概率论与数理统计(11新)
概率论与数理统计课后习题答案(非常全很详细)
概率论与数理统计复旦大学此答案非常详细非常全,可供大家在平时作业或考试前使用,预祝大家考试成功习题一1.略.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件:(1)A发生,B,C都不发生;(2)A与B发生,C不发生;(3)A,B,C都发生;(4)A,B,C至少有一个发生;(5)A,B,C都不发生;(6)A,B,C不都发生;(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A BC(2)AB C(3)ABC(4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC(5) ABC=A B C(6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3.略.见教材习题参考答案4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB).【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)]=1-[0.7-0.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求:(1)在什么条件下P(AB)取到最大值?(2)在什么条件下P(AB)取到最小值?【解】(1) 当AB =A 时,P (AB )取到最大值为0.6.(2) 当A ∪B =Ω时,P (AB )取到最小值为0.3.6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0,P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ) =14+14+13-112=347.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C8.对一个五人学习小组考虑生日问题:(1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率;(3) 求五个人的生日不都在星期日的概率.【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5 (亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5 (3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)5 9.略.见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率.如果:(1) n 件是同时取出的;(2) n 件是无放回逐件取出的;(3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C mn m n M N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P n N 种,n 次抽取中有m次为正品的组合数为C mn 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P m M 种,从N -M 件次品中取n -m 件的排列数为P n m N M --种,故P (A )=C P P P mm n m n M N M n N-- 由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n m M N M n N-- 可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n次抽取中有m 次为正品的组合数为C m n 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/m m n m n nP A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为M N,则取得m 件正品的概率为 ()C 1m n m mn M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11.略.见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少?【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A == 【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则33312123330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.3207617.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率.【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故 ()6/86()()7/87P AB P B A P A === 或在缩减样本空间中求,此时样本点总数为7. 6()7P B A =20.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯ 21.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图 题22图【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|x -y |>30.如图阴影部分所示.22301604P == 22.从(0,1)中随机地取两个数,求:(1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率. 【解】 设两数为x ,y ,则0<x ,y <1.(1) x +y <65. 11441725510.68125p =-== (2) xy =<14. 1111244111d d ln 242x p x y ⎛⎫=-=+ ⎪⎝⎭⎰⎰ 23.设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B )【解】 ()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+- 0.70.510.70.60.54-==+- 24.在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有30()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =•+•+•+•0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:(1)考试及格的学生有多大可能是不努力学习的人?(2)考试不及格的学生有多大可能是努力学习的人?【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.20.110.027020.80.90.20.137⨯===⨯+⨯ 即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯ 即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B }由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+ 2/30.980.994922/30.981/30.01⨯==⨯+⨯ 27.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种)【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知 111120()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯ 28.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.960.980.9980.960.980.040.05⨯==⨯+⨯ 29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故}则由贝叶斯公式得 ()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++ 0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯ 30.加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率.【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==- 12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯=31.设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?【解】设必须进行n 次独立射击.1(0.8)0.9n -≥即为 (0.8)0.1n ≤故 n ≥11至少必须进行11次独立射击.32.证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B = 亦即 ()()()()P AB P B P AB P B =()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P AB P A P B =故A 与B 相互独立.33.三人独立地破译一个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则 31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯= 34.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得30()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7=0.45835.已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求:(1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2) 新药完全无效,但通过试验被认为有效的概率.【解】(1) 3101100C(0.35)(0.65)0.5138k k k k p -===∑ (2) 10102104C(0.25)(0.75)0.2241kk k k p -===∑36.一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”;(3) C =“恰有两位乘客在同一层离开”;(4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1) 2466C 9()10P A =,也可由6重贝努里模型: 224619()C ()()1010P A = (2) 6个人在十层中任意六层离开,故6106P ()10P B = (3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++ (4) D=B .故 6106P ()1()110P D P B =-=- 37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率:(1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率;(2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率.【解】 (1) 111p n =- (2) 23!(3)!,3(1)!n p n n -=>- (3) 12(1)!13!(2)!;,3!!n n p p n n n n --''===≥ 38.将线段[0,a ]任意折成三折,试求这三折线段能构成三角形的概率【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由0<x <a ,0<y <a ,0<a -x -y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y a x y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣ 如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】 11P 1,1,2,,P k n k n p k n n --===40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3).【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====, 24968()0.096,()0.00810001000P A P A ====. 41.对任意的随机事件A ,B ,C ,试证P (AB )+P (AC )-P (BC )≤P (A ).【证】 ()[()]()P A P A B C P AB AC ≥=()()()P AB P AC P ABC =+-()()()P AB P AC P BC ≥+-42.将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率.【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A == 而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A == 因此 213319()1()()181616P A P A P A =--=--= 或 12143323C C C 9()416P A == 43.将一枚均匀硬币掷2n 次,求出现正面次数多于反面次数的概率.【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -= 由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n n n P C C =故 2211()[1C ]22n n n P A =- 44.掷n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5(2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =-45.设甲掷均匀硬币n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数. 显然有>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反) =(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246.证明“确定的原则”(Sure -thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )≥P (B ).【证】由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥即有 ()()P AC P BC ≥ 同理由 (|)(|),P A C P B C ≥ 得 ()(),P AC P BC ≥故 ()()()()()()P A P AC P AC P BC P BC P B =+≥+= 47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率.【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n k ki kki j ki i i n P A n nP A A n n P A A A n--==-=--=-其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个. 显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk ki ni ki j n i j nn kn i i i n i i i nn nn i ni S P A n n n S P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)kkn n kn n n n nnn--=---++--故所求概率为121121()1C (1)C (1)nk i i n ni P A n n=-=--+--+111(1)C (1)n n kn n n+----48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少? 【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品} 由题知 (),()m nP B P B m n m n==++ 1(|),(|)12r P A B P A B ==则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+121212rrrm m m n m nm n m n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又有多少? 【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。
概率论与数理统计_回归分析
概率论与数理统计_回归分析第11章回归分析设x 为普通变量,Y 为随机变量。
如果当x 变化时,Y 随着x 的变化⼤体上按某种趋势变化,则称x 与Y 之间存在相关关系,即),0(~,)(2σεεN x f Y +=例如,某地⼈均收⼊x 与某种商品的消费量Y 之间的关系;森林中树⽊的断⾯直径x 与⾼度Y 之间的关系;某种商品的价格x与销售量Y 之间的关系;施⽤氮肥、磷肥、钾肥数量1x ,2x ,3x 与某种农作物产量Y 之间的关系。
在⽣产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的⼀批离散样点,要求由此建⽴变量之间的近似函数关系或得到样点之外的数据。
我们确定的函数要求在某种距离意义下的误差达到最⼩(通常⽤最⼩⼆乘法,即考虑使各数据点误差平⽅和最⼩)。
由⼀个(或⼏个)普通变量来估计或预测某个随机变量的取值时,所建⽴的数学模型及所进⾏的统计分析称为回归分析。
§11.1 ⼀元线性回归假设有⼀批关于x 与Y 的离散样点),(,),,(),,(2211n n y x y x y x集中在⼀条直线附近,说明x 与Y 之间呈线性相关关系,即),0(~,2σεεN bx a Y ++=称为⼀元线性回归模型。
⼀、模型中的参数估计 1、b a ,的估计⾸先引进记号∑∑∑∑∑=====-=-=-===ni i i xy ni i yy ni i xx ni ini iyx n y x S y n y S x n x S y n y x n x 11221221111按最⼩⼆乘法可得到xxxy S S b =? x b y a ??-= 称x b a y+=为Y 关于x 的⼀元线性回归⽅程。
2、2σ的估计)?(21?22xxyy S b S n --=σ求出关于的⼀元线性回归⽅程。
解:先画出散点图如下计算出 3985193282503.6714510======xy yy xx S S S y x n483.0?==xxxy S S b 735.2??-=-=x b y a 所求的回归⽅程是x y483.0735.2?+-=。
(完整版)《概率论与数理统计》习题及答案选择题
·151·《概率论与数理统计》习题及答案选 择 题单项选择题1.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为( ). (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销或乙种产品畅销”; (D )“甲种产品滞销”.解:设B =‘甲种产品畅销’,C =‘乙种产品滞销’,A BC = A BC B C ===‘甲种产品滞销或乙种产品畅销’. 选C.2.设,,A B C 是三个事件,在下列各式中,不成立的是( ).(A )()A B B A B -=;(B )()AB B A -=; (C )()A B AB ABAB -=;(D )()()()A B C A C B C -=--.解:()()()A B B AB B A B BB A B -=== ∴A 对. ()()A B B A B B AB BB AB A B A -====-≠ B 不对()()().AB AB A B B A ABAB -=--= C 对 ∴选B.同理D 也对.3.若当事件,A B 同时发生时,事件C 必发生,则( ). (A )()()()1P C P A P B ≤+-; (B )()()()1P C P A P B ≥+-; (C )()()P C P AB =; (D )()().P C P AB =解:()()()()()()()1AB C P C P AB P A P B P A B P A P B ⊂⇒≥=+-≥+-∴ 选B.4.设(),(),()P A a P B b P AB c ===,则()P AB 等于( ).(A )a b -; (B )c b -; (C )(1)a b -; (D )b a -. 解:()()()()()()()P AB P A B P A P AB a P A P B P AB c b =-=-=--+=-·152· ∴ 选B.5.设,A B 是两个事件,若()0P AB =,则( ).(A ),A B 互不相容; (B )AB 是不可能事件; (C )()0P A =或()0P B =; (D )AB 未必是不可能事件. 解:()0P AB AB =⇒=∅/. ∴ 选D.6.设事件,A B 满足AB =∅,则下列结论中肯定正确的是( ). (A ),A B 互不相容; (B ),A B 相容; (C )()()()P AB P A P B =; (D )()()P A B P A -=. 解:,A B 相容 ∴ A 不对. ,,A B B A AB ===Φ ∴ B 错. ()0AB P AB =Φ⇒=,而()()P A P B 不一定为0 ∴ C 错. ()()()()P A B P A P AB P A -=-=. ∴ 选D. 7.设0()1,(|)(|)1P B P A B P A B <<+=,则( ) (A ),A B 互不相容; (B ),A B 互为对立; (C ),A B 不独立; (D ),A B 相互独立.解:()()()()()1()1()()()1()()1()P AB P AB P AB P A B P AB P A B P B P B P B P B P B P B -=+=+=+-- ()(1())()(1()()())()(1())P AB P B P B P A P B P AB P B P B -+--+=-⇒22()()()()()()()P B P B P AB P B P A P B P B -=+--()()()P AB P A P B ∴= ∴ 选D. 8.下列命题中,正确的是( ). (A )若()0P A =,则A 是不可能事件; (B )若()()()P A B P A P B =+,则,A B 互不相容; (C )若()()1P AB P AB -=,则()()1P A P B +=;(D )()()()P A B P A P B -=-. 解:()()()()P AB P A P B P AB =+-()()()()1P A B P AB P A P B ⇒-=+=由()0P A A =⇒=Φ/, ∴ A 、B 错.只有当A B ⊃时()()()P A B P A P B -=-,否则不对. ∴ 选C.·153·9.设,A B 为两个事件,且B A ⊂,则下列各式中正确的是( ). (A )()()P AB P A =; (B )()()P AB P A =;(C )(|)()P B A P B =; (D )()()()P B A P B P A -=-. 解:()()B A AB A P A B P A ⊂⇒=⇒= ∴选A.10.设,A B 是两个事件,且()(|)P A P A B ≤;(A )()(|)P A P A B =; (B )()0P B >,则有( ) (C )()(|)P A P A B ≥; (D )前三者都不一定成立.解:()(|)()P AB P A B P B =要与()P A 比较,需加条件. ∴选D. 11.设120()1,()()0P B P A P A <<>且1212(|)(|)(|)P A A B P A B P A B =+,则下列等式成立的是( ). (A )1212(|)(|)(|)P A A B P A B P A B =+; (B )1212()()()P A B A B P A B P A B =+; (C )1212()(|)(|)P A A P A B P A B =+;(D )1122()()(|)()(|)P B P A P B A P A P B A =+. 解1:121212(|)(|)(|)(|)P A A B P A B P A B P A A B =+-12(|)(|)P A B P A B =+ 1212(|)0()0P A A B P A A B ⇒=⇒=12121212()()()()()()P A B A B P A B P A B P A A B P A B P A B =+-=+ ∴ 选B. 解2:由1212{|}(|)(|)P A A B P A B P A B =+ 得1212()()()()()P A B A B P A B P A B P B P B +=可见 1212()()()P A B A B P A B P A B =+∴ 选B.12.假设事件,A B 满足(|)1P B A =,则( ). (A )B 是必然事件; (B )()1P B =; (C )()0P A B -=; (D )A B ⊂.解:()(|)1()()()()0()P AB P B A P AB P A P A P AB P A ==⇒=⇒-=()0P A B ⇒-= ∴ 选C.13.设,A B 是两个事件,且,()0A B P B ⊂>,则下列选项必然成立的是( ).·154· (A )()(|)P A P A B <; (B )()(|)P A P A B ≤; (C )()(|)P A P A B >; (D )()(|)P A P A B ≥.解:()()(|)()()()A B P AB P A P A B P A P B P B ⊂====≥ ()()0()1A B P A P B P B ⊂⇒≤<< ∴选B (或者:,()()()(|)(|)A B P A P AB P B P A B P A B ⊂==≤)14.设12()0,,P B A A >互不相容,则下列各式中不一定正确的是( ). (A )12(|)0P A A B =; (B )1212(|)(|)(|)P A A B P A B P A B =+; (C )12(|)1P A A B =; (D )12(|)1P A A B =.解:1212()0P A A A A =⇐=Φ1212()(|)0()P A A B P A A B P B == A 对.121212(|)(|)(|)(|)P A A B P A B P A B P A A B =+-12(|)(|)P A B P A B =+ B 对. 121212(|)(|)1(|)P A A B P A A B P A A B ==-121(|)(|)1P A B P A B =--≠ C 错.121212(|)(|)1(|)101P A A B P A A B P A A B ==-=-= D 对.∴ 选C.15.设,,A B C 是三个相互独立的事件,且0()1P C <<,则在下列给定的四对事件中不相互独立的是( ). (A )A B 与C ; (B )AC 与C ;(C )A B -与C ; (D )AB 与C . 解:[()]()()()()(1())(1())()P AB C P ABC P A P B P C P A P B P C ===--[1(()()()())]()()()P A P B P A P B P C P A B P C =-+-= A 对.()[()]()()()()P ACC P AC C P AC CC P AC P C P AC ===+-()()()P C P AC P C =≠ AC ∴与C 不独立 ∴ 选B.16.设,,A B C 三个事件两两独立,则,,A B C 相互独立的充分必要条件是( ).(A )A 与BC 独立; (B )AB 与AC 独立;(C )AB 与AC 独立; (D )A B 与A C 独立.·155·解:,,A B C 两两独立, ∴若,,A B C 相互独立则必有()()()()()()P ABC P A P B P C P A P BC == ∴A 与BC 独立.反之,如A 与BC 独立则()()()()()()P ABC P A P BC P A P B P C == ∴选A. 17.设,,A B C 为三个事件且,A B 相互独立,则以下结论中不正确的是( ). (A )若()1P C =,则AC 与BC 也独立; (B )若()1P C =,则A C 与B 也独立; (C )若()1P C =,则A C -与A 也独立;(D )若C B ⊂,则A 与C 也独立. 解:()()(),()1P AB P A P B P C ==∴概率为1的事件与任何事件独立AC ∴与BC 也独立. A 对. [()][()]()P AC B P A C B P AB BC ==()()()()()P AB P BC P ABC P A C P B =+-= ∴B 对.[()]()()()()P A C A P ACA P AC P A P C -===()()P A P AC =∴ C 对 ∴ 选D (也可举反例).18.一种零件的加工由两道工序组成. 第一道工序的废品率为1p ,第二道工序的废品率为2p ,则该零件加工的成品率为( ). (A )121p p --; (B )121p p -; (C )12121p p p p --+; (D )12(1)(1).p p -+- 解:设A =成品零件,i A =第i 道工序为成品 1,2.i = 11()1P A p =- 22()1P A p =-1212()()()()P A P A A P A P A ==12(1)(1)p p =-- 12121p p p p =--+ ∴ 选C.19.设每次试验成功的概率为(01)p p <<,现进行独立重复试验,则直到第10次试验才取得第4次成功的概率为( ).(A )44610(1)C p p -; (B )3469(1)C p p -; (C )4459(1)C p p -; (D )3369(1).C p p -解:说明前9次取得了3次成功 ∴ 第10次才取得第4次成功的概率为33634699(1)(1)C p p p C p p -=-∴ 选B.20.设随机变量X 的概率分布为(),1,2,,0kP X k b k b λ===>,则·156· ( ).(A )λ为任意正实数; (B )1b λ=+;(C )11b λ=+; (D )11b λ=-. 解:111()111k kk k k b P X K b b b λλλλλλ∞∞∞=========--∑∑∑ ∴ 11bλ=+ 选C .21.设连续型随机变量X 的概率密度和分布函数分别为()f x 和()F x ,则下列各式正确的是( ).(A )0()1f x ≤≤; (B )()()P X x f x ==; (C )()()P X x F x ==; (D )()()P X x F x =≤. 解:()()()F x P X x P X x =≤≥= ∴ 选D. 22.下列函数可作为概率密度的是( ). (A )||(),x f x ex R -=∈; (B )21(),(1)f x x R x π=∈+; (C)22,0,()0,0;xx f x x -⎧≥=<⎩(D )1,||1,()0,|| 1.x f x x ≤⎧=⎨>⎩解:A :||0222x x x e dx e dx e dx +∞+∞+∞----∞===⎰⎰⎰∴ 错.B :211arctan []1(1)22dx x x πππππ+∞+∞-∞-∞==+=+⎰ 且 21()0(1)f x x R x π=≥∈+ ∴ 选B. 23.下列函数中,可作为某个随机变量的分布函数的是( ). (A )21()1F x x =+; (B )11()arctan 2F x x π=+; (C )1(1),0()2,0;x e x F x x -⎧->⎪=⎨⎪≤⎩·157·(D )()()x F x f t dt -∞=⎰,其中() 1.f t dt +∞-∞=⎰解:对A :0()1F x <≤,但()F x 不具有单调非减性且()0F +∞= ∴A 不是. 对B :arctan 22x ππ-≤≤∴ 0()1F x ≤≤.由arctan x 是单调非减的 ∴ ()F x 是单调非减的.11()()022F ππ-∞=+⋅-= 11()122F ππ+∞=+⋅=.()F x 具有右连续性. ∴ 选B.24.设12,X X 是随机变量,其分布函数分别为12(),()F x F x ,为使12()()()F x aF x bF x =-是某一随机变量的分布函数,在下列给定的各组数值中应取( ).(A )32,55a b ==-; (B )22,33a b ==; (C )13,22a b =-=; (D )13,22a b ==.解:12()()()0F aF bF -∞=-∞--∞=,()1F a b +∞=-=,只有A 满足∴ 选A25.设随机变量X 的概率密度为()f x ,且()(),()f x f x F x -=是X 的分布函数,则对任意实数a 有( ). (A )0()1()a F a f x dx -=-⎰;(B )01()()2a F a f x dx -=-⎰;(C )()()F a F a -=;(D )()2()1F a F a -=-. 解:()()()()a a a F a f x dx f du f u du μ-+∞-∞+∞-==--=⎰⎰⎰()()a f x dx f x +∞-∞-∞=-⎰⎰001(()())a dx f x dx f x dx -∞=-+⎰⎰00111()()22a a f x dx f x dx =--=-⎰⎰由()2()1f x dx f x dx +∞+∞-∞==⎰⎰001()()2f x dx f x dx +∞-∞⇒==⎰⎰∴ 选B.26.设随机变量2~(1,2)X N ,其分布函数和概率密度分别为()F x 和·158· ()f x ,则对任意实数x ,下列结论中成立的是( ).(A )()1()F x F x =--; (B )()()f x f x =-; (C )(1)1(1)F x F x -=-+; (D )11122x x F F -+⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭. 解:2~(1,2)()X N f x ∴以1x =为对称轴对称.(1)(1)P X x P X x ∴>+=≤-即 (1)1(1)1(1)F x P X x F x -=-≤+=-+ ∴ 选C.27.设22~(,4),~(,5)X N Y N μμ,设1(4)P X p μ≤-=,2(5)P Y p μ≥+=,则( ).(A )对任意实数μ有12p p =; (B )12p p <;(C )12p p >; (D )只对μ的个别值才有12.p p =解:14(4)(1)1(1)4p P X μμμ--⎛⎫=≤-=Φ=Φ-=-Φ⎪⎝⎭25(5)1(5)11(1)5p P Y P Y μμμμ+-⎛⎫=≥+=-<+=-Φ=-Φ ⎪⎝⎭∴ 12p p = ∴ 选A (or 利用对称性)28.设2~(,)X N μσ,则随着σ的增大,概率(||)P X μσ-<的值( ).(A )单调增大; (B )单调减少; (C )保持不变; (D )增减不定.解:1)1(2)1()1()(|)(|-Φ=-Φ-Φ=+<<-=<-σμσμσμX P X P ∴ 不随σ变 ∴ 选C.29.设随机变量X 的分布函数为)(x F X ,则35-=X Y 的分布函数 )(y F Y 为( ).(A ))35(-y F X ; (B )3)(5-y F X ; (C )⎪⎭⎫⎝⎛+53y F X ; (D ).3)(51+y F X解:))3(51()35()()(+≤=≤-=≤=y X P y X P y Y P y F Y ⎪⎭⎫⎝⎛+=53y F X ∴ 选C.·159·30.设X 的概率密度为)1(1)(2x x f +=π,则X Y 2=的概率密度为( ). (A ))41(12y +π; (B )2)4(1y +π;(C ))4(22y +π; (D ))1(22y +π.解:⎪⎭⎫⎝⎛=≤=≤=≤=2)2()2()()(y F y X P y X P y Y P y F X Y∴ )4(2)41(121221)(22y y y f y f X Y +=+⋅=⎪⎭⎫ ⎝⎛=ππ ∴ 选C. 31.设随机变量X 与Y 相互独立,其概率分布分别为212111P X - 212111PY -则下列式子正确的是( ).(A )Y X =; (B )0)(==Y X P ;(C )21)(==Y X P ; (D )1)(==Y X P . 解:A 显然不对. )1,1()1,1()(==+-=-===Y X P Y X P Y X P2121212121)1()1()1()1(=⋅+⋅===+-=-==Y P X P Y P X P ∴ 选C.32.设)1,1(~),1,0(~N Y N X ,且X 与Y 相互独立,则( ).(A )21)0(=≤+Y X P ; (B )21)1(=≤+Y X P ; (C )21)0(=≤-Y X P ; (D )21)1(=≤-Y X P .解:)1,1(~)1,0(~N Y N X 且独立 ∴ )2,1(~N Y X +21)0()1()1(=Φ=>+=≤+Y X P Y X P ∴ 选B. 33.设随机变量2,1,412141101~=⎪⎪⎭⎫⎝⎛-i X i且满足1)0(21==X X P ,则==)(21X X P ( ).·160· (A )0; (B )1/4; (C )1/2; (D )1. 解:(2121P∴ )0()1()(212121==+-====X X P X X P X X P )1(21==+X X P0000=++= ∴ 选A.34.设随机变量X 取非负整数值,)1()(≥==n a n X P n ,且1=EX ,则a 的值为( ).(A )253+; (B )253-; (C )253±; (D )5/1.解:∑∑∑∑∞=∞=∞===-∞='-='====1111)1()(1n n n aX n aX nn n nX a X a naa naEX2)1(11a ax x a a X -='⎪⎭⎫⎝⎛-==∴ 253,013,)1(22±==+--=a a a a a ,但1<a . ∴ 253-=a . ∴ 选B. 35.设连续型随机变量X 的分布函数为⎪⎩⎪⎨⎧<≥-=,1,0,1,11)(4x x x x F则X 的数学期望为( ).(A )2; (B )0; (C )4/3; (D )8/3.解:⎪⎩⎪⎨⎧<≥=-114)(5x x xx f3541114144(3dx EX x dx x x x ∞∞∞-=⋅==⨯-⎰⎰34= ∴ 选C.36.已知44.1,4.2),,(~==DX EX p n B X ,则二项分布的参数为( ). (A )6.0,4==p n ; (B )4.0,6==p n ; (C )3.0,8==p n ; (D )1.0,24==p n .解:4.06.04.244.144.14.2=⇒=÷=⇒⎭⎬⎫====p q npq DX np EX 6=n∴ 选B.37.已知离散型随机变量X 的可能值为1,0,1321==-=x x x ,且89.0,1.0==DX EX ,则对应于321,,x x x 的概率321,,p p p 为( ).(A )5.0,1.0,4.0321===p p p ;(B )1230.1,0.1,0.5p p p ===; (C )4.0,1.0,5.0321===p p p ;(D )1230.4,0.5,0.5.p p p ===⎪⎭⎪⎬⎫+==+=⇒-=+-==312222319.0)1.0(89.0)(1.0p p EX EX EX DX p p EX 1230.40.10.5p p p ⎧=⎪⇒=⎨⎪=⎩ ∴ 选A.38.设)1,1(~),1,2(~-N Y N X ,且Y X ,独立,记623--=Y X Z ,则~Z __________.(A ))1,2(N ; (B ))1,1(N ; (C ))13,2(N ; (D ))5,1(N . 解:)1,1(~)1,2(~-N Y N X 且独立∴ 2)623(=--=Y X E EZ .949413DZ DX DY =+=+=.又独立正态变量的线性组合仍为正态变量,∴ ~(2,13)Z N ∴ 选C.39.设6)(),1,2(~),9,2(~=XY E N Y N X ,则)(Y X D -之值为( ).(A )14; (B )6; (C )12; (D )4. 解:),cov(2)(Y X DY DX Y X D -+=-, 246),cov(=-=-=EXEY EXY Y X 62219)(=⨯-+=-Y X D . ∴ 选B.40.设随机变量X 的方差存在,则( ).(A )22)(EX EX =; (B )22)(EX EX ≥; (C )22)(EX EX >; (D )22)(EX EX ≤.解:0)(22≥-=EX EX DX ∴ 22)(EX EX ≥. ∴ 选D. 41.设321,,X X X 相互独立,且均服从参数为λ的泊松分布,令)(31321X X X Y ++=,则2Y 的数学期望为( ).(A )λ31; (B )2λ; (C )231λλ+; (D )λλ+231.解:321X X X 独立)(~λP )3(~)(321λP X X X ++∴λ3)()(321321=++=++X X X D X X X E3)(91)](31[321321λ=++=++X X X D X X X D 2222)(λ-=-=EY EY EY∴ 322λλ+=EY ∴选C.42.设Y X ,的方差存在,且EXEY EXY =,则( ).(A )DXDY XY D =)(; (B )DY DX Y X D +=+)(;(C )X 与Y 独立; (D )X 与Y 不独立. 解:),cov(2)(Y X DY DX Y X D ++=+DY DX EXEY EXY DY DX +=-++=)(2 ∴选B.43.若随机变量Y X ,满足)()(Y X D Y X D -=+,且0>DXDY ,则必有( ).(A )Y X ,独立; (B )Y X ,不相关; (C )0=DY ; (D )0)(=XY D .解:Y X P Y X Y X D Y X D ,00),cov()()(⇒=⇒=⇒-=+不相关. ∴ 选B.44.设Y X ,的方差存在,且不等于0,则DY DX Y X D +=+)(是YX ,( ).(A )不相关的充分条件,但不是必要条件; (B )独立的必要条件,但不是充分条件; (C )不相关的必要条件,但不是充分条件; (D )独立的充分必要条件.解:由()cov(,)00D X Y DX DY X Y X ρ+=+⇔=⇔=⇔与Y 不相关 ∴ DY DX Y X D +=+)(是不相关的充要条件. A 、C 不对. 由独立DY DX Y X D +=+⇒)(,反之不成立 ∴ 选B.45.设Y X ,的相关系数1=XY ρ,则( )(A )X 与Y 相互独立; (B )X 与Y 必不相关; (C )存在常数b a ,使1)(=+=b aX Y P ; (D )存在常数b a ,使1)(2=+=b aX Y P . 解:⇔=1||XY ρ存在b a ,使1)(=+=b aX Y P ∴ 选C.46.如果存在常数)0(,≠a b a ,使1)(=+=b aX Y P ,且+∞<<DX 0,那么Y X ,的相关系数ρ为( ).(A )1; (B )–1; (C )||1ρ=; (D )||1ρ<. 解:aDX X X a b aX X Y X ==+====),cov(),cov(),cov(1以概率 DX a DY 21以概率==== ||||),cov(1a a DX a aDX DYDX Y X XY=====⋅=以概率ρ||1ρ∴=,以概率1成立. ∴ 选C.47.设二维离散型随机变量),(Y X 的分布律为则( ).(A )Y X ,不独立; (B )Y X ,独立; (C )Y X ,不相关; (D )Y X ,独立且相关.解:1.0)0,0(===Y X P)2.01.0)(25.005.01.0()0()0(+++===Y P X P 12.03.04.0=⨯= )0()0()0,0(==≠==Y P X P Y X P ∴ X 与Y 不独立. ∴ 选A.48.设X 为连续型随机变量,方差存在,则对任意常数C 和0>ε,必有( ).(A )εε/||)|(|C X E C X P -=≥-; (B )εε/||)|(|C X E C X P -≥≥-; (C )εε/||)|(|C X E C X P -≤≥-; (D )2/)|(|εεDX C X P ≤≥-. 解:||||||(||)()()X C X C X C P X C f x dx f x dx εεεε-≥-≥--≥=≤⎰⎰||1()||X C f x dx E X C εε+∞-∞-≤=-⎰∴ 选C.49.设随机变量X 的方差为25,则根据切比雪夫不等式,有)10|(|<-EX X P ( ).(A )25.0≤; (B )75.0≤; (C )75.0≥; (D )25.0≥. 解:75.0431002511)10|(|2==-=-≥<-εDXEX X P ∴ 选C.50.设 ,,21X X 为独立随机变量序列,且i X 服从参数为λ的泊松分布,,2,1=i ,则( ).(A ))(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λλ;(B )当n 充分大时,∑=ni iX1近似服从标准正态分布; (C )当n 充分大时,∑=ni iX1近似服从),(λλn n N ;(D )当n 充分大时,)()(1x x XP ni iΦ≈≤∑=.解:由独立同分布中心极限定理∑∞→=⇒nn i iX1近似服从),(λλn n N∴ 选C51.设 ,,21X X 为独立随机变量序列,且均服从参数为λ的指数分布,则( ).(A ))(/lim 21x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λλ; (B ))(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λ;(C ))(/11lim 21x x X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λλ; (D )).(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λ解:λ1=i EX 21λ=i DX λnX E n i =⎪⎭⎫ ⎝⎛∑1 21λn X D n i =⎪⎭⎫ ⎝⎛∑由中心极限定理⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑∞→x n nX P n i n 21lim λλ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-=∑∞→x n n X P n i n 1lim λ)(x Φ=. ∴ 选B.52.设4321,,,X X X X 是总体),(2σμN 的样本,μ已知,2σ未知,则不是统计量的是( ).(A )415X X +; (B )41ii Xμ=-∑;(C )σ-1X ; (D )∑=412i iX.统计量是不依赖于任何未知参数的连续函数. ∴ 选C.53.设总体n X X X p B X ,,,),,1(~21 为来自X 的样本,则=⎪⎭⎫ ⎝⎛=n k X P ( ).(A )p ; (B )p -1;(C )k n k k n p p C --)1(; (D )k n k k n p p C --)1(.解:n X X X 21相互独立且均服从),1(p B 故 ∑=ni ip n B X1),(~即 ),(~p n B X n 则()()(1)k k n k n k P X P nX k C p p n-====- ∴ 选C.54.设n X X X ,,,21 是总体)1,0(N 的样本,X 和S 分别为样本的均值和样本标准差,则( ).(A ))1(~/-n t S X ; (B ))1,0(~N X ;(C ))1(~)1(22--n S n χ; (D ))1(~-n t X n .解:∑==ni i X n X 11 0=X E ,)1,0(~112n N X n n n X D ∴== B 错 )1(~)1(222--n S n χσ )1(~)1(1)1(2222--=-∴n S n S n χ)1(~-n t n SX . ∴ A 错.∴ 选C.55.设n X X X ,,,21 是总体),(2σμN 的样本,X 是样本均值,记=21S∑∑∑===--=-=--n i n i n i i i i X n S X X n S X X n 1112232222)(11,)(1,)(11μ,∑=-=n i i X n S 1224)(1μ,则服从自由度为1-n 的t 分布的随机变量是( ).(A )1/1--=n S X T μ; (B )1/2--=n S X T μ;(C )nS X T /3μ-=; (D )n S X T /4μ-=解:)1(~)(2212--∑=n X Xni iχσ)1,0(~N n X σμ-)1(~1)(1122----=∑=n t n X XnX T ni iσσμ)1(~11/)(222---=--=n t n S X n nS n X T μμ ∴ 选B.56.设621,,,X X X 是来自),(2σμN 的样本,2S 为其样本方差,则2DS 的值为( ).(A )431σ; (B )451σ; (C )452σ; (D ).522σ 解:2126,,,~(,),6X X X N n μσ= ∴)5(~5222χσS由2χ分布性质:1052522=⨯=⎪⎪⎭⎫ ⎝⎛σS D即442522510σσ==DS ∴ 选C.57.设总体X 的数学期望为n X X X ,,,,21 μ是来自X 的样本,则下列结论中正确的是( ).(A )1X 是μ的无偏估计量; (B )1X 是μ的极大似然估计量; (C )1X 是μ的一致(相合)估计量; (D )1X 不是μ的估计量. 解:11EX EX X μ==∴是μ的无偏估计量.∴ 选A.58.设n X X X ,,,21 是总体X 的样本,2,σμ==DX EX ,X 是样本均值,2S 是样本方差,则( ).(A )2~,X N n σμ⎛⎫ ⎪⎝⎭; (B )2S 与X 独立;(C ))1(~)1(222--n S n χσ; (D )2S 是2σ的无偏估计量. 解:已知总体X 不是正态总体 ∴(A )(B )(C )都不对.∴ 选D.59.设n X X X ,,,21 是总体),0(2σN 的样本,则( )可以作为2σ的无偏估计量.(A )∑=n i i X n 121; (B )∑=-n i i X n 1211; (C )∑=n i i X n 11; (D )∑=-ni i X n 111. 解:2222)(,0σ==-==i i i i i EX EX EX DX EX22121)1(σσ=⋅=∑n nX n E n i∴ 选A.60.设总体X 服从区间],[θθ-上均匀分布)0(>θ,n x x ,,1 为样本,则θ的极大似然估计为( )(A )},,max {1n x x ; (B )},,min{1n x x (C )|}|,|,max {|1n x x (D )|}|,|,min{|1n x x解:1[,]()20x f x θθθ⎧∈-⎪=⎨⎪⎩其它似然正数∏==ni i n x f x x L 11),();,,(θθ 1,||1,2,,(2)0,i nx i n θθ⎧≤=⎪=⎨⎪⎩其它此处似然函数作为θ函数不连续 不能解似然方程求解θ极大似然估计∴ )(θL 在)(n X =θ处取得极大值 |}|,|,max{|ˆ1nn X X X ==θ ∴ 选C.。
概率论与数理统计ppt课件(完整版)
( 1)
n 1
例4. 设P(A)=p, P(B)=q, P(AB)=r, 用p, q, r表示下列 事件的概率:
(1) P ( A B ); (2) P ( A B); (3) P ( A B); (4)P( A B ).
28
§5. 条件概率
(一)条件概率: 设试验E的样本空间为S, A, B是事件, 要考虑 在A已经发生的条件下B发生的概率, 这就是条件概 率问题.
概率论与数理统计
第一章 概率论的基本概念 前 言
1. 确定性现象和不确定性现象.
2. 随机现象: 在个别试验中其结果呈现出不确定性, 在 大量重复试验中其结果又具有统计规律性. 3. 概率与数理统计的广泛应用.
2
§1.随机试验
我们将对自然现象的一次观察或进行一次科学试验 称为试验。
举例:
E1: 抛一枚硬币,观察正(H)反(T) 面 的情 况.
B A 类似地, 事件 S 为可列个事件A1, A2, ...的积事件.
k 1 K
(2) A B A B
S
(3)A B
9
4.差事件:
事件A-B={x|xA且xB} 称为A与B的差. 当且仅当 A发生, B不发生时事件A-B发生. 即:
A - B A AB
显然: A-A=, A- =A, A-S=
(一) 频率 1. 在相同的条件下, 共进行了n次试验,事件A发生的次 数nA, 称为A的频数, nA/n称为事件A发生的频率, 记为 fn(A).
2. 频率的基本性质: (1) 0 f( 1; (非负性) n A) (2) f n ( S ) 1; (规范性) (3)若A1,A 2, , Ak 两两互不相容 ,则 f n ( A1 A2 Ak ) f n ( A1 ) f n ( A2 ) f n ( Ak ).(有限可加性)
概率论与数理统计答案完整版
概率论与数理统计答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】习题答案第1章三、解答题1.设P (AB ) = 0,则下列说法哪些是正确的 (1) A 和B 不相容; (2) A 和B 相容; (3) AB 是不可能事件; (4) AB 不一定是不可能事件; (5) P (A ) = 0或P (B ) = 0 (6) P (A – B ) = P (A ) 解:(4) (6)正确.2.设A ,B 是两事件,且P (A ) = ,P (B ) = ,问: (1) 在什么条件下P (AB )取到最大值,最大值是多少 (2) 在什么条件下P (AB )取到最小值,最小值是多少 解:因为)()()()(B A P B P A P AB P -+≤,又因为)()(B A P B P ≤即.0)()(≤-B A P B P 所以(1) 当)()(B A P B P =时P (AB )取到最大值,最大值是)()(A P AB P ==.(2) 1)(=B A P 时P (AB )取到最小值,最小值是P (AB )=+=. 3.已知事件A ,B 满足)()(B A P AB P =,记P (A ) = p ,试求P (B ).解:因为)()(B A P AB P =,即)()()(1)(1)()(AB P B P A P B A P B A P AB P +--=-== ,所以 .1)(1)(p A P B P -=-=4.已知P (A ) = ,P (A – B ) = ,试求)(AB P .解:因为P (A – B ) = ,所以P (A )– P(AB ) = , P(AB ) = P (A )– , 又因为P (A ) = ,所以P(AB ) =– =,6.0)(1)(=-=AB P AB P .5. 从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少 解:显然总取法有410C n=种,以下求至少有两只配成一双的取法k :法一:分两种情况考虑:15C k=24C 212)(C +25C 其中:2122415)(C C C 为恰有1双配对的方法数法二:分两种情况考虑:!2161815C C C k ⋅⋅=+25C其中:!2161815C C C ⋅⋅为恰有1双配对的方法数法三:分两种情况考虑:)(142815C C C k-=+25C其中:)(142815C C C -为恰有1双配对的方法数法四:先满足有1双配对再除去重复部分:2815C C k=-25C法五:考虑对立事件:410C k=-45C 412)(C其中:45C 412)(C 为没有一双配对的方法数法六:考虑对立事件:!4141618110410C C C C C k ⋅⋅⋅-=其中:!4141618110C C C C ⋅⋅⋅为没有一双配对的方法数所求概率为.2113410==C k p6.在房间里有10个人,分别佩戴从1号到10号的纪念章,任取3人记录其纪念章的号码.求: (1) 求最小号码为5的概率; (2) 求最大号码为5的概率.解:(1) 法一:12131025==C C p ,法二:1213102513==A A C p (2) 法二:20131024==C C p ,法二:2013102413==A A C p 7.将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:设M 1, M 2, M 3表示杯子中球的最大个数分别为1,2,3的事件,则834)(3341==A M P , 1694)(324232=⨯=A C M P , 1614)(3143==C M P8.设5个产品中有3个合格品,2个不合格品,从中不返回地任取2个,求取出的2个中全是合格品,仅有一个合格品和没有合格品的概率各为多少解:设M 2, M 1, M 0分别事件表示取出的2个球全是合格品,仅有一个合格品和没有合格品,则3.0)(25232==C C M P ,6.0)(2512131==C C C M P ,1.0)(25221==C C M P 9.口袋中有5个白球,3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:设M 1=“取到两个球颜色相同”,M 1=“取到两个球均为白球”,M 2=“取到两个球均为黑球”,则φ==2121M M M M M 且.所以.2813C C C C )()()()(282328252121=+=+==M P M P M M P M P10. 若在区间(0,1)内任取两个数,求事件“两数之和小于6/5”的概率.解:这是一个几何概型问题.以x 和y 表示任取两个数,在平面上建立xOy 直角坐标系,如图. 任取两个数的所有结果构成样本空间 = {(x ,y ):0 x ,y 1} 事件A =“两数之和小于6/5”= {(x ,y ) : x + y 6/5} 因此2517154211)(2=⎪⎭⎫ ⎝⎛⨯-=Ω=的面积的面积A A P . 图11.随机地向半圆220x ax y -<<(a 为常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,求原点和该点的连线与x 轴的夹角小于4π的概率. 解:这是一个几何概型问题.以x 和y 表示随机地向半圆内掷一点的坐标,表示原点和该点的连线与x 轴的夹角,在平面上建立xOy 直角坐标系,如图.随机地向半圆内掷一点的所有结果构成样本空间 ={(x ,y ):220,20x ax y a x -<<<<}事件A =“原点和该点的连线与x 轴的夹角小于4π” ={(x ,y ):40,20,202πθ<<-<<<<x ax y a x }因此211214121)(222+=+=Ω=πππa aa A A P 的面积的面积.12.已知21)(,31)(,41)(===B A P A B P A P ,求)(B A P . 解:,1213141)()()(=⨯==A B P A P AB P ,6121121)|()()(=÷==B A P AB P B P 13.设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是多少解:题中要求的“已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率”应理解为求“已知所取两件产品中至少有一件是不合格品,则两件均为不合格品的概率”。
同济大学《概率论与数理统计》PPT课件
同济大学数学系 & 人民邮电出版社
四、随机事件之间的关系与运算
第1章 随机事件与概率 10
(1)事件的包含
若事件 A 的发生必然导致事件 B 的发生, 则称事件A 包含在事件 B 中. 记作 A B .
BA
A B
同济大学数学系 & 人民邮电出版社
3
某快餐店一天内接到的订单量;
4
航班起飞延误的时间;
5
一支正常交易的A股股票每天的涨跌幅。
二、样本空间
第1章 随机事件与概率 6
一个随机试验,每一个可能出现的结果称为一个样本点,记为
全体样本点的集合称为样本空间, 记为 , 也即样本空间是随机试验的一切可能结果组成
的集合, 集合中的元素就是样本点. 样本空间可以是有限集, 可数集, 一个区间(或若干区间的并集).
01 在相同的条件下试验可以重复进行;
OPTION
02 每次试验的结果不止一个, 但是试验之前可以明确;
OPTION
03 每次试验将要发生什么样的结果是事先无法预知的.
OPTION
一、随机试验
例1
随机试验的例子
第1章 随机事件与概率 5
1 抛掷一枚均匀的硬币,有可能正面朝上,也有可能反面朝上;
2
抛掷一枚均匀的骰子,出现的点数;
(互斥).
同济大学数学系 & 人民邮电出版社
2、随机事件之间的运算
第1章 随机事件与概率 12
(1)事件的并
事件 A 或 B至少有一个发生时, 称事件 A 与事件B 的并事件发生, 记为 A U B .
(2)事件的交(积)
概率论与数理统计
概率论与数理统计 习题参考答案(仅供参考) 第一章
第 2 页 (共 62 页)
4.设 P(A)=0.7,P(A-B)=0.3,试求P(AB)
解 由于 AB = A – AB, P(A)=0.7 所以 P(AB) = P(AAB) = P(A)P(AB) = 0.3,
所以 P(AB)=0.4, 故 P(AB) = 10.4 = 0.6.
(4) 取到三颗棋子颜色相同的概率.
解
(1) 设 A={取到的都是白子} 则
P( A) C83 14 0.255. C132 55
(2) 设 B={取到两颗白子, 一颗黑子}
P(B)
C82C41 C132
0.509 .
(3) 设 C={取三颗子中至少的一颗黑子}
P( C) 1 P (A ) 0 . 7. 4 5
P( A2
|B
) P( Ai )P B( P(B )
A| i
) 0 . 1 5 0 .39 0
0.1268
0.8624
P( A3
|B
) P( Ai )P B( P(B )
A| i
) 0 . 0 5 0 .31 0 0 . 0 0 0 1 0.8624
由于 P( A1|B) 远大于 P( A3|B), P( A2|B), 因此可以认为这批货物的损坏率为 0.2.
2. 设 A、B、C 为三个事件,用 A、B、C 的运算关系表示下列事件: (1)A 发生,B 和 C 不发生; (2)A 与 B 都发生,而 C 不发生; (3)A、B、C 都发生; (4)A、B、C 都不发生; (5)A、B、C 不都发生; (6)A、B、C 至少有一个发生; (7)A、B、C 不多于一个发生; (8)A、B、C 至少有两个发生. 解 所求的事件表示如下
概率论与数理统计第二版_课后答案_科学出版社_参考答案_最新
答案仅供参考习题2参考答案2.1 X 2 3 4 5 6 7 8 9 10 11 12 P 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36 2.2解根据10kkXP得10kkae即1111eae。
故1ea 2.3解用X 表示甲在两次投篮中所投中的次数XB20.7 用Y表示乙在两次投篮中所投中的次数YB20.4 1 两人投中的次数相同PXY PX0Y0 PX1Y1 PX2Y2 0011220202111120202222220.70.30.40.60.70.30.40.60.70.30.40.60.3124CCCCCC2甲比乙投中的次数多PXgtY PX1Y0 PX2Y0 PX2Y1 1020211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628CCCCCC2.4解:1P1≤X≤3 PX1 PX2 PX312321515155 2 P0.5ltXlt2.5PX1 PX212115155 2.5解1PX246…246211112222k1111441314kklim 答案仅供参考2PX≥31―PXlt31―PX1- PX21111244 2.6解设iA表示第i次取出的是次品X的所有可能取值为012 123412131241230PXPAAAAPAPAAPAAAPAAAA18171615122019181719 112341234234123412181716182171618182161817162322019181720191817201918172 019181795PXPAAAAPAAAAPAAAAPAAAA 1232321011199595PXPXPX 2.7解1设X表示4次独立试验中A发生的次数则XB40.4343140443340.40.60.40.60.1792PXPXPXCC 2设Y表示5次独立试验中A发生的次数则YB50.4 34532415055533450.40.60.40.60.40.60.31744PXPXPXPXCCC 2.81XPλP0.5×3 P1.5 01.51.500PXe1.5e 2XPλP0.5×4 P2 0122222210111301PXPXPXeee 2.9解设应配备m名设备维修人员。
概率论与数理统计第二版_课后答案_科学出版社_王松桂_张忠占_参考答案_最新
12 32 3 P{ X = 2} = 1 − P{ X = 0} − P{ X = 1} = 1− − = 19 95 95
2.7 解:(1)设 X 表示 4 次独立试验中 A 发生的次数,则 X~B(4,0.4) P ( X ≥ 3) = P ( X = 3) + P ( X = 4) = C 40.430.61 + C 40.44 0.60 = 0.1792 (2)设 Y 表示 5 次独立试验中 A 发生的次数,则 Y~B(5,0.4)
P{ X = P{ A1 A2 A3 A4 } + P{ A1 A2 A3 A4 } + P{ A1 A2 A3 A4 } + P{ A1 A2 A3 A4 } 1} = = 2 18 17 16 18 2 17 16 18 18 2 16 18 17 16 2 32 × × × + × × × + × × × + × × × = 20 19 18 17 20 19 18 17 20 19 18 17 20 19 18 17 95
0
1
1
2
2
(2)甲比乙投中的次数多 P{X>Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=
C
1 2
0.710.31 × C 20.40 0.62 + C 20.7 2 0.30 × C 20.40 0.62 + C 20.7 2 0.30 × C 20.410.61 = 0.5628
a ≈ 184 厘米
2.19 解:X 的可能取值为 1,2,3。
2 C4 6 因为 P ( X = 1) = 3 = = 0.6 ; C 5 10
(2021年整理)概率论与数理统计习题集及答案
概率论与数理统计习题集及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(概率论与数理统计习题集及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为概率论与数理统计习题集及答案的全部内容。
《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 。
1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形。
样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数。
样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= 。
(2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: 。
(3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: 。
(5)A 、B 、C 中至少二个发生表示为: 。
(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。
§1 。
3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = 。
《概率论与数理统计》习题及答案
概率论与数理统计第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。
2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。
3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率 为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。
5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。
7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。
9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率 为 。
10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A {}Y X B >=,则=)|(A B P 。
11、设B A ,是两事件,则B A ,的差事件为 。
12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。
13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。
14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。
15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。
16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。
17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。
T218概率论与数理统计复习资料ch1-11大数定律及中心极限定理
或
~ n np
近似地
N (0,1)
np(1 p
B(16,0.36)和N(5.76,3.6864)的对比:
0.25
b(16,0.36)和 N(5.76,3.6864)
0.2
0.15
0.1
0.05
0
0
2
4
6
8
10
12
14
16
B(25,0.36)和N(9,5.76)的对比:
B(300,0.25)和N(75,56.25)的对比:
P{a n b}
(b np ) (a np )
(120 120) (100 120)
npq
npq
48
48
(0) (2.887) 0.5 1 0.9981 0.4981
(2) 设至少要供给这个车间 r 千瓦电才能以99.9%的概
率保证这个车间正常生产。由题意有 P{ X r} 0.999
t2
e 2 dt
2
(以下的注解是拉普拉斯定理的实质,要领会)
定理表明:正态分布是二项分布的极限分布,即:
若 n ~ B(n, p) 当n很大,0<p<1是一个定值时 (或者说,np(1-p)也不太小时),二项变量 n
的分布近似正态分布 N(np,np(1-p)).也就是:
近似地
n ~ N (np, np(1 p))
n
定理条件,随即变量之和 X k,当n很大时,就近 k 1
似服从正态分布,这就是为什么正态分布在概率论
中所占的重要地位的一个基本原因.
德莫佛-拉普拉斯定理
ห้องสมุดไป่ตู้
(De Moivre--Laplace)
概率论与数理统计习题11
《概率论与数理统计》综合复习资料第一章 随机事件与概率一、填空题(请把答案填在题中横线上):1.一个袋子中有5只黑球3只白球,从袋中任取两只球,若以A 表示:“取到的两只球均为白球”;B 表示:“取到的两只球同色”; C 表示:“取到的两只球至少有一只白球”。
则=)(A P ;=)(B P ; =)(C P 。
2.一个盒子中有10个球,其中有3个红球,2个黑球,5个白球,从中取球两次,每次取一个(无放回),则:第二次取到黑球的概率为 ;取到的两只球颜色相同的概率为 ;取到的两只球至少有一个黑球的概率为 ;取到的两只球没有黑球的概率为 。
3.一盒子中黑球、红球、白球各占50%、30%、20%,从中任取一球,结果不是红球,则:取到的是白球的概率为 ;取到的是黑球的概率为 .4.一个袋子中有5个新球3个旧球,从中取球两次,每次取一个(无放回),若以A 表示:“取到的两个球均为旧球”;B 表示:“取到的两个球恰有一个旧球”; C 表示:“取到的两个球至少有一个旧球"。
则=)(A P ;=)(B P ;=)(C P 。
5.一批产品共有10个正品2个次品,从中任取两次,每次取一个(有放回)。
则 第二次取出的是次品的概率为 ;两次都取到正品的概率为 ;第一次取到正品,第二次取到次品的概率为 ;第一次取到次品,第二次取到正品的概率为 ;恰有一次取到次品的概率为 ;两次都取到次品的概率为 ;恰有一次取到正品的概率为 ;已知第一次取到的是次品,第二次取到正品的概率为 ;已知第一次取到的是次品,第二次取到次品的概率为 。
6.一批产品共有6件正品2件次品,从中任取两件,则:两件都是正品的概率为 ;恰有一件次品的概率为 ;两件都是次品的概率为 ;至少取到一件次品的概率为 。
7.袋中有50个乒乓球,其中20个黄球,30个白球,今由两人依次随机地各取一球,取后不放回,则:第二个人取得黄球的概率是 ;两个人都取得黄球的概率是 ;至少有一人取得黄球的概率是 .8.设一批产品中一、二、三等品各占50%、30%、20%,从中任取一件,结果不是一等品,则取到的是二等品的概率为 ;取到的是三等品的概率为 。
概率论与数理统计课后习题参考答案高等教育出版社
概率论与数理统计课后习题参考答案高等教育出版社习题1.1解答1. 将一枚均匀的硬币抛两次,事件分别表示“第一次出现正面”,“两次C B A ,,出现同一面”,“至少有一次出现正面”。
试写出样本空间及事件中的样本点。
C B A ,,解:(正,正),(正,反),(反,正),(反,反){=Ω}(正,正),(正,反);(正,正),(反,反){=A }{=B }(正,正),(正,反),(反,正){=C }2. 在掷两颗骰子的试验中,事件分别表示“点数之和为偶数”,“点数D C B A ,,,之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。
试写出样本空间及事件中的样本点。
D C B A BC C A B A AB ---+,,,,解:;{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω;{})1,3(),2,2(),3,1(),1,1(=AB ;{})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ;;Φ=A {})2,2(),1,1(=BC {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以分别表示某城市居民订阅日报、晚报和体育报。
试用表示以下C B A ,,C B A ,,事件:(1)只订阅日报; (2)只订日报和晚报;(3)只订一种报; (4)正好订两种报;(5)至少订阅一种报; (6)不订阅任何报;(7)至多订阅一种报; (8)三种报纸都订阅;(9)三种报纸不全订阅。
解:(1);(2);(3);C B A C AB B A C B A C B A ++(4);(5);BC A A C AB ++C B A ++(6);(7)或C B A C B A C B A C B A +++C B C A B A ++(8);(9)ABC ++ 4. 甲、乙、丙三人各射击一次,事件分别表示甲、乙、丙射中。
概率论与数理统计浙江大学盛骤完整版
一种受到某些著名学者支持的观点认为,英国学者葛朗特 在1662年发表的著作《关于死亡公报的自然和政治观察》, 标志着这门学科的诞生。
数理统计学的另一个重要源头来自天文和测地学中的误差 分析问题。人们希望通过多次量测获取更多的数据,以便 得到对量测对象的精度更高的估计值。量测误差有随机性, 适合于用概率论即统计的方法处理,远至伽利略就做过这 方面的工作,他对测量误差的性态作了一般性的描述,法 国大数学家拉普拉斯曾对这个问题进行了长时间的研究, 现今概率论中著名的“拉普拉斯分布”,即是他在这研究 中的一个产物。这方面最著名且影响深远的研究成果有二: 一是法国数学家兼天文家勒让德19世纪初(1805) 与德 国大学者高斯发明的“最小二乘法”,另外一个重要成果 是高斯1809年在研究行星绕日运动时提出用正态分布刻画 测量误差的分布。正态分布也常称为高斯分布。
i 1
S AB
S AB
✓ 当AB=Φ时,称事件A与B不相容的,或互斥的。
S
AB
21
✓ A B AB { x| xA 且 xB }
S AB
✓
A的逆事件记为A,
A
U
A
S
,
A A
若
A A
U B
B
S
,称A,
B互逆、互斥
S
✓ “和”、“交”关系式
AA
n
n
9
20世纪以前数理统计学发展的一个重要成果, 是19世纪后期由英国遗传学家兼统计学家高尔顿 发起,并经现代统计学的奠基人之一K·皮尔逊和 其他一些英国学者所发展的统计相关与回归理论。 所谓统计相关,是指一种非决定性的关系如人的 身高X与体重Y,存在一种大致的关系,表现在X 大(小)时,Y也倾向于大(小),但非决定性的: 由X并不能决定Y。现实生活中和各种科技领域中, 这种例子很多,如受教育年限与收入的关系,经 济发展水平与人口增长速度的关系等,都是属于 这种性质,统计相关的理论把这种关系的程度加 以量化,而统计回归则是把有统计相关的变量, 如上文的身高X和体重Y的关系的形式作近似的估 计,称为回归方程,现实世界中的现象往往涉及 众多变量,它们之间有错综复杂的关系,且许多 属于非决定性质,相关回归理论的发明,提供了 一种通过实际观察去对这种关系进行定量研究的 工具,有着重大的认识和实用意义。
概率论与数理统计ppt课件
注:P( A) 0不能 A ; P( B) 1不能 B S .
2。 A1 , A2 ,...,An , Ai Aj , i j, P( P(
n n i 1
Ai ) P( Ai )
i 1
n
证:令 Ank (k 1, 2,...), Ai Aj , i j, i, j 1, 2,....
•
5.1 大数定律 5.2 中心极限定理
•
第六章 数理统计的基本概念
• • 6.1 总体和样本 6.2 常用的分布
4
第七章 参数估计
• • • 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计
第八章 假设检验
• • • • • • • 8.1 8.2 8.3 8.4 8.5 8.6 8.7 假设检验 正态总体均值的假设检验 正态总体方差的假设检验 置信区间与假设检验之间的关系 样本容量的选取 分布拟合检验 秩和检验
A B 2 A=B B A
B A
S
例: 记A={明天天晴},B={明天无雨} B A
记A={至少有10人候车},B={至少有5人候车} B
A
一枚硬币抛两次,A={第一次是正面},B={至少有一次正面}
BA
13
事件的运算
A与B的和事件,记为 A B
8
§1 随机试验
确定性现象
自然界与社会Βιβλιοθήκη 活中的两类现象不确定性现象
确定性现象:结果确定 不确定性现象:结果不确定
例:
向上抛出的物体会掉落到地上 ——确定 ——不确定 明天天气状况 ——不确定 买了彩票会中奖
概率论与数理统计习题11
《概率论与数理统计》综合复习资料第一章 随机事件与概率一、填空题(请把答案填在题中横线上):1.一个袋子中有5只黑球3只白球,从袋中任取两只球,若以A 表示:“取到的两只球均为白球”;B 表示:“取到的两只球同色”; C 表示:“取到的两只球至少有一只白球”。
则=)(A P ;=)(B P ; =)(C P 。
2.一个盒子中有10个球,其中有3个红球,2个黑球,5个白球,从中取球两次,每次取一个(无放回),则:第二次取到黑球的概率为 ;取到的两只球颜色相同的概率为 ;取到的两只球至少有一个黑球的概率为 ;取到的两只球没有黑球的概率为 。
3.一盒子中黑球、红球、白球各占50%、30%、20%,从中任取一球,结果不是红球,则:取到的是白球的概率为 ;取到的是黑球的概率为 。
4.一个袋子中有5个新球3个旧球,从中取球两次,每次取一个(无放回),若以A 表示:“取到的两个球均为旧球”;B 表示:“取到的两个球恰有一个旧球”; C 表示:“取到的两个球至少有一个旧球”。
则=)(A P ;=)(B P ;=)(C P 。
5.一批产品共有10个正品2个次品,从中任取两次,每次取一个(有放回)。
则 第二次取出的是次品的概率为 ;两次都取到正品的概率为 ;第一次取到正品,第二次取到次品的概率为 ;第一次取到次品,第二次取到正品的概率为 ;恰有一次取到次品的概率为 ;两次都取到次品的概率为 ;恰有一次取到正品的概率为 ;已知第一次取到的是次品,第二次取到正品的概率为 ;已知第一次取到的是次品,第二次取到次品的概率为 。
6.一批产品共有6件正品2件次品,从中任取两件,则:两件都是正品的概率为 ;恰有一件次品的概率为 ;两件都是次品的概率为 ;至少取到一件次品的概率为 。
7.袋中有50个乒乓球,其中20个黄球,30个白球,今由两人依次随机地各取一球,取后不放回,则:第二个人取得黄球的概率是 ;两个人都取得黄球的概率是 ;至少有一人取得黄球的概率是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i
i
P{ X xi ,Y y j }= pij = p. j
i
i
( j 1, 2, )
为(X, Y)关于Y的边际分布列.
注 边际分布完全由联合分布唯一决定.
二维离散型随机变量的联合分布列和边际分布列也可列表 如下:
X Y y1
y2 … yj … P( X xi ) pi.
x1
p11 p12 ... p1j ...
例4 考虑伯努利试验序列,设其中每次试验成功的概率 为 p. 令X表示第一次成功之前的失败次数,Y表示前二次 成功之间的失败次数.求(X,Y)的联合分布列及边际分布列。
解 由题意可得(X,Y)的联合分布列为
P(X i,Y j) (1 p)i p (1 p) j p p2 (1 p)i j (i, j 0,1, 2, )
由此可得(X,Y)关于 X的边际分布为
pi p2 (1 p)i j j0 p2 (1 p)i 1 p(1 p)i (i 0,1, 2 ) 1 (1 p)
同理可得(X,Y)关于 Y 的边际分布为
p j p(1 p) j ( j 0,1, 2 )
三、边际密度函数
我们已知,边际分布函数可由(X, Y)的联合分布函数F(x,y)唯一 确定,即
1dy 1 x,
x
1
=
x 1dy
1
x,
0,
1 x 0
0 x1 其他
pY ( y)
p(
x,
y)dx
y
1dx 2 y,
y
0,
0 y1 其他
可以证明:
如果
( X ,Y )
~
N
(
1
,
2
,
2 1
,
2 2
,
)
则必有
X
~
N
(
1
,
2 1
),
Y
~
N (2 , 22 )
事实上,由
p( x, y)
则称 P{ X xi } P{X xi , Y y j } P{ ( X xi ,Y y j )}
j
j
P{X xi ,Y yj }= pij = pi.
j
j
(i 1, 2, )
为(X, Y)关于X的边际概率分布(边际分布列);
称 P{Y y j } P{ X xi ,Y yj } P{ ( X xi ,Y y j )}
x
x
FX ( x) F ( x, )
p(u, v)dudv
[ p(u, v)dv]du
于是可得
pX ( x) FX ( x)
p( x, v)dv
p( x, y)dy
同理可得
pY ( y) FY( y)
p( x, y)dx
称 pX ( x), pY ( y) 分别为(X, Y)关于X ,Y的边际密度函数. (实际上,由定义可知, pX ( x), pY ( y) 即为随机变量X与Y各自
例3 求上节例2中二维随机变量关于X和 Y的边际分布列.
解因
XY 0
0
9
25
1
6
25
p. j
3
5
即关于X和Y 的分布列分别为:
1
pi .
6
3
25
5
4
2
25
5
2
5
X0 1
Y0 1
P 3/5 2/5
P 3/5 2/5
注意:边缘分布列不能确定联合分布列.
因而单纯地研究各个分量的分布是不够的,而有必要把它们 放在一起作为整体来考察其联合分布.
1
e
2(
1 1
2
[ )
(
x
1 12
)2
2
(
x
1 )( y2 1 2
)
(
y2
2 2
)2
]
21 2 1 2
可得
pX ( x)
p( x, y)dy
1
e dy
2 1 1 2
2 1 1 e dy 1 2
1 2(1
2
[ )
(
x
1
2 1
)2
2
(
x
1
)( y 1 2
2
)
(
y
2
2 2
)2
]
2
1 2(1
2
[(1 )
2
)(
x 1
2 1
)2
(
y 2 2
x 1 1
1 1 2 1
( x1 )2
e 2
2 1
2
e dy
1 2(1
2
( )
y 2 2
x 1 1
)2
令 t 1 ( y 2 x 1 ), 有
1 2 2
1
pX ( x)
1
2 1
e
FY(y)=
P{Y
y}
=P{X<+
,Y
y}=F
(+,
y)
lim
x
F ( x,
y)
称为二维随机变量(X, Y)关于Y的边际分布函数.
例1 已知(X, Y)的联合分布函数为
1 e x xe y ,
F ( x, y) 1 e y ye y ,
0,
0 x y 0 y x
其它
求 两个边际分布函数FX(x)与FY(y).
§3.2边际分布及随机变量的独立性
一、边际分布函数
定义 称二维随机变量(X, Y)的两个分量X, Y各自的分布函数 为(X, Y)关于分量X,分量 Y的边际分布函数;即
FX(x)=
P{X x}
=P{X x,Y<+ } =F (x, +)
lim F( x, y)
y
称为二维随机变量(X, Y)关于X的边际分布函数;
解
FX(x)=F(x,+)=
1 e x 0
x0 x0
FY(y)=F(+,y)=
1 e y 0
y0 y0
二、边际分布列
定义 称二维随机变量(X, Y)中两个分量X(或Y) 的概率分布 为(X, Y)关于分量X(或 Y)的边际概率分布;即若随机变量X与Y的 联合概率分布为
(X, Y)~P{X=xi , Y=yj}= pij (i, j=1, 2, …)
p1•
x2
p21 p22 ... p2j ...
p2•
xi
pi1 pi2 ... pij ...
pi•
... ... ... ...
... ... ... ... ... ...
P(Y y j ) p. j p•1 p•2 ... p•j ...
注 显然(X, Y)关于X(或 Y)的边际分布列可由上表依行(或列) 累加而得.
的概率密度.)
例5 设(X, Y)服从如图区域D上的均匀分布,求 (1)求(X, Y)的联合概率密度函数;(2)求两个边际密度函数.
解 (1)因
SD
1 2
21
1
则(X, Y)的联合密度函数为
p(
x,
y)
1, 0,
(x, y) D (x, y) D
(2)
pX ( x)
p( x, y)dy
1
解
FX(x)=F(x,+)=
1 e x 0
x0 x0
1 e y ye y y 0
FY(y)=F(+,y)=
0
y0
例2 已知(X, Y)的联合分布函数为
1 e x e y e , x yxy x 0, y 0
F(x, y) 0,
其他
求 两个边际分布函数FX(x)与FY(y).
(
x 1 2 12