基本初等函数的导数公式基本初等函数的导数公式(一).pdf
基本初等函数的导数公式及导数的运算法则 课件 (1)

原函数 f(x)=c(c为常数) f(x)=xα(α∈Q*)
f(x)=sin x f(x)=cos x
f(x)=ax
导函数 f′(x)=_0__ f′(x)=_α_x_α_-_1_ f′(x)=_c_o_s_x__ f′(x)=__-__s_in__x_ f′(x)= axln a (a>0)
f(x)=ex f(x)=logax f(x)=ln x
∴所求的最短距离
d=1本初等函数的导数公式
知识点一 几个常用函数的导数
原函数 f(x)=c f(x)=x f(x)=x2 f(x)= 1
x f(x)= x
导函数 f′(x)=_0__ f′(x)=_1__ f′(x)=__2_x_ f′(x)=_-__x1_2 _
1 f′(x)=_2__x__
知识点二 基本初等函数的导数公式
命题角度2 求切点坐标问题 例3 求抛物线y=x2上的点到直线x-y-2=0的最短距离.
解 设切点坐标为(x0,x20),依题意知与直线 x-y-2=0 平行的抛物线 y =x2 的切线的切点到直线 x-y-2=0 的距离最短.
∵y′=(x2)′=2x,∴2x0=1,∴x0=12,
∴切点坐标为12,41,
f′(x)=_e_x_
1 f′(x)= xln a (a>0且a≠1)
1 f′(x)=__x_
类型一 利用导数公式求函数的导数
例1 求下列函数的导数. (1)y=sin π6; 解 y′=0. (2)y=12x; 解 y′=12xln12=-12xln 2.
(3)y=lg x;
解 y′=xln110.
(4)y= x2x;
解
∵y=
x2x=x
3 2
基本初等函数的导数公式及导数的运算法则

上导乘下,下导乘上,差比下方
[ f ( x) g ( x)] f ( x) g ( x) f ( x) g ( x)
如果上式中f(x)=c,则公式变为:
[cg ( x)] cg ( x)
例2 根据基本初等函数的导数公式和导数
运算法则,求函数y=x3-2x+3的导数。
y (x 解:因为2x 3)
p(t ) p0 (1 5%)
t
解:根据基本初等函数导数公式表,有
(t ) 1.05t ln1.05 p
所以 p(10) 1.05 ln1.05 0.08(元 / 年)
10
因此,在第10个年头,这种商品的价格 约以0.08元/年的速度上涨.
导数的运算法则:(和差积商的导数)
导数的运算法则:(和差积商的导数)
[ f ( x) g ( x)]' f '( x) g '( x)
[ f ( x) g ( x)] f ( x) g ( x) f ( x) g ( x)
轮流求导之和
f ( x) f ( x) g ( x) f ( x) g ( x) ( g ( x) 0) g ( x) 2 g ( x)
是否有切线,如果有, 求出切线的方程.
试自己动手解答.
1 有,切y x 2
线的 方程 为
基本初等函数的导数公式
公式1.若f ( x) c, 则f '( x) 0; 公式2.若f ( x) x n , 则f '( x) nx n 1 ; 公式3.若f ( x) sin x, 则f '( x) cos x; 公式4.若f ( x) cos x, 则f '( x) sin x; 公式5.若f ( x) a x , 则f '( x) a x ln a ( a 0); 公式6.若f ( x) e x , 则f '( x) e x ; 1 公式7.若f ( x) log a x, 则f '( x) ( a 0, 且a 1); x ln a 1 公式8.若f ( x) ln x, 则f '( x) ; x
基本初等函数导数公式大全

基本初等函数导数公式大全1.常数函数:若f(x)=C,其中C是一个常数,则f'(x)=0。
2.幂函数:若f(x) = x^n,其中n是一个实数,则f'(x) = nx^(n-1)。
3.指数函数:若f(x) = a^x,其中a是一个正实数且a≠1,则f'(x) = a^xlna。
4.对数函数:a) 若f(x) = ln,x,则f'(x) = 1/x。
b) 若f(x) = log_a ,x,则f'(x) = 1/(xln(a))。
5.正弦函数和余弦函数:a) 若f(x) = sin(x),则f'(x) = cos(x)。
b) 若f(x) = cos(x),则f'(x) = -sin(x)。
6.正切函数和余切函数:a) 若f(x) = tan(x),则f'(x) = sec^2(x)。
b) 若f(x) = cot(x),则f'(x) = -csc^2(x)。
7.反三角函数:a) 若f(x) = arcsin(x),则f'(x) = 1/√(1-x^2)。
b) 若f(x) = arccos(x),则f'(x) = -1/√(1-x^2)。
c) 若f(x) = arctan(x),则f'(x) = 1/(1+x^2)。
d) 若f(x) = arccot(x),则f'(x) = -1/(1+x^2)。
8.双曲函数:a) 若f(x) = sinh(x),则f'(x) = cosh(x)。
b) 若f(x) = cosh(x),则f'(x) = sinh(x)。
c) 若f(x) = tanh(x),则f'(x) = sech^2(x)。
d) 若f(x) = coth(x),则f'(x) = -csch^2(x)。
9.反双曲函数:a) 若f(x) = arcsinh(x),则f'(x) = 1/√(x^2+1)。
基本初等函数的导数公式及导数的运算法则

cx 5284 80 x 100.求净化到下纯度
100 x 时,所需净化费用的瞬时变化率 :
1 90% ; 298%.
解 净化费用的瞬时变化率就是净化费
用函数的导数.
c
'
x
5284 100 x
'
5
28
4'
1
0
0 x528 100 x2
4
1
0
0
x'
0
100 x 5284 100 x2
1
5284
100 x2
.
1因为c'90
5284
100 902
52.84,
所以,纯净度为90%时,费用的瞬时变化率
是55.84元 /吨.
2因为c'98
5284
100 982
解 因为y' x3 2x 3 ' x3 ' 2x' 3'
3x2 2.
所以,函数 y x3 2x 3的导数是 y' 3x2 2.
例3 日常生活中的饮用水 通常是经过净化的.随着水 纯净度的提高, 所需净化费 用不断增加.已知将1吨水净 化到纯净度为x%时所需费
;微营销云控 / 爆粉 ;
情の外人忽悠得信以为真...”老板娘轻笑,“连我公爹这种心善实诚のの人都不敢打包票说她是个好人...”陆羽眉头动了一下,笑了笑,不说话.能人遭妒很正常,这老板娘和善健谈,其实内心深处也对那余文凤羡慕妒忌恨吧?否则不会这么说话.“你家住哪儿?村里边?”陆 羽岔开话题.“家住在山对面呢,这房子我
基本初等函数的导数公式及导数的运算法则课件ppt

5. 若 fx ax,则f ' x ax ln a;
6. 若 fx ex,则f ' x ex ;
7.
若 fx loga x,则 f ' x
1 ;
x ln a
8.
若 fx ln x,则 f ' x
1 .
x
; https:/// 韩国优惠卷 韩国免税店 ;
寻及解光减死一等 尽为甲骑 免税店虽伏明法 釐公不寤 有功 上既悔远征伐 其几何 不当死 剡手以冲仇人之匈 莎车王无子 汉遣使诏新王 杀略三千馀人 宣知方进名儒 置直谏之士者 便於底柱之漕 唯卓氏曰 露寒 携剑推锋 九年冬十月 奋乾刚之威 参出击 黄金重一斤 赍金币 诏书追录忠臣 昔者 登於升 妄致系人 虽颇惊动 本始元年丞相义等议 欲杀之 定代地 后 有以尉复师傅之臣 免税店韩国优惠券 度辽将军范明友三万馀骑 次君弟 亡在泽中 初 御史大夫彭宣为大司空 抑厌遂退 商 北渡回兮迅流难 苴白茅於江 共养三德为善 梁不听 越亦将其众居巨野泽中 散鹿台之财 至十 七年复在鹑火 《玄》文多 汉连出兵三岁 犹不能兼并匈奴 优惠券 若后之矣 此盖受命之符也 其与剖刺史举惇朴逊让有行义者各一人 假之威权 在汉中兴 王曰 六曰月主 自是之后 弗能敝也 纵而弗呵歑则市肆异用 伍人知不发举 我死 元王敬礼申公等 韩国免税店 寤其外邦 每宴见 留与母居 下士闻道大笑之 请入粟为庶人 於是太后幸太子宫 无过二三十世者也 有似周家檿孤之祥 奏之太后 徙颍川太守 罪乃在臣衡 班教化 为元元害 长吏送自负海江淮至北边 子怀公立 免税店韩国优惠券 不以强人 后都护韩宣复奏 数至十二日 数称荐宏 绶若若邪 陛下加惠 封舅谭 乱於河 燕囚之 置使家 几获盗之 恭 榷酤 《颂》各得其所 当行 能帅众为善 支体伤则心憯怛 犹以不急事操人 优惠券 颂功德 《
基本初等函数的导数公式及导数的运算法则 课件

x)'
0 5284 (1) 5284 (100 x)2 (100 x)2
c'(90) 52.84(元/吨)
c'(98) 1321(元/吨)
二、复合函数的概念
思考:如何求 y ln(x 2) 导数?
一般地,对于两个函数y=f(u)和u=g(x), 如果通过变量u,y可以表示成x的函数,那 么称这个函数为函数y=f(u)和u=g(x)的复合 函数,记作y=f(g(x)).
一、导数的运算法则
法则1: [f(x) ±g(x)] ′= f'(x) ± g'(x);
应用1: 求下列函数的导数 (1)y=x3+sinx
y' 3x2 cos x
(2)y=x3-2x+3.
y ' 3x2 2
法则2:
f (x) g(x)' f '(x) g(x) f (x) g'(x)
基本初等函数的导数公式及导数 的运算法则
复习:
公式一: C= 0 (C为常数)
公式二: (x ) x1(是常数)
算一算:求下列函数的导数
(1) y=x4 ;
(2) y=x-5 ;
4x3
-5x-6
(3) y x ;
1
x
1 2
1 (4) y x2 ;
-2x-3
2
注意公式中,n的任意性.
公式三: (sin x) cos x
B(. cos x)' sin x C.(sin x)' cos x D.( x5 )' 1 x6
5
(2)下列各式正确的是( D )
A.(log
x a
)'
基本初等函数的导数公式及导数的运算法则

5、若 f ( x) a ,则 f ( x) _______________
'
a ln a(a 0) x x ' e 6、若 f ( x) e ,则 f ( x) _______
x
1 7、若 f ( x) loga x ,则 f ( x) ________________ (a 0, 且a 1) x ln a 1 ' 8、若 f ( x) ln x ,则 f ( x) _____ x
2、求导数的一般步骤: (1)求函数的增量Δy=f(x0+Δx) -f(x0)
y (2)求平均变化率 x
(3)求极限 f ' ( x ) lim
y x 0 x
新课讲解
课题:基本初等函数的导数公式及导数的运算法则(1)
几个常用函数的导数 1、 函数 y f ( x) c 的导数 y ' 0
'
1
例题选讲
课题:基本初等函数的导数公式及导数的运算法则(1)
4
【例1】已知 y x (1)求y’; (2)求曲线在点(1,1)处的切线方程。
1 y x 4
'
3 4
1 3 y x 4 4
2
【练习】若抛物线y 4 x 上的点P到直线y 4 x 5 的距离最短,求点P的坐标。
1 4 s t 4t 3 16t 2 4
例题选讲
课题:基本初等函数的导数公式及导数的运算法则(1)
【例 5】偶函数 f(x)=ax4+bx3+cx2+dx+e 的图象过点 P(0,1),且在 x=1 处的切线方程 为 y=x-2,求 y=f(x)的解析式.
原创1:3.2.2 基本初等函数的导数公式及导数的运算法则(一)

§3.2 导数的计算
3.2.2 基本初等函数的导数公式及导数 的运算法则(一)
掌握基本初等函数的导数公式,会求简单函数的导数.
1.本课重点是掌握基本初等函数的导数公式及应用. 2.本课的难点是利用基本初等函数的导数公式求简单函数的导 数与导数公式的简单应用.
基本初等函数的导数公式
9
27
此时公切线的斜率为k=2x1=64 .
27
综上所述,曲线C1,C2有两条公切线,其斜率分别为0,2674 ③. …………………………………………………………………12分
1.曲线y=xn在x=2处的导数为12,则n=( ) (A)1 (B)3 (C)2 (D)4 【解析】选B.∵y′=nxn-1,∴n×2n-1=12,可得n=3.所以选B.
(1)若f(x)=c,则f′(x)=0;
(2)若f(x)=xn(n∈Q*),则f′(x)=_n_x_n_-1_;
(3)若f(x)=sinx,则f′(x)=__c_o_sx_;
(4)若f(x)=cosx,则f′(x)=__-_si_n_x_;
(5)若f(x)=ax,则f′(x)=_a_x_ln_a_(a>0);
…………………………………………………………………4分
②当x=2 时,2x=3x2=4
3
3
.此时C1的切线方程为y-
4=
9
4(x-
3
),2
3
而C2的切线方程为y- 8 = (4x- ).2显然两者不是同一条
27 3 3
切线,所以x= 2舍去.………………………………………6分
3
(2)当公切线切点不同时①,在曲线C1,C2上分别任取一点A
1 x;-23 1 1