生物质热解制备生物油的经济性分析

合集下载

生物质热解油的性质和精制

生物质热解油的性质和精制

生物质热解油的性质和精制摘要:生物质属于人类的第四大能源来源,并且也属于一种可再生的资源,生物质在进行热化学转换的时候所发生的作用就是热解,其中热解可以分成快速热解以及慢速热解,现阶段研究最多的就是快速热解,最主要的局势能够得到生物油产品。

本文对于热解油的性质以及热解油的精制进行了详细的研究,通过研究能够明确能够对于热解造成影响的因素。

关键词:生物质;热解;生物油;精制引言现阶段我们面临着一个比较大的挑战,那就是能源危机。

生物质是一种比较稳定的资源,并且也是一种比较安全的资源,当进行转化之后,能够生产出比较多的能源,通过催化热解生物质能够得到生物油。

不过通过和矿物油的对比能够看出,生物质油还是存在比较多的不足,比如含水量比较高,并且酸度比较高,燃烧性比较差,本文对于生物质油所存在的问题进行了详细的分析,并且提出了相应的解决措施,这样可以确定出更加完善的工艺。

一.生物质热解油的特点所谓的生物质热解油指的就是生物质在隔绝空气的情况下经过热解进而得到的一种产物,通过对于热解条件的调整可以增强生产的效率。

现阶段的生物质在进行快速热解的时候还不能达到热力学平衡,所以得到的热解油质量一般。

随着温度的持续增加,热解油的黏度也会持续增加,要是温度过高就会产生聚合反应。

不仅如此,生物质热解油酸性较强,有一定的腐蚀性,要是热值较低,就会增加固体杂质的含量。

不过得到的生物质油稳定性较差,不可以当作燃料。

现阶段为了增强生物质油的稳定性,会采取一定的物理反应以及化反应,这样可以显著的增强生物质油的品质,进而得到更加广泛的使用。

1.1生物质热解油的理化性质通过对于生物质热解油的观察可以看出这是一种黑色的或者是黑褐色的粘稠液体。

主要是热解生物质里面的纤维素、半纤维素以及木素质得到的,通过研究能够看出,生物质的类别,热解的条件以及所选择的分离形式都会影响到生物质热解油的理化性质。

生物质热解油和一般的石油在性质上有着比较大的区别,并且也会使得热解油和石油在物理性质方面以及化学性质方面都存在一定的差异。

生物质热解与生物油的特性研究

生物质热解与生物油的特性研究

文章编号:025420096(2006)1221285205生物质热解与生物油的特性研究 收稿日期:2005208203 基金项目:中科院“知识创新”方向性项目(K JCXZ 2SW 204)朱锡锋,陆 强,郑冀鲁,郭庆祥,朱清时(中国科技大学生物质洁净能源实验室,合肥230026)摘 要:用木屑、稻壳、玉米秆和棉花秆为原料进行了热解液化试验,生物油的产率分别为63%、53%、57%和56%,生物油的热值均为17~18M J Πkg 。

生物油成分分析表明,生物油是一种复杂含氧有机化合物与水组成的混合物,包括了几乎所有化学类别的有机物,如醚、酯、醛、酮、酚、醇和有机酸等。

生物油粘温特性研究表明,当温度低于85℃时,生物油粘度随着温度升高而减小,符合液体粘温通用关系式;当温度高于85℃时,生物油粘度随着温度升高而上升,生物油中某些化合物开始产生聚合反应。

关键词:生物质;热解;生物油;粘度中图分类号:TK 6 文献标识码:A0 前 言生物质是一种与环境友好的可再生资源,在完全缺氧情况下快速受热主要降解为一种称为生物油的初级液体燃料,此外还有少量的焦炭和可燃气体。

影响生物质热解液化的主要工艺参数是加热速率、反应温度、气相滞留时间和高温有机蒸汽的淬冷[1]。

生物质转化为生物油后,其能量密度得到大幅提高(如秸秆可提高约10倍),故生物油的运输和储藏要比生物质容易许多[2]。

生物油的用途非常广泛:可以作为燃料油直接燃烧使用(燃烧时只需对现有热力设备略加改造即可);提质后可单独或与化石燃料混合用于内燃机[3~4];生物油是复杂有机化合物的混合物,从中可以分离提取出具有特殊用途或高附加值的化学品[5~6]。

总之,生物质热解液化作为大规模转化利用生物质的一个重要技术手段已越来越为人们所重视。

本文采用自行研制的快速流化床生物质热解液化装置对松木屑、稻壳、玉米秆和棉花秆4种物料进行了热解液化试验,生物油的产率分别为63%、53%、57%和56%,生物油的热值均为17~18M J Πkg 。

生物质快速热解制取生物油的研究进展

生物质快速热解制取生物油的研究进展

生物质快速热解制取生物油的研究进展作者:刘状廖传华李亚丽来源:《湖北农业科学》2017年第21期摘要:详细介绍了生物质快速热解制取生物油的国内外研究进展,并对生物质热解过程、生物质快速热解反应器和快速热解的影响因素分别进行了阐述。

生物油在未来的能源领域中有着广阔的前景,如何通过高效的热解方法和热解反应器来提高生物质能的利用率,仍是下一步研究的重点。

关键词:生物质能;快速热解;生物油中图分类号:TK6 文献标识码:A 文章编号:0439-8114(2017)21-4001-05DOI:10.14088/ki.issn0439-8114.2017.21.001Research Progress on Bio-oil Production From Fast Pyrolysis of BiomassLIU Zhuang, LIAO Chuan-hua, LI Ya-li(School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China)Abstract: An progresses on bio-oil production from fast pyrolysis of biomass was provided,the processes of fast pyrolysis, reactor and influence factors of fast pyrolysis were expounded. Bio-oil has a broad prospect in the future energy field. How to improve the utilization of biomass energy through efficient pyrolysis method and pyrolysis reactor is still the focus of the next step.Key words: biomass resources; fast pyrolysis; bio-oil随着化石能源的消耗殆尽及环境的日益恶化,能源问题有可能成为未来人类社会的潜在危机。

生物质热解制备生物油燃烧性能实验报告

生物质热解制备生物油燃烧性能实验报告

生物质热解制备生物油燃烧性能实验报告一、实验背景随着全球能源需求的不断增长和传统化石能源的日益枯竭,开发可再生能源成为了当今世界能源领域的重要研究方向。

生物质作为一种丰富的可再生资源,通过热解技术可以转化为生物油,具有替代传统燃油的潜力。

然而,生物油的燃烧性能对于其实际应用至关重要,因此有必要对其进行深入的实验研究。

二、实验目的本实验旨在研究生物质热解制备的生物油的燃烧性能,包括燃烧热值、燃烧稳定性、燃烧产物等方面,为生物油的进一步应用提供数据支持和理论依据。

三、实验材料与设备(一)实验材料1、生物质原料:选取了_____等常见的生物质材料。

2、热解设备:采用了_____型热解炉。

(二)实验设备1、量热仪:用于测量生物油的燃烧热值。

2、燃烧实验台:包括燃烧器、温度传感器、压力传感器等,用于模拟生物油的燃烧过程。

3、气体分析仪:用于分析燃烧产物中的气体成分。

四、实验方法(一)生物质热解将预处理后的生物质原料放入热解炉中,在_____的温度和_____的气氛条件下进行热解反应,得到生物油。

(二)燃烧热值测定使用量热仪,按照标准操作流程,对生物油样品进行燃烧热值测定。

(三)燃烧实验将生物油通过燃烧器进行燃烧,通过温度传感器和压力传感器实时监测燃烧过程中的温度和压力变化,记录燃烧时间和火焰形态等数据。

(四)燃烧产物分析使用气体分析仪对燃烧产物中的一氧化碳(CO)、二氧化碳(CO₂)、氮氧化物(NOₓ)等气体成分进行分析。

五、实验结果与分析(一)燃烧热值实验测定的生物油燃烧热值为_____kJ/kg。

与传统燃油相比,生物油的燃烧热值相对较低,这可能是由于其成分复杂,含有较多的含氧有机物和水分。

(二)燃烧稳定性在燃烧实验中,生物油的燃烧过程较为平稳,但燃烧初期存在一定的点火延迟现象。

燃烧过程中的温度和压力变化较为均匀,没有出现明显的波动,表明生物油具有较好的燃烧稳定性。

(三)燃烧产物燃烧产物分析结果显示,生物油燃烧产生的一氧化碳(CO)和氮氧化物(NOₓ)含量相对较低,二氧化碳(CO₂)排放量也在可接受范围内。

生物质及其热裂解产物生物油的特性分析

生物质及其热裂解产物生物油的特性分析

4结语与展望工业企业用能系统的优化与流程再造项目的实施,降低了产品成本,增强了产品市场竞争力,为企业再发展赢得了利润空间。

另一方面,因产品用能水平的提升,节约了能源消耗,减少了环保废物产生,在能源日益紧张、环境保护要求日益严格的今天,具有更大的社会效益。

对以生物工程为主的原料药生产企业,能源成本在其产品成本中占有较大比例,当前医药市场竞争激烈,提高医药产品节能降耗水平对提升产品竞争力具有重要作用。

原料药药品生产,工艺过程虽不完全相同,但是消耗能源种类相同,主要用能设备、用能工序类似,产品间用能操作控制方法彼此相通,因此系统节能技术具有广泛的可借鉴性和可扩散性。

参考文献[1]唐克嶂.工厂能源管理[M].大连:大连理工大学出版社,1994.[2]张桂宁,吴彦宇,王福兴.内展翅片换热器在空气除湿系统中的应用[J].机电信息,2006,(12):33-35.作者简介:王福兴(1976-),男,山东诸城人,硕士,工程师,从事搬迁产品方案及设计工作。

收稿日期:2010-03-15;修回日期:2010-03-30生物质及其热裂解产物生物油的特性分析孙玉凤,高 虹(沈阳理工大学环境与化学工程学院,辽宁沈阳110159)摘要:以红松、白松、落叶松、玉米秸秆等不同生物质为原料,对流化床反应器热裂解制取的生物油进行了研究试验,通过对生物油的物理特性及其成分的分析,得出的实验结果表明:红松制取的生物油品质最好,热值高,含水率低,更适合进一步改性研究和应用,并利用现代精密仪器G C-M S对生物油进行了组分分析,解释了生物油高含氧和高含水特性。

关键词:生物质;热裂解;生物油;流化床中图分类号:TQ517 4+4 文献标识码:A 文章编号:1004-7948(2010)04-0017-04引言生物质热裂解液化技术是当今世界上可再生能源发展领域中的前沿技术之一,近年来世界各国对生物油液体燃料的开发给予了高度的重视。

我国资源比较缺乏,对外依存度大,过度开采、运输和不合理使用对环境造成很大影响,因而必须改变能源的生产方式和消费方式[1]。

生物质资源的综合利用与经济性分析

生物质资源的综合利用与经济性分析

生物质资源的综合利用与经济性分析在当今全球能源需求不断增长、环境保护压力日益增大的背景下,生物质资源作为一种可再生的能源和原材料,其综合利用引起了广泛的关注。

生物质资源包括农作物秸秆、林业废弃物、畜禽粪便、生活垃圾中的有机部分等,具有来源广泛、可再生、低碳等优点。

本文将对生物质资源的综合利用方式进行探讨,并对其经济性进行分析。

一、生物质资源的综合利用方式(一)生物质发电生物质发电是将生物质能转化为电能的一种重要方式。

常见的生物质发电技术包括直接燃烧发电、生物质气化发电和生物质与煤混合燃烧发电等。

直接燃烧发电是将生物质直接送入锅炉中燃烧,产生蒸汽驱动汽轮机发电。

这种方式技术成熟,但对生物质的质量和含水量要求较高。

生物质气化发电则是先将生物质气化生成可燃气体,再通过内燃机或燃气轮机发电。

该技术具有较高的能源利用效率,但设备投资较大。

生物质与煤混合燃烧发电可以在现有燃煤电厂的基础上进行改造,降低投资成本,同时减少煤炭的使用量,降低温室气体排放。

(二)生物质液体燃料生物质液体燃料主要包括生物乙醇和生物柴油。

生物乙醇通常由粮食作物(如玉米、小麦)或非粮食作物(如木薯、甜高粱)发酵制成。

然而,以粮食作物为原料生产生物乙醇可能会引发粮食安全问题,因此非粮食作物逐渐成为主要的原料来源。

生物柴油一般通过油脂(如植物油、动物脂肪)与醇类进行酯交换反应制备。

使用生物质液体燃料可以减少对传统石油燃料的依赖,降低尾气排放,对改善空气质量具有积极意义。

(三)生物质固体成型燃料生物质固体成型燃料是将松散的生物质原料经过压缩成型,制成具有一定形状和密度的固体燃料。

常见的成型方式有挤压成型、冲压成型和滚压成型等。

生物质固体成型燃料具有能量密度高、便于储存和运输、燃烧性能好等优点,可以替代煤炭用于民用取暖、工业锅炉等领域。

(四)生物质沼气生物质沼气是通过厌氧发酵将有机废弃物(如畜禽粪便、农作物秸秆、污水等)转化为甲烷和二氧化碳为主的混合气体。

生物质热解制取生物油的研究进展

生物质热解制取生物油的研究进展

生物质热解制取生物油的研究进展摘要:文章介绍了国内外生物质热解的发展现状与趋势,概述了我国生物质热解制取生物油的潜力。

文章对生物质热解制取生物油进行了展望,并指出了生物质热解制取生物油的发展战略。

关键词:生物质热解生物油一、引言维持现代文明社会正常运转的主要能源来自石油、煤和天然气。

然而,这些化石燃料的广泛使用造成了严重环境污染和温室效应。

为了保护环境,实现温室气体减排,缓解能源供需的紧张状况,世界各国均在加紧开发包括生物质能在内的各种可再生能源。

我国农林废弃资源丰富,直接燃烧对环境污染大。

利用生物质热解技术原理可以将麦秸秆、玉米杆、谷壳等废气生物质转化为生物油。

生物油是一种褐色液体,热值约为15MJ/kg,能够用于工业锅炉或窑炉燃烧供热,也可用于涡轮机或透平中燃烧发电。

生物油经过品质提升后(如催化加氢、催化裂解和气化-费托合成),可以转化为汽油或柴油。

该文主要对生物质热解液化研究进展进行介绍,综述了这类可再生资源的利用现状、潜力及今后发展的方向。

二、国内外生物质热解研究现状20 世纪70年代的石油危机,世界各国纷纷寻求可替代化石能源的可再生能源,“生物质”渐渐引起人们的注意,因此对生物质的研究由此开始,尤其是对生物质热解的研究更是引起广大研究者的重视。

上世纪80年代早期,北美首先开展了热解技术的研究工作。

此后,世界各国先后建立了多种热解装置和相关工艺路线,力图实现热解技术的产业化。

生物质快速热解技术是生物质利用的重要途径,许多研究者用闪解来增加热解的液体产物和气体产物。

任铮伟等[1]在最大进料速率为5kg/h的快速裂解流化床内进行了快速热解生物质制取液体燃料的研究。

反应在常压和420~525℃温度范围内进行,以木屑为原料,CO2 为流化气,石英沙为传热介质,最大液体质量产率达到70%。

戴先文等[2]以木屑为原料,氮气为流化气,采用石英沙作为传热介质,在循环流化床中进行快速热解实验。

当温度为550℃,木屑粒径0.38mm,停留时间0.8s时,液体质量产率为63%。

生物质快速热解与生物油精制研究进展

生物质快速热解与生物油精制研究进展

生 物 质 快 速 热 解 与 生 物 油 精 制 研 究 进 展
王 予 ,马文超 ,朱 哲 ,陈冠益
( . 津大学 环境 科学与工程学 院 内燃机燃 烧学 国家重点 实验 室,天津 30 7 ; 1天 0 0 2
2 中国科 学 院 广 州 能 源 研 究 所 ,广 东 广 州 50 4 ) . 160 摘 要 : 文 综 述 了生 物 质 快 速 热 解 与 生物 油精 制 工 艺 。 阐 述 了快 速 热 解 的 机 理 、 艺 以 及 影 响 因素 ; 绍 了生 物 油 的 本 工 介
Ab t a t T e b o s a t y oy i n p ga ig t c n lg o i- i w r e iw d i hsp p r h e ci n me h n s sr c : h ima sf s p r lssa d u —r d n e h oo f r o ol e e r ve e n t i a e .T er a t c a im, y b o o e ain l r c s n n u n ig f co swe e ito u e p r t a o e sa d i f e c n a tr r n r d c d,a e1 h h r c eit s a d c mp n n so i — i w r u o p l sw l .T ec aa t r i n o o e t fb o ol e e s mme sc d u .T r e p o e s s ic u i g h d o e a in,c tl t y oy i a d e li c t n, a d t er me h n s ,a v n a e n p h e r c se , n l d n y r g n t o aa yi p r lss n mu sf ai c i o n h i c a im d a tg s a d ds d a t g s w r l srt d ia v n a e e e i u tae .F n l l i al h e o cu i g rma k o h o n t r r n ia e n e o y,t re c n ld n e r sf rt e c mi g f u e we e i dc td a d r c mme d d u n e. Ke r s b o s ;a tp r l s ; i— i; p r d n b o e e g y wo d : ima s fs y oy i b o o l u g a ig; i - n ry s
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山西师范大学本科毕业论文生物质热解制备生物油的经济性分析作者:院系:专业:年级:学号:指导教师:答辩日期:致谢光阴似箭,岁月如梭,不知不觉我即将走完大学生涯的第四个年头,回想这一路走来的日子,父母的疼爱关心,老师的悉心教诲,朋友的支持帮助一直陪伴着我,让我渐渐长大,也慢慢走向成熟。

首先,我要衷心感谢一直以来给予我无私帮助和关爱的老师们,特别是我的导师,班主任老师、专业课老师,学院老师,党政办老师。

谢谢你们这四年以来对我的关心和照顾,从你们身上,我学会了如何学习,如何工作,如何做人。

其次,我还要真诚地谢谢在我的学习和生活中给予关怀和帮助的同学和学姐,在这四年当中,你们给予了我很多帮助,在我的学习工作生活各个方面,你们给我提出了很多宝贵的建议,我的成长同样离不开你们。

再次,我还要认真地谢谢我身边所有的朋友和同学,你们对我的关心、帮助和支持是我不断前进的动力之一,我的大学生活因为有你们而更加精彩。

最后,我要感谢我的父母及家人,没有人比你们更爱我,你们对我的关爱让我深深感受到了生活的美好,谢谢你们一直以来给予我的理解、鼓励和支持,你们是我不断取得进步的永恒动力。

目录本科毕业论文............................................................错误!未定义书签。

致谢 ......................................................................错误!未定义书签。

中文内容摘要 (3)Abstract (3)一概述 (5)二原料收集和预处理 (5)2.1收集原料 (5)2.2预处理 (6)2.21 新工艺的应用 (6)2.22 生物反应器 (6)三热解液化转化过程经济性分析、产品的市场分析 (7)3.1热解工艺方案 (7)3.11 热解液化规模 (7)3.12 经济性分析的财务评价参数 (7)3.13 秸秆收集半径计算 (8)3.2技术经济性分析 (8)3. 12 热解液化工厂投资估算 (8)3.13 热解液化工厂财务评价 (9)3.14 生物油生产成本分析 (10)四综合分析 (13)参考文献 (14)生物质热解制备生物油的经济性分析【内容摘要】如今人类临着巨大的环境与能源压力。

生物质因具有一定的广泛性、可再生性、低污染性、广泛分布性以及总量十分丰富而受到越来越多的关注。

本文主要针对秸秆气化发电、气化供气、直燃发电以及热解液化这四种目前主要的生物质能利用技术展开经济性分析。

通过比较发现,在各种生物质能利用技术中,热解液化制取生物油是非常有前景的,如果要想将生物油投入应用而获得良好的经济效益必须提高生物油的品质。

本文中通过对生物质热解制备生物油的经济分析为以后生物质热解的预处理技术研究提供了基础的参考依据。

【关键词】生物油;生物质;热解液化AbstractN owadays human face tremendous environmental and energy pressure. Biomass for has certain universality, reproducibility, less pollution, widely distributed sex and total amount is very rich and receiving more and more attention. This article mainly aims at straw gasification power generation, gasification combustion gas, electricity and pyrolysis liquefaction straight the four current main biomass utilization technology analysis on economy. By comparison, in various biomass utilization technology, biological oil producing pyrolysis liquefaction is extremely foreground, if you want to put into application biological oil won good economic benefit must improve the quality of biological oil. This article through to bionass power plant pyrolysis of preparation for economic analysis of biological oil after the biomass pyrolytic preconditioning technique provides the basis for the research of the reference.Key words:Biological oil; Biomass; Pyrolytic liquefaction一、概述能源是国民经济和社会发展的重要物质基础,是人类赖以生存和发展的重要保障。

当今的能源主要来自于化石燃料,随着人口的增长和人类物质、文化生活水平的普遍提高,人类对能源的需求呈现急速增长的趋势,同时化石能源储量有限且具有不可再生性,化石能源日益枯竭。

生物质能是通过太阳能转化而来的,在动、植物和微生物等有机物中都蕴藏着生物质能。

生物质能资源是一种无害的能源,在地球上的生物质能资源较为丰富。

生物质能通常包括工业废弃物及动物粪便和油料植物、木材、森林废弃物、水生植物、农业废弃物等。

我国是一个农业大国, 生物质资源最主要的组成部分是农业废弃物,它们分布不集中, 如果将它们转化成生物质油或者化学化工原料, 也可以大大减小因储存或者运输带来的困难. 因此合理开发利用生物质不仅可为新的能源和化工原料的开发利用建立技术基础, 发展新的能源和化学工业, 以实现可持续发展, 同时对解决我国农村、农业和农民问题, 具有十分重要的意义[1]我国的农作物秸秆资源丰富,秸秆来源主要为玉米、小麦和稻谷。

据统计,2009年全国产生各种秸秆近7亿吨,相当于标准煤3亿吨。

在农村,秸秆主要用于生活燃料、饲料、肥料和工业原料。

据不完全统计,约有14%的秸秆被做肥还田,25.0%的秸秆被用作饲料, 3.2%的秸秆被用作工业原料.除此之外,约57.8%的秸秆可以作为能源使用,其中近2亿吨的秸秆被我国农民在自家炉灶内用来直接燃烧取暖做饭。

90年代以来由于农民生活水平的提高和农村经济的发展,农民的观念和生活方式发生了变化,农民已有条件和能力大量使用煤、石油、液化气等能源,秸秆不再是农民能源消费的惟一选择,大量剩余秸秆被遗弃在田间地头,有些地区甚至将剩余秸秆在田间地头焚烧,既污染环境,又浪费资源。

此现象在我国许多地区已成为社会普遍关注的焦点问题之一,解决这一问题的关键在于开发秸秆高效高附加值利用的新途径。

本文通过对生物质热解制备生物油的试验,进行经济学的可行性分析,对生物质热解研究和市场开拓提供数据参考。

二.原料收集和预处理2.1 收集原料生物质原料可以是能源植物,也可以是农林废弃物。

能源植物产生的生物油产量与热值均比较高,但是目前还没有找到很合适热解的能量高且生长速度快的能源作物,今后可以运用各种植物育种技术,开展更广泛的能源植物育种研究,为发展生物质能源提供技术和物种支持[2]。

在我国东北的农业大省,吉林省某市,交通便利,玉米秸秆收购平均价格为250元/吨(含水率≥50),因水分含量越少,价格越高,运费每吨500元(地区内运输,不跨区域),人工费120/天,按照250元/t计算,生物质原料发电消耗为2kg/kWh,原料成本达到0.50元/kWh,发电成本较高,考虑人工工资、自身电力消耗、维修费用、管理费用、设备折旧费等,发电成本达到了0.62元/kWh,在国家可再生能源政策的支持下,吉林省生物质电力上网价格为0.53元/kWh,因此将生物燃气用于发电运行利润微薄。

然而,通过综合利用技术,发电所带来的副产品蒸汽和生物质炭,为企业带来更好的经济收益。

在发电保本运行的情况下,按照规模5.0MW/h 的实验工程计算,每年运行6000h,消耗原料10000t,可得到1500生物质炭,按照目前的市场价格,炭售价为1000元/t,共收入150万元/a,具有较好的经济效益,以弥补发电的利润不足。

2.2 预处理预处理包括干燥和粉碎。

原料中的水分是生物油中水分的主要来源之一 ,因而干燥生物质能有效降低生物油中水分含量,从而改善生物油的粘度、pH 值、稳定性和存储期。

应用时可选小于1mm的生物质作为制油原料。

生物质热解液化是指生物质原料(通常需经过干燥和粉碎)在隔绝氧气或有少量氧气的条件下,通过高加热速率、短停留时间及适当的裂解温度使生物质裂解为焦炭和气体,气体分离出灰分后再经过冷凝可以收集到生物油的过程[3]。

在此工艺过程中,原料干燥是为了减少原料中的水分被带到生物油中,一般要求原料的含水量低于10%。

减小原料颗粒的尺寸,可以提高升温速率,不同的反应器对颗粒大小的要求也不同。

热解过程必须严格控制温度(500~600 ℃)、加热速率、热传递速率和停留时间,使生物质在短时间内快速热解为蒸气;对热解蒸气进行快速和彻底地分离,避免炭和灰份催化产生二次反应导致生物油的不稳定,并保证生物油的产率。

除需要严格控制反应条件外,热解液化还要避免生物油中的重组分冷凝造成的堵塞[4-5]。

2.21.新工艺的应用为提高生物质的热转化率和生物油的产率,研究人员近年来开发了混合热解、催化热解、微波热解、等离子体热解等新的热解工艺。

2.22生物反应器生物质快速热解液化技术的核心是反应器,它的类型和加热方式决定最终的产物分布。

反应器按物质的受热方式可分为三类:机械接触式反应器、间接式反应器、混合式反应器。

目前,针对第一类型和第三类型反应器开展的研究工作相对较多,这些反应器的成本较低且宜大型化,能在工业中投入使用。

代表性的反应器有加拿大Ensyn 工程师协会的上流式循环流化床反应器(Upflow circulating fluidbed reactor)、美国乔治亚技术研究所(the GeorginTechnique Research Institute,GTRI)的引流式反应器(Entrained flow reactor);美国国家可再生能源实验室(NREL)的涡流反应器(Vortex reactor);荷兰Ttwente 大学反应器工程小组及生物质技术集团(BTG)的旋转锥反应器(Rotating cone reactor)和加拿大Laval 大学的生物质真空多炉床反应器(Multiple hearth reactor)等反应器,它们具有加热速率快、反应温度中等和气体停留时间短等特征。

相关文档
最新文档