎰001[cos2cos2]x x xdx πππ=-⎰1=(4)【答案】⎪⎪⎭⎫ ⎝⎛--2132【详解】n 维向量空间中,从基n ααα,,,21 到基n βββ,,,21 的过渡矩阵P 满足[n βββ,,,21 ]=[n ααα,,,21 ]P ,因此过渡矩阵P 为:P =[121],,,-n ααα [],,,21n βββ .根据定义,从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为P =[121],-αα[⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=-21111011],121ββ=.213221111011⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-(5)【答案】14. 【分析】本题为已知二维随机变量(,)X Y 的概率密度(,)f x y ,求满足一定条件的概率}),({0z Y X g P ≤.连续型二维随机变量(,)X Y 概率的求解方法(,)(,),y xF x y f u v dudv -∞-∞=⎰⎰此题可转化为二重积分}),({0z Y X g P ≤0(,)(,)g x y z f x y dxdy ≤=⎰⎰进行计算.【详解】图中阴影区域为积分区域. 由题设,有=≤+}1{Y X P 1(,)x y f x y dxdy +≤⎰⎰11206xxdx xdy -=⎰⎰1220(612)x x dx =-⎰14=(6)【答案】)49.40,51.39(.【分析】可以用两种方法求解:(1) 已知方差12=σ,对正态总体的数学期望μ进行估计. 因为(,1)XN μ,设有n 个样本,样本均值11ni i X X n ==∑,则1(,)XN nμ,将其标准~(0,1)X N 得:)1,0(~1N n X μ-由正态分布分为点的定义αμα-=<-1}1{2u nX P 可确定临界值2αu ,进而确定相应的置信区间22(x u x u αα-+.(2)本题是在单个正态总体方差已知条件下,求期望值μ的置信区间问题.由教材上已经求出的置信区间22(x u x u αα-+,其中2{}1,(0,1)P U u UN αα<=-,可以直接得出答案.【详解】方法1:由题设,95.01=-α,可见.05.0=α 查标准正态分布表知分位点.96.12=αu 本题16n =, 40=x .根据 1.96}0.95P <=,有 1.96}0.95P <=, 即{39.5140.49}0.95P μ<<=,故μ的置信度为0.95的置信区间是)49.40,51.39(.方法2:由题设,95.01=-α,22222{}{}2()10.95,()0.975P U u P u U u u u ααααα<=-<<=Φ-=Φ=查得.96.12=αu 将1σ=,16n =, 40=x代入22(x u x u αα-+得置信区间)49.40,51.39(二、选择题 (1)【答案】()C【分析】函数的极值点可能是驻点(点有3个(导函数与x 轴交点的个数);0x =是导数 不存在的点.对3个一阶导数为零的点左右两侧导数符号均 不一致,故必为极值点,其中第一个交点左右两侧导数符号由正变为负,是极大值点;第二个交点和第三个交点左右两侧导数符号由负变为正,是极小值点,则三个驻点中有两个极小值点,一个极大值点;对导数不存在的点:0x =.左侧一阶导数为正,右侧一阶导数为负,可见0x =为极大值点.故()f x 共有两个极小值点和两个极大值点,应选(C).(2)【答案】()D 【详解】方法1:推理法由题设lim 1n n b →∞=,假设lim n n n b c →∞存在并记为A ,则lim limn nn n n nb c c A b →∞→∞==,这与lim n n c →∞=∞矛盾,故假设不成立,lim n n n b c →∞不存在. 所以选项()D 正确. 方法2:排除法y取1n a n =,1n n b n-=,满足0lim =∞→n n a ,1lim =∞→n n b , 而11111,0,a b a b ==>,()A 不正确; 取1n n b n-=,2n c n =-,满足1lim =∞→n n b ,∞=∞→n n c lim ,而1101b c =>-=,()B 不正确;取1n a n=,2n c n =-,满足0lim =∞→n n a ,∞=∞→n n c lim ,而lim 1n n n a c →∞=,()C 不正确.(3)【答案】()A 【详解】由2220,0(,)lim1()x y f x y xy x y →→-=+222(,)(1)()f x y xy x y α⇒-=++,其中00lim 0x y α→→=. 由(,)f x y 在点(0,0)连续知,(0,0)0f =.取y x =,x 充分小,0x ≠,有222(,)(1)(2)0f x y x x α=++>; 取y x =-,x 充分小,0x ≠,有222(,)(1)(2)0f x y x x α=-++< 故点(0,0)不是(,)f x y 的极值点,应选()A . (极值的定义)(4)【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C).(5)【答案】(B)【分析】本题可找反例用排除法进行分析,但①、②两个命题的反例比较复杂一些,关键是抓住③、④,迅速排除不正确的选项.【详解】若0AX =与0BX =同解,则它们的解空间中的基础解系所含向量个数相同,即n -秩(A )=n -秩(B ), 得秩(A )=秩(B ),命题③成立,可排除(A), (C);但反过来,若秩(A )=秩(B ),则不能推出0AX =与0BX =同解,通过举一反例证明,若⎥⎦⎤⎢⎣⎡=0001A ,⎥⎦⎤⎢⎣⎡=1000B ,则秩(A )=秩(B )=1,但0AX =与0BX =不同解,可见命题④不成立,排除(D). 故正确选项为(B).(6)【答案】(C).【分析】求解这类问题关键在于了解产生2χ变量、t 变量、F 变量的典型模式.(1)2χ分布:设12,,,n X X X 相互独立且均服从标准正态分布,则随机变量21ni i Z X ==∑服从自由度为n 的2χ分布.记做2().Zn χ(2)t 分布:设1(0,1)X N ,22~()X n χ,且12,X X相互独立,则随机变量Z =n 的t 分布.记做()Z t n(3)F 分布:设2212(),(),Xn Y n χχ且,X Y 相互独立,则随机变量12X n Z Y n =服从F 分布,其第一、二自由度分别为12,.n n 记做12(,).Z F n n【详解】其实,由F 分布的性质以及t 分布和F 分布的关系得,(1) 如果统计量 ()T t n ,则有2(1,)T F n ;(2) 如果统计量12(,)FF n n ,则有211(,)F n n F.由以上两条性质可以直接得出本题的答案为(C).先由t分布的定义知()X t n =,其中)(~),1,0(~2n V N U χ,于是 21XY ==122U n V U n V =, 分母中只含有一个标准正态分布的平方,所以)1(~22χU . 由F 分布的定义知~(,1).Y F n 故应选(C).三【分析】圆锥体体积公式:213V r h π=⋅;旋转体的体积:(1) 连续曲线()y f x =,直线x a =、x b =所围成的图形绕直线0x x =旋转一周而成的立体的体积[]210()baV f x x dx π=-⎰(2) 连续曲线()x g x =,直线y c =、y d =所围成的图形绕直线0y y =旋转一周而成的立体的体积[]220()dcV g y y dy π=-⎰【详解】为了求D 的面积,首先要求出切点的坐标,设切点的横坐标为0x ,则曲线ln y x =在点)ln ,(00x x 处的切线方程是:).(1ln 000x x x x y -+=切线的斜率为01x y x '=,由于该切线过原点,将(0,0)点代入切线方程,得01ln 0=-x ,从而.0e x = 所以该切线的方程为.1x ey =(1) 利用平面图形D 的面积公式()()S y y dy βαϕψ=-⎰,得⎰-=-=1.121)(e dy ey e A y (2) 旋转体体积可用一大立体(圆锥)体积减去一小立体体积进行计算,为了帮助理解,可画一草图.x切线x ey 1=与x 轴及直线x e =所围成的三角形绕直线x e =旋转所得的圆锥体积为:122101().3V e ey dy e ππ=-=⎰曲线ln y x =与x 轴及直线x e =所围成的图形绕直线x e =旋转所得的旋转体体积为:dy e e V y 2102)(⎰-=π1220(2)y y e e e e dy π=-⋅+⎰12201(2)2yy e y e e e π=-⋅+211(2)22e e π=-+-因此所求旋转体的体积为).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππ四【分析】幂级数展开有直接法与间接法,一般考查间接法展开,即通过适当的恒等变形、求导或积分等,转化为可利用已知幂级数展开的情形.另外,由于函数展开成的幂级数,经两边求导或积分(其中一边是逐项求导或逐项积分)后,其新的展开式收敛区间不变,但在收敛区间端点处,求导(积分)后的展开式成立与否,要另行单独处理,设已有00()()n n n f x a x x ∞==-∑收敛区间为00(,)x R x R -+. 如果在0x x R =+处级数收敛,并且()f x (左)连续,则展开式成立的范围可扩大到0x x R =+处,在0x x R =-处亦有类似的结论,不过此时()f x (左)连续应改称(右)连续. 【详解】本题可先求导,()f x '()2222(12)2(12)1212121212111212x x x x x x x x x '-+---⎛⎫ ⎪++⎝⎭==--⎛⎫⎛⎫++ ⎪ ⎪++⎝⎭⎝⎭基本求导公式 22422(14)14x x --==++21214x=-+ 对于函数2114x +,可以利用我们所熟悉的函数x-11的幂级数展开: 2011(11)1nnn x x x x x x ∞==+++++=-<<-∑所以 2222001(4)(1)414114n n n n n n x x x x ∞∞===-=--<-<+∑∑ (把x 换成24x -) 有 220111()22(1)4,(,).1422n n nn f x x x x ∞='=-=--∈-+∑对上式两边求积分,得200()(0)()2(1)4xxn n n n f x f f t dt t dt ∞=⎛⎫'-==-- ⎪⎝⎭∑⎰⎰ 221000(1)4112(1)42,(,)2122n n x nnnn n n t dt x x n ∞∞+==-=--=-∈-+∑∑⎰,又因为04f π=(),所以()(0)()xf x f f t dt '=+⎰=).21,21(,124)1(24120-∈+--+∞=∑x x n n n nn π即 21012(1)411arctan 2,(,).1242122n n n n x x x x n π∞+=--=-∈-++∑ (*)在21=x 处,右边级数成为0(1)1212n n n ∞=-⋅+∑,收敛(利用莱布尼茨定理),左边函数()f x 连续,所以成立范围可扩大到21=x 处.而在12x =-处,右边级数虽然收敛,但左边函数()f x 不连续,所以成立范围只能是11(,]22x ∈-.为了求∑∞=+-012)1(n nn ,令21=x 代入(*)得∑∑∞=+∞=+--=⋅+--=012012)1(4]21124)1([24)21(n n n n n n n f ππ, 再由0)21(=f ,得.4)21(412)1(0ππ=-=+-∑∞=f n n n五【详解】(1) 方法1:用格林公式证明. 由曲线为正向封闭曲线,自然想到用格林公式L D Q P Pdx Qdy dxdy x y ⎛⎫∂∂+=- ⎪∂∂⎝⎭⎰⎰⎰. 所以 ⎰⎰⎰--+=-Dx y x Ly dxdy e e dx ye dy xe )(sin sin sin sin所以 ⎰⎰⎰+=---Dx y x Ly dxdy e e dx ye dy xe )(sin sin sin sin因为积分区域D 关于y x =对称,所以sin sin sin sin ()()x y yxy xDDeedxdye e dxdy --+=+⎰⎰⎰⎰与互换故 dx ye dy xe dx ye dy xe x Ly x Ly sin sin sin sin -=-⎰⎰--方法2:化为定积分证明左边sin sin yxLLxe dy yedx -=-⎰⎰=dx edy exy⎰⎰--0sin 0sin ππππ=⎰-+ππ0sin sin )(dx e e x x右边sin sin y x LLxe dy ye dx -=-⎰⎰=⎰⎰--ππππ00sin sin dx e dy ex y=⎰-+ππ0sin sin )(dx e e x x 所以 dx ye dy xe dx ye dy xe x Ly x Ly sin sin sin sin -=-⎰⎰--.(2) 方法1:用格林公式证明⎰⎰⎰--+=-Dxy x Ly dxdy e e dx ye dy xe )(sin sin sin sin =dxdy e dxdy e DDx y ⎰⎰⎰⎰-+sin sin =dxdy e dxdy e DDx x ⎰⎰⎰⎰-+sin sin 利用轮换对称性=sin sin ()2x x DDe e dxdy dxdy -+≥⎰⎰⎰⎰22π=(因为0,0a b a b +≥>>)方法2:由(1)知,sin sin sin sin 00()2y x x x L xe dy ye dx e e dx dx ππππ---=+≥⎰⎰⎰22π=六【详解】(1) 建立坐标系,地面作为坐标原点,向下为x 轴正向,设第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为),3,2,1( =n W n .由题设,当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,汽锤所作的功等于克服阻力所做的功.121102x k W kxdx x ==⎰,2122221()2x x k W kxdx x x ==-⎰,3222332()2x x k W kxdx x x ==-⎰,1x a =从而 212332kW W W x ++=又 12rW W =,2321W rW r W ==,从而 222231231(1)(1)22kk x W W W r r W r r a =++=++=++于是 3x =(2) 第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为),3,2,1( =n W n .则汽锤前n 次所功的和等于克服桩被打进地下n x m 所做的功.11210(1)nx n n kxdx W W W r r W -=+++=+++⎰而 2102a k W kxdx a ==⎰ 牛-莱公式所以212(1)22n n k k x r r a -=+++从而 n x = 等比数列求和公式由于01r <<,所以1lim n n x +→∞=.七【详解】 (1) 将题中的dy dx 与22d xdy 变换成以x 为自变量y 为因变量的导数dxdy 与22d ydx来表示(即通常所说的反函数变量变换),有 dy dx =y dxdy '=11,)(22dy dxdy d dy x d ==dy dx y dx d ⋅')1(=32)(1y y y y y '''-='⋅'''-. 代入原方程,得 .sin x y y =-'' ( * )(2) 方程( * )所对应的齐次方程为0=-''y y ,特征方程为210r -=,根1,21r =±,因此通解为.21x x e C e C Y -+= 由于i λω+不是特征方程得根,所以设方程( * )的特解为x B x A y sin cos *+=则 *sin cos y A x B x '=-+,*cos sin y A x B x ''=--代入方程( * ),得:cos sin cos sin 2cos 2sin sin A x B x A x B x A x B x x ----=--=解得21,0-==B A ,故x y sin 21*-=. 从而x y y sin =-''的通解为.sin 2121*x e C e C y Y y x x -+=+=-由23)0(,0)0(='=y y ,得1,121-==C C .故变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解为.sin 21x e e y x x --=-且()y x 的导函数1()cos 02x x y x e e x -'=+->,满足题设0y '≠条件.八【详解】(1) 首先对()F t 进行化简,三重积分转化为在球面坐标系中的计算;二重积分转化为在极坐标系中的计算.222222220()()()sin 2sin ()t tt f x y z dv d d f r r dr d f r r dr πππθϕϕπϕϕΩ++==⎰⎰⎰⎰⎰⎰⎰⎰()2222002()cos 4()t tf r r dr f r r dr ππϕπ=⋅-=⎰⎰ (球面坐标)222220()()()2()t tD t f x y d d f r rdr f r rdr πσθπ+==⎰⎰⎰⎰⎰ (极坐标)所以222220000222()sin 4()()()2()ttttd d f r r drf r r drF t d f r rdrf r rdrπππθϕϕπθπ==⎰⎰⎰⎰⎰⎰⎰22022()()ttf r r drf r rdr=⎰⎰为了讨论()F t 在区间),0(+∞内的单调性,对()F t 求导:222222022()()()()()2[()]tttt f t f r rdr f r r dr f t tF t f r rdr ⋅-⋅'=⎰⎰⎰22022()()()2[()]tttf t f r r t r drf r rdr ⋅-=⎰⎰由于()0,0,0f t r t r >>->,所以2()()0f r r t r ->. 再利用定积分的性质:若在区间[,]a b 上()0f x >,则()0ba f x dx >⎰. 所以()0F t '>,所以()F t 在区间),0(+∞内严格单调增加.(2) 将待证的不等式作适当的恒等变形后,构造辅助函数,再用单调性进行证明即可.因为 22200()2()2()t t tt f x dx f x dx f r dr -==⎰⎰⎰, 所以2222()0022200()2()()()()2()()ttD t ttttf x y d f r rdr f r rdrG t f x dxf r drf r drσππ-+===⎰⎰⎰⎰⎰⎰⎰要证明0t >时)(2)(t G t F π>,只需证明0t >时,0)(2)(>-t G t F π,即22200222()2()2()()()()t tttf r r drf r rdrF tG t f r rdrf r drπ-=-⎰⎰⎰⎰()()()()()222222202()()()()()tttttf r r dr f r dr f r rdr f r rdr f r dr⎡⎤⋅-⎢⎥⎣⎦=⋅⎰⎰⎰⎰⎰令 ()()()22222()()()()tttg t f r r dr f r dr f r rdr =⋅-⎰⎰⎰222222220222()()()()()2()()()()()0ttttg t f t t f r dr f t f r r dr f t t f r rdrf t f r t r dr t '=+-=->>⎰⎰⎰⎰故()g t 在),0(+∞内单调增加,又因为(0)0g =,所以当0t >时,有()0)0g t g >=(,从而0t >时,).(2)(t G t F π>九【分析】 法1:可先求出*1,A P -,进而确定P A P B *1-=及2B E +,再按通常方法确定其特征值和特征向量;法2:先求出A 的特征值与特征向量,再相应地确定*A 的特征值与特征向量,最终根据2B E +与*2A E +相似求出其特征值与特征向量.【详解】方法1:经计算可得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=522252225*A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1000011101P ,所以 P A P B *1-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----322452007,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=+5224720092E B . 令 2900(2)274(9)(3)0225E B E λλλλλλ--+=-=--=-,故2B E +的特征值为.3,9321===λλλ当921==λλ时,解0)9(=-x A E ,得线性无关的特征向量为,0111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=η ,1022⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=η 所以属于特征值921==λλ的所有特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+102011212211k k k k ηη,其中21,k k 是不全为零的任意常数.当33=λ时,解0)3(=-x A E ,得线性无关的特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1103η, 所以属于特征值33=λ的所有特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110333k k η,其中03≠k 为任意常数.方法2:设A 的特征值为λ,对应的特征向量为η,即ληη=A .由于07≠=A ,所以.0≠λ所以 ***()()A A A E A A A E A A A E ηηηη=⇒=⇒=***()AA A A A A ληηληηηηλ⇒=⇒=⇒=,于是 11*11()()()AB P P A P P P ηηηλ----==,.)2()2(11ηλη--+=+P AP E B因此,2+λA为2B E +的特征值,对应的特征向量为.1η-P由于)7()1(3222322232--=---------=-λλλλλλA E ,故A 的特征值为1231,7λλλ===当121==λλ时,对应的线性无关特征向量可取为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=0111η, .1012⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=η 当73=λ时,对应的一个特征向量为.1113⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=η 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1000011101P ,得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-01111ηP ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-11121ηP ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-11031ηP . 因此,2B E +的三个特征值分别为9,9,3.对应于特征值9的全部特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+--11101121212111k k P k P k ηη,其中21,k k 是不全为零的任意常数;对应于特征值3的全部特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-1103313k P k η,其中3k 是不为零的任意常数.十【分析】三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】方法1:“必要性”. 设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*) 有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a c c b b a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b a c a c b c b a A 323232的秩均为2,于是.0=A232()3()23232323a b ca b c b c a c a b A bc a b c a c a bc ab -++++-++=-=---123111()236()23a b c b ca abc b c a c a b c a b -=++-=-++- 16()6()c b a ba b c b c b a b a b c a c b cc a c b c--=-++--=-++----6()[()()()()]a b c c b b c a b a c =-++-----2226()()a b c bc c b bc a ac ab bc =-++--+-++- 2226()()a b c a b c ac ab bc =++++--- 2223()[()()()]a b c a b b c c a =++-+-+-,由于三条直线互不相同,所以0)()()(222≠-+-+-a c c b b a ,故.0=++c b a“充分性”. 由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A由于])([2)(22222b b a a b ac cb ba ++-=-==0]43)21[(222≠++-b b a ,故秩()2A =.于是,秩(A )=秩)(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点. 方法2:“必要性”设三直线交于一点),(00y x ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100y x 为0BX =的非零解,其中2323.23a b c B b c a c a b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦所以||0B =.而232323232323a b c a bcB bc a bc a A c a bca b-==--=--2223()[()()()]a b c a b b c c a =-++-+-+-,(解法同方法1)但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a “充分性”:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*) 将方程组(*)的三个方程相加,并由.0=++c b a 可知,方程组(*)等价于方程组⎩⎨⎧-=+-=+.32,32a cy bx c by ax (* *)因为])([2)(22222b b a a b ac cb b a ++-=-==222[()]0a b a b -+++≠,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线321,,l l l 交于一点.十一【详解】乙箱中可能的次品件数为0,1,2,3,分别求出其概率,再按定义求数学期望即可;而求从乙箱中任取一件产品是次品的概率,涉及到两次试验,是典型的用全概率公式的情形,第一次试验的各种可能结果(取到的次品数)就是要找的完备事件组.(1) 方法1:X 的可能取值为0,1,2,3, 取出k 件次品()0,1,2,3k =的取法有333k kC C -种;样本空间即从两个箱子中取出3件产品的总的取法数为36C .所以有,X 的概率分布为36333}{C C C k X P kk -==, k 0,1,2,3.= 即 X 0 1 2 3 P201 209 209 201 因此,由离散型数学期望的定义{}1()nk k k E X x P X x ==⋅=∑易得 19913()0123.202020202E X =⨯+⨯+⨯+⨯= 方法2:本题对数学期望的计算也可用分解法:设0, ,1,i i X i ⎧=⎨⎩从甲箱中取出的第件产品是合格品从甲箱中取出的第件产品是次品.则i X 的概率分布为i X 0 1P 21 21.3,2,1=i因为321X X X X ++=,所以由数学期望的线性可加性,有()()()()1233.2E X E X E X E X =++=(2) 设A 表示事件“从乙箱中任取一件产品是次品”,由于}0{=X ,}1{=X ,}2{=X ,}3{=X 构成完备事件组,因此根据全概率公式,有∑====3}{}{)(k k X A P k X P A P =33001{}{}66k k k P X k k P X k ===⋅=⋅=∑∑()1131.6624E X ==⋅=十二【分析】本题表面上是一数理统计问题,实际上考查了求分布函数、随机变量的函数求分布和概率密度以及数学期望的计算等多个知识点.将数理统计的概念与随机变量求分布与数字特征结合起来是一种典型的命题形式.求分布函数()F X 是基本题型:求统计量θˆ的分布函数)(ˆx F θ,可作为多维相互独立且同分布的随机变量函数求分布函数,直接用定义即可;是否具有无偏性,只需检验θθ=ˆE 是否成立. 【详解】(1) 由连续型随机变量分布函数的定义,有.,,0,1)()()(2θθθ≤>⎩⎨⎧-==⎰∞---x x e dt t f x F xx(2) 由题给).,,,min(ˆ21nX X X =θ,有 }),,,{min(}ˆ{)(21ˆx X X X P x P x F n≤=≤= θθ 121{min(,,,)}n P X X X x =->121{,,,}n P X x X x X x =->>>1[1()]nF x =--2(),1,.0,n x x e x θθθ-->⎧-=⎨≤⎩(3) 由连续型随机变量概率密度是分布函数在相应区间上的微分得θˆ概率密度为.,,0,2)()()(2ˆˆθθθθθ≤>⎩⎨⎧==--x x ne dxx dF x f x n 因为 2()ˆˆ()()2n x E xf x dx nxe dx θθθθ+∞+∞---∞==⎰⎰12nθθ=+≠, 所以θˆ作为θ的估计量不具有无偏性.。
2003年考研数学试题详解及评分参考
![2003年考研数学试题详解及评分参考](https://img.taocdn.com/s3/m/05b9b185daef5ef7ba0d3c64.png)
相互独立,于是 Z 2 ~ c 2 (1) ,从而
c2 n 1 = : F (n,1) . 故选 (C) . X 2 Z2 1
三、 (本题满分 10 分) 过坐标原点作曲线 y = ln x 的切线, 该切线与曲线 y = ln x 及 x 轴围成平面图形 D . (1) 求 D 的面积 A ; (2) 求 D 绕直线 x = e 旋转一周所得旋转体的体积 V . 解 (1) 设切点的横坐标为 x0 ,则曲线 y = ln x 在点 ( x0 , ln x0 ) 处的切线方程是
2
有 a2 =
p p 2 p 2 1 x cos 2 xdx = [ x 2 sin 2 x - ò 2 x sin 2 xdx] ò 0 0 p 0 p
p 1 p [ x cos 2p 0 - ò cos 2 xdx] = 1 . 0 p æ1 ö æ1 ö æ1ö æ1 ö ÷ ç ÷ ç ÷ ç (4) 从 R 2 的基 a 1 = ç , a = 到基 b = , b = 2 1 2 ç 0÷ ç - 1÷ ç1÷ ç 2÷ ÷ 的过渡矩阵为 è ø è ø è ø è ø æ2 3 ö 【答】 应填 ç ç - 1 - 2÷ ÷. è ø
s s za , X + za ) ,由于 za = z0.025 , 1 - 0.025 = 0.975 = F (1.96 ) ,数据代入, n 2 n 2 2 1 1 得置信区间为 (40 ´1.96, 40 + ´ 1.96) = ( 39.51, 40.49 ) 16 16
(X 二、选择题(本题共 6 小题,每小题 4 分,满分 24 分) (1) 设函数 f ( x) 在 (-¥,+¥) 内连续,其导函数的图形如图所示,则 f ( x) 有 (A) 一个极小值点和两个极大值点 (B) 两个极小值点和一个极大值点 (C) 两个极小值点和两个极大值点 (D) 三个极小值点和一个极大值点 【答】 应选 (C). 【解】 在 y 轴左侧,因 f ¢( x) 由正变负再变正,故 f ( x ) 由增变减再变增,从而有一个极 大值点和一个极小值点;而在 y 轴右侧,因 f ¢( x) 由负变正,故 f ( x) 由减变增,从而有 一个极小值点;又在点 x = 0 左右领域, f ¢( x) 由正变负, f ( x) 由增变减,且 f ( x) 在点
2003年全国硕士入学统考数学(一)试题及答案 .doc
![2003年全国硕士入学统考数学(一)试题及答案 .doc](https://img.taocdn.com/s3/m/1fea706810a6f524ccbf8575.png)
2003年全国硕士入学统考数学(一)试题及答案一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) )1ln(12)(cos lim x x x +→ =e1 .【分析】 ∞1型未定式,化为指数函数或利用公式)()(lim x g x f )1(∞=)()1)(lim(x g x f e -进行计算求极限均可.【详解1】 )1ln(12)(cos lim x x x +→=xx x ecos ln )1ln(1lim20+→,而 212c o s s i n lim cos ln lim )1ln(cos ln lim02020-=-==+→→→x x xx x x x x x x , 故 原式=.121ee=-【详解2】 因为 2121lim )1ln(1)1(cos lim 2202-=-=+⋅-→→xxx x x x , 所以 原式=.121ee=-(2) 曲面22y x z +=与平面042=-+z y x 平行的切平面的方程是542=-+z y x . 【分析】 待求平面的法矢量为}1,4,2{-=n,因此只需确定切点坐标即可求出平面方程, 而切点坐标可根据曲面22y x z +=切平面的法矢量与}1,4,2{-=n平行确定.【详解】 令 22),,(y x z z y x F --=,则x F x 2-=',y F y 2-=', 1='z F .设切点坐标为),,(000z y x ,则切平面的法矢量为 }1,2,2{00y x --,其与已知平面042=-+z y x 平行,因此有11422200-=-=-y x ,可解得 2,100==y x ,相应地有 .520200=+=y x z故所求的切平面方程为0)5()2(4)1(2=---+-z y x ,即 542=-+z y x .(3) 设)(cos 02ππ≤≤-=∑∞=x nx ax n n,则2a = 1 .【分析】 将)()(2ππ≤≤-=x x x f 展开为余弦级数)(cos 02ππ≤≤-=∑∞=x nx ax n n,其系数计算公式为⎰=ππ0cos )(2nxdx x f a n .【详解】 根据余弦级数的定义,有 x d x xdx x a 2sin 12cos 22022⎰⎰=⋅=ππππ=⎰⋅-πππ2]22sin 2sin [1xdx x xx=⎰⎰-=πππππ]2cos 2cos [12cos 1xdx xx x xd=1.(4)从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为⎪⎪⎭⎫⎝⎛--2132 .【分析】 n 维向量空间中,从基n ααα,,,21 到基n βββ,,,21 的过渡矩阵P 满足 [nβββ,,,21 ]=[nααα,,,21 ]P ,因此过渡矩阵P 为:P=[121],,,-n ααα [],,,21n βββ .【详解】根据定义,从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为P=[121],-αα[⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=-21111011],121ββ.=.213221111011⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-(5)设二维随机变量(X,Y)的概率密度为,y x x y x f 其他,10,0,6),(≤≤≤⎩⎨⎧=则=≤+}1{Y X P41 . 【分析】 已知二维随机变量(X,Y)的概率密度f(x,y),求满足一定条件的概率}),({0z Y X g P ≤,一般可转化为二重积分}),({0z Y X g P ≤=⎰⎰≤0),(),(z y x g dxdy y x f 进行计算.【详解】 由题设,有 =≤+}1{Y X P ⎰⎰⎰⎰≤+-=121016),(y x xxxdy dx dxdy y x f=.41)126(2102=-⎰dx x x(6)已知一批零件的长度X (单位:cm)服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则μ的置信度为0.95的置信区间是)49.40,51.39( .(注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ 【分析】 已知方差12=σ,对正态总体的数学期望μ进行估计,可根据)1,0(~1N nX μ-,由αμα-=<-1}1{2u n X P 确定临界值2αu ,进而确定相应的置信区间. 【详解】 由题设,95.01=-α,可见.05.0=α 于是查标准正态分布表知.96.12=αu 本题n=16, 40=x , 因此,根据 95.0}96.11{=<-nX P μ,有 95.0}96.116140{=<-μP ,即 95.0}49.40,51.39{=P ,故μ的置信度为0.95的置信区间是)49.40,51.39( .二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有(A) 一个极小值点和两个极大值点. (B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) [ C ]【分析共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).(2)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ D ]【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).(3)已知函数f(x,y)在点(0,0)的某个邻域内连续,且1)(),(lim2220,0=+-→→y x xyy x f y x ,则 (A) 点(0,0)不是f(x,y)的极值点. (B) 点(0,0)是f(x,y)的极大值点. (C) 点(0,0)是f(x,y)的极小值点.(D) 根据所给条件无法判断点(0,0)是否为f(x,y)的极值点. [ A ]【分析】 由题设,容易推知f(0,0)=0,因此点(0,0)是否为f(x,y)的极值,关键看在点(0,0)的充分小的邻域内f(x,y)是恒大于零、恒小于零还是变号.【详解】 由1)(),(lim2220,0=+-→→y x xyy x f y x 知,分子的极限必为零,从而有f(0,0)=0, 且222)(),(y x xy y x f +≈- y x ,(充分小时),于是.)()0,0(),(222y x xy f y x f ++≈-可见当y=x 且x 充分小时,04)0,0(),(42>+≈-x x f y x f ;而当y= -x 且x 充分小时,04)0,0(),(42<+-≈-x x f y x f . 故点(0,0)不是f(x,y)的极值点,应选(A).(4)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关. (C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ D ]【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C). 故正确选项为(D).(5)设有齐次线性方程组Ax=0和Bx=0, 其中A,B 均为n m ⨯矩阵,现有4个命题: ① 若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B); ② 若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解; ③ 若Ax=0与Bx=0同解,则秩(A)=秩(B); ④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解. 以上命题中正确的是(A) ① ②. (B) ① ③.(C) ② ④. (D) ③ ④. [ B ] 【分析】 本题也可找反例用排除法进行分析,但① ②两个命题的反例比较复杂一些,关键是抓住③ 与 ④,迅速排除不正确的选项.【详解】 若Ax=0与Bx=0同解,则n-秩(A)=n - 秩(B), 即秩(A)=秩(B),命题③成立,可排除(A),(C);但反过来,若秩(A)=秩(B), 则不能推出Ax=0与Bx=0同解,如⎥⎦⎤⎢⎣⎡=0001A ,⎥⎦⎤⎢⎣⎡=1000B ,则秩(A)=秩(B)=1,但Ax=0与Bx=0不同解,可见命题④不成立,排除(D),故正确选项为(B).(6)设随机变量21),1)((~XY n n t X =>,则 (A) )(~2n Y χ. (B) )1(~2-n Y χ.(C) )1,(~n F Y . (D) ),1(~n F Y . [ C ] 【分析】 先由t 分布的定义知nV U X =,其中)(~),1,0(~2n V N U χ,再将其代入21XY =,然后利用F 分布的定义即可. 【详解】 由题设知,nV U X =,其中)(~),1,0(~2n V N U χ,于是21X Y ==122U n V U n V =,这里)1(~22χU ,根据F 分布的定义知).1,(~12n F X Y =故应选(C).三 、(本题满分10分)过坐标原点作曲线y=lnx 的切线,该切线与曲线y=lnx 及x 轴围成平面图形D.(1) 求D 的面积A;(2) 求D 绕直线x=e 旋转一周所得旋转体的体积V.【分析】 先求出切点坐标及切线方程,再用定积分求面积A; 旋转体体积可用一大立体(圆锥)体积减去一小立体体积进行计算,为了帮助理解,可画一草图.【详解】 (1) 设切点的横坐标为0x ,则曲线y=lnx 在点)ln ,(00x x 处的切线方程是 ).(1ln 000x x x x y -+= 由该切线过原点知 01ln 0=-x ,从而.0e x = 所以该切线的方程为 .1x ey =平面图形D 的面积 ⎰-=-=1.121)(e dy ey e A y (2) 切线x ey 1=与x 轴及直线x=e 所围成的三角形绕直线x=e 旋转所得的圆锥体积为 .3121e V π=曲线y=lnx 与x 轴及直线x=e 所围成的图形绕直线x=e 旋转所得的旋转体体积为 dy ee V y212)(⎰-=π,因此所求旋转体的体积为 ).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππ四 、(本题满分12分)将函数x xx f 2121arctan )(+-=展开成x 的幂级数,并求级数∑∞=+-012)1(n n n 的和.【分析】 幂级数展开有直接法与间接法,一般考查间接法展开,即通过适当的恒等变形、求导或积分等,转化为可利用已知幂级数展开的情形。
上海交通大学《高等代数》《数学分析》历年考研真题汇总(2009-2018真题汇编)
![上海交通大学《高等代数》《数学分析》历年考研真题汇总(2009-2018真题汇编)](https://img.taocdn.com/s3/m/fe09580d10661ed9ad51f366.png)
(x − 1)n | (f (x) + 1), (x + 1)n | (f (x) − 1).
Ê! V •ê• F þ n ‘‚5˜m, A • V þ ‚5C†÷v A 3 − 2A 2 − A = −2id, Ù¥ id • V þð C†.
(1) A ´ÄŒé z, e´, žy². (2) - V1 = {(A − 2id)v | v ∈ V }, V2 = {(A 2 − id)v | v ∈ V }. y²: V = V1 ⊕ V2.
8
5 þ° ÏŒÆ 2015 ca¬ïÄ)\Æ•ÁÁK£828 p “ê¤
9
6 þ° ÏŒÆ 2018 ca¬ïÄ)\Æ•ÁÁK£828 p “ê¤
10
7 þ° ÏŒÆ 2010 ca¬ïÄ)\Æ•ÁÁK( 614 êÆ©Û)
11
8 þ° ÏŒÆ 2011 ca¬ïÄ)\Æ•ÁÁK( 614 êÆ©Û)
16
3
1. 2010年þ° ÏŒÆ828《高等代数》a¬ïÄ)\Æ•ÁÁK
˜! ( 20 ©) OŽ1 ª
an1
an2
(1) Dn+1 =
...
an1 −1b1 · · ·
an2 −1b2 · · · ...
ann+1 ann−+11bn+1 · · ·
1 + a1 + b1 a1 + b2
a1bn1 −1
›˜! A ´ n ‘m¥ f˜m.
C†, V1 ´ V A − ØCf˜m. y²: V1
Ö•´ V A − ØC
› ! A, B þ• n ¢é¡ , y²: AB A ŠÑŒu".
4
集合与映射
![集合与映射](https://img.taocdn.com/s3/m/43d319de6f1aff00bed51ec3.png)
1.3 考研真题1.3.1 考点分析
关于集合与映射的考查,集中在集合的表示和运算,以及函数的表示和函数的某些简单特性(周期性、奇偶性、单调性等)的证明.
不妨令m=min{f(a),f(b),m′},则对任意x∈[a,b],有m≤f(x)≤M.因此,在区间I的任何闭子区间上f(x)有界. 思考题1. 设f(x)对任意的x∈R有f(x)=f(x2),且f(x)在x=0和x=1 处连续,试证明f(x)在R上为常数.(上海交通大学,2003)
(1) 交换律A∪B=B∪A, A∩B=B∩A. (2) 结合律A∪(B∪D)=(A∪B)∪D, A∩(B∩D)=(A∩B)∩D. (3) 分配律A∪(B∩D)=(A∪B)∩(A∪D), A∩(B∪D)=(A∩B)∪(A∩D). (4) 对偶律(De Morgan公式)(A∪B)c=Ac∩Bc, (A∩B)c=Ac∪Bc.1.1.2 映射
(2) 单调函数. 对函数y=f(x),x∈D,若对任意x1,x2∈D,当x1<x2时成立f(x1)≤f(x2)(或f(x1)<f(x2)),则称函数f在D上单调增加(或严格单调增加),通常记作f↑(或f严格↑);若对任意x1, x2∈D,当x1<x2时成立f(x1)≥f(x2)(或f(x1)>f(x2)),则称函数f在D上单调减少(或严格单调减少),通常记作f↓(或f严格↓).
(3) 奇、偶函数.设函数f的定义域D关于原点对称,即x∈D-x∈D.如果对一切x∈D,成立f(-x)=f(x),则称f是偶函数;如果对一切x∈D,成立f(-x)=-f(x),则称f是奇函数.
2003年全国硕士入学统考数学(一)试题及答案 .doc
![2003年全国硕士入学统考数学(一)试题及答案 .doc](https://img.taocdn.com/s3/m/ecbd2ffee53a580217fcfe25.png)
2003年全国硕士入学统考数学(一)试题及答案一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) )1ln(12)(cos lim x x x +→ =e1 .【分析】 ∞1型未定式,化为指数函数或利用公式)()(lim x g x f )1(∞=)()1)(lim(x g x f e -进行计算求极限均可.【详解1】 )1ln(12)(cos lim x x x +→=xx x ecos ln )1ln(1lim20+→,而 212cos sin lim cos ln lim )1ln(cos ln lim02020-=-==+→→→x x xx x x x x x x , 故 原式=.121ee=-【详解2】 因为 2121lim )1ln(1)1(cos lim 2202-=-=+⋅-→→xxx x x x , 所以 原式=.121ee=-(2) 曲面22y x z +=与平面042=-+z y x 平行的切平面的方程是542=-+z y x . 【分析】 待求平面的法矢量为}1,4,2{-=n ρ,因此只需确定切点坐标即可求出平面方程, 而切点坐标可根据曲面22y x z +=切平面的法矢量与}1,4,2{-=n ρ平行确定.【详解】 令 22),,(y x z z y x F --=,则x F x 2-=',y F y 2-=', 1='z F .设切点坐标为),,(000z y x ,则切平面的法矢量为 }1,2,2{00y x --,其与已知平面042=-+z y x 平行,因此有11422200-=-=-y x ,可解得 2,100==y x ,相应地有 .520200=+=y x z故所求的切平面方程为0)5()2(4)1(2=---+-z y x ,即 542=-+z y x .(3) 设)(cos 02ππ≤≤-=∑∞=x nx ax n n,则2a = 1 .【分析】 将)()(2ππ≤≤-=x x x f 展开为余弦级数)(cos 02ππ≤≤-=∑∞=x nx ax n n,其系数计算公式为⎰=ππ0cos )(2nxdx x f a n .【详解】 根据余弦级数的定义,有 x d x xdx x a 2sin 12cos 22022⎰⎰=⋅=ππππ=⎰⋅-πππ2]22sin 2sin [1xdx x xx=⎰⎰-=πππππ]2cos 2cos [12cos 1xdx xx x xd=1.(4)从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为⎪⎪⎭⎫⎝⎛--2132 .【分析】 n 维向量空间中,从基n ααα,,,21Λ到基n βββ,,,21Λ的过渡矩阵P 满足 [nβββ,,,21Λ]=[nααα,,,21Λ]P ,因此过渡矩阵P 为:P=[121],,,-n αααΛ[],,,21n βββΛ.【详解】根据定义,从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为P=[121],-αα[⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=-21111011],121ββ.=.213221111011⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-(5)设二维随机变量(X,Y)的概率密度为,y x x y x f 其他,10,0,6),(≤≤≤⎩⎨⎧=则=≤+}1{Y X P41 . 【分析】 已知二维随机变量(X,Y)的概率密度f(x,y),求满足一定条件的概率}),({0z Y X g P ≤,一般可转化为二重积分}),({0z Y X g P ≤=⎰⎰≤0),(),(z y x g dxdy y x f 进行计算.【详解】 由题设,有 =≤+}1{Y X P ⎰⎰⎰⎰≤+-=121016),(y x xxxdy dx dxdy y x f=.41)126(2102=-⎰dx x x(6)已知一批零件的长度X (单位:cm)服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则μ的置信度为0.95的置信区间是)49.40,51.39( .(注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ 【分析】 已知方差12=σ,对正态总体的数学期望μ进行估计,可根据)1,0(~1N nX μ-,由αμα-=<-1}1{2u n X P 确定临界值2αu ,进而确定相应的置信区间. 【详解】 由题设,95.01=-α,可见.05.0=α 于是查标准正态分布表知.96.12=αu 本题n=16, 40=x , 因此,根据 95.0}96.11{=<-nX P μ,有 95.0}96.116140{=<-μP ,即 95.0}49.40,51.39{=P ,故μ的置信度为0.95的置信区间是)49.40,51.39( .二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有(A) 一个极小值点和两个极大值点. (B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) [ C ]【分析】 答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).(2)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ D ]【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21Λ==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).(3)已知函数f(x,y)在点(0,0)的某个邻域内连续,且1)(),(lim2220,0=+-→→y x xyy x f y x ,则 (A) 点(0,0)不是f(x,y)的极值点. (B) 点(0,0)是f(x,y)的极大值点. (C) 点(0,0)是f(x,y)的极小值点.(D) 根据所给条件无法判断点(0,0)是否为f(x,y)的极值点. [ A ]【分析】 由题设,容易推知f(0,0)=0,因此点(0,0)是否为f(x,y)的极值,关键看在点(0,0)的充分小的邻域内f(x,y)是恒大于零、恒小于零还是变号.【详解】 由1)(),(lim2220,0=+-→→y x xyy x f y x 知,分子的极限必为零,从而有f(0,0)=0, 且222)(),(y x xy y x f +≈- y x ,(充分小时),于是.)()0,0(),(222y x xy f y x f ++≈-可见当y=x 且x 充分小时,04)0,0(),(42>+≈-x x f y x f ;而当y= -x 且x 充分小时,04)0,0(),(42<+-≈-x x f y x f . 故点(0,0)不是f(x,y)的极值点,应选(A).(4)设向量组I :r ααα,,,21Λ可由向量组II :s βββ,,,21Λ线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关. (C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ D ]【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21Λ可由向量组II :s βββ,,,21Λ线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21Λ可由向量组II :s βββ,,,21Λ线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C). 故正确选项为(D).(5)设有齐次线性方程组Ax=0和Bx=0, 其中A,B 均为n m ⨯矩阵,现有4个命题: ① 若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B); ② 若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解; ③ 若Ax=0与Bx=0同解,则秩(A)=秩(B); ④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解. 以上命题中正确的是(A) ① ②. (B) ① ③.(C) ② ④. (D) ③ ④. [ B ] 【分析】 本题也可找反例用排除法进行分析,但① ②两个命题的反例比较复杂一些,关键是抓住③ 与 ④,迅速排除不正确的选项.【详解】 若Ax=0与Bx=0同解,则n-秩(A)=n - 秩(B), 即秩(A)=秩(B),命题③成立,可排除(A),(C);但反过来,若秩(A)=秩(B), 则不能推出Ax=0与Bx=0同解,如⎥⎦⎤⎢⎣⎡=0001A ,⎥⎦⎤⎢⎣⎡=1000B ,则秩(A)=秩(B)=1,但Ax=0与Bx=0不同解,可见命题④不成立,排除(D),故正确选项为(B).(6)设随机变量21),1)((~XY n n t X =>,则 (A) )(~2n Y χ. (B) )1(~2-n Y χ.(C) )1,(~n F Y . (D) ),1(~n F Y . [ C ] 【分析】 先由t 分布的定义知nV U X =,其中)(~),1,0(~2n V N U χ,再将其代入21XY =,然后利用F 分布的定义即可. 【详解】 由题设知,nV U X =,其中)(~),1,0(~2n V N U χ,于是21X Y ==122U n V U n V =,这里)1(~22χU ,根据F 分布的定义知).1,(~12n F X Y =故应选(C).三 、(本题满分10分)过坐标原点作曲线y=lnx 的切线,该切线与曲线y=lnx 及x 轴围成平面图形D.(1) 求D 的面积A;(2) 求D 绕直线x=e 旋转一周所得旋转体的体积V.【分析】 先求出切点坐标及切线方程,再用定积分求面积A; 旋转体体积可用一大立体(圆锥)体积减去一小立体体积进行计算,为了帮助理解,可画一草图.【详解】 (1) 设切点的横坐标为0x ,则曲线y=lnx 在点)ln ,(00x x 处的切线方程是 ).(1ln 000x x x x y -+= 由该切线过原点知 01ln 0=-x ,从而.0e x = 所以该切线的方程为 .1x ey =平面图形D 的面积 ⎰-=-=1.121)(e dy ey e A y (2) 切线x ey 1=与x 轴及直线x=e 所围成的三角形绕直线x=e 旋转所得的圆锥体积为 .3121e V π=曲线y=lnx 与x 轴及直线x=e 所围成的图形绕直线x=e 旋转所得的旋转体体积为 dy ee V y212)(⎰-=π,因此所求旋转体的体积为 ).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππ四 、(本题满分12分)将函数x xx f 2121arctan )(+-=展开成x 的幂级数,并求级数∑∞=+-012)1(n n n 的和.【分析】 幂级数展开有直接法与间接法,一般考查间接法展开,即通过适当的恒等变形、求导或积分等,转化为可利用已知幂级数展开的情形。
2003年全国硕士研究生入学统一考试数学四试题及答案详解
![2003年全国硕士研究生入学统一考试数学四试题及答案详解](https://img.taocdn.com/s3/m/664e7520af45b307e8719722.png)
2003年考研数学四真题及评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限xx x 20)]1ln(1[lim ++→= 2e .【分析】 本题属∞1型未定式,化为指数函数求极限即可.【详解】 xx x 20)]1ln(1[lim ++→=)]1ln(1ln[2lim x xx e++→=.2)1ln(2lim)]1ln(1ln[2lim00e eex x x x x x ==+++→→【评注】 对于∞1型未定式)()(lim x g x f 的极限,也可直接用公式)()(lim x g x f )1(∞=)()1)(lim(x g x f e -进行计算,因此本题也可这样求解:xx x 2)]1ln(1[lim ++→=.2)1ln(2lim 0e ex xx =+⋅→(2)dx ex x x⎰--+11)(= )21(21--e .【分析】 对称区间上的积分应注意利用被积函数的对称性,这里有.011=⎰--dx xex【详解】dx ex x x⎰--+11)(=dx xedx ex xx⎰⎰----+1111=dx ex x--⎰11=⎰⎰---=11022xxxdedx xe=][2110dx e xex x⎰----=)21(21--e .【评注】 本题属基本题型,主要考查对称区间上的积分性质和分布积分法.(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(= 2a .【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.【详解】 ⎰⎰-=D dxdy x y g x f I )()(=dxdy ax y x ⎰⎰≤-≤≤≤10,102=.])1[(212112a dx x x a dy dx ax x=-+=⎰⎰⎰+【评注】 若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可.(4)设A,B 均为三阶矩阵,E 是三阶单位矩阵. 已知AB=2A+B,B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡202040202,则 1)(--E A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100 .【分析】 应先化简,从AB=2A+B 中确定1)(--E A . 【详解】 由AB=2A+B, 知AB-B=2A-2E+2E, 即有 E E A B E A 2)(2)(=---, E E B E A 2)2)((=--, E E B E A =-⋅-)2(21)(, 可见 1)(--E A =)2(21E B -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100.【评注】 本题实质上是已知矩阵等式求逆的问题,应先分解出因式A-E ,写成逆矩阵的定义形式,从而确定(A-E) 的逆矩阵.(5)设n 维向量0,),0,,0,(<=a a a Tα;E 为n 阶单位矩阵,矩阵TE A αα-=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a= -1 .【分析】 这里Tαα为n 阶矩阵,而22a T =αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.【详解】 由题设,有)1)((T Ta E E AB αααα+-= =TT T T aa E αααααααα⋅-+-11=T T T Ta a E αααααααα)(11-+- =TT T a a E αααααα21-+-=E aa E T=+--+αα)121(,于是有 0121=+--a a ,即 0122=-+a a ,解得 .1,21-==a a 由于A<0 ,故a=-1.(6)设随机变量X 和Y 的相关系数为0.5, EX=EY=0,222==EY EX, 则2)(Y X E += 6 .【分析】 利用期望与相关系数的公式进行计算即可.【详解】 因为2)(Y X E +=22)(2EY XY E EX ++ =4+]),([2EY EX Y X Cov ⋅+=4+2.625.024=⨯⨯+=⋅⋅DY DX XY ρ【评注】 本题的核心是逆向思维,利用公式EY EX Y X Cov XY E ⋅+=),()(.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)曲线21x xe y =(A) 仅有水平渐近线. (B) 仅有铅直渐近线.(C) 既有铅直又有水平渐近线. (D) 既有铅直又有斜渐近线. [ D ] 【分析】 先考虑是否有水平渐近线,若无水平渐近线应进一步考虑是否存在斜渐近线,而是否存在铅直渐近线,应看函数是否存在无定义点.【详解】 当±∞→x 时,极限y x ±∞→lim 均不存在,故不存在水平渐近线;又因为 1lim lim 21==∞→∞→x x x e x y ,0)(lim 21=-∞→x xe x x ,所以有斜渐近线y=x.另外,在 x=0 处21x xe y =无定义,且∞=→1lim x x xe ,可见 x=0为铅直渐近线.故曲线21x xe y =既有铅直又有斜渐近线,应选(D).(2)设函数)(1)(3x x x f ϕ-=,其中)(x ϕ在x=1处连续,则0)1(=ϕ是f(x)在x=1处可导的(A) 充分必要条件. (B )必要但非充分条件.(C) 充分但非必要条件 . (D) 既非充分也非必要条件. [ A ] 【分析】 被积函数含有绝对值,应当作分段函数看待,利用f(x)在x=1处左右导数定义讨论即可.【详解】 因为)1(3)(11lim 1)1()(lim 311ϕϕ=⋅--=--++→→x x x x f x f x x , )1(3)(11lim 1)1()(lim311ϕϕ-=⋅---=----→→x x x x f x f x x , 可见,f(x)在x=1处可导的充分必要条件是 .0)1()1(3)1(3=⇔-=ϕϕϕ 故应选(A). 【评注】 函数表达式中含有绝对值、取极值符号(max,min)等,均应当作分段函数处理.一般地,函数)()(0x x x x g ϕ-=在点0x x =处可导的充要条件是.0)(0=x ϕ(3)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. [ A ]【分析】 可微必有偏导数存在,再根据取极值的必要条件即可得结论.【详解】 可微函数f(x,y)在点),(00y x 取得极小值,根据取极值的必要条件知0),(00='y x f y ,即),(0y x f 在0y y =处的导数等于零, 故应选(A).【评注1】 本题考查了偏导数的定义,),(0y x f 在0y y =处的导数即),(00y x f y ';而),(0y x f 在0x x =处的导数即).,(00y x f x '【评注2】 本题也可用排除法分析,取22),(y x y x f +=,在(0,0)处可微且取得极小值,并且有2),0(y y f =,可排除(B),(C),(D), 故正确选项为(A).(4)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010100B . 已知矩阵A 相似于B ,则秩(A-2E)与秩(A-E)之和等于(A) 2. (B) 3. (C) 4. (D) 5. [ C ]【分析】 利用相似矩阵有相同的秩计算,秩(A-2E)与秩(A-E)之和等于秩(B-2E)与秩(B-E)之和.【详解】 因为矩阵A 相似于B ,于是有矩阵A-2E 与矩阵B-2E 相似,矩阵A-E 与矩阵B-E 相似,且相似矩阵有相同的秩,而秩(B-2E)=秩3201010102=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---,秩(B-E)=秩1101000101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--,可见有 秩(A-2E)+秩(A-E)= 秩(B-2E)+秩(B-E)=4,故应选(C).【评注】 若B A ~,则)(~)(B f A f ,且相似矩阵有相同的行列式、相同的秩和相同的特征值等性质.(5)对于任意二事件A 和B(A) 若φ≠AB ,则A,B 一定独立. (B) 若φ≠AB ,则A,B 有可能独立. (C) 若φ=AB ,则A,B 一定独立. (D) 若φ=AB ,则A,B 一定不独立. [ B ]【分析】 本题考查独立与互斥事件之间的关系,事实上,独立与互斥事件之间没有必然的互推关系.【详解】 φ≠AB 推不出P(AB)=P(A)P(B), 因此推不出A,B 一定独立,排除(A); 若φ=AB ,则P(AB)=0,但P(A)P(B)是否为零不确定,因此(C),(D) 也不成立,故正确选项为(B).【评注】 当P(A)0≠,P(B)0≠时,若A,B 相互独立,则一定有0)()()(≠=B P A P AB P ,从而有φ≠AB . 可见,当A,B 相互独立时,往往A,B 并不是互斥的.(6)设随机变量X 和Y 都服从正态分布,且它们不相关,则(A) X 与Y 一定独立. (B) (X,Y)服从二维正态分布.(C) X 与Y 未必独立. (D) X+Y 服从一维正态分布. [ C ] 【分析】 本题考查正态分布的性质以及二维正态分布与一维正态分布之间的关系.只有(X,Y) 服从二维正态分布时,不相关与独立才是等价的.【详解】 只有当(X,Y) 服从二维正态分布时,X 与Y 不相关⇔X 与Y 独立,本题仅仅已知X 和Y 服从正态分布,因此,由它们不相关推不出X 与Y 一定独立,排除(A); 若X 和Y 都服从正态分布且相互独立,则(X,Y)服从二维正态分布,但题设并不知道X,Y 是否独立,可排除(B); 同样要求X 与Y 相互独立时,才能推出X+Y 服从一维正态分布,可排除(D).故正确选项为(C).【评注】 ① 若X 与Y 均服从正态分布且相互独立,则(X,Y)服从二维正态分布. ② 若X 与Y 均服从正态分布且相互独立,则bY aX +服从一维正态分布. ③ 若(X,Y)服从二维正态分布,则X 与Y 相互独立⇔X 与Y 不相关.三 、(本题满分8分) 设],21,0(,)1(11sin 1)(∈---=x x x x x f πππ 试补充定义f(0),使得f(x)在]21,0[上连续.【详解】)(lim 0x f x +→= -.1π+xx xx x ππππsin sin lim 0-+→= -220sin lim 1ππππx xx x -++→ = -xxx 202cos lim 1πππππ-++→= -2202sin lim 1ππππxx +→+= -.1π由于f(x)在]21,0(上连续,因此定义π1)0(-=f ,使f(x)在]21,0[上连续.【评注】 本题实质上是一求极限问题,但以这种形式表现出来,还考查了连续的概念.完全类似例题在一般教科书上都可找到.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂vf u f ,又)](21,[),(22y x xy f y x g -=,求.2222ygx g ∂∂+∂∂ 【分析】 本题是典型的复合函数求偏导问题:),(v u f g =,)(21,22y x v xy u -==,直接利用复合函数求偏导公式即可,注意利用.22uv fv u f ∂∂∂=∂∂∂ 【详解】vf x u f y xg ∂∂+∂∂=∂∂,.vf y u f x yg ∂∂-∂∂=∂∂ 故 v f vf x v u f xy u f y xg ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222, .2222222222vf v f y u v f xy u f x yg ∂∂-∂∂+∂∂∂-∂∂=∂∂所以 222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂ =.22y x +【评注】 本题考查半抽象复合函数求二阶偏导.五 、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x eI Dy x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x【分析】 从被积函数与积分区域可以看出,应该利用极坐标进行计算. 【详解】 作极坐标变换:θθsin ,cos r y r x ==,有 dxdy y x eeI Dy x )sin(22)(22+=⎰⎰+-π=.sin 2022dr r re d e r ⎰⎰-πππθ令2r t =,则tdt e e I t sin 0⎰-=πππ.记 t d te A t s i n 0⎰-=π,则 t t de e A --⎰-=int 0π=]cos sin [0⎰----ππtdt e t e t t=⎰--πcos t tde=]sin cos [0tdt e t e t t⎰--+-ππ=.1A e-+-π因此 )1(21π-+=e A , ).1(2)1(2πππππe e e I +=+=-【评注】 本题属常规题型,明显地应该选用极坐标进行计算,在将二重积分化为定积分后,再通过换元与分步积分(均为最基础的要求),即可得出结果,综合考查了二重积分、换元积分与分步积分等多个基础知识点.六、(本题满分9分)设a>1,at a t f t -=)(在),(+∞-∞内的驻点为).(a t 问a 为何值时,t(a)最小?并求出最小值.【分析】 先由f(t)的导数为零确定驻点t(a),它是关于a 的函数,再把此函数对a 求导,然后令此导数为零,得到可能极值点,进一步判定此极值为最小值即可.【详解】 由0ln )(=-='a a a t f t ,得唯一驻点 .ln ln ln 1)(aaa t -= 考察函数aaa t ln ln ln 1)(-=在a>1时的最小值. 令 0)(l n ln ln 1)(ln ln ln 11)(22=--=--='a a a a aa a a t , 得唯一驻点 .ee a =当e e a >时,0)(>'a t ;当ee a <时,0)(<'a t ,因此ee t e11)(-=为极小值,从而是最小值.【评注】 本题属基本题型,只是函数表达式由驻点给出,求极值与最值的要求均是最基本的.七、(本题满分9分)设y=f(x) 是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C 为M 在x 轴上的投影,O 为坐标原点. 若梯形OCMA 的面积与曲边三角形CBM的面积之和为3163+x ,求f(x)的表达式. 【分析】 梯形OCMA 的面积可直接用梯形面积公式计算得到,曲边三角形CBM 的面积可用定积分计算,再由题设,可得一含有变限积分的等式,两边求导后可转化为一阶线性微分方程,然后用通解公式计算即可.【详解】 根据题意,有316)()](1[213+=++⎰x x dt t f x f x . 两边关于x 求导,得.21)()(21)](1[212x x f x f x x f =-'++ 当0≠x 时,得.1)(1)(2xx x f x x f -=-' 此为标准的一阶线性非齐次微分方程,其通解为 y]1[)(121C dx e xx ex f dx x dxx+⎰-⎰=---⎰ =]1[ln 2ln C dx e xx ex x+--⎰ =)1(22C dx xx x +-⎰ O C B x =.12Cx x ++当x=0时,f(0)=1.由于x=1时,f(1)=0 ,故有2+C=0,从而C=-2. 所以.)1(21)(22-=-+=x x x x f【评注】 本题一阶线性微分方程的求解比较简单,一般教材中都可找到标准的求解方法.八、(本题满分8分)设某商品从时刻0到时刻t 的销售量为kt t x =)(,).0(],,0[>∈k T t 欲在T 时将数量为A 的该商品销售完,试求(1) t 时的商品剩余量,并确定k 的值; (2) 在时间段[0,T]上的平均剩余量.【分析】 在时刻t 的剩余量y(t)可用总量A 减去销量x(t)得到; 由于y(t)随时间连续变化,因此在时间段[0,T] 上的平均剩余量,即函数平均值可用积分⎰Tdt t y T0)(1表示. 【详解】 (1) 在时刻t 商品的剩余量为 )()(t x A t y -==kt A -, ].,0[T t ∈ 由kt A -=0,得TA k =, 因此,)(t TAA t y -= ].,0[T t ∈ (2) 依题意,)(t y 在[0,T]上的平均值为⎰=Tdt t y T y 0)(1=⎰-T dt t T AA T 0)(1=.2A因此在时间段[0,T] 上的平均剩余量为.2A 【评注】 函数f(x)在[a,b] 上的平均值记为⎰-ba dx x f ab .)(1 本题考查了函数平均值的概念,但大纲中只对数学一、二明确提出要求,而数学三、四的考试大纲中没有相应的要求,因此本题有超纲的嫌疑.九、(本题满分13分)设有向量组(I ):T)2,0,1(1=α,T)3,1,1(2=α,T a )2,1,1(3+-=α和向量组(II ):T a )3,2,1(1+=β,T a )6,1,2(2+=β,.)4,1,2(3T a +=β 试问:当a 为何值时,向量组(I )与(II )等价?当a 为何值时,向量组(I )与(II )不等价?【分析】 两个向量组等价也即两个向量组可以相互线性表示,而两个向量组不等价,只需其中一组有一个向量不能由另一组线性表示即可. 而线性表示问题又可转化为对应非齐次线性方程组是否有解的问题,这可通过化增广矩阵为阶梯形来判断. 一个向量1β是否可由321,,ααα线性表示,只需用初等行变换化增广矩阵(1321,,βααα)为阶梯形讨论,而一组向量321,,βββ是否可由321,,ααα线性表示,则可结合起来对矩阵(321321,,,,βββααα)同时作初等行变换化阶梯形,然后类似地进行讨论即可.【详解】 作初等行变换,有),,,,(321321βββααα =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++-463232112110221111a a a a⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+--→111100112110111201a a a a .(1) 当1-≠a 时,有行列式[]01321≠+=a ααα,秩(3),,321=ααα,故线性方程组)3,2,1(332211==++i x x x i βααα均有唯一解. 所以,321,,βββ可由向量组(I )线性表示.同样,行列式[]06321≠=βββ,秩(3),,321=βββ,故321,,ααα可由向量组(II )线性表示. 因此向量组(I )与(II )等价.(2) 当a=-1时,有),,,,(321321βββααα ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→202000112110111201 . 由于秩(321,,ααα)≠秩(),,1321βααα,线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表示. 因此,向量组(I )与(II )不等价.【评注1】 涉及到参数讨论时,一般联想到利用行列式判断,因此,本题也可这样分析:因为行列式1,,321+=a ααα,06,,321≠=βββ,可见(1) 当1-≠a 时,秩3),,(),,(321321==βββαααr r ,因此三维列向量组321,,ααα与321,,βββ等价,即向量组(I )与(II )等价.(2) 当a=-1时,,秩2),,(321=αααr ,而行列式04,,132≠=βαα,可见2),,(321=αααr ≠r (),,,1321βααα=3, 因此线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表示. 即向量组(I )与(II )不等价.【评注2】 向量组(I )与(II )等价,相当于321,,ααα与321,,βββ均为整个向量组321321,,,,,βββααα的一个极大线性无关组,问题转化为求向量组321321,,,,,βββααα的极大线性无关组,这可通过初等行变换化阶梯形进行讨论. 十、(本题满分13分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a A 11121112可逆,向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11b α是矩阵*A 的一个特征向量,λ是α对应的特征值,其中*A 是矩阵A 的伴随矩阵. 试求a,b 和λ的值.【分析】 题设已知特征向量,应想到利用定义:λαα=*A ,又与伴随矩阵*A 相关的问题,应利用E A AA =*进行化简.【详解】 矩阵*A 属于特征值λ的特征向量为α,由于矩阵A 可逆,故*A 可逆.于是0≠λ,0≠A ,且λαα=*A . 两边同时左乘矩阵A ,得 αλαA AA =*, αλαAA =,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111111121112b A b a λ,由此,得方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=+.1,22,3λλλA b a b A b A b )3()2()1(由式(1),(2)解得1=b或2-=b ;由式(1),(3)解得a=2. 由于42311121112=-==a aA ,根据(1)式知,特征向量α所对应的特征值.343bbA +=+=λ 所以,当1=b 时,1=λ; 当2-=b 时,.4=λ【评注】 本题若先求出*A ,再按特征值、特征向量的定义进行分析,则计算过程将非常复杂. 一般来说,见到*A ,首先应想到利用公式E A AA =*进行化简.十一、(本题满分13分) 设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x fF(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.【分析】 先求出分布函数F(x) 的具体形式,从而可确定Y=F(X) ,然后按定义求Y 的分布函数即可。
数学分析_各校考研试题及答案
![数学分析_各校考研试题及答案](https://img.taocdn.com/s3/m/be377eeecc22bcd127ff0c3b.png)
2003南开大学年数学分析一、设),,(x y x y x f w-+=其中),,(z y x f 有二阶连续偏导数,求xy w解:令u=x+y,v=x-y,z=x 则z v u x f f f w ++=;)1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w二、设数列}{n a 非负单增且a a nn =∞→lim ,证明a a a a n n n n n n =+++∞→121][lim解:因为an 非负单增,故有n n n nnn n n n na a a a a 1121)(][≤+++≤由a a n n =∞→lim ;据两边夹定理有极限成立。
三、设⎩⎨⎧≤>+=0,00),1ln()(2x x x x x f α试确定α的取值范围,使f(x)分别满足:(1) 极限)(lim 0x f x +→存在(2) f(x)在x=0连续 (3) f(x)在x=0可导 解:(1)因为)(lim 0x f x +→=)1ln(lim 20x x x ++→α=)]()1(2[lim 221420n nn x x o nx x x x +-++--→+α极限存在则2+α0≥知α2-≥(2)因为)(lim 0x f x -→=0=f(0)所以要使f(x)在0连续则2->α(3)0)0(='-f 所以要使f(x)在0可导则1->α四、设f(x)在R 连续,证明积分ydy xdx y x f l ++⎰)(22与积分路径无关解;令U=22y x+则ydy xdx y x f l ++⎰)(22=21du u f l )(⎰又f(x)在R 上连续故存在F (u )使dF(u)=f(u)du=ydy xdx y x f ++)(22所以积分与路径无关。
(此题应感谢小毒物提供思路) 五、设f(x)在[a,b]上可导,0)2(=+ba f 且Mx f ≤')(,证明2)(4)(a b Mdx x f b a -≤⎰ 证:因f(x)在[a,b]可导,则由拉格朗日中值定理,存在)2)(()2()(),(ba x fb a f x f b a +-'=+-∈ξξ使即有dx ba x f dx x f bab a)2)(()(+-'=⎰⎰ξ222)(4])2()2([)2)((a b M dx b a x dx x b a M dx b a x f bb a ba a ba-=+-+-+≤+-'≤⎰⎰⎰++ξ六、设}{n a 单减而且收敛于0。
2003年考研数学(一)试题及答案解析
![2003年考研数学(一)试题及答案解析](https://img.taocdn.com/s3/m/79573f05e87101f69e319510.png)
2003年考研数学(一)真题评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) )1ln(12)(cos lim x x x +→ =e1 .【分析】 ∞1型未定式,化为指数函数或利用公式)()(lim x g x f )1(∞=)()1)(lim(x g x f e -进行计算求极限均可.【详解1】 )1ln(12)(cos lim x x x +→=xx x ecos ln )1ln(1lim20+→,而 212c o s s i n lim cos ln lim )1ln(cos ln lim 02020-=-==+→→→x x xx x x x x x x , 故 原式=.121ee=-【详解2】 因为 2121lim)1ln(1)1(cos lim 22020-=-=+⋅-→→x xx x x x , 所以 原式=.121ee=-【评注】 本题属常规题型,完全类似例题见《数学复习指南》P.24-25 【例1.30-31】.(2) 曲面22y x z +=与平面042=-+z y x 平行的切平面的方程是542=-+z y x .【分析】 待求平面的法矢量为}1,4,2{-=n,因此只需确定切点坐标即可求出平面方程, 而切点坐标可根据曲面22y x z +=切平面的法矢量与}1,4,2{-=n平行确定.【详解】 令 22),,(y x z z y x F --=,则x F x 2-=',y F y 2-=', 1='z F .设切点坐标为),,(000z y x ,则切平面的法矢量为 }1,2,2{00y x --,其与已知平面042=-+z y x 平行,因此有11422200-=-=-y x , 可解得 2,100==y x ,相应地有 .520200=+=y x z故所求的切平面方程为0)5()2(4)1(2=---+-z y x ,即 542=-+z y x .【评注】 本题属基本题型,完全类似例题见《数学复习指南》P.279 【例10.28】和 《数学题型集粹和练习题集》P.112 【例8.13】.(3) 设)(cos 02ππ≤≤-=∑∞=x nx ax n n,则2a = 1 .【分析】 将)()(2ππ≤≤-=x x x f 展开为余弦级数)(cos 02ππ≤≤-=∑∞=x nx ax n n,其系数计算公式为⎰=ππ0cos )(2nxdx x f a n .【详解】 根据余弦级数的定义,有 x d x xdx x a 2sin 12cos 22022⎰⎰=⋅=ππππ=⎰⋅-πππ2]22sin 2sin [1xdx x xx=⎰⎰-=πππππ]2cos 2cos [12cos 1xdx xx x xd=1.【评注】 本题属基本题型,主要考查傅里叶级数的展开公式,本质上转化为定积分的计算. 完全类似例题见《文登数学全真模拟试卷》数学一P.62第一大题第(6)小题和《数学复习指南》P.240 【例8.37】.(4)从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为⎪⎪⎭⎫ ⎝⎛--2132. 【分析】 n 维向量空间中,从基n ααα,,,21 到基n βββ,,,21 的过渡矩阵P 满足 [nβββ,,,21 ]=[nααα,,,21 ]P ,因此过渡矩阵P 为:P=[121],,,-n ααα [],,,21n βββ .【详解】根据定义,从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为P=[121],-αα[⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=-21111011],121ββ.=.213221111011⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-【评注】 本题属基本题型,完全类似例题见《数学复习指南》P.429 【例3.35】. (5)设二维随机变量(X,Y)的概率密度为 ,y x x y x f 其他,10,0,6),(≤≤≤⎩⎨⎧=则=≤+}1{Y X P41 . 【分析】 已知二维随机变量(X,Y)的概率密度f(x,y),求满足一定条件的概率}),({0z Y X g P ≤,一般可转化为二重积分}),({0z Y X g P ≤=⎰⎰≤0),(),(z y x g dxdy y x f 进行计算.【详解】 由题设,有 =≤+}1{Y X P ⎰⎰⎰⎰≤+-=121016),(y x xxxdy dx dxdy y x f=.41)126(2102=-⎰dx x xy1DO211 x【评注】 本题属基本题型,但在计算二重积分时,应注意找出概率密度不为零与满足不等式1≤+y x 的公共部分D ,再在其上积分即可. 完全类似例题见《文登数学全真模拟试卷》数学一P.14第一大题第(5)小题.(6)已知一批零件的长度X (单位:cm)服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则μ的置信度为0.95的置信区间是)49.40,51.39( . (注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ【分析】 已知方差12=σ,对正态总体的数学期望μ进行估计,可根据)1,0(~1N n X μ-,由αμα-=<-1}1{2u nX P 确定临界值2αu ,进而确定相应的置信区间. 【详解】 由题设,95.01=-α,可见.05.0=α 于是查标准正态分布表知.96.12=αu 本题n=16, 40=x , 因此,根据 95.0}96.11{=<-nX P μ,有 95.0}96.116140{=<-μP ,即 95.0}49.40,51.39{=P ,故μ的置信度为0.95的置信区间是)49.40,51.39( . 【评注】 本题属基本题型,完全类似例题见《数学复习指南》P.608 【例6.16】.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有(A) 一个极小值点和两个极大值点. (B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ C ] yO x【分析】 答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导)(x f '的图象,本题是其逆问题. 完全类似例题在文登学校经济类串讲班上介绍过.(2)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ D ]【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).【评注】 对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项. 完全类似方法见《数学最后冲刺》P.179.(3)已知函数f(x,y)在点(0,0)的某个邻域内连续,且1)(),(lim2220,0=+-→→y x xyy x f y x ,则(A) 点(0,0)不是f(x,y)的极值点. (B) 点(0,0)是f(x,y)的极大值点. (C) 点(0,0)是f(x,y)的极小值点.(D) 根据所给条件无法判断点(0,0)是否为f(x,y)的极值点. [ A ] 【分析】 由题设,容易推知f(0,0)=0,因此点(0,0)是否为f(x,y)的极值,关键看在点(0,0)的充分小的邻域内f(x,y)是恒大于零、恒小于零还是变号.【详解】 由1)(),(lim2220,0=+-→→y x xyy x f y x 知,分子的极限必为零,从而有f(0,0)=0, 且 222)(),(y x xy y x f +≈- y x ,(充分小时),于是 .)()0,0(),(222y x xy f y x f ++≈-可见当y=x 且x 充分小时,04)0,0(),(42>+≈-x x f y x f ;而当y= -x 且x 充分小时,04)0,0(),(42<+-≈-x x f y x f . 故点(0,0)不是f(x,y)的极值点,应选(A).【评注】 本题综合考查了多元函数的极限、连续和多元函数的极值概念,题型比较新,有一定难度. 将极限表示式转化为极限值加无穷小量,是有关极限分析过程中常用的思想,类似分析思想的例题见《数学复习指南》P.43 【例1.71】.(4)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关. (C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ D ]【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C). 故正确选项为(D).【评注】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项。
2003考研数一真题及其解析资料全
![2003考研数一真题及其解析资料全](https://img.taocdn.com/s3/m/44fa6d9c65ce0508763213ab.png)
2003年全国硕士研究生入学统一考试数学一试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(1)21ln(1)0lim(cos )x x x +→=(2) 曲面22y x z +=与平面042=-+z y x 平行的切平面的方程是.(3) 设)(cos 02ππ≤≤-=∑∞=x nx ax n n,则2a = .(4) 从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为.(5) 设二维随机变量(,)X Y 的概率密度为,y x x y x f 其他,10,0,6),(≤≤≤⎩⎨⎧=则=≤+}1{Y X P.(6) 已知一批零件的长度X (单位:cm cm)服从正态分布)1,(μN ,从中随机地抽取16个 零件,得到长度的平均值为40 (cm ),则μ的置信度为0.95的置信区间是.(注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ二、选择题:本题共6小题,每小题4分,共24分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1) 设函数()f x 在),(+∞-∞内连续,其导函数的图形如图所示, 则()f x 有( )(A)一个极小值点和两个极大值点. (B)两个极小值点和一个极大值点. (C)两个极小值点和两个极大值点. (D)三个极小值点和一个极大值点.(2) 设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有( )(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立. (C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在.(3) 已知函数(,)f x y 在点(0,0)的某个邻域内连续,且1)(),(lim2220,0=+-→→y x xyy x f y x ,则( ) (A) 点(0,0)不是(,)f x y 的极值点. (B) 点(0,0)是(,)f x y 的极大值点. (C) 点(0,0)是(,)f x y 的极小值点.(D) 根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点.(4) 设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则( )(A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关. (C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关.(5) 设有齐次线性方程组0Ax =和0Bx =, 其中,A B 均为n m ⨯矩阵,现有4个命题:① 若0Ax =的解均是0Bx =的解,则秩(A )≥秩(B ); ② 若秩(A )≥秩(B ),则0Ax =的解均是0Bx =的解; ③ 若0Ax =与0Bx =同解,则秩(A )=秩(B ); ④ 若秩(A )=秩(B ), 则0Ax =与0Bx =同解. 以上命题中正确的是( )(A) ① ②. (B) ① ③.(C) ② ④. (D) ③ ④.(6) 设随机变量21),1)((~X Y n n t X =>,则( ) (A) )(~2n Y χ. (B) )1(~2-n Y χ.(C) )1,(~n F Y . (D) ),1(~n F Y .三 、(本题满分10分)过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D . (1) 求D 的面积A ;(2) 求D 绕直线x e =旋转一周所得旋转体的体积V .四 、(本题满分12分)将函数x xx f 2121arctan )(+-=展开成x 的幂级数,并求级数∑∞=+-012)1(n n n 的和.已知平面区域}0,0),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界. 试证: (1) dx ye dy xe dx ye dy xex Ly x Lysin sin sin sin -=-⎰⎰--;(2).22sin sin π≥--⎰dx ye dy xex Ly六 、(本题满分10分)某建筑工程打地基时,需用汽锤将桩打进土层. 汽锤每次击打,都将克服土层对桩的阻力而作功. 设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为,0k k >).汽锤第一次击打将桩打进地下a m . 根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数(01)r r <<. 问(1) 汽锤击打桩3次后,可将桩打进地下多深?(2) 若击打次数不限,汽锤至多能将桩打进地下多深? (注:m 表示长度单位米.)七 、(本题满分12分)设函数()y y x =)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是()y y x =的反函数.(1) 试将()x x y =所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为()y y x =满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解.八 、(本题满分12分)设函数()f x 连续且恒大于零,⎰⎰⎰⎰⎰+++=Ω)(22)(222)()()(t D t d y xf dvz y x f t F σ,⎰⎰⎰-+=tt D dxx f d y x f t G 12)(22)()()(σ,其中}),,{()(2222t z y x z y x t ≤++=Ω,}.),{()(222t y x y x t D ≤+=(1) 讨论()F t 在区间),0(+∞内的单调性. (2) 证明当0t >时,).(2)(t G t F π>设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=322232223A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100101010P ,P A P B *1-=,求2B E +的特征值与特征向量,其中*A 为A 的伴随矩阵,E 为3阶单位矩阵.十 、(本题满分8分)已知平面上三条不同直线的方程分别为1:230l ax by c ++=,2:230l bx cy a ++=,3:230l cx ay b ++=.试证: 这三条直线交于一点的充分必要条件为.0=++c b a十一 、(本题满分10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品. 从甲箱中任取3件产品放入乙箱后,求:(1) 乙箱中次品件数X 的数学期望; (2) 从乙箱中任取一件产品是次品的概率.十二 、(本题满分8分)设总体X 的概率密度为⎩⎨⎧≤>=--,,,0,2)()(2θθθx x e x f x其中0>θ是未知参数. 从总体X 中抽取简单随机样本n X X X ,,,21 ,记).,,,min(ˆ21nX X X =θ (1) 求总体X 的分布函数()F x ;(2) 求统计量θˆ的分布函数)(ˆx F θ; (3) 如果用θˆ作为θ的估计量,讨论它是否具有无偏性.2003年全国硕士研究生入学统一考试数学一试题解析一、填空题 (1)【详解】方法1:求()lim ()v x u x 型极限,一般先化为指数形式()()ln ()lim ()lim v x v x u x u x e =然后求lim ()ln ()v x u x ,再回到指数上去.)1ln(12)(cos lim x x x +→=220ln cos ln cos limln(1)ln(1)lim x xxx x x e e→++→=,而2200ln cos ln(1cos 1)limlim ln(1)ln(1)x x x x x x →→+-=++20cos 1lim x x x→-=(等价无穷小替换ln(1)x x +) 220112lim 2x x x →-==-(等价无穷小替换211cos 2x x -) 故 原式=.121ee=-方法2:令21ln(1)(cos )x y x +=,有2ln cos ln ln(1)xy x =+,以下同方法1.(2)【答案】542=-+z y x【详解】由题意,只要满足所求切平面的法向量与已知平面的法向量平行即可.平面042=-+z y x 的法向量:1{2,4,1}n =-;曲面22y x z +=在点),,(000z y x 的法向量:20000{(,),(,),1}x y n z x y z x y =-00{2,2,1}x y =- 由于12//n n ,因此有00221241x y -==- 可解得,2,100==y x ,相应地有.520200=+=y x z所求切平面过点(1,2,5),法向量为:2{2,4,1}n =-,故所求的切平面方程为0)5()2(4)1(2=---+-z y x ,即 542=-+z y x(3)【答案】1【详解】将)()(2ππ≤≤-=x x x f 展开为余弦级数2()cos ()n n f x x a nx x ππ∞===-≤≤∑,其中⎰=ππcos )(2nxdx x f a n .所以 x d x xdx x a 2sin 12cos 2222⎰⎰=⋅=ππππ201[sin 2sin 22]x xx xdx πππ=-⋅⎰1cos2xd x ππ=⎰001[cos2cos2]x x xdx πππ=-⎰1=(4)【答案】⎪⎪⎭⎫ ⎝⎛--2132【详解】n 维向量空间中,从基n ααα,,,21 到基n βββ,,,21 的过渡矩阵P 满足[n βββ,,,21 ]=[n ααα,,,21 ]P ,因此过渡矩阵P 为:P =[121],,,-n ααα [],,,21n βββ .根据定义,从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为P =[121],-αα[⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=-21111011],121ββ=.213221111011⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-(5)【答案】14. 【分析】本题为已知二维随机变量(,)X Y 的概率密度(,)f x y ,求满足一定条件的概率}),({0z Y X g P ≤.连续型二维随机变量(,)X Y 概率的求解方法(,)(,),yxF x y f u v dudv -∞-∞=⎰⎰此题可转化为二重积分}),({0z Y X g P ≤0(,)(,)g x y z f x y dxdy ≤=⎰⎰进行计算.【详解】图中阴影区域为积分区域. 由题设,有=≤+}1{Y X P 1(,)x y f x y dxdy +≤⎰⎰11206xxdx xdy -=⎰⎰1220(612)x x dx =-⎰14=(6)【答案】)49.40,51.39(. 【分析】可以用两种方法求解:(1) 已知方差12=σ,对正态总体的数学期望μ进行估计. 因为(,1)X N μ,设有n个样本,样本均值11ni i X X n ==∑,则1(,)XN n μ,将其标准化,~(0,1)X N 得:)1,0(~1N nX μ- 由正态分布分为点的定义αμα-=<-1}1{2u nX P 可确定临界值2αu ,进而确定相应的置信区间22(x u x u αα-+.(2)本题是在单个正态总体方差已知条件下,求期望值μ的置信区间问题.由教材上已经求出的置信区间22(x u x u αα-+,其中2{}1,(0,1)P U u UN αα<=-,可以直接得出答案.【详解】方法1:由题设,95.01=-α,可见.05.0=α 查标准正态分布表知分位点.96.12=αu 本题16n =, 40=x .根据 1.96}0.95P <=,有 1.96}0.95P <=,即{39.5140.49}0.95P μ<<=,故μ的置信度为0.95的置信区间是)49.40,51.39(. 方法2:由题设,95.01=-α,22222{}{}2()10.95,()0.975P U u P u U u u u ααααα<=-<<=Φ-=Φ=查得.96.12=αu 将1σ=,16n =, 40=x代入22(x u x u αα-+得置信区间)49.40,51.39(二、选择题(1)【答案】()Cy【分析】函数的极值点可能是驻点(一阶导数为零) 或导数不存在的点,极值点是极大值点还是极小值 点可进一步由取极值的第一或第二充分条件判定. 【详解】根据导函数的图形可知,一阶导数为零的 点有3个(导函数与x 轴交点的个数);0x =是导数 不存在的点.对3个一阶导数为零的点左右两侧导数符号均 不一致,故必为极值点,其中第一个交点左右两侧 导数符号由正变为负,是极大值点;第二个交点和第三个交点左右两侧导数符号由负变为正,是极小值点,则三个驻点中有两个极小值点,一个极大值点;对导数不存在的点:0x =.左侧一阶导数为正,右侧一阶导数为负,可见0x =为极大值点.故()f x 共有两个极小值点和两个极大值点,应选(C).(2)【答案】()D 【详解】方法1:推理法由题设lim 1n n b →∞=,假设lim n n n b c →∞存在并记为A ,则lim limn nn n n nb c c A b →∞→∞==,这与lim n n c →∞=∞矛盾,故假设不成立,lim n n n b c →∞不存在. 所以选项()D 正确.方法2:排除法取1n a n =,1n n b n-=,满足0lim =∞→n n a ,1lim =∞→n n b , 而11111,0,a b a b ==>,()A 不正确;取1n n b n-=,2n c n =-,满足1lim =∞→n n b ,∞=∞→n n c lim ,而1101b c =>-=,()B 不正确;取1n a n=,2n c n =-,满足0lim =∞→n n a ,∞=∞→n n c lim ,而lim 1n n n a c →∞=,()C 不正确.(3)【答案】()A 【详解】由2220,0(,)lim1()x y f x y xyx y →→-=+222(,)(1)()f x y xy x y α⇒-=++,其中00lim 0x y α→→=. 由(,)f x y 在点(0,0)连续知,(0,0)0f =.取y x =,x 充分小,0x ≠,有222(,)(1)(2)0f x y x x α=++>; 取y x =-,x 充分小,0x ≠,有222(,)(1)(2)0f x y x x α=-++< 故点(0,0)不是(,)f x y 的极值点,应选()A . (极值的定义)(4)【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C).(5)【答案】(B)【分析】本题可找反例用排除法进行分析,但①、②两个命题的反例比较复杂一些,关键是抓住③、④,迅速排除不正确的选项. 【详解】若0AX =与0BX =同解,则它们的解空间中的基础解系所含向量个数相同,即n -秩(A )=n -秩(B ), 得秩(A )=秩(B ),命题③成立,可排除(A), (C);但反过来,若秩(A )=秩(B ),则不能推出0AX =与0BX =同解,通过举一反例证明,若⎥⎦⎤⎢⎣⎡=0001A ,⎥⎦⎤⎢⎣⎡=1000B ,则秩(A )=秩(B )=1,但0AX =与0BX =不同解,可见命题④不成立,排除(D). 故正确选项为(B).(6)【答案】(C).【分析】求解这类问题关键在于了解产生2χ变量、t 变量、F 变量的典型模式.(1)2χ分布:设12,,,n X X X 相互独立且均服从标准正态分布,则随机变量21nii Z X ==∑服从自由度为n 的2χ分布.记做2().Zn χ(2)t 分布:设1(0,1)X N ,22~()X n χ,且12,X X 相互独立,则随机变量Z =服从自由度为n 的t 分布.记做()Z t n(3)F 分布:设2212(),(),Xn Y n χχ且,X Y 相互独立,则随机变量12X n Z Y n =服从F 分布,其第一、二自由度分别为12,.n n 记做12(,).ZF n n【详解】其实,由F 分布的性质以及t 分布和F 分布的关系得,(1) 如果统计量 ()T t n ,则有2(1,)T F n ;(2) 如果统计量12(,)FF n n ,则有211(,)F n n F.由以上两条性质可以直接得出本题的答案为(C).先由t分布的定义知()X t n =,其中)(~),1,0(~2n V N U χ,于是 21XY ==122U n V U n V =,分母中只含有一个标准正态分布的平方,所以)1(~22χU . 由F 分布的定义知~(,1).Y F n故应选(C).三【分析】圆锥体体积公式:213V r h π=⋅;旋转体的体积:(1) 连续曲线()y f x =,直线x a =、x b =所围成的图形绕直线0x x =旋转一周而成的立体的体积[]210()ba V f x x dx π=-⎰(2) 连续曲线()x g x =,直线y c =、y d =所围成的图形绕直线0y y =旋转一周而成的立体的体积[]220()dc V g y y dy π=-⎰【详解】为了求D 的面积,首先要求出切点的坐标,设切点的横坐标为0x ,则曲线ln y x =在点)ln ,(00x x 处的切线方程是:).(1ln 000x x x x y -+= 切线的斜率为01x y x '=,由于该切线过原点,将(0,0)点代入切线方程,得01ln 0=-x ,从而.0e x = 所以该切线的方程为.1x ey =(1) 利用平面图形D 的面积公式()()S y y dy βαϕψ=-⎰,得⎰-=-=1.121)(e dy ey e A y (2) 旋转体体积可用一大立体(圆锥)体积减去一小立体体积进行计算,为了帮助理解,可画一草图.切线x ey 1=与x 轴及直线x e =所围成的三角形绕直线x e =旋转所得的圆锥体积为: 122101().3V e ey dy e ππ=-=⎰曲线ln y x =与x 轴及直线x e =所围成的图形绕直线x e =旋转所得的旋转体体积为:dy e e V y 212)(⎰-=π1220(2)y y e e e e dy π=-⋅+⎰12201(2)2yy e y e e e π=-⋅+211(2)22e e π=-+-因此所求旋转体的体积为).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππ四【分析】幂级数展开有直接法与间接法,一般考查间接法展开,即通过适当的恒等变形、求导或积分等,转化为可利用已知幂级数展开的情形.另外,由于函数展开成的幂级数,经两边求导或积分(其中一边是逐项求导或逐项积分)后,其新的展开式收敛区间不变,但在收敛区间端点处,求导(积分)后的展开式成立与否,要另行单独处理,设已有00()()n n n f x a x x ∞==-∑收敛区间为00(,)x R x R -+. 如果在0x x R =+处级数收敛,并且()f x (左)连续,则展开式成立的范围可扩大到0x x R =+处,在0x x R =-处亦有类似的结论,不过此时()f x (左)连续应改称(右)连续.【详解】本题可先求导,()f x '()2222(12)2(12)1212121212111212x x x x x x x x x '-+---⎛⎫ ⎪++⎝⎭==--⎛⎫⎛⎫++ ⎪ ⎪++⎝⎭⎝⎭基本求导公式 22422(14)14x x --==++21214x =-+ 对于函数2114x +,可以利用我们所熟悉的函数x-11的幂级数展开: 2011(11)1nnn x x x x x x ∞==+++++=-<<-∑所以 2222001(4)(1)414114n n n nn n x x x x ∞∞===-=--<-<+∑∑ (把x 换成24x -) 有 22111()22(1)4,(,).1422n n n n f x x x x ∞='=-=--∈-+∑对上式两边求积分,得200()(0)()2(1)4xxn n n n f x f f t dt t dt ∞=⎛⎫'-==-- ⎪⎝⎭∑⎰⎰221000(1)4112(1)42,(,)2122n n x nnnn n n t dt x x n ∞∞+==-=--=-∈-+∑∑⎰,又因为04f π=(),所以()(0)()xf x f f t dt '=+⎰=).21,21(,124)1(24120-∈+--+∞=∑x x n n n n n π即 21012(1)411arctan 2,(,).1242122n n n n x x x x n π∞+=--=-∈-++∑ (*)在21=x 处,右边级数成为0(1)1212n n n ∞=-⋅+∑,收敛(利用莱布尼茨定理),左边函数()f x 连续,所以成立范围可扩大到21=x 处.而在12x =-处,右边级数虽然收敛,但左边函数()f x 不连续,所以成立范围只能是11(,]22x ∈-.为了求∑∞=+-012)1(n n n ,令21=x 代入(*)得∑∑∞=+∞=+--=⋅+--=012012)1(4]21124)1([24)21(n n n n n n n f ππ,再由0)21(=f ,得.4)21(412)1(0ππ=-=+-∑∞=f n n n五【详解】(1) 方法1:用格林公式证明. 由曲线为正向封闭曲线,自然想到用格林公式L D Q P Pdx Qdy dxdy x y ⎛⎫∂∂+=- ⎪∂∂⎝⎭⎰⎰⎰. 所以 ⎰⎰⎰--+=-D x y x L ydxdy e e dx ye dy xe)(sin sin sin sin所以⎰⎰⎰+=---Dx y x Ly dxdy e e dx ye dy xe )(sin sin sin sin 因为积分区域D 关于y x =对称,所以sin sin sin sin ()()x y yxyx DDeedxdyee dxdy --+=+⎰⎰⎰⎰与互换故dx ye dy xe dx ye dy xe x Ly x Ly sin sin sin sin -=-⎰⎰-- 方法2:化为定积分证明左边sin sin yxLL xedy yedx -=-⎰⎰=dx edy e xy ⎰⎰--0sin 0sin ππππ=⎰-+ππ0sin sin )(dx e e x x 右边sin sin y x LLxe dy ye dx -=-⎰⎰=⎰⎰--ππππ00sin sin dx e dy ex y=⎰-+ππ0sin sin )(dx e e x x 所以dx ye dy xe dx ye dy xe xLy x Ly sin sin sin sin -=-⎰⎰--. (2) 方法1:用格林公式证明⎰⎰⎰--+=-Dx y x Ly dxdy e e dx ye dy xe )(sin sin sin sin =dxdy e dxdy eDDx y⎰⎰⎰⎰-+sin sin =dxdy e dxdy e DDx x ⎰⎰⎰⎰-+sin sin 利用轮换对称性=sin sin ()2x x DDe e dxdy dxdy -+≥⎰⎰⎰⎰22π=(因为0,0a b a b +≥>>)方法2:由(1)知,sin sin sin sin 0()2y x x x Lxe dy ye dx e e dx dx ππππ---=+≥⎰⎰⎰22π=六【详解】(1) 建立坐标系,地面作为坐标原点,向下为x 轴正向,设第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为),3,2,1( =n W n .由题设,当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,汽锤所作的功等于克服阻力所做的功.121102x k W kxdx x ==⎰,2122221()2x x k W kxdx x x ==-⎰,3222332()2x x k W kxdx x x ==-⎰,1x a =从而 212332k W W W x ++=又 12rW W =,2321W rW r W ==, 从而222231231(1)(1)22k k x W W W r r W r r a =++=++=++于是 3x =(2) 第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为),3,2,1( =n W n . 则汽锤前n 次所功的和等于克服桩被打进地下n x m 所做的功.11210(1)nx n n kxdx W W W r r W -=+++=+++⎰而 2102a kW kxdx a ==⎰ 牛-莱公式 所以212(1)22n n k k x r r a -=+++从而 n x = 等比数列求和公式由于01r <<,所以1lim n n x +→∞=.七【详解】 (1) 将题中的dy dx 与22d x dy 变换成以x 为自变量y 为因变量的导数dx dy 与22d ydx来表示(即通常所说的反函数变量变换),有dy dx =y dxdy '=11,)(22dy dx dy d dy x d ==dy dx y dx d ⋅')1(=32)(1y y y y y '''-='⋅'''-. 代入原方程,得 .s i nx y y =-'' ( * ) (2) 方程( * )所对应的齐次方程为0=-''y y ,特征方程为210r -=,根1,21r =±,因此通解为.21xxe C e C Y -+= 由于i λω+不是特征方程得根,所以设方程( * )的特解为x B x A y sin cos *+=则 *sin cos y A x B x '=-+,*cos sin y A x B x ''=--代入方程( * ),得:cos sin cos sin 2cos 2sin sin A x B x A x B x A x B x x ----=--= 解得21,0-==B A ,故x y sin 21*-=. 从而x y y sin =-''的通解为 .sin 2121*x e C e C y Y y x x -+=+=-由23)0(,0)0(='=y y ,得1,121-==C C .故变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解为.sin 21x e e y x x --=-且()y x 的导函数1()cos 02x x y x e e x -'=+->,满足题设0y '≠条件.八【详解】(1) 首先对()F t 进行化简,三重积分转化为在球面坐标系中的计算;二重积分转化为在极坐标系中的计算.222222220()()()sin 2sin ()t tt f x y z dv d d f r r dr d f r r dr πππθϕϕπϕϕΩ++==⎰⎰⎰⎰⎰⎰⎰⎰()2222002()cos 4()t tf r r dr f r r dr ππϕπ=⋅-=⎰⎰ (球面坐标)222220()()()2()t tD t f x y d d f r rdr f r rdr πσθπ+==⎰⎰⎰⎰⎰ (极坐标)所以222220000222()sin 4()()()2()ttttd d f r r drf r r drF t d f r rdrf r rdrπππθϕϕπθπ==⎰⎰⎰⎰⎰⎰⎰22022()()ttf r r drf r rdr=⎰⎰为了讨论()F t 在区间),0(+∞内的单调性,对()F t 求导:222222022()()()()()2[()]t ttt f t f r rdr f r r dr f t tF t f r rdr ⋅-⋅'=⎰⎰⎰22022()()()2[()]tttf t f r r t r drf r rdr ⋅-=⎰⎰由于()0,0,0f t r t r >>->,所以2()()0f r r t r ->. 再利用定积分的性质:若在区间[,]a b 上()0f x >,则()0baf x dx >⎰. 所以()0F t '>,所以()F t 在区间),0(+∞内严格单调增加.(2) 将待证的不等式作适当的恒等变形后,构造辅助函数,再用单调性进行证明即可. 因为 2220()2()2()tt ttf x dx f x dx f r dr -==⎰⎰⎰,所以2222()022200()2()()()()2()()ttD t ttttf x y d f r rdr f r rdrG t f x dxf r drf r drσππ-+===⎰⎰⎰⎰⎰⎰⎰要证明0t >时)(2)(t G t F π>,只需证明0t >时,0)(2)(>-t G t F π,即22200222()2()2()()()()t tttf r r drf r rdrF tG t f r rdrf r drπ-=-⎰⎰⎰⎰()()()()()222222202()()()()()tttttf r r dr f r dr f r rdr f r rdr f r dr⎡⎤⋅-⎢⎥⎣⎦=⋅⎰⎰⎰⎰⎰令 ()()()22222()()()()tt tg t f r r dr f r dr f r rdr =⋅-⎰⎰⎰222222220222()()()()()2()()()()()0ttttg t f t t f r dr f t f r r dr f t t f r rdrf t f r t r dr t '=+-=->>⎰⎰⎰⎰故()g t 在),0(+∞内单调增加,又因为(0)0g =,所以当0t >时,有()0)0g t g >=(, 从而0t >时,).(2)(t G t F π>九【分析】 法1:可先求出*1,A P -,进而确定P A P B *1-=及2B E +,再按通常方法确定其特征值和特征向量;法2:先求出A 的特征值与特征向量,再相应地确定*A 的特征值与特征向量,最终根据2B E +与*2A E +相似求出其特征值与特征向量. 【详解】方法1:经计算可得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=522252225*A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1000011101P ,所以 P A P B *1-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----322452007,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=+5224720092E B . 令 2900(2)274(9)(3)0225E B E λλλλλλ--+=-=--=-,故2B E +的特征值为.3,9321===λλλ当921==λλ时,解0)9(=-x A E ,得线性无关的特征向量为,0111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=η ,1022⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=η所以属于特征值921==λλ的所有特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+102011212211k k k k ηη,其中21,k k 是不全为零的任意常数.当33=λ时,解0)3(=-x A E ,得线性无关的特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1103η,所以属于特征值33=λ的所有特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110333k k η,其中03≠k 为任意常数. 方法2:设A 的特征值为λ,对应的特征向量为η,即ληη=A .由于07≠=A ,所以.0≠λ所以 ***()()A A A E A A A E A A A E ηηηη=⇒=⇒=***()AA A A A A ληηληηηηλ⇒=⇒=⇒=,于是 11*11()()()AB P P A P P P ηηηλ----==,.)2()2(11ηλη--+=+P AP E B因此,2+λA为2B E +的特征值,对应的特征向量为.1η-P由于)7()1(3222322232--=---------=-λλλλλλA E ,故A 的特征值为1231,7λλλ===当121==λλ时,对应的线性无关特征向量可取为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=0111η, .1012⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=η当73=λ时,对应的一个特征向量为.1113⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=η 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1000011101P,得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-01111ηP ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-11121ηP ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-11031ηP .因此,2B E +的三个特征值分别为9,9,3.对应于特征值9的全部特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+--11101121212111k k P k P k ηη,其中21,k k 是不全为零的任意常数;对应于特征值3的全部特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-1103313k P k η,其中3k 是不为零的任意常数.十【分析】三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】方法1:“必要性”. 设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*) 有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a c c b b a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b a c a c b c b a A 323232的秩均为2,于是.0=A232()3()23232323a b c a b c b c a c a b A bc a b c a c a bc ab -++++-++=-=---123111()236()23a b c b ca abc b c a c a b c a b-=++-=-++-1006()6()c b a ba b c b c b a b a b c a c b cc a c b c--=-++--=-++----6()[()()()()]a b c c b b c a b a c =-++-----2226()()a b c bc c b bc a ac ab bc =-++--+-++- 2226()()a b c a b c ac ab bc =++++--- 2223()[()()()]a b c a b b c c a =++-+-+-,由于三条直线互不相同,所以0)()()(222≠-+-+-a c c b b a ,故.0=++c b a“充分性”. 由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A由于])([2)(22222b b a a b ac cb ba ++-=-==0]43)21[(222≠++-b b a ,故秩()2A =.于是,秩(A )=秩)(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点.方法2:“必要性”设三直线交于一点),(00y x ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100y x 为0BX =的非零解,其中2323.23a b c B b c a c a b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 所以||0B =.而232323232323a b c a bcB bc a bc a A c a bca b-==--=-- 2223()[()()()]a b c a b b c c a =-++-+-+-,(解法同方法1)但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a “充分性”:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)将方程组(*)的三个方程相加,并由.0=++c b a 可知,方程组(*)等价于方程组⎩⎨⎧-=+-=+.32,32a cy bx c by ax (* *) 因为])([2)(22222b b a a b ac cb b a ++-=-==222[()]0a b a b -+++≠,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线321,,l l l 交于一点.十一【详解】乙箱中可能的次品件数为0,1,2,3,分别求出其概率,再按定义求数学期望即可;而求从乙箱中任取一件产品是次品的概率,涉及到两次试验,是典型的用全概率公式的情形,第一次试验的各种可能结果(取到的次品数)就是要找的完备事件组.(1) 方法1:X 的可能取值为0,1,2,3, 取出k 件次品()0,1,2,3k =的取法有333kkC C -种;样本空间即从两个箱子中取出3件产品的总的取法数为36C .所以有,X 的概率分布为36333}{C C C k X P kk -==, k 0,1,2,3.= 即 X 0 1 2 3 P201 209 209 201 因此,由离散型数学期望的定义{}1()nk k k E X x P X x ==⋅=∑易得 19913()0123.202020202E X =⨯+⨯+⨯+⨯= 方法2:本题对数学期望的计算也可用分解法:设0, ,1,i i X i ⎧=⎨⎩从甲箱中取出的第件产品是合格品从甲箱中取出的第件产品是次品. 则i X 的概率分布为i X 0 1P21 21.3,2,1=i 因为321X X X X ++=,所以由数学期望的线性可加性,有word 格式精心整理版范文范例 学习指导 ()()()()1233.2E X E X E X E X =++= (2) 设A 表示事件“从乙箱中任取一件产品是次品”,由于}0{=X ,}1{=X ,}2{=X ,}3{=X 构成完备事件组,因此根据全概率公式,有∑====30}{}{)(k k X A P k X P A P =33001{}{}66k k k P X k k P X k ===⋅=⋅=∑∑ ()1131.6624E X ==⋅=十二【分析】本题表面上是一数理统计问题,实际上考查了求分布函数、随机变量的函数求分布和概率密度以及数学期望的计算等多个知识点.将数理统计的概念与随机变量求分布与数字特征结合起来是一种典型的命题形式.求分布函数()F X 是基本题型:求统计量θˆ的分布函数)(ˆx F θ,可作为多维相互独立且同分布的随机变量函数求分布函数,直接用定义即可;是否具有无偏性,只需检验θθ=ˆE 是否成立.【详解】(1) 由连续型随机变量分布函数的定义,有.,,0,1)()()(2θθθ≤>⎩⎨⎧-==⎰∞---x x e dt t f x F xx (2) 由题给).,,,min(ˆ21nX X X =θ,有 }),,,{min(}ˆ{)(21ˆx X X X P x P x F n≤=≤= θθ 121{min(,,,)}n P X X X x =->121{,,,}n P X x X x X x =->>> 1[1()]n F x =--2(),1,.0,n x x e x θθθ-->⎧-=⎨≤⎩(3) 由连续型随机变量概率密度是分布函数在相应区间上的微分得θˆ概率密度为 .,,0,2)()()(2ˆˆθθθθθ≤>⎩⎨⎧==--x x ne dx x dF x f x n 因为 2()ˆˆ()()2n x E xf x dx nxe dx θθθθ+∞+∞---∞==⎰⎰12nθθ=+≠, 所以θˆ作为θ的估计量不具有无偏性.。
2003考研数学真题+答案
![2003考研数学真题+答案](https://img.taocdn.com/s3/m/9f0ebdca8bd63186bcebbcde.png)
1 x 与 x 轴及直线 x e 所围成的三角形绕直线 x e 旋转所得的圆锥体积 e
1 e 2 ;曲线 y ln x 与 x 轴及直线 x e 所围成的图形绕直线 x e 旋转所得的旋 3
2003 年 • 第 2 页
郝海龙:考研数学复习大全·配套光盘·2003 年数学试题参考解答及评分标准
即汽锤击打 3 次后,可将桩打进地下
1 r r 2 a
n 1
m.
„„ 6 分
(2) 用归纳法:设 xn 1 r ... r
a ,则
2003 年 • 第 4 页
郝海龙:考研数学复习大全·配套光盘·2003 年数学试题参考解答及评分标准
k k „„ 8 分 kxdx ( x2n1 x 2n ) [ x2n1 (1 r r n1 )a 2 ] xn 2 2 2 n1 由于 Wn1 rWn r 2Wn1 r nW ,故得 xn )a2 r n a2 , 1 (1 r r Wn1
sin x
dx
„„ 6 分 „„ 8 分
(2) 由于 esin x e sin x 2,
2003 年 • 第 3 页
郝海龙:考研数学复习大全·配套光盘·2003 年数学试题参考解答及评分标准
故由(1)得 xe
L
sin y
dy ye sin x dx (e sin x e sin x )dx 2 2
0
„„ 10 分
证法 2
(1) 根据格林公式, 得 xe
L
sin x
sin y
dy ye sin x dx (e sin y e sin x )d „„ 2 分
2003考研数一真题及解析
![2003考研数一真题及解析](https://img.taocdn.com/s3/m/fe81a20ae87101f69e3195d4.png)
2003年全国硕士研究生入学统一考试数学一试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(1)1ln(1)lim(cos )x x x +→=(2) 曲面22y x z +=与平面042=-+z y x 平行的切平面的方程是.(3) 设)(cos 02ππ≤≤-=∑∞=x nx ax n n,则2a = .(4) 从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为.(5) 设二维随机变量(,)X Y 的概率密度为,y x x y x f 其他,10,0,6),(≤≤≤⎩⎨⎧=则=≤+}1{Y X P.(6) 已知一批零件的长度X (单位:cm cm)服从正态分布)1,(μN ,从中随机地抽取16个 零件,得到长度的平均值为40 (cm ),则μ的置信度为0.95的置信区间是.(注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ二、选择题:本题共6小题,每小题4分,共24分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1) 设函数()f x 在),(+∞-∞内连续,其导函数的图形如图所示, 则()f x 有( )(A)一个极小值点和两个极大值点. (B)两个极小值点和一个极大值点. (C)两个极小值点和两个极大值点. (D)三个极小值点和一个极大值点.(2) 设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有( )(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在.(3) 已知函数(,)f x y 在点(0,0)的某个邻域内连续,且1)(),(lim2220,0=+-→→y x xyy x f y x ,则( ) (A) 点(0,0)不是(,)f x y 的极值点. (B) 点(0,0)是(,)f x y 的极大值点. (C) 点(0,0)是(,)f x y 的极小值点.(D) 根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点.(4) 设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则( )(A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关. (C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关.(5) 设有齐次线性方程组0Ax =和0Bx =, 其中,A B 均为n m ⨯矩阵,现有4个命题:① 若0Ax =的解均是0Bx =的解,则秩(A )≥秩(B ); ② 若秩(A )≥秩(B ),则0Ax =的解均是0Bx =的解; ③ 若0Ax =与0Bx =同解,则秩(A )=秩(B ); ④ 若秩(A )=秩(B ), 则0Ax =与0Bx =同解. 以上命题中正确的是( )(A) ① ②. (B) ① ③.(C) ② ④. (D) ③ ④.(6) 设随机变量21),1)((~X Y n n t X =>,则( ) (A) )(~2n Y χ. (B) )1(~2-n Y χ.(C) )1,(~n F Y . (D) ),1(~n F Y .三 、(本题满分10分)过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D . (1) 求D 的面积A ;(2) 求D 绕直线x e =旋转一周所得旋转体的体积V .四 、(本题满分12分)将函数x x x f 2121arctan )(+-=展开成x 的幂级数,并求级数∑∞=+-012)1(n nn 的和.五 、(本题满分10分)已知平面区域}0,0),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界. 试证: (1) dx ye dy xe dx ye dy xe xLy x Ly sin sin sin sin -=-⎰⎰--; (2).22sin sin π≥--⎰dx ye dy xex Ly六 、(本题满分10分)某建筑工程打地基时,需用汽锤将桩打进土层. 汽锤每次击打,都将克服土层对桩的阻力而作功. 设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为,0k k >).汽锤第一次击打将桩打进地下a m . 根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数(01)r r <<. 问(1) 汽锤击打桩3次后,可将桩打进地下多深?(2) 若击打次数不限,汽锤至多能将桩打进地下多深? (注:m 表示长度单位米.)七 、(本题满分12分)设函数()y y x =)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是()y y x =的反函数.(1) 试将()x x y =所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为()y y x =满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解.八 、(本题满分12分)设函数()f x 连续且恒大于零,⎰⎰⎰⎰⎰+++=Ω)(22)(222)()()(t D t d y xf dvz y x f t F σ,⎰⎰⎰-+=tt D dxx f d y x f t G 12)(22)()()(σ,其中}),,{()(2222t z y x z y x t ≤++=Ω,}.),{()(222t y x y x t D ≤+=(1) 讨论()F t 在区间),0(+∞内的单调性.(2) 证明当0t >时,).(2)(t G t F π>九 、(本题满分10分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=322232223A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100101010P ,P A P B *1-=,求2B E +的特征值与特征向量,其中*A 为A 的伴随矩阵,E 为3阶单位矩阵.十 、(本题满分8分)已知平面上三条不同直线的方程分别为1:230l ax by c ++=,2:230l bx cy a ++=,3:230l cx ay b ++=.试证: 这三条直线交于一点的充分必要条件为.0=++c b a十一 、(本题满分10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品. 从甲箱中任取3件产品放入乙箱后,求:(1) 乙箱中次品件数X 的数学期望; (2) 从乙箱中任取一件产品是次品的概率.十二 、(本题满分8分)设总体X 的概率密度为⎩⎨⎧≤>=--,,,0,2)()(2θθθx x e x f x其中0>θ是未知参数. 从总体X 中抽取简单随机样本n X X X ,,,21 ,记).,,,min(ˆ21nX X X =θ (1) 求总体X 的分布函数()F x ; (2) 求统计量θˆ的分布函数)(ˆx F θ;(3) 如果用θˆ作为θ的估计量,讨论它是否具有无偏性.2003年全国硕士研究生入学统一考试数学一试题解析一、填空题 (1)【详解】方法1:求()lim ()v x u x 型极限,一般先化为指数形式()()ln ()lim ()lim v x v x u x u x e =然后求lim ()ln ()v x u x ,再回到指数上去.)1ln(12)(cos lim x x x +→=220ln cos ln cos limln(1)ln(1)lim x xxx x x e e→++→=,而2200ln cos ln(1cos 1)limlim ln(1)ln(1)x x x x x x →→+-=++20cos 1lim x x x →-=(等价无穷小替换ln(1)x x +) 220112lim 2x x x →-==-(等价无穷小替换211cos 2x x -) 故 原式=.121ee=-方法2:令1ln(1)(cos )x y x +=,有2ln cos ln ln(1)xy x =+,以下同方法1.(2)【答案】542=-+z y x【详解】由题意,只要满足所求切平面的法向量与已知平面的法向量平行即可.平面042=-+z y x 的法向量:1{2,4,1}n =-;曲面22y x z +=在点),,(000z y x 的法向量:20000{(,),(,),1}x y n z x y z x y =-00{2,2,1}x y =-由于12//n n ,因此有00221241x y -==- 可解得,2,100==y x ,相应地有.520200=+=y x z所求切平面过点(1,2,5),法向量为:2{2,4,1}n =-,故所求的切平面方程为0)5()2(4)1(2=---+-z y x ,即 542=-+z y x(3)【答案】1【详解】将)()(2ππ≤≤-=x x x f 展开为余弦级数2()cos ()n n f x x a nx x ππ∞===-≤≤∑,其中⎰=ππcos )(2nxdx x f a n .所以 x d x xdx x a 2sin 12cos 2222⎰⎰=⋅=ππππ21[sin2sin22]x xx xdx πππ=-⋅⎰1cos2xd x ππ=⎰001[cos2cos2]x x xdx πππ=-⎰1=(4)【答案】⎪⎪⎭⎫ ⎝⎛--2132【详解】n 维向量空间中,从基n ααα,,,21 到基n βββ,,,21 的过渡矩阵P 满足[n βββ,,,21 ]=[n ααα,,,21 ]P ,因此过渡矩阵P 为:P =[121],,,-n ααα [],,,21n βββ .根据定义,从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为P =[121],-αα[⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=-21111011],121ββ=.213221111011⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-(5)【答案】14. 【分析】本题为已知二维随机变量(,)X Y 的概率密度(,)f x y ,求满足一定条件的概率}),({0z Y X g P ≤.连续型二维随机变量(,)X Y 概率的求解方法(,)(,),y xF x y f u v dudv -∞-∞=⎰⎰此题可转化为二重积分}),({0z Y X g P ≤0(,)(,)g x y z f x y dxdy ≤=⎰⎰进行计算.【详解】图中阴影区域为积分区域. 由题设,有=≤+}1{Y X P 1(,)x y f x y dxdy +≤⎰⎰11206xxdx xdy -=⎰⎰1220(612)x x dx =-⎰14=(6)【答案】)49.40,51.39(. 【分析】可以用两种方法求解:(1) 已知方差12=σ,对正态总体的数学期望μ进行估计. 因为(,1)X N μ,设有n个样本,样本均值11ni i X X n ==∑,则1(,)XN n μ,将其标准化,~(0,1)X N 得:)1,0(~1N nX μ- 由正态分布分为点的定义αμα-=<-1}1{2u nX P 可确定临界值2αu ,进而确定相应的置信区间22(x u x u αα-+.(2)本题是在单个正态总体方差已知条件下,求期望值μ的置信区间问题.由教材上已经求出的置信区间22(x u x u αα-+,其中2{}1,(0,1)P U u UN αα<=-,可以直接得出答案.【详解】方法1:由题设,95.01=-α,可见.05.0=α 查标准正态分布表知分位点.96.12=αu 本题16n =, 40=x .根据 1.96}0.95P <=,有 1.96}0.95P <=,即{39.5140.49}0.95P μ<<=,故μ的置信度为0.95的置信区间是)49.40,51.39(.方法2:由题设,95.01=-α,22222{}{}2()10.95,()0.975P U u P u U u u u ααααα<=-<<=Φ-=Φ=查得.96.12=αu 将1σ=,16n =, 40=x代入22(x u x u αα-+得置信区间)49.40,51.39(二、选择题 (1)【答案】()C【分析】函数的极值点可能是驻点(一阶导数为零) 或导数不存在的点,极值点是极大值点还是极小值 点可进一步由取极值的第一或第二充分条件判定. 【详解】根据导函数的图形可知,一阶导数为零的 点有3个(导函数与x 轴交点的个数);0x =是导数 不存在的点.对3个一阶导数为零的点左右两侧导数符号均 不一致,故必为极值点,其中第一个交点左右两侧 导数符号由正变为负,是极大值点;第二个交点和第三个交点左右两侧导数符号由负变为正,是极小值点,则三个驻点中有两个极小值点,一个极大值点;对导数不存在的点:0x =.左侧一阶导数为正,右侧一阶导数为负,可见0x =为极大值点.故()f x 共有两个极小值点和两个极大值点,应选(C).(2)【答案】()D 【详解】方法1:推理法由题设lim 1n n b →∞=,假设lim n n n b c →∞存在并记为A ,则lim limn nn n n nb c c A b →∞→∞==,这与lim n n c →∞=∞矛盾,故假设不成立,lim n n n b c →∞不存在. 所以选项()D 正确.方法2:排除法取1n a n =,1n n b n-=,满足0lim =∞→n n a ,1lim =∞→n n b , 而11111,0,a b a b ==>,()A 不正确;取1n n b n-=,2n c n =-,满足1lim =∞→n n b ,∞=∞→n n c lim ,而1101b c =>-=,()B 不正确;取1n a n=,2n c n =-,满足0lim =∞→n n a ,∞=∞→n n c lim ,而lim 1n n n a c →∞=,()C 不正确.(3)【答案】()A 【详解】由2220,0(,)lim1()x y f x y xyx y →→-=+222(,)(1)()f x y xy x y α⇒-=++,其中00lim 0x y α→→=. 由(,)f x y 在点(0,0)连续知,(0,0)0f =.取y x =,x 充分小,0x ≠,有222(,)(1)(2)0f x y x x α=++>;取y x =-,x 充分小,0x ≠,有222(,)(1)(2)0f x y x x α=-++< 故点(0,0)不是(,)f x y 的极值点,应选()A . (极值的定义)(4)【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C).(5)【答案】(B)【分析】本题可找反例用排除法进行分析,但①、②两个命题的反例比较复杂一些,关键是抓住③、④,迅速排除不正确的选项. 【详解】若0AX =与0BX =同解,则它们的解空间中的基础解系所含向量个数相同,即n -秩(A )=n -秩(B ), 得秩(A )=秩(B ),命题③成立,可排除(A), (C);但反过来,若秩(A )=秩(B ),则不能推出0AX =与0BX =同解,通过举一反例证明,若⎥⎦⎤⎢⎣⎡=0001A ,⎥⎦⎤⎢⎣⎡=1000B ,则秩(A )=秩(B )=1,但0AX =与0BX =不同解,可见命题④不成立,排除(D). 故正确选项为(B).(6)【答案】(C).【分析】求解这类问题关键在于了解产生2χ变量、t 变量、F 变量的典型模式.(1)2χ分布:设12,,,n X X X 相互独立且均服从标准正态分布,则随机变量21ni i Z X ==∑服从自由度为n 的2χ分布.记做2().Z n χ(2)t 分布:设1(0,1)X N ,22~()X n χ,且12,X X 相互独立,则随机变量Z =服从自由度为n 的t 分布.记做()Zt n(3)F 分布:设2212(),(),Xn Y n χχ且,X Y 相互独立,则随机变量12X n Z Y n =服从F 分布,其第一、二自由度分别为12,.n n 记做12(,).ZF n n【详解】其实,由F 分布的性质以及t 分布和F 分布的关系得,(1) 如果统计量 ()T t n ,则有2(1,)T F n ;(2) 如果统计量12(,)FF n n ,则有211(,)F n n F.由以上两条性质可以直接得出本题的答案为(C).先由t分布的定义知()X t n =,其中)(~),1,0(~2n V N U χ,于是 21XY ==122U n V U n V =, 分母中只含有一个标准正态分布的平方,所以)1(~22χU . 由F 分布的定义知~(,1).Y F n故应选(C).三【分析】圆锥体体积公式:213V r h π=⋅;旋转体的体积:(1) 连续曲线()y f x =,直线x a =、x b =所围成的图形绕直线0x x =旋转一周而成的立体的体积[]210()ba V f x x dx π=-⎰(2) 连续曲线()x g x =,直线y c =、y d =所围成的图形绕直线0y y =旋转一周而成的立体的体积[]220()dcV g y y dy π=-⎰【详解】为了求D 的面积,首先要求出切点的坐标,设切点的横坐标为0x ,则曲线ln y x =在点)ln ,(00x x 处的切线方程是:).(1ln 000x x x x y -+=切线的斜率为01x y x '=,由于该切线过原点,将(0,0)点代入切线方程,得01ln 0=-x ,从而.0e x = 所以该切线的方程为.1x ey =(1) 利用平面图形D 的面积公式()()S y y dy βαϕψ=-⎰,得⎰-=-=1.121)(e dy ey e A y (2) 旋转体体积可用一大立体(圆锥)体积减去一小立体体积进行计算,为了帮助理解,可画一草图.切线x ey 1=与x 轴及直线x e =所围成的三角形绕直线x e =旋转所得的圆锥体积为: 122101().3V e ey dy e ππ=-=⎰曲线ln y x =与x 轴及直线x e =所围成的图形绕直线x e =旋转所得的旋转体体积为:dy e e V y 212)(⎰-=π1220(2)y y e e e e dy π=-⋅+⎰12201(2)2yy e y e e e π=-⋅+211(2)22e e π=-+-因此所求旋转体的体积为).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππ四【分析】幂级数展开有直接法与间接法,一般考查间接法展开,即通过适当的恒等变形、求导或积分等,转化为可利用已知幂级数展开的情形.另外,由于函数展开成的幂级数,经两边求导或积分(其中一边是逐项求导或逐项积分)后,其新的展开式收敛区间不变,但在收敛区间端点处,求导(积分)后的展开式成立与否,要另行单独处理,设已有00()()n n n f x a x x ∞==-∑收敛区间为00(,)x R x R -+. 如果在0x x R =+处级数收敛,并且()f x (左)连续,则展开式成立的范围可扩大到0x x R =+处,在0x x R =-处亦有类似的结论,不过此时()f x (左)连续应改称(右)连续.【详解】本题可先求导,()f x '()2222(12)2(12)1212121212111212x x x x x x x x x '-+---⎛⎫ ⎪++⎝⎭==--⎛⎫⎛⎫++ ⎪ ⎪++⎝⎭⎝⎭基本求导公式 22422(14)14x x --==++21214x =-+ 对于函数2114x+,可以利用我们所熟悉的函数x -11的幂级数展开: 2011(11)1nnn x x x x x x ∞==+++++=-<<-∑所以 2222001(4)(1)414114nn n n n n x x x x ∞∞===-=--<-<+∑∑ (把x 换成24x -) 有 22111()22(1)4,(,).1422n n n n f x x x x ∞='=-=--∈-+∑对上式两边求积分,得200()(0)()2(1)4xxn n n n f x f f t dt t dt ∞=⎛⎫'-==-- ⎪⎝⎭∑⎰⎰221000(1)4112(1)42,(,)2122n n x nnnn n n t dt x x n ∞∞+==-=--=-∈-+∑∑⎰,又因为04f π=(),所以()(0)()xf x f f t dt '=+⎰=).21,21(,124)1(24120-∈+--+∞=∑x x n n n nn π即 21012(1)411arctan 2,(,).1242122n n n n x x x x n π∞+=--=-∈-++∑ (*)在21=x 处,右边级数成为0(1)1212n n n ∞=-⋅+∑,收敛(利用莱布尼茨定理),左边函数()f x 连续,所以成立范围可扩大到21=x 处.而在12x =-处,右边级数虽然收敛,但左边函数()f x 不连续,所以成立范围只能是11(,]22x ∈-.为了求∑∞=+-012)1(n nn ,令21=x 代入(*)得∑∑∞=+∞=+--=⋅+--=012012)1(4]21124)1([24)21(n nn n n n n f ππ, 再由0)21(=f ,得.4)21(412)1(0ππ=-=+-∑∞=f n n n五【详解】(1) 方法1:用格林公式证明. 由曲线为正向封闭曲线,自然想到用格林公式L D Q P Pdx Qdy dxdy x y ⎛⎫∂∂+=- ⎪∂∂⎝⎭⎰⎰⎰. 所以 ⎰⎰⎰--+=-Dx y x Ly dxdy e e dx ye dy xe )(sin sin sin sin 所以⎰⎰⎰+=---Dx y x Ly dxdy e e dx ye dy xe )(sin sin sin sin 因为积分区域D 关于y x =对称,所以sin sin sin sin ()()x y yxy xDDeedxdye e dxdy --+=+⎰⎰⎰⎰与互换故dx ye dy xe dx ye dy xe xLy x Ly sin sin sin sin -=-⎰⎰-- 方法2:化为定积分证明左边sin sin y x LL xe dy ye dx -=-⎰⎰=dx e dy e x y ⎰⎰--0sin 0sin ππππ=⎰-+ππ0sin sin )(dx e e x x右边sin sin y x LLxe dy ye dx -=-⎰⎰=⎰⎰--ππππ00sin sin dx e dy e x y =⎰-+ππ0sin sin )(dx e e x x所以dx ye dy xe dx ye dy xe x Ly x Ly sin sin sin sin -=-⎰⎰--. (2) 方法1:用格林公式证明⎰⎰⎰--+=-Dx y x Lydxdy e e dx ye dy xe)(sin sin sin sin=dxdy e dxdy e DDx y ⎰⎰⎰⎰-+sin sin =dxdy e dxdy e DDxx ⎰⎰⎰⎰-+sin sin 利用轮换对称性 =sin sin ()2x x DDe e dxdy dxdy -+≥⎰⎰⎰⎰22π=(因为0,0a b a b +≥>>)方法2:由(1)知,sin sin sin sin 0()2y x x x Lxe dy ye dx e e dx dx ππππ---=+≥⎰⎰⎰22π=六【详解】(1) 建立坐标系,地面作为坐标原点,向下为x 轴正向,设第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为),3,2,1( =n W n .由题设,当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,汽锤所作的功等于克服阻力所做的功.121102x k W kxdx x ==⎰,2122221()2x x k W kxdx x x ==-⎰,3222332()2x x k W kxdx x x ==-⎰,1x a =从而 212332k W W W x ++=又 12rW W =,2321W rW r W ==, 从而222231231(1)(1)22k k x W W W r r W r r a =++=++=++于是 3x =(2) 第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为),3,2,1( =n W n . 则汽锤前n 次所功的和等于克服桩被打进地下n x m 所做的功.11210(1)nx n n kxdx W W W r r W -=+++=+++⎰而 2102a kW kxdx a ==⎰ 牛-莱公式所以212(1)22n n k k x r r a -=+++从而 n x == 等比数列求和公式由于01r <<,所以1lim n n x +→∞=.七【详解】 (1) 将题中的dy dx 与22d xdy 变换成以x 为自变量y 为因变量的导数dx dy 与22d y dx 来表示(即通常所说的反函数变量变换),有dy dx =y dxdy '=11,)(22dy dx dy d dy x d ==dy dx y dx d ⋅')1(=32)(1y y y y y '''-='⋅'''-. 代入原方程,得 .s i nx y y =-'' ( * )(2) 方程( * )所对应的齐次方程为0=-''y y ,特征方程为210r -=,根1,21r =±,因此通解为.21x x e C e C Y -+= 由于i λω+不是特征方程得根,所以设方程( * )的特解为x B x A y sin cos *+=则 *sin cos y A x B x '=-+,*cos sin y A x B x ''=--代入方程( * ),得:cos sin cos sin 2cos 2sin sin A x B x A x B x A x B x x ----=--= 解得21,0-==B A ,故x y sin 21*-=. 从而x y y sin =-''的通解为 .sin 2121*x e C e C y Y y x x -+=+=-由23)0(,0)0(='=y y ,得1,121-==C C .故变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解为.sin 21x e e y x x --=-且()y x 的导函数1()cos 02x x y x e e x -'=+->,满足题设0y '≠条件.八【详解】(1) 首先对()F t 进行化简,三重积分转化为在球面坐标系中的计算;二重积分转化为在极坐标系中的计算.222222220()()()sin 2sin ()t tt f x y z dv d d f r r dr d f r r dr πππθϕϕπϕϕΩ++==⎰⎰⎰⎰⎰⎰⎰⎰()2222002()cos 4()t tf r r dr f r r dr ππϕπ=⋅-=⎰⎰ (球面坐标)222220()()()2()ttD t f x y d d f r rdr f r rdr πσθπ+==⎰⎰⎰⎰⎰ (极坐标)所以222220000222()sin 4()()()2()ttttd d f r r drf r r drF t d f r rdrf r rdrπππθϕϕπθπ==⎰⎰⎰⎰⎰⎰⎰22022()()ttf r r drf r rdr=⎰⎰为了讨论()F t 在区间),0(+∞内的单调性,对()F t 求导:222222022()()()()()2[()]t ttt f t f r rdr f r r dr f t tF t f r rdr ⋅-⋅'=⎰⎰⎰22022()()()2[()]tttf t f r r t r drf r rdr ⋅-=⎰⎰由于()0,0,0f t r t r >>->,所以2()()0f r r t r ->. 再利用定积分的性质:若在区间[,]a b 上()0f x >,则()0ba f x dx >⎰. 所以()0F t '>,所以()F t 在区间),0(+∞内严格单调增加.(2) 将待证的不等式作适当的恒等变形后,构造辅助函数,再用单调性进行证明即可. 因为 2220()2()2()tt ttf x dx f x dx f r dr -==⎰⎰⎰,所以2222()0022200()2()()()()2()()ttD t ttttf x y d f r rdr f r rdrG t f x dxf r drf r drσππ-+===⎰⎰⎰⎰⎰⎰⎰要证明0t >时)(2)(t G t F π>,只需证明0t >时,0)(2)(>-t G t F π,即22200222()2()2()()()()t tttf r r drf r rdrF tG t f r rdrf r drπ-=-⎰⎰⎰⎰()()()()()222222202()()()()()tt tttf r r dr f r dr f r rdr f r rdr f r dr⎡⎤⋅-⎢⎥⎣⎦=⋅⎰⎰⎰⎰⎰令 ()()()22222()()()()tt tg t f r r dr f r dr f r rdr =⋅-⎰⎰⎰222222220222()()()()()2()()()()()0t t ttg t f t t f r dr f t f r r dr f t t f r rdrf t f r t r dr t '=+-=->>⎰⎰⎰⎰故()g t 在),0(+∞内单调增加,又因为(0)0g =,所以当0t >时,有()0)0g t g>=(, 从而0t >时,).(2)(t G t F π>九【分析】 法1:可先求出*1,A P -,进而确定P A P B *1-=及2B E +,再按通常方法确定其特征值和特征向量;法2:先求出A 的特征值与特征向量,再相应地确定*A 的特征值与特征向量,最终根据2B E +与*2A E +相似求出其特征值与特征向量. 【详解】方法1:经计算可得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=522252225*A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1000011101P ,所以 P A P B *1-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----322452007,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=+5224720092E B . 令 2900(2)274(9)(3)0225E B E λλλλλλ--+=-=--=-,故2B E +的特征值为.3,9321===λλλ当921==λλ时,解0)9(=-x A E ,得线性无关的特征向量为,0111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=η ,1022⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=η所以属于特征值921==λλ的所有特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+102011212211k k k k ηη,其中21,k k 是不全为零的任意常数.当33=λ时,解0)3(=-x A E ,得线性无关的特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1103η,所以属于特征值33=λ的所有特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110333k k η,其中03≠k 为任意常数. 方法2:设A 的特征值为λ,对应的特征向量为η,即ληη=A .由于07≠=A ,所以.0≠λ所以 ***()()A A A E A A A E A A A E ηηηη=⇒=⇒=***()AA A A A A ληηληηηηλ⇒=⇒=⇒=,于是 11*11()()()AB P P A P P P ηηηλ----==,.)2()2(11ηλη--+=+P AP E B因此,2+λA为2B E +的特征值,对应的特征向量为.1η-P由于)7()1(3222322232--=---------=-λλλλλλA E ,故A 的特征值为1231,7λλλ===当121==λλ时,对应的线性无关特征向量可取为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=0111η, .1012⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=η 当73=λ时,对应的一个特征向量为.1113⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=η 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1000011101P,得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-01111ηP ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-11121ηP ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-11031ηP .因此,2B E +的三个特征值分别为9,9,3.对应于特征值9的全部特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+--11101121212111k k P k P k ηη,其中21,k k 是不全为零的任意常数;对应于特征值3的全部特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-1103313k P k η,其中3k 是不为零的任意常数.十【分析】三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】方法1:“必要性”. 设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a c c b b a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b a c a c b c b a A 323232的秩均为2,于是.0=A232()3()23232323a b c a b c b c a c a b A bca b c a c a bc ab -++++-++=-=---123111()236()23a b c b ca abc b ca c abc a b-=++-=-++-16()6()c ba ba b c b c b a b a b c a c b cc a c b c--=-++--=-++----6()[()()()()]a b c c b b c a b a c =-++-----2226()()a b c bc c b bc a ac ab bc =-++--+-++- 2226()()a b c a b c ac ab bc =++++--- 2223()[()()()]a b c a b b c c a =++-+-+-,由于三条直线互不相同,所以0)()()(222≠-+-+-a c c b b a ,故.0=++c b a“充分性”. 由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A由于])([2)(22222b b a a b ac cb b a ++-=-==0]43)21[(222≠++-b b a ,故秩()2A =.于是,秩(A )=秩)(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点.方法2:“必要性”设三直线交于一点),(00y x ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100y x 为0BX =的非零解,其中2323.23a b c B b c a c a b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦所以||0B =.而232323232323a b c a b cB bc a bca A c a bca b-==--=-- 2223()[()()()]a b c a b b c c a =-++-+-+-,(解法同方法1)但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a “充分性”:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*) 将方程组(*)的三个方程相加,并由.0=++c b a 可知,方程组(*)等价于方程组⎩⎨⎧-=+-=+.32,32a cy bx c by ax (* *) 因为])([2)(22222b b a a b ac cb ba ++-=-==222[()]0ab a b -+++≠,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线321,,l l l 交于一点.十一【详解】乙箱中可能的次品件数为0,1,2,3,分别求出其概率,再按定义求数学期望即可;而求从乙箱中任取一件产品是次品的概率,涉及到两次试验,是典型的用全概率公式的情形,第一次试验的各种可能结果(取到的次品数)就是要找的完备事件组.(1) 方法1:X 的可能取值为0,1,2,3, 取出k 件次品()0,1,2,3k =的取法有333k kC C -种;样本空间即从两个箱子中取出3件产品的总的取法数为36C .所以有,X 的概率分布为36333}{C C C k X P kk -==, k 0,1,2,3.= 即 X 0 1 2 3 P201 209 209 201 因此,由离散型数学期望的定义{}1()nk k k E X x P X x ==⋅=∑易得 19913()0123.202020202E X =⨯+⨯+⨯+⨯= 方法2:本题对数学期望的计算也可用分解法:设0, ,1,i i X i ⎧=⎨⎩从甲箱中取出的第件产品是合格品从甲箱中取出的第件产品是次品.则i X 的概率分布为 i X 0 1P 21 21 .3,2,1=i 因为321X X X X ++=,所以由数学期望的线性可加性,有()()()()1233.2E X E X E X E X =++= (2) 设A 表示事件“从乙箱中任取一件产品是次品”,由于}0{=X ,}1{=X ,}2{=X ,}3{=X 构成完备事件组,因此根据全概率公式,有∑====30}{}{)(k k X A P k X P A P =33001{}{}66k k k P X k k P X k ===⋅=⋅=∑∑ ()1131.6624E X ==⋅=十二【分析】本题表面上是一数理统计问题,实际上考查了求分布函数、随机变量的函数求分布和概率密度以及数学期望的计算等多个知识点.将数理统计的概念与随机变量求分布与数字特征结合起来是一种典型的命题形式.求分布函数()F X 是基本题型:求统计量θˆ的分布函数)(ˆx F θ,可作为多维相互独立且同分布的随机变量函数求分布函数,直接用定义即可;是否具有无偏性,只需检验θθ=ˆE 是否成立.【详解】(1) 由连续型随机变量分布函数的定义,有.,,0,1)()()(2θθθ≤>⎩⎨⎧-==⎰∞---x x e dt t f x F xx (2) 由题给).,,,min(ˆ21nX X X =θ,有 }),,,{min(}ˆ{)(21ˆx X X X P x P x F n≤=≤= θθ121{min(,,,)}n P X X X x =->121{,,,}n P X x X x X x =->>> 1[1()]n F x =--2(),1,.0,n x x e x θθθ-->⎧-=⎨≤⎩(3) 由连续型随机变量概率密度是分布函数在相应区间上的微分得θˆ概率密度为 .,,0,2)()()(2ˆˆθθθθθ≤>⎩⎨⎧==--x x ne dx x dF x f x n 因为 2()ˆˆ()()2n x E xf x dx nxe dx θθθθ+∞+∞---∞==⎰⎰12nθθ=+≠, 所以θˆ作为θ的估计量不具有无偏性.。
上海交通大学2002数学分析
![上海交通大学2002数学分析](https://img.taocdn.com/s3/m/359e18762e3f5727a5e962e7.png)
二(10分)设 在 上连续, 在 上一致连续,且
证明 在 上一致连续。
三(10分)设 在R上二次可导, .又存在一点 使 ,且(10分)设 在R上连续,又 单调递减,证明 ,
五(16分)讨论级数
(1) ,
(2) , 的敛散性。
七(10分)称 在点 处严格递增,是指 , , 时, 而当 时 。现设 在 上每点处均严格递增。证明: 在 上严格递增。
上海交通大学2002年数学分析考研试题
一判断题(以下个题,对的要证明,错的要举反例并说明理由,每题6分,共24分)
1.若 , 而数列 收敛, 则数列 , 必都收敛。
2.若函数 在R上连续且有界,则 在R上必一致连续。
3.若函数 恒正连续,且无穷积分 收敛,则必有 。
4.若函数列 , 均在区间I上一致收敛,则 , 必在I上一致收敛。
数学分析考研试题
![数学分析考研试题](https://img.taocdn.com/s3/m/e1502206de80d4d8d15a4f01.png)
3.设 f (x) = sin 2 (x2 + 1) .
(1)求 f (x) 的麦克劳林展开式。
(2)求 f (n) (0) 。 (n = 1,2,3 )
4.试作出定义在 R 2 中的一个函数 f (x, y) ,使得它在原点处同时满足以下三个条件:
∫∫ 恒有 P(x, y, z)dydz + Q(x, y, z)dzdx + R(x, y, z)dxdy = 0. Sr
求证: ∀(x, y, z), R(x, y, z) = 0, Px (x, y, z) + Qy (x, y, z) = 0.
4
武汉科技学院理学院
北京大学 2005 年
1. 设 f (x) = x 2 sin x − 1 sin x ,试求 lim sup f (x) 和 lim inf f (x) .
p→+∞ 0
0
6
武汉科技学院理学院
南京理工大; 0 ,n=1,2,
an → a ≠ 0, (n → ∞) ,证
lim n
n→∞
an
= 1。
∫∫ 二、(15 分)求积分 F ⋅ nds 其中 F=(xy,yz,xy),Σ 为半球面,x 2+y2+z 2=1,z ≥ 0 Σ
(1) f (x, y) 的两个偏导数都存在;(2)任何方向极限都存在;(3)原点不连续
∫ 5.计算 x2ds .其中 L 是球面 x 2 + y 2 + z 2 = 1与平面 x + y + z = 0 的交线。 L
6.设函数列{ fn (x)} 满足下列条件:(1) ∀n , f n (x) 在 [a, b] 连续且有 f n (x) ≤ f n+1 (x) ( x ∈[a, b] );(2){ fn (x)} 点点收敛于[a, b] 上的连续函数 s(x)
上海交通大学2003年数学分析考研试题
![上海交通大学2003年数学分析考研试题](https://img.taocdn.com/s3/m/02e615d880eb6294dd886cfa.png)
上海交通大学2003年数学分析考研试题一 判断以下各题,正确的给出证明,错误的举反例并说明理由。
(每小题6分,共24分)1. 若()x f 在R 上有定义,且在所有无理点处连续,则()x f 在R 上处处连续。
2. 若()x f ,()x g 连续,则()()()()x g x f x ,min =ϕ连续。
3. 任意两个周期函数之和仍为周期函数。
4. 若函数()y x f ,在区域D 内关于x,y 的偏导数均存在,则()y x f ,在D 内必连续。
二(12分)设()x f 在[]b a ,上无界,试证对任意0 δ,在[]b a ,上至少有一点x ,使得()x f 在0x 的δ邻域上无界。
三(12分)设()x f 对任意R x ∈有()()2xf x f =且()x f 在0=x 和1=x 处连续。
试证明()x f 在R 上为常数。
四(12分)已知0,...,,21 n a a a ,()2≥n 且()xx nx xn aa a x f 121...⎪⎪⎭⎫⎝⎛+++=,试求()n n x a a a x f ...lim 210=→五(12分)若实系数多项式()n n n nn a x a xa x a x P +++=--1110,00≠a 的一切根均为实数。
试证明导函数()x P n '也仅有实根。
六(12分)设{}n na 收敛,级数()∑∞=--21n n na an 收敛。
试证级数∑∞=1n n a 收敛。
七(12分)设()x y ϕ=,0≥x 是严格单调增加的连续函数,()00=ϕ是它的反函数。
试证明对0,0 b a 有()()ab dy y dx x ba≥+⎰⎰ψϕ八 计算题(每小题12分,共24分)1. 求函数()444,,z y x z y x f ++=在条件1=xyz 下的极值。
2. 计算积分()dz arctgzdxdy z y I V⎰⎰⎰-=,其中V 为由曲面()22221R z y x =-+,0=z 和h z =所围成的区域。
2003年全国硕士入学统考数学(一)试题及答案 .doc
![2003年全国硕士入学统考数学(一)试题及答案 .doc](https://img.taocdn.com/s3/m/491662e76bec0975f465e2c2.png)
2003年全国硕士入学统考数学(一)试题及答案一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) )1ln(12)(cos lim x x x +→ =e1 .【分析】 ∞1型未定式,化为指数函数或利用公式)()(lim x g x f )1(∞=)()1)(lim(x g x f e -进行计算求极限均可.【详解1】 )1ln(12)(cos lim x x x +→=xx x ecos ln )1ln(1lim20+→,而 212c o s s i n lim cos ln lim )1ln(cos ln lim02020-=-==+→→→x x xx x x x x x x , 故 原式=.121ee=-【详解2】 因为 2121lim )1ln(1)1(cos lim 2202-=-=+⋅-→→xxx x x x , 所以 原式=.121ee=-(2) 曲面22y x z +=与平面042=-+z y x 平行的切平面的方程是542=-+z y x .【分析】 待求平面的法矢量为}1,4,2{-=n,因此只需确定切点坐标即可求出平面方程, 而切点坐标可根据曲面22y x z +=切平面的法矢量与}1,4,2{-=n平行确定.【详解】 令 22),,(y x z z y x F --=,则x F x 2-=',y F y 2-=', 1='z F .设切点坐标为),,(000z y x ,则切平面的法矢量为 }1,2,2{00y x --,其与已知平面042=-+z y x 平行,因此有11422200-=-=-y x , 可解得 2,100==y x ,相应地有 .520200=+=y x z故所求的切平面方程为0)5()2(4)1(2=---+-z y x ,即 542=-+z y x .(3) 设)(cos 02ππ≤≤-=∑∞=x nx ax n n,则2a = 1 .【分析】 将)()(2ππ≤≤-=x x x f 展开为余弦级数)(cos 02ππ≤≤-=∑∞=x nx ax n n,其系数计算公式为⎰=ππcos )(2nxdx x f a n .【详解】 根据余弦级数的定义,有 x d x xdx x a 2sin 12cos 22022⎰⎰=⋅=ππππ=⎰⋅-πππ2]22sin 2sin [1xdx x xx=⎰⎰-=πππππ]2cos 2cos [12cos 1xdx xx x xd=1. (4)从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为⎪⎪⎭⎫ ⎝⎛--2132. 【分析】 n 维向量空间中,从基n ααα,,,21 到基n βββ,,,21 的过渡矩阵P 满足 [nβββ,,,21 ]=[nααα,,,21 ]P ,因此过渡矩阵P 为:P=[121],,,-n ααα [],,,21n βββ .【详解】根据定义,从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为P=[121],-αα[⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=-21111011],121ββ.=.213221111011⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡- (5)设二维随机变量(X,Y)的概率密度为 ,y x x y x f 其他,10,0,6),(≤≤≤⎩⎨⎧=则=≤+}1{Y X P41 . 【分析】 已知二维随机变量(X,Y)的概率密度f(x,y),求满足一定条件的概率}),({0z Y X g P ≤,一般可转化为二重积分}),({0z Y X g P ≤=⎰⎰≤0),(),(z y x g dxdy y x f 进行计算.【详解】 由题设,有 =≤+}1{Y X P ⎰⎰⎰⎰≤+-=121016),(y x xxxdy dx dxdy y x f=.41)126(2102=-⎰dx x x(6)已知一批零件的长度X (单位:cm)服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则μ的置信度为0.95的置信区间是)49.40,51.39( .(注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ 【分析】 已知方差12=σ,对正态总体的数学期望μ进行估计,可根据)1,0(~1N nX μ-,由αμα-=<-1}1{2u n X P 确定临界值2αu ,进而确定相应的置信区间. 【详解】 由题设,95.01=-α,可见.05.0=α 于是查标准正态分布表知.96.12=αu本题n=16, 40=x , 因此,根据 95.0}96.11{=<-nX P μ,有 95.0}96.116140{=<-μP ,即 95.0}49.40,51.39{=P ,故μ的置信度为0.95的置信区间是)49.40,51.39( .二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有(A) 一个极小值点和两个极大值点. (B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D)[ C ]【分析共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).(2)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ D ]【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).(3)已知函数f(x,y)在点(0,0)的某个邻域内连续,且1)(),(lim2220,0=+-→→y x xyy x f y x ,则(A) 点(0,0)不是f(x,y)的极值点. (B) 点(0,0)是f(x,y)的极大值点. (C) 点(0,0)是f(x,y)的极小值点.(D) 根据所给条件无法判断点(0,0)是否为f(x,y)的极值点. [ A ] 【分析】 由题设,容易推知f(0,0)=0,因此点(0,0)是否为f(x,y)的极值,关键看在点(0,0)的充分小的邻域内f(x,y)是恒大于零、恒小于零还是变号.【详解】 由1)(),(lim2220,0=+-→→y x xyy x f y x 知,分子的极限必为零,从而有f(0,0)=0, 且 222)(),(y x xy y x f +≈- y x ,(充分小时),于是.)()0,0(),(222y x xy f y x f ++≈-可见当y=x 且x 充分小时,04)0,0(),(42>+≈-x x f y x f ;而当y= -x 且x 充分小时,04)0,0(),(42<+-≈-x x f y x f . 故点(0,0)不是f(x,y)的极值点,应选(A).(4)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关. (C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ D ]【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C). 故正确选项为(D).(5)设有齐次线性方程组Ax=0和Bx=0, 其中A,B 均为n m ⨯矩阵,现有4个命题:① 若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B); ② 若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解; ③ 若Ax=0与Bx=0同解,则秩(A)=秩(B); ④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解. 以上命题中正确的是(A) ① ②. (B) ① ③.(C) ② ④. (D) ③ ④. [ B ] 【分析】 本题也可找反例用排除法进行分析,但① ②两个命题的反例比较复杂一些,关键是抓住③ 与 ④,迅速排除不正确的选项.【详解】 若Ax=0与Bx=0同解,则n-秩(A)=n - 秩(B), 即秩(A)=秩(B),命题③成立,可排除(A),(C);但反过来,若秩(A)=秩(B), 则不能推出Ax=0与Bx=0同解,如⎥⎦⎤⎢⎣⎡=0001A ,⎥⎦⎤⎢⎣⎡=1000B ,则秩(A)=秩(B)=1,但Ax=0与Bx=0不同解,可见命题④不成立,排除(D),故正确选项为(B).(6)设随机变量21),1)((~XY n n t X =>,则 (A) )(~2n Y χ. (B) )1(~2-n Y χ.(C) )1,(~n F Y . (D) ),1(~n F Y . [ C ] 【分析】 先由t 分布的定义知nV U X =,其中)(~),1,0(~2n V N U χ,再将其代入21X Y =,然后利用F 分布的定义即可. 【详解】 由题设知,nV U X =,其中)(~),1,0(~2n V N U χ,于是21X Y ==122U n V U n V =,这里)1(~22χU ,根据F 分布的定义知).1,(~12n F X Y =故应选(C).三 、(本题满分10分)过坐标原点作曲线y=lnx 的切线,该切线与曲线y=lnx 及x 轴围成平面图形D. (1) 求D 的面积A;(2) 求D 绕直线x=e 旋转一周所得旋转体的体积V.【分析】 先求出切点坐标及切线方程,再用定积分求面积A; 旋转体体积可用一大立体(圆锥)体积减去一小立体体积进行计算,为了帮助理解,可画一草图.【详解】 (1) 设切点的横坐标为0x ,则曲线y=lnx 在点)ln ,(00x x 处的切线方程是).(1ln 000x x x x y -+= 由该切线过原点知 01ln 0=-x ,从而.0e x = 所以该切线的方程为 .1x ey = 平面图形D 的面积 ⎰-=-=1.121)(e dy ey e A y (2) 切线x ey 1=与x 轴及直线x=e 所围成的三角形绕直线x=e 旋转所得的圆锥体积为 .3121e V π=曲线y=lnx 与x 轴及直线x=e 所围成的图形绕直线x=e 旋转所得的旋转体体积为 dy ee V y212)(⎰-=π,因此所求旋转体的体积为 ).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππ四 、(本题满分12分)将函数x xx f 2121arctan )(+-=展开成x 的幂级数,并求级数∑∞=+-012)1(n n n 的和.【分析】 幂级数展开有直接法与间接法,一般考查间接法展开,即通过适当的恒等变形、求导或积分等,转化为可利用已知幂级数展开的情形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(完整)上海交通大学2003年数学分析考研试题
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)上海交通大学2003年数学分析考研试题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)上海交通大学2003年数学分析考研试题的全部内容。
上海交通大学2003年数学分析考研试题
一 判断以下各题,正确的给出证明,错误的举反例并说明理由。
(每小题6分,共24分)
1. 若()x f 在R 上有定义,且在所有无理点处连续,则()x f 在R 上处处连续。
2. 若()x f ,()x g 连续,则()()()()x g x f x ,m in =ϕ连续。
3. 任意两个周期函数之和仍为周期函数。
4. 若函数()y x f ,在区域D 内关于x ,y 的偏导数均存在,则()y x f ,在D 内必连续。
二(12分)设()x f 在[]b a ,上无界,试证对任意0 δ,在[]b a ,上至少有一点x ,使得()x f 在0x 的
δ邻域上无界。
三(12分)设()x f 对任意R x ∈有()()2x f x f =且()x f 在0=x 和1=x 处连续。
试证明()x f 在R 上为常数。
四(12分)已知0,...,,21 n a a a ,()2≥n 且()x
x n
x x
n a a a x f 12
1
...⎪⎪⎭
⎫
⎝
⎛+++=,试求()n n x a a a x f ...lim 210=→ 五(12分)若实系数多项式()n n n n n a x a x a x a x P +++=--1110,00≠a 的一切根均为实数。
试证明导函数()x P n '也仅有实根。
六(12分)设{}n na 收敛,级数()∑∞
=--2
1n n n a a n 收敛。
试证级数∑∞
=1
n n a 收敛。
七(12分)设()x y ϕ=,0≥x 是严格单调增加的连续函数,()00=ϕ是它的反函数.试证明对
0,0 b a 有()()ab dy y dx x b
a
≥+⎰⎰0
ψϕ
八 计算题(每小题12分,共24分)
1. 求函数()4
4
4
,,z y x z y x f ++=在条件1=xyz 下的极值。
2. 计算积分()dz arctgzdxdy z y I V
⎰⎰⎰
-=
,其中V 为由曲面()222
2
1R z y x =-+,0=z 和h z =所围成的区域。
九(10分)设()x g 在[)+∞,a 上一致连续,且对任意的a x ≥有()A n x g n =++∞
→lim ,是试证()A x g x =+∞
→lim
十(10分)试证:()x x x +⎪⎭⎫
⎝
⎛+1111ln 2
十一(10分)设函数()x f 在[]b a ,上连续,在()b a ,内可导,且()x f 是非线性函数。
试证存在()b a ,∈ξ,使得()()()a
b a f b f f --'
ξ。