七年级数学同底数幂的除法PPT优秀课件
合集下载
初一数学课件13同底数幂的除法课件共19页文档
![初一数学课件13同底数幂的除法课件共19页文档](https://img.taocdn.com/s3/m/8814ec2af705cc175427099f.png)
(2) (-x)6÷(-x)3 =
(3) (xy)4÷ (xy) = (4) b 2m+2÷ b2 =
做一做:
(1) 10000=10 4 (2) 1000=10(3 ) (3) 100=10(2 ) (4) 10=10(1 )
猜一猜:
(1)
1=10 (0 )
(2) 0.1=10( -1)
(3) 0.01=10( -2)
总结规律 ——幂的除法的一般规律
am ÷ a n
有m个a
= a●a●a ………a a●a●a ………a
=am-n
有n个a
am ÷a n = am- n (a ≠ 0,m,n都是正整数,且m>n)
同底数幂相除,底数 不变 ,指数 相减 .
解题依据: 同底数幂相除,底数 不变 ,指数 相减 。
举例 例1 计算: (1) a7 ÷ a4 =
(4) 0.001=10( -3)
做一做:
(1) 16=24 (2) 8=2( 3 ) (3) 4=2( 2 ) (4) 2=2( 1 )
猜一猜:
(1) 1 = 2 0 (2) = 2( -1) (3) = 2( -2) (4) = 2( -3)
探索与合作学习
(1)53÷53=5(3 )-(3)=5(0 ) 又53 ÷53=1
a = ? 得到______3_(__-_2_)_=__—_3_1_2—______ 问:一般地
-p
规定 任何不等于零的数的-p(p是正整数)次幂,
等于这个数的p次幂的倒数。
a-p = —1a—p (a≠0,p是正整数)
我们规定:
1.我们知道了指数有正整数,还有负整 数、零 。
a0 =1,(a≠0),
(3) (xy)4÷ (xy) = (4) b 2m+2÷ b2 =
做一做:
(1) 10000=10 4 (2) 1000=10(3 ) (3) 100=10(2 ) (4) 10=10(1 )
猜一猜:
(1)
1=10 (0 )
(2) 0.1=10( -1)
(3) 0.01=10( -2)
总结规律 ——幂的除法的一般规律
am ÷ a n
有m个a
= a●a●a ………a a●a●a ………a
=am-n
有n个a
am ÷a n = am- n (a ≠ 0,m,n都是正整数,且m>n)
同底数幂相除,底数 不变 ,指数 相减 .
解题依据: 同底数幂相除,底数 不变 ,指数 相减 。
举例 例1 计算: (1) a7 ÷ a4 =
(4) 0.001=10( -3)
做一做:
(1) 16=24 (2) 8=2( 3 ) (3) 4=2( 2 ) (4) 2=2( 1 )
猜一猜:
(1) 1 = 2 0 (2) = 2( -1) (3) = 2( -2) (4) = 2( -3)
探索与合作学习
(1)53÷53=5(3 )-(3)=5(0 ) 又53 ÷53=1
a = ? 得到______3_(__-_2_)_=__—_3_1_2—______ 问:一般地
-p
规定 任何不等于零的数的-p(p是正整数)次幂,
等于这个数的p次幂的倒数。
a-p = —1a—p (a≠0,p是正整数)
我们规定:
1.我们知道了指数有正整数,还有负整 数、零 。
a0 =1,(a≠0),
七年级数学下册8.3同底数幂的除法共14张PPT
![七年级数学下册8.3同底数幂的除法共14张PPT](https://img.taocdn.com/s3/m/ed7f4607a9956bec0975f46527d3240c8447a19d.png)
课堂作业 课本第59页
第1、2题.
≈ 2.8 1012
1.32 109
________________________
计算下列各式:
(1)28÷23= 32 ,25= 32 ;
(2)(-3) 5÷(-3) 2=-27,
(-3) 3=-27;
. (3) 43
5
÷
3 4
3
=
9 16
,
3
2
=
4
9 16
从上面的计算中,你发现了什么规律?
m
m-n
m-n
n
同底数幂的除法运算法则:
同底数幂相除,底数不变,指数相减.
am an amn
(a 0, m, n 是正整数,)m n
本节课开始的问题:
2.8 1012 1.32 109
≈2.12×103m3
例1. 算一算,要有计算过程.
(1) a6 a2 (2) (b)8 (b)
比一比,看谁回答
得既快又准确.
am an amn
(1) s7 s3;
(2) x10 x8;
(3) (t)11 (t)2; (4) (ab)5 (ab);
(5) (3)6 (3)2
(6) a10 a10
1.计算:
(1) 315 313
(2)(
4 )7 3
(
4 )4 3
(3) y14 y 2 (4)(a)5 (a)
逆用同底数幂的除法法则,也可以
得到am-n =_____a_m_÷__a_n___.
(a 0, m, n 是正整数,)m n
已知 am=5,an=3,
.
求 am-n ,a2m-3n .
浙教版数学七年级下册《同底数幂的除法》课件
![浙教版数学七年级下册《同底数幂的除法》课件](https://img.taocdn.com/s3/m/1d063a84d05abe23482fb4daa58da0116c171fb2.png)
2.底数可以是单项式,也可以是多项式,计算时把它看成 一个整体;对于三个或三个以上的同底数幂的除法,法则同 样适用;
总结
浙江教育出版社 七年级 | 下册
3.补充: 同底数幂的除法法则可以逆用,am-n=am÷an
(m,n都是正整数,m>n,a≠0)
利用零指数幂计算时注意底数a≠0这个条件。
浙江教育出版社 七年级 | 下册
感悟新知
浙江教育出版社 七年级 | 下册
知识点一 同底数幂的除法法则
思考 经过以上问题,我们可以发现,整在解决实际问题
时,有时需要用到同底数幂的除法,例如,要想知2GB的 U盘可以存储多少张大小为211KB的照片,就需要计算 221÷211,你能找出其中的运算法则吗?
归纳
浙江教育出版社 七年级 | 下册
课后小结
本节课学到了什么?请同学们叙述本节的概念和结论。
同底数幂的除法法则: 同底数幂相除,底数不变,指数相减;am÷an
=am-n(a≠0,m,n都是正整数,且m>n)。
归纳
浙江教育出版社 七年级 | 下册
分析: 1.同底数幂的除法与同底数幂的乘法是互逆运算;
2.运用此性质时,必须明确底数是什么,指数是什么;
3.在运算时注意运算顺序,即有多个同底数幂相除时, 先算前两个,然后依次往后算;
第三单元·整式的乘除
同底数幂的除法
浙江教育出版社 七年级 | 下册
1 课堂讲授 2 课时流程
学习目标
同底数幂的除法法则 同底数幂的除法法则的逆用
浙江教育出版社 七年级 | 下册
逐点 导讲练
课堂 小结
作业 提升
课时引入
浙江教育出版社 七年级 | 下册
一个2GB(2GB=221KB)的便携式U盘可以存储的数码照片张数与 数码照片文件的大小有关,文件越大,存储的张数越少,若每张 数码照片文件的大小为211KB,则这个U盘能存储多少张照片?
总结
浙江教育出版社 七年级 | 下册
3.补充: 同底数幂的除法法则可以逆用,am-n=am÷an
(m,n都是正整数,m>n,a≠0)
利用零指数幂计算时注意底数a≠0这个条件。
浙江教育出版社 七年级 | 下册
感悟新知
浙江教育出版社 七年级 | 下册
知识点一 同底数幂的除法法则
思考 经过以上问题,我们可以发现,整在解决实际问题
时,有时需要用到同底数幂的除法,例如,要想知2GB的 U盘可以存储多少张大小为211KB的照片,就需要计算 221÷211,你能找出其中的运算法则吗?
归纳
浙江教育出版社 七年级 | 下册
课后小结
本节课学到了什么?请同学们叙述本节的概念和结论。
同底数幂的除法法则: 同底数幂相除,底数不变,指数相减;am÷an
=am-n(a≠0,m,n都是正整数,且m>n)。
归纳
浙江教育出版社 七年级 | 下册
分析: 1.同底数幂的除法与同底数幂的乘法是互逆运算;
2.运用此性质时,必须明确底数是什么,指数是什么;
3.在运算时注意运算顺序,即有多个同底数幂相除时, 先算前两个,然后依次往后算;
第三单元·整式的乘除
同底数幂的除法
浙江教育出版社 七年级 | 下册
1 课堂讲授 2 课时流程
学习目标
同底数幂的除法法则 同底数幂的除法法则的逆用
浙江教育出版社 七年级 | 下册
逐点 导讲练
课堂 小结
作业 提升
课时引入
浙江教育出版社 七年级 | 下册
一个2GB(2GB=221KB)的便携式U盘可以存储的数码照片张数与 数码照片文件的大小有关,文件越大,存储的张数越少,若每张 数码照片文件的大小为211KB,则这个U盘能存储多少张照片?
4.同底数幂的除法PPT课件(华师大版)
![4.同底数幂的除法PPT课件(华师大版)](https://img.taocdn.com/s3/m/d2730888b8f3f90f76c66137ee06eff9aef84981.png)
2.计算:
随堂演练
3.计算: 3(x2)3·x3-(x3)3+(-x)2·x9÷x2
4.计算:(1)(a8)2÷a8; (2)(a-b)2(b-a)2n÷(a-b)2n-1
5.已知am=3,an=4,求a2m-n的值.
6.若(xm÷x2n)3÷xm-n与4x2为同类项,且 2m+5n=7,求4m2-25n2的值.
课堂小结
通过这节课的学习活动, 你有什么收获?
课后作业
1.从教材习题中选取, 2.完成练习册本课时的习题.
现在,我怕的并不是那艰苦严峻的生活, 而是不能再学习和认识我迫切想了解的世 界。对我来说,不学习,毋宁死。
—— 罗蒙诺索夫
推动新课
1.计算下列各式
2
2
2
2
2
2
2
2
5-3
53
a
a
a
a
a
3-2
32
2.探究:am÷an=? 由幂的定义可知:
你能从中归纳出同底数幂除法的法则吗?
【归纳结论】
同底数幂相除,底数不变,指 数相减. am÷an=am-n(a≠0,m,n是 正整数,且m>n)
逆用:
am-n= am÷an (a≠0,m, n是正整数,且m>n)
(3)积的乘方等于积中各因数乘方的积.(ab)n= anbn (n是正整数)
2.一个2GB的便携式U盘可以存储的数码照片张 数与数码照片文件的大小有关,文件越大,存 储的张数越少,若每张数码照片的大小为 211KB,则这个U盘能存储多少张照片?
解:2G=2048M=2097125KB U盘能存储照片的张数2097125÷211≈9938(张) 答:这个U盘能存储9938张照片.
《同底数幂的除法》优秀课件
![《同底数幂的除法》优秀课件](https://img.taocdn.com/s3/m/31fab98f0408763231126edb6f1aff00bed570df.png)
学生易错点分析
总结词:教学难点
详细描述:学生的易错点主要集中在指数为负数的情况,以及在运算过程中忽视幂的底数不变这一基 本原则。教师应重点讲解并给出相应的练习题。
03
课堂互动
问题引导
01
02
03
引导学生思考
通过提出一系列问题,引 导学生思考同底数幂的除 法的意义、计算方法等。
启发学生探究
提出具有启发性的问题, 引导学生探究同底数幂的 除法的性质和规律。
针对不同学生的具体情况,进行个 别指导和辅导,帮助学生解决学习 和实践中的问题。
课堂互动的必要性
提高学生的学习兴趣和积极性
01
通过课堂互动,让学生更加积极地参与到学习中来,提高学生
的学习兴趣和积极性。
增强学生的合作意识和沟通能力
02
通过小组讨论和互动游戏等形式,培养学生的合作意识和沟通
能力。
及时反馈学生的学习情况
02
知识点讲解
同底数幂除法的定义
总结词:基础概念
详细描述:同底数幂的除法是指将一个幂的底数不变,指数相减,所得的新的幂 即为除法的结果。
公式讲解与例题解析
总结词:核心内容
详细描述:公式讲解包括同底数幂除法的基本公式和变形公式,例题解析应选取具有代表性和针对性的例题,帮助学生理解 如何运用公式解决实际问题。
促进知识迁移
通过问题引导,帮助学生 将同底数幂的除法的知识 与其他数学知识进行联系 和迁移。
学生参与的方式和方法
小组讨论
将学生分成小组,让每个小组 内的学生相互讨论和交流,共 同探讨同底数幂的除法的计算
方法和规律。
互动游戏
设计一些互动游戏,让学生在游戏 中学习和掌握同底数幂的除法的知 识和技能。
苏科版七年级数学下册:8.3 同底数幂的除法 课件(共13张PPT)
![苏科版七年级数学下册:8.3 同底数幂的除法 课件(共13张PPT)](https://img.taocdn.com/s3/m/619bc0d3cf2f0066f5335a8102d276a2002960f5.png)
7
A3
11
C
6
E
2
2
n
m n
( 2)
x x ;
(4)
( ab) ( ab);
(6)
a a
10 B
D
10 F
G
H
I
J
8
5
10
a a a
m
练一练:
10
4
m ÷(-m)
9
(-b) ÷
6
(-b)
(ab)8÷(-ab)2
2m+3
2m-3
t
÷t
n
m n
阅读 体验
☞
例2.计算:
(1) (-a-b) 4÷(a+b)3 ;
8.3 同底数幂的除法
你知道吗
如图,若已知这个长方形的面积为25 cm2,
cm,则宽为多少cm
3
长为2
?
如何计算?
2 2
5
3
新知探究
计算下列各式:
(1)10 9 10 7 = 100 ,
10 2 = 100 ;
-27
-27 3 =_______;
(2) 3 3 =_____,
÷ = − ( m>n
为正整数)
2.上面⑵⑶两式中 a 的取值有什么限制吗?
3.对比前面学过的幂的运算法则,你能用汉语概
括出⑶所表示的运算法则吗?
同底数幂相除,底数不变,指数相减
☞
阅读 体验
例1 计算:
(1)a a ;
6
2
(2) b b ;
8
(3)ab ab ;
(2) 272n÷9n;
同底数幂的除法ppt课件
![同底数幂的除法ppt课件](https://img.taocdn.com/s3/m/f9f185805122aaea998fcc22bcd126fff7055dcc.png)
A.-9 B.-3 C.9
D.3
2.已知m,n为正整数,且xn=4,xm=8,
(1)求xm-n的值;
(2)求x3m-2n的值.
解:当xn=4,xm=8时,
(1)xm-n=xm÷xn=8÷4=2.
(2)x3m-2n=x3m÷x2n=(xm)3÷(xn)2=83÷42=32.
零指数幂和负整数指数幂
0
1.规定:a = 1
解:(1)6-1÷6-1=6-1-(-1)=60=1.
-5
-4
(2)(- ) ÷(- ) =(- )
解:(3)(-8)0÷(-8)-2
=(-8)0-(-2)
=(-8)2
=64.
-5-(-4)
-1
=(- ) =-2.
(1)任何非零数的零次幂都等于1;
(2)负整数指数幂是正整数指数幂的倒数,不是正整数指数幂的相反数;
=(-x)4
=x4.
(3)(ab)5÷ab;
(4)am+1÷a2(m>1);
(5)(x-y)5÷(x-y)2.
解:(3)(ab)5÷ab=(ab)5-1
=(ab)4
=a4b4.
(4)am+1÷a2
=am+1-2
=am-1.
(5)(x-y)5÷(x-y)2
=(x-y)5-2
=(x-y)3.
运用同底数幂的除法法则注意
-p
(a≠0),即任何不等于零的数的 0 次幂都等于 1 .
2.a = (a≠0,p 为正整数),即任何不为零的数的-p(p 为正整数)次幂
等于这个数的 p 次幂的 倒数 .
苏科版数学七年级下册同底数幂的除法课件(共16张)
![苏科版数学七年级下册同底数幂的除法课件(共16张)](https://img.taocdn.com/s3/m/fd60484d4531b90d6c85ec3a87c24028915f8586.png)
课后回顾
课堂小结
∵ an×a( m–n ) =am,
∴ am÷an= am–n .
(法二) 用幂的定义:
m个a
am÷an
=
a ·a a ·a
·…·a ·…·a
n个a
(m-n)个a
n个a
=
a ·a ·…·a ·a ·a ·…·a a ·a ·…·a
= am-n
n个a
同底数幂的除法法则
am ÷ an = a m-n (m、n为正整数)
2、(1)已知2x=3,2y=5,求: 2x-2y的值. (2)x-2y+1=0,求:2x÷4y×8的 值.
例4、计算: (1)(m4)2+m5•m3+(-m)4•m4 (2)x6÷x3•x2+x3•(-x)2.
练习:计算: (1)(-3a4)2-a•a3•a4-a10÷a2 (2)(-x3)5÷[(x2)2·(-x)2]2·x2 (3)(a+b)3·(b+a)2÷(a+b)4 (4)(a-b)5÷(b-a)3·(a-b)4
②底数中系数不能为负;
③ 幂的底数是积的情势时,要再用一次
(ab)n=anbn.
练一练
计算: (1)315÷313 (3)y14÷y2
(2) 4 7 4 4
3 3
(4)(-a)5÷(-a)
(5)(-xy)5÷(-xy) 2
(6)a10n÷a2n (n是正整数)
(7)32m÷3÷32 (8)(-x2y3z)4÷(-x2y3z)2 (9)(-x-y)4 ÷(x+y)2
am÷an÷ap=am-n-p(a≠0,m、n、p都是正整数, 且m>n+p)
同底数幂的除法法则的应用
北师大版数学七年级下册第1课时同底数幂的除法课件(共18张)
![北师大版数学七年级下册第1课时同底数幂的除法课件(共18张)](https://img.taocdn.com/s3/m/40c00e920408763231126edb6f1aff00bed57082.png)
(3) (-3 )m÷( -3 )n.
(1) 1012÷109 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
=1000=103
合作探究
m 个 10
(m-n)个10
(2) 10m÷10n 10 10
10 10
10 =10×10×···×10
归纳总结
n个a
运算法则:
am÷an = am-n (a≠0,m,n 是正整数,且 m>n).
文字说明:同底数幂相除,底数_不__变__,指数_相__减__.
典例精析
例1 计算: (1) a7÷a4 ;
(2) (-x)6÷(-x)3;
(3) (xy)4÷(xy);
(4) b2m+2÷b2.
解:(1) a7÷a4 = a7-4 = a3.
=0.001.
(2)70×8-2
=1
1 82
=
1. 64
注意:
a0 =1
(3)1.6×10-4
1 =1.6
104
=
1.6×0.0001
=
0.00016.
议一议
计算下列各式,你有什么发现?与同伴进行交流.
(1) 7-3÷7-5;
(2) 3-1÷36;
3 15
12
2
解:(1)
2
7-3÷7-5
=
1 73
(4) (-8)0÷(-8)-2.
1 75
1 73
75
72= 7-3-(-5).
(2)
3-1÷36
=
1 3
1 36
=
1 3 36
优质实用教学课件精选同底数幂的除法优质课件
![优质实用教学课件精选同底数幂的除法优质课件](https://img.taocdn.com/s3/m/f28c9d610029bd64793e2c27.png)
a2x-3y=
(8)10a=20,10b=0.2,试求9a÷32b的值? 81
(9) 已知 2x-5y-4=0,求4x÷32y的值? 16
本节课你的收获是什么?
同底幂的除法运算法则:
am÷an=am–n( a≠0, m、n都是正整数,且m>n)
规定 :a0 =1( a 0 )
注: 1 .底数可以为任何形式的代数式. 2.运算结果能化简的要进行化简. 3.若底数不同,先化为同底数,后运用法则. 4.混合运算的顺序为先乘方(开方),再乘除,最
y5பைடு நூலகம்
注:1、混合运算的顺序为先乘方(开 方),再乘除,最后加减。
2、同级运算按“从左到右”依次进 行。
3、有括号先算括号里面的。
例2.已知:am=3,an=5 求: (1)am-n的值 (2)a3m-2n的值 解:(1) am-n = am ÷ an = 3÷5 = 0.6
数学游艺园
第一关 第三关
第二关 第四关
计算:
(1)105÷102×100 103 (2)m10÷(m5÷m) m6
(3)(a3 )5 (a2 )3 a9
4 (ab)5 a 2b2 a3b3
(5)(-x)3×(-x)0÷x2 -x
6(x y)7 x y4 (x y)3
(7) 已知 ax-y=
ax=2,ay=3,则 a2x-y=
你是怎样计算的?需要滴数: 1012÷109 =?103
∵ 109×10 ( 3) =1012
同底数幂的乘法法则: am · an=am+n(m,n为正整数)
乘法是除法的逆运算, 可得:
102 × ( 103)=105 105÷102=103=105-2
《同底数幂的除法》课件
![《同底数幂的除法》课件](https://img.taocdn.com/s3/m/c934fcf6f021dd36a32d7375a417866fb84ac008.png)
规则概述
定义
同底数幂的除法规则是指当两个同底 数的幂相除时,其结果是该底数的幂 的差。
公式
适用范围
适用于任何实数底数 $a$,且 $m$ 和 $n$ 为整数。
$a^m div a^n = a^{m-n}$,其中 $a$ 是底数,$m$ 和 $n$ 是指数。
规则推导
推导过程
根据幂的性质,我们知道 $a^m times a^n = a^{m+n}$。由此,我们可以得 出 $a^m div a^n = a^m times frac{1}{a^n} = a^{m-n}$。
幂的运算法则
幂的乘法、除法、乘方等运算法则是幂运算的基本法则,是解决复 杂数学问题的关键。
幂的性质
幂的性质包括奇偶性、周期性、对称性等,这些性质在解决数学问 题时具有重要作用。
学生自我总结
学生应该回顾自己在本课中所学的知识点,包括同底数幂的除法法则、幂的运算法 则和幂的性质等,并思考这些知识点在实际问题中的应用。
运算技巧
通过对数性质,可以简化同底数幂的除法的计算过程。例如,利用对数的运算法 则,可以将复杂的幂次运算转化为简单的对数运算,从而简化计算过程。这种技 巧有助于提高学生的运算能力和数学思维能力。
与三角函数的关联
三角函数与指数形式
同底数幂的除法与三角函数之间存在一定的关联。例如,三角函数可以通过指数形式表示,而同底数幂的除法可 以与这种指数形式进行关联。这种关联有助于学生更好地理解三角函数和同底数幂的除法之间的关系。
进阶练习3
求值 (2^3)^2 ÷ (2^2)^3 = ?
进阶练习4
化简 (a^m × a^n) ÷ (a^m)^n = ?
综合练习
综合练习1
同底数幂的除法PPT课件(冀教版)
![同底数幂的除法PPT课件(冀教版)](https://img.taocdn.com/s3/m/b1959fb10875f46527d3240c844769eae009a30f.png)
情境导入
202X年新春伊始,新型冠状病毒肺炎爆发,世界卫生组织 将造成此次疫情的新型冠状病毒命名为“COVID-19”如图所示 ,这种病毒传播速度快、潜伏期长,其直径约为100纳米,多 少个这种病毒能排成1毫米?(1毫米= 106 纳米)
认识新朋友
(1)怎样列式?
106 102 =?
(2)视察这个算式,它有何特点?
反思提高 1.这节课我们经历了一个怎样的探索过程?
善于视察
大胆猜想
谨慎证明
2.请同学们畅谈这节课的收获。
学以致用
布置)
(A) a6 a3 a2 (B)b3 b b3 (C) 74 74 7 (D)- 54 - 52 52
巩固题 2、计算: (1) 5m÷5m-1
我们规定
即任何不等于0的数的0次幂都等于1.
讲授新课
由特殊到一般 当m<n时,m-n<0,应该如何规定 amn 的意义?
按乘方的意义和除法计算
按同底数幂除法法则
a 0 当
时,a2
a5
aa aaaaa
1 aaa
1 a3
当 a 0时,a2 a5 a25 a3
m个a
当a
0
时,am
an
a aa a aa
(1)am-n的值; (2)a3m-3n的值.
解:(1) am-n= am ÷ an= 3 ÷5 = 0.6; (2) a3m-3n= a 3m ÷ a 3n
= (am)3 ÷(an)3
=33 ÷53
这种思维 叫做逆向思 维 (逆用运 算性质).
=27 ÷125
27
= 125
同底数幂的除法可以逆用:am-n=am÷an
我们视察可以发现,106 和102这两个幂的底数相同, 指数不同,是同底数幂的情势.所以我们把106 ÷102这种运算叫作同底数幂的除法.
同底数幂的除法课件(共17张PPT)
![同底数幂的除法课件(共17张PPT)](https://img.taocdn.com/s3/m/1098cd534b7302768e9951e79b89680203d86b9c.png)
0
2 1 .
解: 3 +
0
法
例3 计算:(a-b)3÷(b-a)2+(-a-b)5÷(a+b)4.
注意:符号的变化
解:原式=(a-b)3÷(a-b)2-(a+b)5÷(a+b)4
=(a-b)-(a+b)
=a-b-a-b =-2b.
偶次幂下,减数和被减数可以任意交换位置, 其结果不变.
(3)(a)10 (a)3;
解:(a)10 (a)3 (a)103 (a)7 a7
(4)(2a)7 (2a)4 .
解:(2a)7 (2a)4 (2a)74 (2a)3 8a3
14.1.4.4 同底数幂的除法
思考 am÷am=? (a≠0)
am÷am=1,根据同底数幂的除法法则可得am÷am=am-m=a0.
am÷ an = am-n (a ≠ 0,m,n都是正整数,并 且m>n). 同底数幂相除,底数不变,指数相减.
零整数幂
a0 =1(a ≠0) 任何不等于0的数的0次幂都等于1.
14.1.4.4 同底数幂的除法
随堂练习
1.计算:16m÷4n÷2等于( D )
A.2m-n-1
B.22m-n-1
C.23m-2n-1
D.24m-2n-1
14.1.4.4 同底数幂的除法
2.下雨时,常常是“先见闪电,后听雷鸣”,这是由于光速比声速快.已 知光在空气中的传播速度约为3×108m/s,而声音在空气中的传播速度约 为3.4×102m/s,则光速是声速的多少倍?(结果保留1位小数)
14.1.4.4 同底数幂的除法
14.1.4.4 同底数幂的除法
学习目标
1.理解并掌握同底数幂的除法法则. 2.能够运用同底数幂的除法法则进行计算.
8.3同底数幂的除法课件市公开课一等奖课件大赛获奖课件
![8.3同底数幂的除法课件市公开课一等奖课件大赛获奖课件](https://img.taocdn.com/s3/m/440a24a305a1b0717fd5360cba1aa81145318f15.png)
n个a
(m-n)个a n个a
=
a·a·····a ·a·a·····a a·a·····a
n个a
= am-n .
归纳
同底数幂的除法运算性质
同底数幂相除,底数不__变__, 指数_相__减__.
符号表达: am ÷an =_a_m;n).
解决问题
普通人讲话时声音的强度是105, 摩托车行驶时发出的声音的强度是1011, 摩托车的声音强度是人讲话时的声音强度 的多少倍?
解:1011÷105 = 1011-5=106
答:摩托车的声音强度是人讲话时 的声音强度的106倍.
例题解说
例1 计算下列各题:
⑴ a6÷a2; a4
⑵ (-b)8÷(-b); b7
⑶ (ab)4÷(ab)2;a2b2
⑷ t2m+3÷t2(m是正整数) . t 2m1
1.下面的计算与否对的?如有错误,请指出错误, 并改正.
8.3 同底数幂的除法 (1)
学前准备
普通人讲话时声音的强度是105, 摩托车行驶时发出的声音的强度是1011, 摩托车发出的声音强度是人讲话时的声音 强度多少倍?
=? 解:1011÷105
学前准备1 ⒈ 25÷23= ( 2 )×( 2 )×( 2 )×( 2 )×( 2 )
( 2 )×( 2 )×( 2 ) =2( 2 ) =2( 5 )-( 3 )
3333
1 3
(
5
)
1 3
( 9
4 )( )
100个a
4、a100
a70
( (
aa aa
a ) a )
a(30)
a(10)0-(70) (a≠0)
70个a
苏科版七年级数学下册同底数幂的除法(第1课时)课件
![苏科版七年级数学下册同底数幂的除法(第1课时)课件](https://img.taocdn.com/s3/m/87f2de4ea31614791711cc7931b765ce04087a78.png)
即同底数幂相除,底数不变,指数相减.
同底数幂的除法
例 计算: (1)a6÷a2; (3)(ab)4÷(ab)2; ). 解:(1) a6÷a2 =a6-2= a4.
(2)(-b)8÷(-b)=(-b)8-1=(-b)7=-b7. (3)(ab)4÷(ab)2=(ab)4-2=(ab)2=a2b2. (4)t2m+3÷t2=t2m+3-2=t2m+1.
同底数幂的除法
问题2 运用你所学的知识,证明你的猜想. 已知:a为任意底数,m,n都是正整数,且m>n. 求证:am ÷an=am-n. 证明:因为am-n ·an=am-n+n=am,
所以am ÷an=am-n.
同底数幂的除法
同底数幂的除法法则: 一般地,如果字母m,n都是正整数(m>n),那么 am÷an=a( m-n ).
(ab)n= anbn (n是正整数).
CONTENTS
2
同底数幂的除法
问题1 计算: (1)35÷32 ;
(2)46÷43.
你发现了什 么规律?
解:(1)35÷32 33333 333 27. 33
(2)46÷43 4 4 4 4 4 4 4 4 4 64. 444
同底数幂相除,结果底数不变,只需要将指数相减即可.
七年级数学下册苏科版
第8章 幂的运算
8.3 同底数幂的除法
第1课时 同底数幂的除法
知识要点
1
CONTENTS
1
复习引入
回顾所学知识,完成下面内容. 1.同底数幂的乘法法则 :
am·an= am+n ( m,n都是正整数). 2.幂的乘方法则:
(am)n= amn (m,n都是正整数). 3.积的乘方法则:
同底数幂的除法
例 计算: (1)a6÷a2; (3)(ab)4÷(ab)2; ). 解:(1) a6÷a2 =a6-2= a4.
(2)(-b)8÷(-b)=(-b)8-1=(-b)7=-b7. (3)(ab)4÷(ab)2=(ab)4-2=(ab)2=a2b2. (4)t2m+3÷t2=t2m+3-2=t2m+1.
同底数幂的除法
问题2 运用你所学的知识,证明你的猜想. 已知:a为任意底数,m,n都是正整数,且m>n. 求证:am ÷an=am-n. 证明:因为am-n ·an=am-n+n=am,
所以am ÷an=am-n.
同底数幂的除法
同底数幂的除法法则: 一般地,如果字母m,n都是正整数(m>n),那么 am÷an=a( m-n ).
(ab)n= anbn (n是正整数).
CONTENTS
2
同底数幂的除法
问题1 计算: (1)35÷32 ;
(2)46÷43.
你发现了什 么规律?
解:(1)35÷32 33333 333 27. 33
(2)46÷43 4 4 4 4 4 4 4 4 4 64. 444
同底数幂相除,结果底数不变,只需要将指数相减即可.
七年级数学下册苏科版
第8章 幂的运算
8.3 同底数幂的除法
第1课时 同底数幂的除法
知识要点
1
CONTENTS
1
复习引入
回顾所学知识,完成下面内容. 1.同底数幂的乘法法则 :
am·an= am+n ( m,n都是正整数). 2.幂的乘方法则:
(am)n= amn (m,n都是正整数). 3.积的乘方法则:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• (1)25÷23 = ———————————
•
( )×2 ( )×2( ) 2
• = 2 ( 2) =2( )5-( )3
( )×a ( )×a ( ) a
• (2)a3÷a2 = —————— =a =
•
( )×a ( ) a
• a( 3)-( 2) (a≠0) 你发同底数(不为0) 的幂相除,商是多少?你能 举个例子说明吗?
• 3、练一练:
Ⅰ、下列计算对吗?为什么?
错的请改正。
(1)a6÷a2=a3 (2)s3÷s=s3 (3)(-c)4÷(-c)2=-c2 (4)(-x)9÷(-x)9=-1
Ⅱ、(口答)计算 (1)s7÷s3 (2)x10÷x8 (3)(-t)11÷(-t)2 (4)(ab)5÷(ab)
一种液体每升含有1012 个有害 细菌,为了试验某种杀菌剂的效果 ,科学家们进行了实验,发现1 滴 杀菌剂可以杀死109 个此种细菌。 要将1升液体中的有害细菌全部杀 死,需要这种杀菌剂多少滴?
需要滴数:1012÷109
你是怎样计算的?
5.6同底数幂的除法
填空
( )×2 ( )×2 ( )×2( )×2( ) 2
同底数幂相除的法则: 同底数幂相除,底数不 变,指数相减。 即 am÷an=am-n ( a≠0, m,n都是正整数
且m>n )
例1. 计算 (1) a9÷a3 (3) (-x)4 ÷(-x)
(2) 212÷27
( 3)11
(4) ( 3 ) 8
(5) 10m÷10n (m>n)
(6) (-3)m÷(-3)n (m>n)
• 即am÷an=am-n(a≠0,m,n都是 正整数,且m>n))
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
谢谢大家!本文档为精心编制而成,您可以在下载后自由修改和打印,希望下载对您有帮助!
2021/02/25
15
(5)(-3)6÷ (-3)2
(6)a100÷a100
Ⅲ、填空
(1)x7·( )=x8 (2)( ) ·a3=a8 (3)b4·b3·( )=b21
(4)c8÷( )=c5
探究延伸
例2计算
(1) a5÷a4·a2 (2)(-x)7÷x2 (3) (ab)5÷ (ab)2 (4) b2m+2÷b2 (5) (a+b)6÷ (a+b)4
一种液体每升含有1012 个有害 细菌,为了试验某种杀菌剂的效果 ,科学家们进行了实验,发现1 滴 杀菌剂可以杀死109 个此种细菌。 要将1升液体中的有害细菌全部杀 死,需要这种杀菌剂多少滴?
需要滴数:1012÷109 =103
谈谈你今天这节课
的收获
• 同底数幂相除法则:
• 同底数幂相除,底数不变,指数相 减。
练一练:1、计算 (1)(7+x)8÷ (7+x)7
(2)(abc)5÷ (abc)3
(3)
1
(– 2
)7÷
(
1 2
)3
(4)y10÷ (y4÷y2)
2、金星是太阳系九大行星 中距离地球最近的行星,也是 人在地球上看到的天空中最亮 的一颗星。金星离地球的距离 为4.2×107千米,从金星射出 的光到达地球需要多少时间? (光的速度为3.0×105千米/ 秒)