大气中颗粒物的测定方法

大气中颗粒物的测定方法
大气中颗粒物的测定方法

大气中颗粒物的测定

第一节概述

空气中固态和液态颗粒状态的物质统称空气颗粒物(particulate matter)。风沙尘土、火山爆发、森林火灾和海水喷溅等自然现象,人类生活、生产活动中各种燃料(如煤炭、液化石油气、煤气、天然气和石油)的燃烧是空气颗粒物的重要来源。

颗粒物按大小可分为总悬浮颗粒物、可吸入颗粒物和细粒子。空气中的颗粒物有固态和液态两种形态。固态颗粒物中较小的有炭黑、碘化银、燃烧颗粒核等,较大的有水泥粉尘、土尘、铸造尘和煤尘等。液态颗粒物主要有雨滴、雾和硫酸雾等。在工农业生产中可产生大量生产性粉尘,根据性质分为无机和有机粉尘。

空气颗粒物污染对人群死亡率有急性和慢性影响,有一定的致癌作用,长期吸入较高浓度的某些粉尘可引起尘肺。吸入铅、锰、砷等毒性粉尘,经呼吸道溶解后,可引起机体中毒的发生。粉尘作用于人体上呼吸道,早期可引起鼻粘膜刺激,毛细血管扩张,久而久之,能引起肥大性鼻炎,萎缩性鼻炎,还可引起咽喉炎,支气管炎等。经常接触生产性粉尘,也能引起皮肤、眼、耳疾病的发生。大麻、棉花、对苯二胺等粉尘可引起哮喘性支气管炎、偏头痛等变态反应性疾病。沥青粉尘在日光照射下通过光化学作用,可引起光感性皮炎、结膜炎和一些全身症状。飘浮在空气中的颗粒物,若携带某些致病微生物,随呼吸道进入人体后,可引起感染性疾病的发生。如果吸入含致癌物粉尘,如镍、铬等,可导致肺癌的发生。

第二节生产性粉尘

生产性粉尘是指在生产过程中形成的,并能长时间飘浮在空气中的固体微粒。它是污染工作环境、损害劳动者健康的重要职业性有害因素,可引起多种职业性肺部疾病。

一、生产性粉尘的来源和分类

生产性粉尘的来源有:矿山开采、凿岩、爆破、运输、隧道开凿、筑路等;冶金工业中的原料准备、矿石粉碎、筛分、配料等;机械铸造工业中原料破碎、配料、清砂等;耐火材料、玻璃、水泥、陶瓷制造等;工业原料的加工;皮毛、

纺织工业的原料处理;化学工业中固体原料处理加工,包装物品等生产过程。凡防尘措施不够完善,均可能有大量粉尘外逸污染生产环境。

生产性粉尘的分类方法很多,按粉尘的性质可概括为两大类:

1.无机粉尘(inorganic dust)无机粉尘包括矿物性粉尘如石英、石棉、滑石、煤等;金属性粉尘如铅、锰、铁、铍、锡、锌及其化合物等;人工无机粉尘如金刚砂、水泥、玻璃纤维等。

2.有机粉尘(organic dust)有机粉尘包括动物性粉尘如皮毛、丝、骨粉尘;植物性粉尘如棉、麻、谷物、亚麻、甘蔗、木、茶粉尘;人工有机粉尘如有机燃料、农药、合成树脂、橡胶、人造有机纤维粉尘等。

在生产环境中,以单纯一种粉尘存在的较少见,大部分情况下为两种或多种粉尘混合存在,一般称之为混合性粉尘(mixed dust)。

二、生产性粉尘的理化特性及其卫生学意义

在职业卫生实际工作中,根据生产性粉尘来源、分类以及其理化特性,能初步判定其对人体的危害性质和程度。从卫生学角度来看,应该考虑粉尘的主要理化特性。

1.粉尘的化学成分、浓度和接触时间工作场所空气中粉尘的化学成分和浓度是直接决定其对人体危害性质和严重程度的重要因素。根据化学成分不同,粉尘对人体可有致纤维化、刺激、中毒和致敏作用。结晶形和非结晶形、游离型和结合型二氧化硅对人体的危害作用是不同的。粉尘中游离二氧化硅含量愈高,致纤维化作用愈强,危害愈大。非结晶形比结晶形二氧化硅致纤维化作用轻。某些金属(如铅及其化合物)粉尘通过肺组织吸收,进入血循环,引起中毒。同一种粉尘,工作环境空气中浓度愈高,暴露时间愈长,对人体危害愈严重。

2.粉尘的分散度分散度是指物质被粉碎的程度,以粉尘粒径的分布或质量组成百分比来表示。前者称为粒子分散度,粒径较小的颗粒越多,分散度越高;后者称为质量分散度,粒径较小的颗粒的质量占总质量百分比越大,质量分散度越高。粉尘粒子分散度越高,其在空气中浮游的时间越长,沉降速度越慢,被人体吸入的机会就越多;而且,分散度越高,比表面积越大,越易参与理化反应,对人体危害越大。当粉尘粒子比重相同时,分散度越高,粉尘粒子沉降速度越慢;而当尘粒大小相同时,比重越大的尘粒沉降速度越快。因此,在设计通风防尘措施时,必须根据粉尘的比重,采用不同通风速度。当粉尘质量相同时,其形状越

接近球形,在空气中所受阻力越小,沉降速度越快。

粉尘分散度对人群健康的影响与其在呼吸道中的阻留有关。粉尘粒子的直径、比重、形状不同,粉尘在呼吸道各区域的阻留沉积率不同;不同直径粉尘粒子在呼吸道的沉积部位也不同。一般认为,小于15 μm的粒子可以进入呼吸道,其中10~15 μm的粒子主要沉积在上呼吸道

3.粉尘的形状和硬度粉尘粒子的形状在一定程度上也影响它的稳定性(即在空气中飘浮的时间)。质量相同的尘粒,其形状愈接近球形,则愈容易降落。坚硬的尘粒能引起呼吸道粘膜机械损伤,而进入肺泡粒子,由于其质量较小,环境湿润,并受肺泡腔表面活性物质影响,可以减轻机械损伤的程度。

4.粉尘的溶解度若组成粉尘的物质对人体有害,那么,粉尘的溶解度越大,有毒物质越易被人体吸收,粉尘的毒性作用就越大;而糖、面粉等无毒粉尘,溶解度虽大,易被人体吸收,也易被排出体外,对人体的危害较小;石英尘对人体有毒性作用,是难溶物质,在体内持续产生毒害作用,其危害极其严重。

5.粉尘的荷电性粉尘在形成的过程中,各种粉尘粒子相互摩擦,或吸附空气中的离子而带电,空气中90﹪~95﹪的尘粒带有电荷。尘粒的荷电量除与其粒径大小、比重有关外,还与工作环境的温度和湿度有关。同性电荷相斥增强了粉尘粒子的稳定性,异性电荷相吸使尘粒在撞击中凝集而沉降。一般来说,荷电尘粒在体内易被阻留。

6.爆炸性可氧化的粉尘(如煤、面粉、糖、硫磺、铅、锌),在适宜的浓度条件(面粉、铝、硫磺7 g/m3;糖10.3 g/m3)下,一旦遇到明火、电火花和放电时,即会发生爆炸,导致人员伤亡和财产损失。

第三节粉尘浓度的测定

一、概述

粉尘浓度是指单位体积空气中所含粉尘的量。粉尘在空气中的浓度,直接决定粉尘对人体的危害程度,在工作场所空气中,粉尘的浓度越高,吸入量越多,对人体危害越重。研究表明,用质量相同而分散度不同的粉尘进行动物实验时,尘粒直径越小(1~2 μm),发病越快,病变也越严重;而在尘粒数目相同,但质量不同的情况下,则仅在粒径较大的(即质量较大的)一组中发生尘肺,可见在尘肺发病过程中,粒子大小虽具有一定意义,但进入

肺内粉尘的质量起着更重要的作用。因此,世界各国卫生标准中,粉尘浓度均采用质量浓度,即mg/m 3表示。测定方法为滤膜重量测定法。

二、滤膜重量测定法

1.原理 用已知质量的滤膜采集一定体积的含尘空气,将粉尘粒子阻留在滤膜上。根据采样前后滤膜的质量差和采样体积,计算空气中粉尘的浓度(mg/m 3)。

1000012?-=V W W C

式中,C 为空气中粉尘的浓度,mg/m 3;W 1为采样前滤膜质量,mg ;W 2为

采样后滤膜与粉尘的质量,mg ;V 0为换算成标准状态下的采样体积值,L 。

2.样品采集

(1)滤膜的准备:用镊子取下滤膜两面的夹衬纸,将滤膜放在分析天平上称量(W 1),在衬纸上记录滤膜的编号和质量。打开采样夹,将称量好的

滤膜平铺于锥形环上,拧紧固定盖。滤膜毛面应向上,无皱褶和漏缝等。贮于样品盒中备用。

(2)采样:将粉尘采样器固定在测尘点,在距地面1.5 m 高(呼吸带)处,调节流量(15~30L/min ),检查无漏气后将已准备好的采样夹放在粉尘采样器的采样漏斗中,扭紧顶盖固定,采样,记录采样的起始时间。估计滤膜上粉尘的增重1~20 mg 时,停止采样,记录终止时间。取出滤膜夹,将受尘面向上迅速平放于采样盒内,用镊子取出滤膜,使受尘面向内折叠4~5次,用衬纸包好,贮于样品盒内,带回。

记录气温和气压;

(3)称量:用镊子取出采样后的滤膜,放在分析天平上称量,记录质量(W 2)。

(4)计算空气中粉尘的浓度。

3.方法说明

(1)滤膜法操作简便、分析快速、阻尘率高、测定结果准确,是我国

目前通用的粉尘浓度测定方法。

(2)测尘滤膜是聚氯乙烯纤维制成的网状薄膜,不易脆裂、有明显的静电性和憎水性,能牢固地吸附粉尘;并具有阻力小、耐酸碱、阻尘率高、重量轻等优点。

(3)采样后滤膜上粉尘质量应控制在1~20 mg。若采集量过多,会造成微孔堵塞,阻力增大,且尘粒容易脱落;采集量过少,会增加称量误差。

通常认为采集尘量在10 mg左右为最适宜。

(4)采样后的滤膜一般不需要干燥,可直接称量。若被测空气的相对湿度在90%以上(或采样后滤膜上发现有水雾)时,应将滤膜置于硅胶干燥器中,干燥2 h后称量,以后每干燥半小时称量一次,直到相邻两次质量之差不大于0.2 mg为止。

(5)粉尘采样器在采样前应进行气密性检验:用手掌堵住滤膜进气口,在抽气条件下,流量计的转子应即刻回到静置状态。否则表示有漏气现象。

(6)生产环境空气中含有油雾时,采样后,必须用石油醚或航空汽油浸洗滤膜,除油,晾干后再称量。

(7)聚氯乙烯滤膜不耐高温,不能在55℃以上的采样现场使用。

(8)本法要求采集平行样本,两个样本浓度的相对偏差应小于20%,取其平均值作为该采样点的粉尘浓度。两个样本浓度的相对偏差应大于20%时,视为无效样本。

第四节粉尘分散度的测定

粉尘分散度是指空气中粉尘颗粒的粒径分布程度,可用数量分散度和质量分散度两种方法表示。数量分散度是指各种粒径范围的粉尘粒子数量占粉尘总粒子数的百分比;质量分散度是指各种粒径范围粉尘粒子的质量占粉尘总质量的百分比。粒径小的粉尘粒子越多,粉尘分散度越高。我国现行卫生标准采用数量分散度表示粉尘分散度。测定方法有滤膜法和自然沉降法。

一、自然沉降法

1.原理空气中的粉尘被采集到格林氏沉降器的金属圆筒中,密闭静置一

定时间后,尘粒由于本身的重力作用而沉降到圆筒底部的盖玻片上。在显微镜下,用目镜测微尺测量盖玻片上粉尘颗粒的大小,按粒径分组计算百分率。

2.采样 将盖玻片用95%乙醇棉球擦净,放入沉降器的凹槽内(图5-1a ),推动滑板至与底座平齐,盖上圆桶盖,备用。

采样时,将滑板向凹槽方向推动,直至圆桶位于底座之外(图5-1b ),打开圆桶盖,在采样点距地面1.5 m 高度处上下移动2~3次,使被测空气进入圆桶内。推动滑板与底座平齐,盖上圆桶盖;将沉降器静放3 h ,将滑板退出座外,用少许明胶涂于盖玻片四角,把事先擦净的载玻片压在凹槽上,使盖玻片紧贴载玻片,取出贮于样本盒中。

3.分散度的测量

(1)用物镜测微尺标定目镜测微尺:目镜测微尺放在目镜筒内,其刻度间距是固定的,用它来测量粉尘颗粒的大小。但粉尘颗粒在视野中的大小随物镜倍数的改变而改变,目镜测微尺的刻度间距不能反映粉尘颗粒的真实粒径。因此,必须用物镜测微尺对目镜测微尺进行标定,确定在所选的物镜倍数下,目镜测微尺刻度间距代表的真实长度。

物镜测微尺是一标准尺度,其总长为1 mm ,分为100等分,每一分度值为0.01 mm ,即10 μm (图5-2)。

测定分散度一般选用高倍镜配合十倍的目镜即可,特殊要求时可用油镜。将待标定的目镜测微尺放入目镜镜筒内,把物镜测微尺置于载物台上,先在低倍镜

下找到物镜测微尺的刻度线,将其移至视野中央,然后换成高倍镜,调至刻度线清晰,移动载物台,使物镜测微尺的任一刻度线与目镜测微尺的任一刻度线重合,然后找出两尺另外一条重合的刻度线(图5–3),分别数出两条重合刻度线间物镜测微尺和目镜测微尺的刻度数。

目镜测微尺一个刻度的长度为:

10?=b a l

式中,l 为目镜测微尺一个刻度的长度,μm ;a 为物镜测微尺刻度数;b 为目镜测微尺刻度数;10为物镜测微尺每刻度的长度,μm 。

在图5-3中,目镜测微尺45个刻度相当于物镜测微尺10个刻度,则目镜测微尺一个刻度的长度为:

m 2.2m 104510μ=?μ

(2)粉尘分散度的测量:取下物镜测微尺,将粉尘标本片放在载物台上,先用低倍镜找到粉尘粒子,然后在标定目镜测微尺时所用的放大倍率下,用目镜测微尺测量每个粉尘粒子的大小(图5-4)。移动标本,使粉尘粒子依次进入目镜测微尺范围,遇长径量长径,遇短径量短径,测量每个尘粒。每个标本至少测量200个尘粒,分组纪录,并计算百分率(表5-1)。

表5-1 粉尘分散度测量记录表

单位 采样地点 采样时间 滤膜编号 粒径(μm)

<2 2~ 5~ ≥10 总计 尘粒数(个)

百分数(%) 100%

4.方法说明

(1)本法采样无选择性,操作简便,准确性较好。

(2)用格林氏沉降器采样后,必须保证在不受震动和温度变化不大的条件下静止3 h ,才能使在显微镜下所有可见尘粒完全沉降在盖玻片上。

(3)所用玻片必须保持无尘,否则影响结果的准确。采样后制成的尘样标本,应尽快进行测量,并要求在送检和存放过程中,避免振动和污染。

(4)本法仅适用于颗粒状尘样的测定。采尘前后,应选择在空气清洁的场所从沉降器中放置、取出盖玻片。

二、滤膜溶解涂片法

同粉尘浓度测定一样采样。将采有粉尘的聚氯乙烯纤维滤膜放入小烧杯,加入少许醋酸丁酯,并用玻棒充分搅拌,制成均匀的粉尘混悬液,取一滴置载玻片上,均匀涂布,待自然挥发成透明膜。同沉降法一样测定、计算分散度。

本法不适用于可溶于有机溶剂中的粉尘和纤维状粉尘。所用器材用前必须洁净,已制好的涂片标本应置玻璃平皿内保存。涂片标本粉尘粒子过密时,需加醋酸丁酯稀释后重新制作涂片标本。测量时的光学条件必须与标定目镜测微尺时一致;选择涂片标本中尘粒分布较均匀的部位进行测量。

第五节粉尘中游离二氧化硅的测定

二氧化硅是地壳表面的主要成份,占地表总量的3/4,主要存在花岗岩中。根据结构二氧化硅分为结合型二氧化硅和游离型二氧化硅,游离型二氧化硅有较强的致病作用。游离型二氧化硅是指没有与金属及金属氧化物结合的二氧化硅,常以结晶形态存在,化学式为SiO2。石英中游离二氧化硅含量通常在97﹪以上。粉尘中游离型二氧化硅的含量越高,则引起的病变程度越重,病变发展的速度越快。如含游离型二氧化硅70%以上的粉尘,往往形成以结节为主的弥漫性纤维病变,进展较快,且易融合;而含游离二氧化硅低于10%时,肺内病变则以间质纤维化为主,发展较慢,且不易融合,粉尘中游离型二氧化硅是导致尘肺的关键因素。

游离SiO2化学性质稳定,它是一种酸性氧化物,除可与氢氟酸反应外,具有良好的抗酸性;与热的强碱溶液,熔融的氢氧化钠、氢氧化钾或碳酸钠作用转变成可溶性硅酸盐:

SiO2 + Na2CO3 Na2SiO3 + CO2

SiO2难溶于水;在0.1mol/L盐酸、0.4mol/L氢氧化钠和0.09mol/L碳酸钠溶液中的溶解度分别为4.50×10-4mol/L、1.42×10-3mol/L、5.45×10-3mol/L。

我国卫生标准根据粉尘中游离二氧化硅的不同含量,空气中粉尘浓度标准也不相同。目前测定粉尘中游离二氧化硅含量的方法有碱熔钼蓝光度法、焦磷酸质量法、X线衍射测定法等。本节重点介绍焦磷酸质量法和碱熔钼蓝光度法。

一、焦磷酸质量法

1.原理在245~250 ℃温度条件下,磷酸脱水生成焦磷酸:

2H3PO4 H4P2O7 + H2O

焦磷酸与粉尘中的硅酸盐、金属氧化物作用,使之形成可溶性焦磷酸盐,而游离二氧化硅几乎不溶焦磷酸。将用热焦磷酸处理过的的粉尘样品溶液过滤,二氧化硅以残渣形式存在,称量残渣,以质量法测定游离二氧化硅含量。

2.采样

(1)空气中悬浮粉尘:用直径75 mm的测尘滤膜,在呼吸带高度或离地面1.5米处,以15~30L/min的流速采样,采集0.2 g左右粉尘。

(2)积尘:在采样地点,生产设备或其他物体上相当于呼吸带高度处采集

沉降积尘约1 g 。

3.样品处理与测定

(1)将采集的粉尘样品放在105±3 ℃烘箱中干燥2 h ,稍冷,贮于干燥器中备用。如粉尘粒子较大,需要乳钵研磨至手捻有滑感为止。

(2)准确称取0.1~0.2 g 粉尘样品于锥形瓶或小烧杯中,加入磷酸、硝酸铵数,搅拌,使样品全部湿润,置可调电炉上,插好带有玻棒的300 ℃温度计,迅速加热到245~250 ℃,并不断搅拌,保持15 min 。

(3)样品中如果含有煤、其他碳素及有机物时,应在瓷坩埚中称量,置高温炉中,800~900 ℃灼烧30 min 以上,使碳及有机物完全灰化,冷却后用少许磷酸分次将残渣洗入锥形瓶或小烧杯中,再进行步骤(2)。

(4)加热15 min 后,由电炉上取下锥形瓶,在室温下冷却至40~50 ℃,将内容物缓慢倾倒入盛有40~50 ml 热蒸馏水(约80 ℃)的烧杯中,一面倾倒一面搅拌,充分混匀,用热蒸馏水冲洗温度计、玻棒及锥形瓶或小烧杯数次,洗液一并倒入烧杯中,使最后体积为150~200 ml 。

(5)取慢速定量滤纸趁热过滤。

(6)过滤后,用0.1mol/L 盐酸、热水分别洗至滤出液中性。如用是用铂坩锅处理样品时,要洗至无磷酸根后再洗三次。上述过程应在当日完成。

(7)将带有残渣的滤纸折叠数次,放于已恒重的瓷坩埚中,在80℃烘箱中烘干,再于电炉上炭化,然后放入高温炉(800~900 ℃)中灼烧30 min ,取出,室温下稍冷后,放入干燥器中冷却1 h ,称至恒重并记录。

当粉尘中含有难以被焦磷酸溶解的物质(如炭化硅、绿柱石、电气石、黄玉等)时,需用氢氟酸处理。将带有残渣的滤纸放入铂坩埚内,如步骤(7)灼烧至恒重,加入数滴1:1硫酸,使残渣全部湿润。然后加40%氢氟酸5~10 ml (在通风柜内),稍加热,使残渣中游离二氧化硅溶解,继续加热至不冒白烟为止(防止沸腾)。再于900 ℃温度下灼烧,称至恒重。

4.计算

100(%)12?-=W W W C

式中,C (%)为粉尘中游离二氧化硅的含量;W 1为瓷坩埚(或锥形瓶或小烧杯)的重量,g ;W 2恒重后瓷坩埚与残渣的重量,g ;W 为分析用粉尘样品的重量,g 。

5.方法说明

(1)焦磷酸溶解硅酸盐时温度不得超过250 ℃,否则易形成胶状物。

(2)酸与水混合时应缓慢并充分搅拌,避免形成胶状物。

(3)样品中含有碳酸盐时,遇酸产生气泡,宜缓慢加热,以免样品溅失。

(4)用氢氟酸处理时必须在通风柜内操作,密切注意防止污染皮肤和吸入氢氟酸蒸气造成中毒。

(5)用铂坩埚处理样品时,过滤残渣必须洗至无磷酸根反应,否则损坏铂坩埚。磷酸根检验方法如下:分别将1%抗坏血酸溶液和钼酸铵溶液用醋酸盐缓冲液(pH = 4.1)稀释10倍,取滤过液1 ml加上述稀释试剂各4.5 ml混匀,放置20 min,如有磷酸根离子则显蓝色。

二、碱熔钼蓝光度法

1.原理将粉尘与混合熔剂(等量的碳酸氢钠与氯化钠)混匀,加热至270~300 ℃时,碳酸氢钠转变成碳酸钠。继续加热至800~900 ℃时,碳酸钠选择性地与粉尘中的游离二氧化硅反应,生成水溶性硅酸钠。在酸性环境中,水溶性硅酸钠与钼酸铵作用形成配合物,用还原剂将其还原成钼蓝。在680 nm下测定吸光度,用标准曲线法定量。

2NaHCO3Na2CO3 + H2O + CO2

Na2CO3 + SiO2Na2SiO3 + CO2

Na2SiO3 + 8(NH4)2MoO4 + 7H2SO4 [(NH4)2SiO3 8MoO3] + 7(NH4)2SO4 + Na2SO4 + 8H2O

VitC

[(NH4)2SiO3 8MoO3] + 2H2SO4 [Mo2O5 2MoO3]2 H2SiO3 + 2NH4HSO4 + 2H2O 2.采样同粉尘浓度测定的采样方法。

3.方法说明

(1)严格控制熔融时间,观察混合物刚刚熔融且表面光滑如镜时,再灼烧2 min,这是获取准确结果的关键测定步骤。

(2)混合熔剂中的氯化钠为助熔剂,可提高碳酸氢钠的熔点,降低游离二氧化硅熔点。实验表明,碳酸氢钠与等量的氯化钠混合使用,熔融效果最好,氯化钠过多或过少,均会影响测定结果。

(3)必须加5%碳酸钠溶液溶解熔融物中的硅酸钠,如用酸性溶液溶解,可使硅酸钠水解形成胶状体,导致过滤困难,结果偏低。

(4)可溶性硅酸盐、磷酸盐及砷酸盐干扰测定。消除干扰的方法是一部分

尘样按上述方法熔融处理,另一部分尘样不进行熔融处理,二者测定结果之差即可达到排除干扰的目的。

(5)镍坩埚对测定结果有影响,故每次实验均需作空白试验。

(6)为消除铁、钴、镍、铬等有色离子对测定结果的干扰,在加入酸性钼酸铵后,加适量酒石酸与它们形成无色配合物可消除其干扰。

第六节空气颗粒物

一、颗粒物粒径表示方法和粒度分布

空气颗粒物的粒径是颗粒物最重要的性质,它反映了颗粒物来源的本质,影响空气的光散射性质和气候效应。颗粒物的许多性质如体积、质量和沉降速度等都与颗粒物的大小有关。由于来源和形成条件的不同,颗粒物的形状多种多样,无法直接测量颗粒的实际直径。为了便于测量和相互比较,目前,国内外都采用空气动力学当量直径来表示颗粒物的粒径。它是指在通常的温度、压力和相对湿度下,层流气流中,与单位密度(1 g/cm3)球体具有相同沉降速度的颗粒直径。这一表示方法又分为两种。

1.颗粒物的空气动力学直径(particle aerodynamic diameter,PAD),它是指在通常温度、压力、相对湿度的空气中,在重力作用下与实际颗粒物具有相同末速度、密度为1 g /cm3球体的直径。

2.颗粒物的扩散直径(particle diffusion diameter,PDD),它是指在通常温度、压力和相对湿度条件下,与实际颗粒物具有相同扩散系数的球形直径。小颗粒物的扩散作用比重力沉降作用更显著,由于布朗运动,不能很快沉降。此时,应使用扩散直径来表示颗粒物的粒径。

上述粒径表示方法不涉及颗粒物的密度和形状,使得颗粒物通过人体呼吸系统时所发生的撞击、沉降和扩散作用与其在采样时的动力学特征相一致,有利于研究和评价颗粒物的卫生和健康效应。

空气中的悬浮颗粒物是由各种不同大小粒径的颗粒物组成的多分散体系。在多分散体系中常用各种粒径范围颗粒物的质量占颗粒物总质量的百分数,即质量分散度,表示该种多分散体系的粒度分布状态。将颗粒物的粒径取对数坐标,不同粒径颗粒物累积质量百分率取概率刻度坐标,在对数-概率纸上可得颗粒物的粒度分布曲线(图5-5),该曲线是一条直线,表明空气中悬浮颗粒物的粒度分布

不呈正态分布,而是接近对数正态分布。

为了便于表示分散体系中颗粒物的大小,采用质量中值直径(mass medium diameter,MMD)表示悬浮颗粒物体系的几何平均粒径,常用D50表示。MMD 是指在颗粒物粒度分布曲线中,颗粒物的累积质量占其总质量一半时所对应的空气动力学粒径。这种表示方法可以直接表达出颗粒物在空气中停留的时间、沉降速度、进入呼吸道的可能性以及在呼吸道的沉积部位等。

二、空气颗粒物的分类

粒径是空气颗粒物最重要的性质。粒径不同,颗粒物在化学组成、来源、形成方式、传输、对人体健康的影响以及去除机制等方面存在根本的区别。按照颗粒物粒径的大小,人们把空气颗粒物分为粗颗粒物(coarse particuate matter)和细颗粒物(fine particuate matter),一般认为粒径小于2.5 μm的颗粒物为细颗粒物。但是,目前对粗颗粒物和细颗粒物的粒径分界线还没有统一的规定,有待进一步研究确定。

按照粒径大小,空气颗粒物也可分为以下几种。

1.总悬浮颗粒物(total suspended particulates,TSP)TSP是能悬浮在空气中,空气动力学当量直径≤100 μm的颗粒物。曾是我国唯一的环境大气中颗粒物的监测指标,现仍用作环境监测指标,主要用于工作场所粉尘的监测。

2.PM10(particular matterless than 10 μm)PM10是悬浮在空气中,空气动力学当量直径≤10 μm的颗粒物。因其粒径小,受扩散等因素影响,能够在空气中长时间飘浮,曾经称之为“飘尘”( suspended dusts )。

3.PM2.5(particular matterless than 10 μm)PM2.5指悬浮在空气中,空气动力学当量直径≤2.5 μm的颗粒物。大多数PM2.5能进入呼吸道,由于表面积大,容易吸附许多空气中的有毒物质。因此,PM2.5对人体健康的危害非常大,越来越受到人们的重视。美国在1996年制定了PM2.5颗粒物的环境空气质量标准,我国目前也开展了有关PM2.5的研究工作。

在职业卫生领域和空气颗粒物的毒理学研究中,根据颗粒物进入人体呼吸道的位置,将空气颗粒物进一步分为可吸入颗粒物、胸部颗粒物、呼吸性颗粒物。

4.可吸入颗粒物(inhalable particle,IP)根据颗粒物能进入人体呼吸道的位置来看,IP是空气悬浮颗粒物中能被口和鼻吸入的颗粒物。ISO建议将IP 定义为粒径小于10 μm的颗粒物;我国的《环境空气质量标准》(GB 3095—1996)

中对可吸入颗粒物作出了与PM10完全一致的定义,认为可吸入颗粒物和PM10都是“悬浮在空气中,空气动力学当量直径≤10 μm的颗粒物”。

其实,IP的粒径范围与呼吸者头部的风速、风向、呼吸速率(次/min)以及呼吸量(ml/min)有关,IP没有确定的上切割点粒径和D50。实验测得,当风速小于9 m/s,IP的直径D<90 μm。因此,把IP等同于PM10是不恰当的。

5.胸部颗粒物(thoracic particulates,TP)TP是IP中能通过咽喉的颗粒物。它的粒径小于30 μm,即粒径大于30 μm的颗粒物能通过咽喉部。TP的D50为10 μm,因此,有人把TP又称为PM10。

应当指出,TP或PM10不是表示粒径小于10 μm的IP,而是表示D50为10 μm,粒径小于30 μm的IP。

6.呼吸性颗粒物(respirabl particulates,RP)RP是IP中能通过非纤毛气道(指肺泡部分)的颗粒物。对于健康人群,这类颗粒物的粒径小于12 μm,D50为4 μm;对于儿童、年老体弱和有心肺疾病的高危人群,RP的粒径小于7 μm,D50为2.5 μm。因此,对应健康人群的RP称为PM4,对应高危人群的RP称为PM2.5。

这类颗粒物悬浮在空气中的时间更长,易滞留在呼吸道深部,某些较细的组分可穿透肺泡进入血液,又容易吸附各种有毒的有机物和重金属元素,对健康的危害极大。

根据颗粒物的来源和形成方式,颗粒物可分为以下几种。

1.尘指由于各种机械作用粉碎而形成的颗粒。尘化学性状与母体材料是相同的。

2.烟指燃烧产物,是炭粒、水汽、灰分等燃烧产物的混合物。

3.雾指空气中的细小液体颗粒。

三、空气颗粒物对人体健康的影响

颗粒物是一种非常复杂的混合物,其性质与颗粒物的来源、形态、粒径以及吸附在其表面上的各种有毒有害物质有关。颗粒物的来源不同,其化学组成也不相同。如自然因素产生的颗粒物中无机成分较多;而燃料燃烧及化工生产中产生的颗粒物除了含一些有害金属,如Pb、Cd、As、Hg及其盐外,还含有大量有机成分,如多环芳烃(PAH)等。颗粒物的化学成分与其粒径密切相关,大多数有毒有害成分存在于粒径小于10 μm的颗粒中。一些有毒有害物质,如Pb、Cd、

As、Hg有机PAH等主要吸附在小于2.5 μm的细粒子表面上。颗粒越小,沉降越慢,在空气中停留的时间越长,被吸入呼吸道的机会越多,对人体健康的影响就越大。总之,颗粒物对人体健康的影响与颗粒物的粒径大小、颗粒物的化学组成以及颗粒物在呼吸道中沉积的部位有关。

1.颗粒物对呼吸系统的影响大量的颗粒物进入肺部对局部组织有堵塞作用,可使局部支气管的通气功能下降,细支气管和肺泡的换气功能丧失。吸附着有害成分的颗粒物可以刺激或腐蚀肺泡壁,长期作用可使呼吸系统的防御机能受到不同程度的损害,发生支气管炎、肺气肿、支气管哮喘等。大量研究表明,颗粒物可通过直接或间接的方式激活肺泡巨噬细胞和上皮细胞内的氧化应激系统,刺激炎性因子的分泌以及中性粒细胞和淋巴细胞的浸润,引起肺组织发生脂质过氧化等。长期居住在颗粒物污染严重地区的居民,可出现肺活量降低,呼气时间延长,呼吸系统疾病的患病率增高。颗粒物还可以增加动物对细菌的敏感性,进而导致呼吸系统对感染的抵抗力降低。据国外文献报道,大气PM10浓度的升高可使儿童哮喘症状加重。1995~1996年在我国广州、武汉等城市调查显示,大气中PM10和PM2.5污染水平与儿童呼吸道炎症,哮喘的患病率呈线性相关关系。综合大量国内外研究资料发现,大气PM10浓度每升高10 μg/m3,人群中出现咳嗽症状的相对危险度(relative risk,RR)为 1.0356,出现下呼吸道症状的RR为1.0324,因呼吸系统疾病入院的RR为1.0080,峰值呼气流速下降13%。

2.颗粒物的致癌作用近年研究资料表明,颗粒物的有机提取物有致突变性,可引起细胞染色体畸变,姊妹染色体交换以及微核率增高,还可引起细胞发生恶性转化。颗粒物中还含有多种致癌物和促癌物。采用不同染毒方式(皮肤涂抹、皮下注射、气管内注射、吸入染毒)进行的实验发现,颗粒物提取物可在大鼠、小鼠诱发皮下肉瘤、皮肤癌以及肺癌等。颗粒物的致癌活性与其多环芳烃含量有关。大量流行病学调查资料表明,城市大气颗粒物中的多环芳烃与居民肺癌的发病率和死亡率呈相关关系。

3.颗粒物对健康的其他影响研究显示,大气颗粒物污染对人群死亡率有急性和慢性影响。据估计,大气中PM2.5、PM10浓度每增加10 μg/m3,引起总死亡率增加的RR分别为1.015和1.0074。还有研究发现,大气颗粒物,尤其是PM2.5浓度的升高与冠心病人的心肌梗死发作和房性期前收缩发生有关。

第七节 可吸入颗粒物(PM10)测定

可吸入颗粒物(PM10)与人体健康关系密切,是室内外空气质量的重要监测指标。测定可吸入颗粒物的方法有质量法、光散射法、压电晶体差频法和β射线吸收法。质量法具有检出限低,结果准确等优点。质量法是用具有入口切割粒径D 50 =(10±1)μm 的采样器采样和质量法测定。切割器常用冲击式和旋风式两种,冲击式切割器可以装在大、中、小流量采样器上,而旋风式切割器主要用在小流量采样上。其中二段冲击式小流量采样器已被列为居住区大气和室内空气中可吸入颗粒物测定的标准方法(GB 11667—1989和GB/T 17095—1997)。压电晶体差频法是将压电晶体作为一种微天平,用静电采样器将颗粒物采集在石英谐振器的电极表面。电极上因增加了颗粒物的质量,其振荡频率发生变化。根据频率的变化,可测得空气中颗粒物的浓度。β射线吸收法是利用颗粒物对β射线的吸收进行测定,其采样效率高达99.98%,测得的结果是颗粒物的质量浓度,且不受颗粒物粒径、组成、颜色及分散状态的影响。光散射法是利用颗粒物对光的散射作用进行测定的,该法仪器携带方便,测定范围宽(0.01~100 mg/m 3),是我国公共场所空气中可吸入颗粒物(PM10)浓度测定的标准方法(WS/T 206-2001)。

一、小流量(冲击式)采样—质量法

1.原理 利用二段冲击式小流量采样器,在采样器规定流量下采样,空气中的颗粒物经惯性冲击分离,将空气动力学当量直径小于30 μm (D 50=10 μm ,几何标准差δg =1.5)的颗粒收集于已恒重的滤料上。取下,称量,根据采样前后滤料的质量差及采样体积计算空气中可吸入颗粒物的浓度。

000 1012?-=V m m c

式中,c 为空气中PM10的浓度,mg/m 3;m 1和m 2分别是采样前和采样后滤料的质量,g ;V 0为换算成标准状况下的采样体积,m 3。

2.样品采集与处理 将已恒重的滤料,毛面向上,平置于采样夹中。按采样器说明书操作。在采样器规定的流量下,采气8~24 h 。置干燥器中24 h ,称量至恒重。记录采样时的气温和气压。

采样后,小心取下采样滤料,尘面向里对折,放于清洁纸袋中,再放入样品盒内保存。

3.方法说明

(1)采样期间流量应保持恒定。使用前应用皂膜流量计进行校准,误差应小于5%。

(2)采样前应认真清洁采样头的内外表面和分级喷嘴,安装时应防止漏气和压损滤膜。

(3)对采样滤料的称量应进行质量控制。具体方法是:在已平衡、称量的滤料中,随机抽取4~5张,每张反复平衡、称量10次以上,计算各张滤料的质量均值,作为称量质量控制的“标准滤料”。每次称量空白滤料和采样后的滤料时,必须同时称两张“标准滤料”。若用感量为0.1 mg 的分析天平称量时,所称“标准滤料”的质量与其均值之差必须小于0.45 mg ,否则,应重新平衡后再称量。

二、光散射法

1.原理 空气样品经入口切割器被连续吸入暗室,一定粒径范围的颗粒物在暗室中与入射光作用,产生散射光。在颗粒物性质一定的条件下,颗粒物的散射光强度与其质量浓度成正比。散射光经光电传感器进行光信号转变成电信号,经放大后再转换为电脉冲数(counts per minute ,CPM ),利用CPM 便可测定空气中颗粒物的浓度。

K B R c ?-=)(

式中,c 为可吸入颗粒物的质量浓度,mg/m 3;R 为单位时间内的脉冲数,CPM ;B 为仪器基底值,CPM ;K 为质量浓度转换系数,即由CPM 换算为mg/m 3的系数,mg/( m 3·CPM)。

2.测定 在采样点,将光散射法数字测定仪安装在3~5m 高处,避免地面扬尘影响。按照仪器使用说明书开启仪器、调节仪器灵敏度、抽气采样、测量、读数。记录现场采样时间、累计读数。

3.计算

(1)计算单位时间内的脉冲数(CPM ):

t R 累计读数

=

(2)计算可吸入颗粒物的浓度。

4.方法说明

(1)K 值的测定:由于光散射法对于不同粒径、不同颜色的颗粒物会得出不同的测定结果,所以,在某一特定的环境中进行测定时,必须先用质量法(按GB/T17095规定执行)与光散射法所用的仪器(符合JJG846规定的要求)平行测定,求出K 值。然后再用光散射法仪器测定颗粒物的浓度。仪器说明书中有一个具体的K 值(如K = 0.01),这个K 值是仪器出厂前用标准粒子校正后的K 值,只表明同一型号的仪器K 值相同,仪器的灵敏度相同,并不是实际测定样品时可用的K 值。

实际工作中,K 值的测定方法是:将光散射式粉尘测定仪和滤料颗粒物采样器置于现场同一测定点和同一高度,平行采样。两仪器的吸气口中心距离应在10 cm 内。按下式计算K 值。

B R c

K -=

式中,c 为质量法测得的可吸入颗粒物浓度,(mg/m 3);R 为光散射式粉尘测定仪测量值,CPM ;B 为光散射式粉尘测定仪基底值,CPM 。

(2)基底值:又称暗计数,是无尘空气通过仪器时的测定值。基底值是颗粒物以外的因素引起的记数,在实际测定时,应从测定值中扣除。基底值产生的原因主要是:来自光源的杂散光;光电倍增管的暗电流;检测区空气分子的光散射。

(3)应在相对湿度小于90%,平均风速小于1 m/s 的环境中进行光散射法测定。

(4)精密度和准确度:仪器测量的重现性:平均相对标准差<±7﹪。光散射法与质量法相比较,总不确定度(ROU )应≤25﹪。

第八节 灰尘自然沉降量的测定

灰尘自然沉降量又称为降尘,是指每个月(以30天计)沉降于单位面积上的灰尘质量。它是指空气中粒径大于10 μm 的颗粒物,在空气中漂浮的时间较短,极易降落到地面。降尘来自燃料燃烧产生的烟尘、工农业生产性粉尘和天然尘土。降尘可以污染空气,降低大气能见度;污染水源、土壤、食品等。降尘是大气污染监测的主要指标之一,灰尘的自然沉降能力主要决定于自身重量及粒度大小,但其它一些自然因素如气象条件(风力、降水、地形等)也起着一定作用。因此,

很难区分自然降尘和非自然降尘,一般是指在空气环境条件下,靠重力自然沉降在集尘缸中的颗粒物。

对于沉降在集尘缸中的颗粒物可以进行沉降量测定、颗粒物成分分析等。

质量法是测定灰尘自然沉降量的常用方法,可以用于观察污染范围和相对程度。方法简便可行,便于推广。以下介绍质量法。

一、灰尘自然沉降量的测定

1.原理空气中可沉降的颗粒物沉降在装有乙二醇水溶液的集尘缸内,经蒸发、干燥、称量后,计算灰尘自然沉降量。

方法检出限为0.2t / (km2?30d)

2.采样将采样点选择在矮建筑物的顶部,以方便更换集尘缸等操作。采样点附近无高大的建筑物、高大的树木及局部污染源。集尘缸距地面5~15 m高,相对高度1~1.5 m,以防止受扬尘的影响。各采样点集尘缸的放置高度应基本一致。同时,在清洁区设置对照点采样。

于集尘缸中加入60~80 ml乙二醇(以覆盖缸底为准),再加入适量水(冬、夏季加50 ml左右,春、秋季加100~200 ml),固定放置在采样点采样。

记录放缸地点、缸号和时间(年、月、日、时)。

按月定期更换集尘缸(30±2 d)。取缸时应核对地点、缸号,记录取缸时间(年、月、日、时)。用塑料袋罩好集尘缸,带回实验室。更换缸的时间统一规定为月底五日内完成。在夏天多雨季节,因降雨量较大,应注意缸内积水情况,防止水满溢出,造成尘样流失。必要时,应中途更换干净的集尘缸,继续收集,采集的样品合并后测定。

3.样品的处理与测定测定前,将瓷坩埚洗净、编号,在105℃±5℃下烘至恒重(两次称量误差小于0.4 mg),记为m0。

用光亮无锈的镊子夹取落入缸内的树叶、昆虫等异物,用水将附着在上面的细小尘粒淋洗下来后弃取。将缸内的溶液和尘粒全部转入1000 ml烧杯中,在电热板上小心蒸发,使体积浓缩至10~20 ml。将烧杯中的溶液和尘粒全部转移到已恒重的瓷坩埚中,放在搪瓷盘里,在电热板上小心蒸发至干,然后放入烘箱,于105℃±5℃下烘至恒重,记为m1。

在样品测定的同时,做试剂空白实验。将恒重时的质量减去瓷坩埚的质量即为试剂空白的质量,记为m c。

4.计算 根据定义,用下式计算灰尘自然沉降量

4

011030???--=n S m m m F c

式中,F 为灰尘自然沉降量,t / (km 2?30d );m 1为采样后经处理恒重后样品和坩埚的质量,g ;m 0为空坩埚的恒重后的质量,g ;S 为缸口面积,cm 2;n 为采样天数(准确到0.1 d )。

5.方法说明

(1)测量缸口面积时,应从三个不同方向测量缸的内径,求平均值,计算缸口面积。

(2)每个样品所使用的集尘缸、烧杯和瓷坩埚的编号必须一致,并及时填入记录表中。

(3)瓷坩埚在烘箱、搪瓷盘及干燥器中,应分散放置,不可重叠。

(4)样品在瓷坩埚中蒸发、浓缩时,不要用水淋洗坩埚壁,以防乙二醇-水界面剧烈沸腾使溶液溢出。当样品溶液浓缩至20 ml 以下时,应降低温度并不断摇动,使尘粒粘附在坩埚壁上,避免样品溅出。

(5)做空白实验时,所用乙二醇与加入集尘缸的乙二醇应是同一批号,且加入量要相等。

(6)加乙二醇水溶液既可以防止冰冻,又可以保持缸底湿润,还能抑制微生物及藻类的生长。

(7)报告结果要求保留一位小数。

二、降尘成分分析

1.原理 空气中的颗粒物自然沉降在集尘缸内,根据颗粒物中各成分溶解性质的不同,用化学方法分别分析沉降物中的各项指标:非水溶性物质、苯溶性物质、非水溶性物质的灰分、非水溶性可燃物质、pH 值、硫酸盐和氯化物含量、水溶性物质、水溶性物质的灰分、水溶性可燃物质、灰分总量,可燃性物质总量、固体污染物总量等。结果均以每月每平方米面积上沉降的克数[g / (m 2.30d)]表示。

2.采样 同灰尘自然沉降量(质量法)。

3.样品处理 首先检查样品,记录集尘缸中尘粒的物理性状,如果发现有树叶,小虫等异物,可用镊子挟出,小心用水在集尘缸上冲洗,然后弃去。如果发现异种污染物(如石块等)进入时,样品不可再进行分析。

将集尘缸中的沉淀物移入到1000 ml 烧杯中,用淀帚擦下缸底粘着物质,并用少量水冲洗集尘缸壁至无灰尘为止。盖上表面皿,放置24 h ,使不溶物沉淀后进行分析。

当收集的样品是干的或仅残留极少量水时,在分析之前,应加水把液体体积至少补足到200 ml 。补足后应该把样品于室温下放置24 h ,使可溶性物质溶解后进行分析。

若于收集的水中加有防冻剂,可将全部样品转入1000 ml 烧杯中,在电热板上加热蒸发至少量体积,然后加水至500 ml ,静置12 h 后进行分析。

4.测定

(1)非水溶性物质的测定:先将无灰滤纸放在称量瓶中,一起称量至恒重,再将烧杯中的样品,用已恒重的无灰滤纸抽吸过滤,收集沉淀物,包好放入称量瓶中,在105 ℃干燥箱中干燥2~3 h ,取出放入干燥器中,冷却50 min ,称量。再干燥1 h ,再称量,直至恒重为止(两次质量之差小于±0.4 mg )。用下式计算非水溶性物质的含量:

K S m m M ?-=12

式中,M 为非水溶性物质含量,g/(m 2.30d);m 2为称量瓶+滤纸+样品的质量,g ; m 1为称量瓶+滤纸的质量,g ;S 为集尘缸缸口面积,m 2 ;K 为30天与实际采样天数的比例系数。

此沉淀物做苯溶性物质测定,滤液供水溶性物质测定。为便于分析和计算,可将滤液调至500 ml 体积(滤液多时应加热浓缩至500 ml )。

(2)苯溶性物质的测定:将干燥的带有非水溶性沉淀物的滤纸,放入索氏提取器中,加入40 ml 苯,在水浴上加热提取4 h ,取出提取过的沉淀物放回到同编号的称量瓶中,在空气中干燥至苯完全挥发,在105 ℃干燥箱中干燥1 h ,再在干燥器中冷却50 min ,称量直至恒重。用下式计算苯溶性物质的含量:

K S m m D ?-=12

式中,D 为苯溶性物质的含量,g/(m 2.30d);m 2为苯提取前称量瓶+样品+滤纸的质量,g ;m 1为苯提取后称量瓶+样品+滤纸的质量,g ;S 为集尘缸缸口面积,m 2;K 为30天与实际采样天数的比例系数。

环境空气颗粒物源解析监测技术方法指南(试行)(可编辑)

环境空气颗粒物源解析监测技术方法指南(试行) 环境空气颗粒物来源解析监测方法指南 (试行 ) (第二版 ) 7>2014 年 2 月 28 日前言 为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》 , 防治环境 空气颗粒物污染, 改善环境空气质量, 规范全国环境空气颗粒物来源解析的监测技术, 制定本 指南。 本指南规定了环境空气颗粒物来源解析中涉及的监测技术方法, 主要包括污染源样品的采 集、环境受体样品采集、样品的管理、颗粒物监测项目和分析方法、全过程质量保证与质量控 制等,以提高环境空气颗粒物来源解析中监测结果的可靠性与可比性。 本指南由中国环境监测总站组织北京市环境保护监测中心、上海市环境监测中心、浙江省 环境监测中心、江苏省环境监测中心、重庆市环境监测中心、济南市环境监测中心站共同起草。 目录 1、适用范围1 2、规范性引用文件1 3、术语和定义. 2

4、源样品采集. 2 4.1 源分类及采样原则2 4.2 固定源采样. 3 4.2.1 稀释通道法3 4.2.2 烟道内直接采样法5 4.3 移动源采样. 7 4.3.1 现场实验法( 隧道法 ) 7 4.3.2 全流式稀释通道采样法 8 4.3.3 分流式稀释通道采样法 9 4.4 开放源采样 11 4.5 其他源类采样. 15 4.5.1 生物质燃烧尘采样 15 4.5.2 餐饮油烟尘采样. 17 4.5.3 海盐粒子采样20 4.6 二次颗粒物前体物采样 20 5、受体样品采集. 20 5.1 点位布设原则21 5.2 采样仪器和滤膜选择21 5.3 采样时间和周期 21 5.4 采样前准备21 5.5 样品采集 21 5.6 采样注意事项. 21 6、样品管理 22 6.1 样品标识 22 6.2 样品保存 22

环境空气 汞的测定 原子荧光法 《空气与废气监测分析方法》(第四

新项目试验报告 项目名称:环境空气汞的测定 原子荧光分光光度法《空气与废气监测分析方法》(第四版)项目负责人:杨刚 项目审批人: 审批日期:

一、新项目概述 原子吸收分光光法和氢化物发生-原子荧光分光光度法测定汞,灵敏度高、方法快速准确、干扰少;双硫腙分光光度法是经典方法,准确、测定范围等,但操作复杂,要求严格,适用于高浓度汞污染物的监测。 二、检测方法与原理 检测方法:原子荧光分光光度法《空气与废气监测分析方法》(第四版)(2003)5.3.7.2 原理:通过等速采样,将颗粒物从固定污染源中抽取到玻璃纤维滤筒中或将无组织排放颗粒物收集到氯乙烯滤膜上。所采集的样品用混合酸消解处理。 在酸性介质中,加热消解是样品溶液中的汞以二价汞的形式存在,再被硼氢化钾还原成单质汞,形成汞蒸气,被引入原子荧光分光光度计进行测定。 大气颗粒物中Sb、Se、Bi、Au等元素含量较低,一般含量的Sb、Se、Bi、Au不干扰Hg的测定,大量的Cu、Pb等均不干扰测定。 当将采集10m3气体的滤膜制备成50ml样品时,最低检出限为3×10-3μg/m3。 三、主要仪器和试剂 1.试剂和材料 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸馏水或同等纯度的水,所有试剂应不含铬。 1.1 硝酸:ρ=1.42g/ml,优级纯。 1.2 硝酸:1+1。 1.3 硝酸:1+19。 1.4 盐酸:ρ=1.19g/ml,优级纯。 1.5 5%盐酸。 1.6 重铬酸钾:优级纯。

1.7 氢氧化钾或氢氧化钠:优级纯。 1.8 盐酸溶液:1+1. 1.9 0.04%硼氢化钾溶液:称取0.4g硼氢化钾于已加入1gKOH的200ml去离子水中,溶解后,用脱脂棉过滤,稀释至1000ml。此溶液现用现配。 1.10 0.5g/L重铬酸钾溶液:称取0.5g重铬酸钾溶解于1000ml(1+19)HNO3中。 1.11 汞标准贮备液:准确称取1.080g氧化汞(优级纯,于105~110℃烘干2h), 用70ml(1+1)HCl溶液溶解,加入24ml(1+1)HNO3溶液、1.0gK 2Cr 2 O 7 ,溶解 后移入1000ml容量瓶中,用水稀释定容至标线。此溶液每毫升含1.0mg汞。1.12汞标准使用液(Hg),0.500μg/ml:临用时,用0.5g/L重铬酸钾溶液逐级稀释汞贮备液而成。 2. 仪器和设备 2.1原子荧光分光光度计及相应的辅助设备。 2.2中流量采样器。 2.3烟尘采样器。 2.4玻璃纤维滤筒。 2.5过氯乙烯滤膜。 四、采样要求或样品与处理技术 4.1采集 中流量采样器,玻璃纤维滤膜过滤直径8㎝时。以50~150L/min流量,采样30~60m3。采样应将滤膜毛面朝上,放入采样夹中拧紧。采样后小心取下滤膜尘面朝里对折两次叠成扇形,放回纸袋中,并详细记录采样条件。 4.2试料溶液 4.2.1硝酸-过氧化氢溶液浸出法 取试样滤膜,置于高兴烧杯中,加入10ml硝酸-过氧化氢混合溶液浸泡2h以上,微火加热至沸腾,保持微沸10min,冷却后加入过氧化氢10ml,沸腾至微干,冷却,加硝酸溶液20ml,再沸腾10min,热溶液通过多孔玻璃过滤器,收集于烧杯中,用少量热硝酸溶液冲洗过滤器数次。待滤液冷却后,转移到50ml容量瓶中,

大气中颗粒物的测定

大气中TSP、PM10和PM2.5的监测 一、实验目的 1、了解中流量大气采样器和四通道采样器的基本原理,掌握使用方法。 2、学习质量法在大气环境监测中的应用。 3、重点掌握滤膜的称量、采样器参数的设定与读取。 二、实验原理 采样原理:采样头通过冲击式切割器实现不同粒径颗粒物的选择性分离,小于2.5 μm、小于10 μm 的颗粒随气流绕过碰撞器而在下游捕集在滤膜上。 测定PM10和PM2.5的方法是基于重力原理制定的,本实验使用的是国外广泛采用的滤膜捕集-重量法。原理为选用一定切割特性的采样器,以恒速抽取一定体积的空气通过已经恒重的滤膜,使环境空气中TSP和PM2.5被阻留在滤膜上,根据采样前后的滤膜重量之差及采样体积,即可以算出TSP和PM2.5浓度。滤膜经处理后,还可以进行组分分析。 三、实验仪器 1、PM2.5——四通道采样器 2、TSP——中流量采样器

3、8cm滤膜:提前一天恒温称重好放入烘箱; 四小膜供PM2.5用,一大膜供TSP用 4、分析天平 感量0.1mg或0.01mg. 5、恒温恒湿箱 6、镊子手套等; 四.实验步骤 1.准备工作 a.三楼天台上,安装两台仪器,调节采样器入口距地面高度为2.5m,并确保能正常通电及工作; b.提前一天用洁净镊子将滤膜夹入事先准备好的透明袋中,放入恒温恒湿箱进行24h恒重处理; 2.采样过程:

a.经过24h的恒重处理,称量滤膜(注意环境污染),分别平行称量五次取均值记录;然后将已称重的滤膜用镊子放入洁净采样夹的滤网上,滤膜毛面应朝进气方向。将滤膜牢固压紧至不漏气。设置好仪器相关参数:24h采样,流量10L/min; b.采样过程中不定时对采样仪器进行4-5次检查。 3.称量 a.经过24h的采样过程,配戴实验手套用洁净镊子将滤膜从仪器切割器上夹入透明带中(此时应对折滤膜,避免样品损失); b.将收集好的样品滤膜立即放入恒温恒湿箱恒重24h后,进行平行五次称量滤膜,最终取平均值记录; 4.数据计算 利用公式计算PM2.5和PM10以及TSP的含量: 浓度含量(μg/m3) 其中:W1——采样后滤膜重量g W2——采样前空白滤膜重量g Q——采样一起平均采样流量L/min t——采样时间1440min

大气颗粒物来源解析汇报

第一章绪论 作为发展中国家的中国,就目前形势来说大气污染程度越来越严重,由于我国在环境治理中,对看得见、摸得着的水污染与固体废弃治理和市场化关注度较高,而对大气污染治理,一直以来,比水和固废的治理度就低。因而这部分市场的推动也是相对薄弱的。 近今年伴随着中国华北地区日久集聚终于爆发出的雾霾天气问题,却引发了社会对大气污染的关注度提升到新的层面。实际上我国的大气污染防治工作在前几年已经开始逐步开展,2002年开始,我国出台了一系列的措施,对节能减排的提倡有了一定的成果,同年8月发布了《节能减排“十二五规划》,从各项政策中对大气污染防治都起到一定的积极作用。根据前瞻产业研究院最新数据表明,我国2000-2011年,工业废气排放量年均增速19.06%,11年间增长了2.39倍。 1.1PM的概况 PM2.5指的是大气中空气动力学当量直径小于2.5mm的颗粒物[1]。公众较为熟悉的获知空气污染指数是在当下城市空气质量预报、指数中的可吸入颗粒物和总悬浮颗粒物。其中,可以通过人体的组织器官与外界进行气体交换吸入的直径比2.5μm大、等于或小于10μm的颗粒物通常是指可吸入颗粒物,通常用PM10来表示;而直径小于或等于100微米的颗粒物被定义为总悬浮颗粒物,也称为PM100随着研究的深入以及监测水平的提高,科学家逐渐采用PM2.5来指示大气环境质量,空气污染的指数越严重,这个值就越高,称为PM2.5。随着研究的深入以及监测水平的提高,科学家逐渐采用PM2.5来指示大气环境质量,这个值越高,就代表空气污染越严重。在空气中每立方米的可吸入颗粒物的值越高,代表空气污染越严重。 颗粒物的直径小于或等于2.5微米,是细颗粒物与粗颗粒物的评判标准也是主要的区别,体积要比PM10小的多,比人类的头发还有要细上许多,是头发的十分之一的大小。大气中颗粒物的粒径要小于 2.5微米和粗颗粒物对比,别看PM2.5粒径小却危害巨大,它的表层含有许多有毒、有害的物质,不仅如此它还

实验十四盐酸萘乙二胺比色法测定大气中氮氧化物(精)

实验十四盐酸萘乙二胺比色法测定大气中氮氧化物 一﹑实验目的 1.学习气体样品的采集和吸收,吸收管及大气采样器的使用。 2.掌握大气中氮氧化物的比色测定方法。 二﹑实验原理 大气中氮氧化物包括一氧化氮和二氧化氮等,在测定氮氧化物浓度时,先用三氧化铬氧化管将一氧化氮氧化为二氧化氮。 二氧化氮被吸收在溶液中形成亚硝酸,与氨基苯磺酸起重氮反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料,根据颜色深浅,比色测定。 使用重量法校准的二氧化氮渗透管配置低浓度标准气体,测得NO 2--→NO 2 - 的转换系数为0.76,因此在计算结果中要除以换算系数0.76。 在大气中二氧化硫浓度为氮氧化物浓度的10倍时,对氮氧化物的测定无干扰;30倍时,使颜色有少许减退,但在城市环境大气中,较少遇到这种情况。臭氧浓度为氮氧化物的5倍时,对氮氧化物的测定略有干扰,在采样后3小时,使试液呈现微红色,影响较大。过氧乙酰硝酸酯(PAN)使试液显色而干扰,在一般环境大气中PAN浓度甚低,不会导致显著的误差。本法检出限为0.05微克 /5毫升(按吸光度0.01相应的NO 2-含量计),当采样体积为6升时,NO 2 最低检出 浓度为0.01毫克/立方米。 三﹑实验仪器 1.多孔玻板吸收管 2.大气采样器,流量范围0—1L/min。 3.双球玻璃管 4.分光光度计 四﹑试剂 所有试剂均用不含有亚硝酸盐的重蒸水配制。 检验方法:吸收液的吸光度不超过0.005。 1.吸收原液:称取5g对氨基苯磺酸于200mL烧杯中,将50mL冰醋酸与900mL 水的混合液分数次加入烧杯中,搅拌,溶解,并迅速移入1000mL容量瓶中,避光,待对氨基苯磺酸完全溶解后,加入0.050g盐酸萘乙二胺(又名N-甲奈基盐酸二氨基乙烯),溶解后,用水稀释至刻线。此为吸收原液,储于棕色瓶中,存于冰箱,可保存一个月。

13.实验十三.大气中总悬浮颗粒物的采集与测试

实验十三. 大气中总悬浮物的采集与测试 一.实验目的: 了解粉尘采样仪的基本组成,掌握重量法测定大气中总悬浮物测试原理和方法,熟悉大气中总悬浮物的基本概念。 二.实验原理: 用重量法测定大气中总悬浮颗粒物的方法一般分为大流量(1.1-1.7m3/min)和中流量(0.05-0.15m3/min)采样法。其原理基于:抽取一定体积的空气,使之通过已恒重的滤膜,则悬浮微粒被阻留在滤膜上,根据采样前后滤膜重量之差及采气体积,即可计算总悬浮颗粒物的质量浓度。 本实验采用中流量采样法测定。 三.实验仪器与药剂: 1.中流量采样器:流量50-150L/min,滤膜直径8-10cm。 2.流量校准装置:经过罗茨流量计校准的孔口校准器。 3.气压计。 4.滤膜:超细玻璃纤维或聚氯乙烯滤膜。 5.滤膜贮存袋及贮存盒。 6.分析天平:感量0.1mg。 7.塑料无齿镊子。 四.实验步骤: 1.采样器的流量校准:采样器每月用孔口校准器进行流量校准。 2.采样

(1)每张滤膜使用前均需用光照检查,不得使用有针孔或有任何缺陷的滤膜采样; (2)迅速称重在平衡室内已平衡24h的滤膜,读数准确至0.1mg,记下滤膜的编号和重量,将其平展地放在光滑洁净的纸袋内,然后贮存于盒内备用。天平放置在平衡室内,平衡室温度在20-25℃之间,温度变化小于±3℃,相对湿度小于50%,湿度变化小于5%; (3)将已恒重的滤膜用小镊子取出,“毛”面向上,平放在采样夹的网托上,拧紧采样夹,按照规定的流量采样; (4)采样5min后和采样结束前5min,各记录一次U型压力计压差值,读数准确至1mm。若有流量记录器,则可直接记录流量。测定日平均浓度一般从8:00开始采样至第二天8:00结束。若污染严重,可用几张滤膜分段采样,合并计算日平均浓度; (5)采样后,用镊子小心取下滤膜,使采样“毛”面朝内,以采样有效面积的长边为中线对叠好,放回表面光滑的纸袋并贮于盒内。 将有关参数及现场温度、大气压力等记录填写在数据表13-1。 3.样品测定:将采样后的滤膜在平衡室内平衡24h,迅速称重,结果及有关参数记录于数据表13-2。 五.实验注意事项: 1.滤膜称重时的质量控制:取清洁滤膜若干张,在平衡室内平衡24h,称重。每张滤膜称10次以上,则每张滤膜的平均值为该张滤膜的原始质量,此为“标准滤膜”。每次称清洁或样品滤膜的同时,称量两张“标准滤膜”,若称出的重量在原始重量±5mg范围内,则

大气主要污染源清单调查与源解析的研究

大气主要污染源清单调查 与源解析的研究 篇一:大气污染源解析 大气污染源解析 北京大钢环境治理技术研究院大气气溶胶及其粒径分布 大气气溶胶,是指在大气环境中,液体或固体颗粒均匀分散在气体中形成相对稳定的悬浮体系。虽然大气气溶胶只是 地球大气成分中含量很少的组分,但它对空气质量、能见度、干湿沉降、云和降水的形成、大气的辐射平衡、平流层和对流层的化学反应等均有重要影响。由各种源排放进入大气中 的颗粒物,大部分集在对流层,距地面I?2km范围内(即大 气边晃层)。在此区域内的颗粒物的尺寸最大,种类最多;而在距地面4?5km以上的范围内,颗粒物的浓度基本上不受地球上直接排放的影响,其尺寸分布与本底气溶胶的分布相 近。 一般认为,气溶胶颗粒物的本底质量浓度约为10ug/m3 , 颗粒浓度为300个/ m3。但污染严重的城市中,有时气溶胶颗粒物的质量浓度最高可达2000ug/m3。污染严重的水泥厂,

其年均质量浓度通常大于350ug / m3。 大气气溶胶的粒径是其最重要的性质之一。大气气溶胶所有的特征都与其粒径有关。由于大气气溶胶的形状非常复杂,极不规则,有球状体、粒状体、片状体等,因此在度量大气气溶胶粒子大小时经常使用等效球体的直径来表示。其中,最常用的是空气动力学当量直径。它是按照粒径的大小, 大气气溶胶粒子可分为粗粒子(coarseparticulate)和细粒子(fineparticulate)。对气溶胶粒子进行粗细划分和研究的原因在于粒径的差异使得粗粒子和细粒子在化学组成、来源和形成方式、传输和去除机制等均存在一些根本的区别。目前粗粒子和细粒子的粒 径分界线还没有统一的规定,但根据研究的需要,一般可分为:总悬浮颗粒物(TotalSuspendedParticulates , TSP)、PM10 和PM2.5。 TSP是指可漂浮在空气中的、粒径一般小于100um固态和 液态微粒的总称。TSP曾是中国唯一的环境大气气溶胶污染监测指标,现仍沿用,但主要用于作业场所粉尘的监测指标;PM10是指空气动力学直径在101am以下的大气气溶胶粒 子。大部分的PM10能够沉降在喉咙以下的呼吸道部位,因而 PM10 也称可吸入性颗粒物(respirableparticulatematter ,RSP) ;PM2.5是指空气动力学直径在 2.5um以下的大气气溶胶粒子。PM2.5粒径小,更容易沉

大气中硫化氢的测定方法

硫化氢(H2S)为无色气体,分子量;沸点-83℃。对空气相对密度,在标准状况下1L气体质量为,1体积水溶解体积硫化氢,其水溶液呈酸性。与重金属盐反应可以生成不溶于水的重金属硫化物沉淀。硫化氢能被氧化,根据氧化条件和氧化剂的不同,氧化的产物也不同,与碘溶液作用生成单体硫,在空气中燃烧生成SO2,和氯或溴水溶液作用生成硫酸。 在自然界动植物中氨基酸腐烂时产生硫化氢,某些热泉水及火山气体中含有低浓度的硫化氢,在很多天然气中含有较高浓度的硫化氢。在工业上,炼焦炉和合成纤维以及石油化工和煤气生产等常排出混有硫化氢的废气污染大气。硫化氢在大气中很不稳定,逐渐氧化成单体硫、硫的氧化物和硫酸盐。水蒸气和阳光会促使这种氧化作用。 硫化氢是有腐蛋的恶臭味,人对硫化氢的嗅觉阈为~m3。硫化氢是神经毒物,对呼吸道和眼粘膜也有刺激作用。硫化氢对农作物的毒害要比对人的毒害轻得多。硫化氢化学测定方法很多:有硫化银比色法,乙酸铅试纸法,检气管法和亚甲基蓝比色法等。其中以亚甲基蓝比色法应用最普遍,且方法灵敏,适用于大气测定。由于硫化氢极不稳定,在采样和放置过程中易被氧化和受日光照射而分解,所以吸收液成分选择应要考虑到硫化氢样品的稳定性问题。因此,在碱性氢氧化镉吸收液中加保护胶体,如阿拉伯半乳聚糖或聚乙烯醇磷酸铵,将所形成的硫化镉隔绝空气和阳光,减小氧化和光分解作用。用锌氨络盐溶液加甘油作吸收液是将 H2S形成络合物使其稳定。 硫化氢仪器测定有库仑滴定法和火焰光度法,其原理与本章第一节二氧化硫相似。所用选择性过滤器要让H2S定量通过,又能排除其他干扰气体。 一、聚乙烯醇磷酸铵吸收-亚甲基蓝比色法〔1〕 (一)原理 空气中硫化氢被碱性氢氧化镉悬浮液吸收,形成硫化镉沉淀。吸收液中加入聚乙烯醇磷酸铵可以减低硫化镉的光分解作用。然后,在硫酸溶液中,硫化氢与对氨基二甲基苯胺溶液和三氯化铁溶液作用,生成亚甲基蓝,比色定量。

1环境空气中颗粒物的测定

实验一、环境空气中颗粒物(TSP或PM10)的测定 一、实验目的 1.掌握环境空气中颗粒物的测定原理及测定方法。 2.掌握颗粒物采样器的基本操作。 二、实验原理 TSP测定原理:通过具有一定切割特性的采样器以恒速抽取定量体积的空气,使之通过已恒重的滤膜,空气中粒径小于100μm的悬浮微粒被截留在滤膜上。根据采样前后滤膜质量之差及采样体积,即可计算总悬浮颗粒物的浓度。 PM10测定原理:使一定体积的空气,通过带有PM10切割器的采样器,粒径小于10μm的可吸入颗粒物随气流经分离器的出口被截留在已恒重的滤膜上,根据采样前后滤膜的质量差及采样体积,即可计算出可吸入颗粒物浓度。 三、仪器和试剂 (1)采样器,带TSP或PM10切割器。 (2)X光看片器用于检查滤料有无缺损或异物。 (3)打号机用于在滤料上打印编号。 (4)干燥器容器能平展放置200mm×250mm滤料的玻璃干燥器,底层放变色硅胶,滤料在采样前和采样后均放在其中,平衡后再称量。 (5)竹制或骨制品的镊子用于夹取滤料。 (6)滤料本法所用滤料有二种,规格均为200mm×250mm。其一为“49”型超细玻璃纤维滤纸(简称滤纸),对直径0.3μm的悬浮粒子的阻留率大于99.99%;其二为孔径0.4~0.65μm和0.8μm有机微孔滤膜(简称滤膜)。 (7)烘箱。 (8)分析天平。 四、操作步骤 1.滤料的准备 (1)采样用的每张滤纸或滤膜均须用X光看片器对着光仔细检查。不可使用有针孔或有任何缺陷的滤料采样。然后,将滤料打印编号,号码打印在滤料两个对角上。

(2)清洁的玻璃纤维滤纸或滤膜在称重前应放在天平室的干燥器中平衡24h。滤纸或滤膜平衡和称量时,天平室温度在20~25℃之间,温差变化小于±3℃;相对湿度小于50%,相对湿度的变化小于5%。 (3)称量前,要用2~5g标准砝码检验分析天平的准确度,砝码的标准值与称量值的差不应大于±0.5mg。 (4)在规定的平衡条件下称量滤纸或滤膜,准确到0.1mg。称量要快,每张滤料从平衡的干燥器中取出,30s内称完,记下滤料的质量和编号,将称过的滤料每张平展地放在洁净的托板上,置于样品滤料保存盒内备用。在采样前不能弯曲和对折滤纸和滤膜。 2.采样 (1)打开采样器外壳的顶盖,取出滤料夹。将滤料平放在支持网上,若用玻璃纤维滤纸,应将滤纸的“绒毛”面向上。并放正,使滤料夹放上后,密封垫正好压在滤料四周的边沿上,起密封作用。 (2)将采样器固定好,将切割器与采样器连接好,开启电源开关,按要求调节好流量,并记录流量、气温和大气压。采样过程中,要随时注意参数的变化,并随时记录。 (3)采样后,取下滤料夹,用镊子轻轻夹住滤料的边,但不能夹角,将滤料取下。以长边中线对折滤料,使采样面向内。如果采集的样品在滤料上的位置不居中,即滤料四周的白边不一致时,只能以采到样品的痕迹为准。若样品折得不合适,沉积物的痕迹可能扩展到另侧的白边上,这样,若要将样品分成几等份分析时,会使测定值减少。 (4)将采过样的滤料放在与它编号相同的滤料盒内,并应注意检查滤料在采样过程中有无漏气迹象,漏气常因面板密封垫用旧或安装不当所致;另外还应检查橡胶密封垫表面,是否因滤料夹面板四个元宝螺丝拧得过紧,使滤料上纤维物粘附在表面上,以及滤料是否出现物理性损坏。检查时若发现样品有漏气现象或物理性损坏,则将此样品报废。 (5)采样完毕,填好记录表,并与相应的采过样的滤料一起放入滤料盒内,送交实验室。 3.测定

大气颗粒物来源解析技术指南

附件 (试 行) 第一章 总 则 1.1编制目的 为贯彻落实《国务院关于加强环境保护重点工作的意见》和《大气污染防治行动计划》,推进我国大气污染防治工作的进程,增强大气颗粒物污染防治工作的科学性、针对性和有效性,根据《中华人民共和国环境保护法》、《中华人民共和国大气污染防治法》、《环境空气质量标准》(GB 3095-2012)及相关法律、法规、标准、文件,编制《大气颗粒物来源解析技术指南(试行)》(以下简称“指南”)。 1.2适用范围 1.2.1本指南适用于指导城市、城市群及区域开展大气颗粒物(PM10和PM2.5)来源解析工作。 1.2.2本指南内容包括开展大气颗粒物来源解析工作的主要技术方法、技术流程、工作内容、技术要求、质量管理等方面。 1.3编制依据 《中华人民共和国环境保护法》 《中华人民共和国大气污染防治法》 —3—

《国务院办公厅转发环境保护部等部门关于推进大气污染联防联控工作改善区域空气质量的指导意见的通知》 《重点区域大气污染防治“十二五”规划》 GB 3095-2012 环境空气质量标准 GB/T 14506.30-2010 硅酸盐岩石化学分析方法 第30部分:44个元素量测定 GB/T 14506.28-2010 硅酸盐岩石化学分析方法 第28部分:16个主次成分量测定 国家环境保护总局公告2007年第4号 关于发布《环境空气质量监测规范》(试行)的公告 HJ 618-2011 环境空气PM10和PM2.5的测定 重量法 HJ/T 194-2005 环境空气质量手工监测技术规范 HJ/T 393-2007 防治城市扬尘污染技术规范 当上述标准和文件被修订时,使用其最新版本。 1.4术语与定义 下列术语和定义适用于本指南。 颗粒物污染源:向大气环境中排放固态颗粒污染物的排放源统称颗粒物污染源。 环境受体:受到大气污染物污染的环境空气统称环境受体,简称受体。 大气颗粒物来源解析:通过化学、物理学、数学等方法定性或定量识别环境受体中大气颗粒物污染的来源。 大气颗粒物来源解析技术方法:用于开展大气颗粒物来源解析 —4—

大气颗粒物及其源解析

1.引言 实际上,早在2011年的秋末冬初,在北京,在中国,甚至在全球,就掀起了一场关于中国首都北京的空气污染真相的环保龙卷风。由于美国驻京大使馆周边空气中的PM2.5污染数据的实时公布,中国13亿公众第一次知道,为什么居住在北京的居民和旅行到北京的地球人,亲身感受到的北京空气质量与环境监测报告的差距如此巨大。 2013年1月,京津冀以及我国东部广大地区遭遇严重的大气污染,先后出现四次持续多日的 大范围雾霾天气。在1月份的31天里,雾霾天气达到24天。专家们说,大气颗粒物PM2.5是形成雾霾天气的罪魁祸首。于是,PM2.5再次成为人们关注和热议的焦点。1月12日,是北京人难以忘记的痛苦日子。这一天,北京的天空烟雾弥漫,烟气呛人,呼吸道疾病患者急剧增加,医院人满为患。由于能见度极低,高速公路被迫关闭,飞机停飞,交通受阻。 中国环境监测总站网站1月12日全国重点城市空气质量24小时均值显示,北京的可吸入颗粒物浓度(PM10)为786微克/立方米,天津的可吸入颗粒物浓度为500微克/立方米,石家庄的可 收稿日期:2013-02-20修订日期:2013-05-30 作者简介:杨新兴(1941-),男,中国环境科学研究院研究员,研究方向:大气环境污染。发表论文46篇,出版科普著作一部。获部级科技进步奖3项。E-mail:yangxinxing@https://www.360docs.net/doc/6360803.html, 冯丽华,女,工程师,研究方向:数据处理。E-mail:fenglihua99@https://www.360docs.net/doc/6360803.html, 尉鹏,男,博士,研究方向:气候与环境。E-mail:weipeng_1981@https://www.360docs.net/doc/6360803.html, 大气颗粒物PM2.5及其源解析 ◆杨新兴尉鹏冯丽华 (中国环境科学研究院,北京100012) 摘要:大气颗粒物的来源分为两类:一类是自然源;另一类是人为源。自然源主要包括:岩石土壤风化、 森林大火、火山爆发、流星雨、沙尘暴、海盐粒子、植物花粉、真菌孢子、细菌体,以及各种有机物质的自燃过程等。人为源主要包括:汽车尾气排放、摩托车尾气排放、火车机车排放、飞机尾气排放、轮船排放、工业窑炉排放、民用炉灶排放、农用拖拉机排放、工业粉尘、交通道路扬尘、建筑工地扬尘、裸露地面扬尘、烹饪油烟、街头无序烧烤、垃圾焚烧、农田秸秆焚烧、燃放烟花爆竹、寺庙香火和烟民抽烟等。在大气颗粒物中,细颗粒物主要来自化石燃料和生物质的燃烧过程。专家们认为细颗粒物是导致北京地区雾霾灾害天气频繁出现的最主要因素。汽车尾气排放大量的空气污染物。有车族对北京市严重的大气污染和雾霾灾害的形成,负有首要责任。有车族,少开车,或者不开车,是解决目前北京严重的大气污染,阻止雾霾灾害天气频繁出现的根本出路。 关键词:环境;大气颗粒物;PM2.5;霾;汽车中图分类号:X501 文献标示:A

煤中汞地测定方法

煤中汞的分析测定方法 汞是一种具有严重生理毒性的全球性污染物。汞一旦释放进入生态环境(尤其是水生与湿地生态环境),无机汞可以被转化为毒性更强的甲基汞,甲基汞的脂溶性和较长的半衰期使其在鱼和其它水生生物体内具有极高的生物富集系数(104以上),并通过食物链富集起来,进而置野生生物和人类于甲基汞暴露风险之中[1]。工业革命以来,由于人为释汞源使大气中汞是工业革命前的3倍,而最大的人为释汞源即为煤燃烧,每年向大气释放约810吨汞[2],超过所有人为释汞源排汞的三分之二[3]。准确分析测定煤中汞的含量是估算我国煤燃烧释汞量的基础。 我国目前分析测定煤中汞的方法是于2009年5月1日实施的GB/T 16659-2008。但笔者认为该方法由于在煤样消解过程中使用大量的V2O5为催化剂消解煤样[4],但国内生产的V2O5含汞空白一般较高(??),有的甚至是煤实际含汞量的30-50%(?),因此严重影响了煤样中汞的分析测定。因此有必要建立更为可靠的分析测定方法。 本文通过对比GB/T 16659-2008的V2O5催化消解煤样原子荧光分析法,王水常温消解煤样原子荧光分析法及煤样直接热解原子吸收分析法分析测定了煤标样及一些煤样,得出较好的结果。 1.材料及仪器 2.样品消解及分析方法 3.结果与讨论 4.结论 实验部分 1 冷原子荧光分光光度法 1.1分析仪器与试剂

1.1.1 分析仪器:金丝捕汞管,冷原子荧光分光光度计,分析天平:感量0.1mg,汞蒸气发生瓶(50ml),振荡器 1.1.2 试剂:优级纯浓硝酸;优级纯浓盐酸;12% 盐酸羟胺溶液; 10% SnCl2溶液 BrCl 溶液: 11. 0 g 分析纯KBrO3 和15.0 g 分析纯KBr 溶于200 mL 蒸馏去离子水中, 轻轻搅拌溶液, 同时缓慢加入700 mL 优级纯浓HCl。整个操作应在通风橱内进行。冷却后, 装入棕色瓶中, 放置阴凉处保存。 王水:按浓盐酸:浓硝酸=3:1,配制。加入硝酸时,缓慢搅拌溶液。整个操作应在通风橱内进行。静置1-2小时后,放置阴凉处保存。 1.2除汞方法 将新配好的氯化亚锡溶液置于还原瓶中, 以0. 5 L/ min 的速度通入不含汞的氮气12 h, 装瓶备用。 1.3化学试剂及器皿的汞空白 汞空白值0.05 0.04 1.4 煤样消解 称取粒度小于0.2mm的空气干燥煤样约1g,称准到0.0002g,于50ml离心管中。加入事先配制好的王水10ml,摇匀,静置24h。第二天将加有试剂的离心管放入振荡器内,拧紧离心管盖子,转速调到220-240转/分,两小时后关闭振荡器,取下离心管。加入1ml BrCl,摇匀,用去离子水定容到50ml。 1.5溶液过滤 在铁架台上用漏斗和中速滤纸,过滤离心管中溶液。滤过后溶液用新离心管盛放。 1.6样品测定 冷原子荧光光度计设备开机,运行20分钟,测噪声。低于40分贝时开始吹扫金管中富集

大气中总悬浮颗粒物的测定

大气中总悬浮颗粒物的测定 摘要:本实验在华南师范大学进行,通过空气采样器进行采样分析,以恒速抽取定量体积的空气。通过采样前、后滤膜重量之差及采样体积,计算空气中总悬浮颗粒物的浓度,进而达到掌握重量法测定大气中总悬浮颗粒物的目的。 关键词:总悬浮颗粒物华南师范大学 引言 总悬浮颗粒物是环境空气质量标准中的主要指标之一,它是指空气动力学当量直径≤100μm 的颗粒物,它包括地面扬尘、燃烧烟尘和工业中产生的碳黑尘、坡璃棉尘、石英粉尘等颗料物。目前我国许多城市的大气首要污染物为可吸入颗粒物,它们对人体健康、植被生态和能见度等都有着非常重要的直接和间接影响。因此,对这类污染物的浓度进行测定是大气环境污染研究中的一项重要工作。 本实验在校园中通过空气采样器进行采样分析,以恒速抽取定量体积的空气,将空气中粒径小于100μm的悬浮颗粒物截留在已恒重的滤膜上,根据采样前、后滤膜重量之差及采样体积,计算空气中总悬浮颗粒物的浓度,进而达到掌握重量法测定大气中总悬浮颗粒物的目的。 1 仪器与方法 1.1 实验时间、地点 时间:2015年4月26日 地点: 中流量空气采样器(流量50-150L/min)、滤膜(超细玻璃纤维滤膜)、镊子、干燥器、电子天平。 1.3 实验方法 1.3.1 采样 (1)滤纸使用前需用光照检查,不得使用有针孔或有任何缺陷的滤膜。 (2)取出滤纸,在电子天平上快速称其重量W0(g)(精确到0.1mg)。 (3)在选定的地点,安装好空气采样器,打开采样头顶盖,取出滤膜夹,擦去灰尘。将滤

纸“毛”面向上,放在滤膜支持网上,放上滤膜夹。对正,拧紧,使之不漏气。 (4)测定日平均浓度一般从8:00开始采样到第二天8:00结束。由于现实因素现在,实验从上午11:30到下午15:30结束。记录采样流量和采样时间,同时读取现场气温和气压。将有关参数记录下来。 (5)样品采样后,打开采样头,用镊子轻轻取下滤膜,采样面向里,对折两次成扇形放入表面光滑的纸袋中。 1.3.2 样品测定 将采样后的滤膜再次称重,记下读数W1(g )(精确到0.1g )。 1.3.3 结果计算 (W 1-W 0)×1000 总悬浮颗粒物含量(TSP ,mgm -3)= ————————— V r 公式中:W1为采样后的滤纸重量(g ); W0为空白滤纸的重量(g ); Vr 为换算为参比状态下的累积采样体积(m 3) 2 结果与分析 表1 校园总悬浮颗粒物浓度表 TSP 为156.4ug/m 3 与GB 3095-2012《环境空气质量标准》相比较,属于环境空气质量功能区二类区。二类区为城镇规划中确定的居住区、文化区、一般工业区和农村地区。 实验结果得大气中总悬浮颗粒物含量较低,这可能跟当天的天气状况有关,测量当天是阴天,还伴有微风,加上前一天下了一场大雨,冲刷掉了大气中大部分的悬浮颗粒物,并使得测量当天空气湿度较大,使得大气中总悬浮颗粒物含量较低。 3 结论 本次实验结果表明,XXXXXXXXXX 校区内空气质量较好,按照GB 3095-2012《环境空气采样 地点 采样标况流量(m 3/min ) 累计时间(min ) 累积采样体积(m 3) 累积标况体积(m 3) 采样前(g ) 采样后(g ) 样品重 (g ) TSP (mg/m 3) 生科二 号楼 0.1 720 71.6 63.9 0.3358 0.3458 0.01 0.1564

大气中汞的测定

环境空气汞的测定巯基棉富集-冷原子荧光分光光度法1.适用范围 本标准规定了测定环境空气中汞及其化合物的巯基棉富集-冷原子荧光分光光度法。 本标准适用于环境空气中汞及其化合物的测定。 本标准方法检出限为0.1ng/10ml试样溶液。当采样体积为15 L时,检出限为6.6×10-6mg/m3,测定下限为2.6×10-5mg/m3。 2规范性引用文件 本标准内容引用了下列文件中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。 HJ/T 194 环境空气质量手工监测技术规范 GB/T 6682 分析实验室用水规格和试验方法 3方法原理 在微酸性介质中,用巯基棉富集环境空气中的汞及其化合物。无机汞反应式如下: 有机汞反应式如下: 元素汞通过巯基棉采样管时,主要为物理吸附及单分子层的化学吸附。 采样后,用4.0 mol/L盐酸-氯化钠饱和溶液解吸总汞,经氯化亚锡还原为金属汞,用冷原子荧光测汞仪测定总汞含量。 4试剂和材料 除非另有说明,分析时均使用符合国家标准的分析纯试剂。水,GB/T 6682,二级。4.1 高纯氮气:?=99.999%。 4.2 重铬酸钾(K2Cr2O7):优级纯。 4.3 硫酸:ρ (H2SO4)=1.84 g/ml,优级纯。 4.4 盐酸:ρ (HCl)=1.19 g/ml,优级纯。 4.5 硝酸:ρ (HNO3)=1.42 g/ml,优级纯。 4.6 重铬酸钾溶液:w(K2Cr2O7)=1.0%。 称取1.0 g的重铬酸钾(4.2),溶于水,稀释到100 ml。 4.7 硫酸溶液:(H2SO4)=10%。 量取10 ml的浓硫酸(4.3),缓慢加入90 ml水中。 4.8盐酸溶液:c(HCl)=4.0 mol/L。 量取123 ml盐酸(4.4),用水稀释至1 000 ml,混匀。 4.9 盐酸溶液:c(HCl)=2.0 mol/L。 量取12 ml盐酸(4.4),用水稀释至1 000 ml,混匀。 4.10 盐酸溶液:pH=3。 吸取2.0 mol/L 盐酸(4.9)0.50 ml,用水稀释至1 000 ml,混匀。

公共场所空气中氨检验方法

公共场所空气中氨检验方法 一、靛酚蓝分光光度法 1 原理 空气中氨吸收在稀硫酸中,在亚硝基铁氰化钠及次氯酸钠存在下,与水杨酸生成蓝绿色的靛酚蓝染料,根据着色深浅,比色定量。 2 试剂和材料 本法所用的试剂均为分析纯,水为无氨蒸馏水,制备方法见附录A。 2.1吸收液[C(H 2SO 4 )=0.005mol/L]:量取2.8ml浓硫酸加入水中,并稀释至1L。 临用时再稀释10倍。 2.2水杨酸溶液(50g/L):称取10.0g水杨酸[C 6H 4 (OH)COOH]和10.0g柠檬酸钠 (Na 3C 6 O 7 ·2H 2 O),加水约50ml,再加55ml氢氧化钠溶液[C(NaOH)=2mol/L], 用水稀释至200ml。此试剂稍有黄色,室温下可稳定一个月。 2.3亚硝基铁氰化钠溶液(10g/L):称取1.0g亚硝基铁氰化钠[Na 2 Fe(CN) 5·NO·2H 2 O],溶于100ml水中,贮于冰箱中可稳定一个月。 2.4次氯酸钠溶液(CaCIO)=0.05mol/L):取1ml次氯酸钠试剂原液,用碘量法标准定其浓度(标定方法见附录B)。然后用氢氧化钠溶液[C(NaOH)=2mol/L]称释成0.05mol/L的溶液。贮于冰箱中可保存两个月。 2.5氨标准溶液 2.5.1标准贮备液:称取0.3142g经105℃干燥1h的氯化铵(NH 4 Cl),用少量水溶解,移入100ml容量瓶中,用吸收液(见2.1)稀释至刻度,此液1.00ml 含1.00mg氨。 2.5.2标准工作液:临用时,将标准贮备液(见2.5.1)用吸收液稀释成1.00ml 含1.00μm氨。 3 仪器、设备 3.1大型气泡吸收管:有10ml刻度线,见图1,出气口内径为1mm,与管底距离应为3~5mm。

环境空气总悬浮颗粒物的测定重量法(GBT15432-1995)教学内容

环境空气总悬浮颗粒物的测定重量法(G B T15432-1995)

环境空气总悬浮颗粒物的测定重量法(GB/T15432-1995) 作者:佚名文章来源:网络点击数: 221 更新时间:2008-3-24 GB/T15432-1995 1995-3-25 1995-8-1 1主题内容和适用范围 1.1 主题内容 本标准规定了测定总悬浮颗粒物的重量法。 1.2 适用范围 本标准适合于用大流量或中流量总悬浮颗粒物采样器(简称采样器)进行空气中总悬浮颗粒物的测定。方法的检测限为0.001mg/m3。总悬浮颗粒物含量过高或雾天采样使滤膜阻力大于10kPa,本方法不适用。 2 原理 通过具有一定切割特性的采样器,以恒速抽取定量体积的空气,空气中粒径小于100um的悬浮颗粒物,被截留在已恒重的滤膜上。根据采样前、后滤膜重量之差及采样体积,计算总悬浮颗粒物的浓度。 滤膜经处理后,进行组分分析。 3仪器和材料 3.1 大流量或中流量采样器:应按HYQ 1.1—89《总悬浮颗粒物采样器技术要求(暂行)》的规定。 3. 2 孔口流量计: 3.2.1 大流量孔口流量计:量程0.7~1.4m3/min;流量分辨率0.01m3/min;精度优于±2%。3.2.2 中流量孔口流量计:量程70~160L/min;流量分辨率1 L/min;精度优于±2%。 3.3 U型管压差计:最小刻度0.1hPa。 3.4 X光看片机:用于检查滤膜有无缺损。 3.5 打号机:用于在滤膜及滤膜袋上打号。 3.6 镊子:用于夹取滤膜。 3.7 滤膜:超细玻璃纤维滤膜,对0.3μm标准粒子的截留效率不低于99%,在气流速度为0.45m/s 时,单张滤膜阻力不大于3.5kPa,在同样气流速度下,抽取经高效过滤器净化的空气5h,1cm2滤膜失重不大于0.012mg。 3.8 滤膜袋:用于存放采样后对折的采尘滤膜。袋面印有编号、采样日期、采样地点、采样人等项栏目。 3.9 滤膜保存盒:用于保存、运送滤膜,保证滤膜在采样前处于平展不受折状态。 3.10 恒温恒湿箱:箱内空气温度要求在15~30℃范围内连续可调,控温精度±1℃;箱内空气相对湿度应控制在(50±5)%。恒温恒湿箱可连续工作。 3.11 天平: 3.11.1 总悬浮颗粒物大盘天平:用于大流量采样滤膜称量。称量范围≥10g;感量1mg;再现性(标准差)≤2mg。 3.11.2 分析天平:用于中流量采样滤膜称量。称量范围≥10g;感量0.1 mg;再现性(标准 差)≤0.2mg。 4 采样器的流量校准 4.1 新购置或维修后的采样器在启用前,需进行流量校准;正常使用的采样器每月需进行一次流量校准。 4.2 流量校准步骤: 4.2.1 计算采样器工作点的流量: 采样器应工作在规定的采气流量下,该流量称为采样器的工作点。在正式采样前,需调整采样器,使其工作在正确的工作点上,按下述步骤进行: 采样器采样口的抽气速度W为0.3m/s。大流量采样器的工作点流量QH(m3/min)为 QH=1.05 (1) 中流量采样器的工作点流量QM(L/min)为 QM=60 000W ×A (2) 式中:A——采样器采样口截面积,m2。 将QH或QM计算值换算成标况下的流量QHN (m3/min)或QMN (L/min)

环境空气—氯化氢的测定—硫氰酸汞分光光度法

FHZHJDQ0105 环境空气氯化氢的测定硫氰酸汞分光光度法 F-HZ-HJ-DQ-0105 环境空气—氯化氢的测定—硫氰酸汞分光光度法 1 范围 本方法可用于空气中氯化氢的测定。5mL样品溶液中含2μg氯化氢,可有0.033吸光度。 本法检出限为1μg/5mL,若采样体积为200L时,最低检出浓度为 0.01mg/m3;测定范围为5mL样品溶液中含2~20μg氯化氢,若采样体积为200L时,可测浓度范围为0.02~0.40mg/m3。 2 原理 空气中氯化氢吸收在碱溶液中,在酸性溶液中与硫氰酸汞反应置换出硫氰酸根,再与高铁离子作用生成硫氰酸铁红色化合物,比色定量。 3 试剂 所有试剂均用蒸馏水或去离子水配制。 3.1 吸收液:0.05mol /L氢氧化钠溶液。 3.2 无水乙醇。 3.3 硫氰酸汞-乙醇溶液:称取0.4g硫氰酸汞用无水乙醇溶解成 100mL。 3.4 高氯酸:70%~72%。 3.5 硫酸铁铵溶液:称取6g硫酸铁铵用(1+2)高氯酸溶解成100mL。 3.6 标准溶液:准确称量0.2045g经105℃干燥2h的氯化钾(一级),用水溶解后,移入1000mL 容量瓶中,并稀释至刻度。此溶液1.00mL含0.1mg氯化氢。再用吸收液稀释成1.00mL含10μg 氯化氢的标准溶液。 4 仪器 4.1 气泡吸收管:普通型,有10mL刻度线。 4.2 空气采样器:流量范围0.2~3L/min,流量稳定。使用时,用皂膜流量计校准采样系列在采样前和采样后的流量误差应小于5%。 4.3 具塞比色管,10mL 4.4 分光光度计,用20mm比色皿,在波长460nm下,测定吸光度。 5 采样 串联两个各装10mL吸收液的普通型气泡吸收管,以2.5L/min流量采气200L。长时间采样,需用水补充到原体积。 6 操作步骤 6.1 标准曲线的绘制 按下表制备标准色列管。 0 1 2 3 4 5 6 7 标准溶液V/mL 0 0.20 0.40 0.60 0.80 1.00 1.50 2.00 吸收液V/mL 5.0 4.80 4.60 4.40 4.20 4.00 3.50 3.00 氯化氢含量m/μg 0 2 4 6 8 10 15 20 于标准色列各管中加入2mL硫酸铁铵溶液,混匀。加入1mL硫氰酸汞-乙醇溶液,混匀。 在室温下放置10~30min。用20mm比色皿,以水作参比,在波长460nm下,测定各管溶液 吸光度。以氯化氢含量(μg)为横坐标,吸光度为纵坐标,绘制标准曲线,并计算回归线的斜率。以斜率倒数作为样品测定的计算因子B S(μg)。 6.2 样品测定

室内空气中氨的测定方法

仪器文献- 室内空气中氨的测定方法 频道:仪器仪表发布时间:2008-03-05 测定空气中氨的化学方法有次氯酸钠—水杨酸分光光度法、纳氏试剂分光光度法、靛酚蓝试剂比色法;仪器法有离子选择电极法和光离子化气相色谱法等。 f.1次氯酸钠—水杨酸分光光度法 f.1.1 相关标准和依据 本方法主要依据gb/t14679 《空气质量氨的测定次氯酸钠-水杨酸分光光度法》。 f.1.2 原理 氨被稀硫酸吸收液吸收后,生成硫酸铵。在亚硝基铁氰化钠存在下,铵离子、水杨酸和次氯酸钠反应生成蓝色化合物,根据颜色深浅,用分光光度计在697nm波长处进行测定。 f.1.3 测定范围 在吸收液为10ml,采样体积为 10~20 l时,测定范围为 0.008~110 mg/m3,对于高浓度样品测定前必须进行稀释。本方法检出限为0.1μg/ml,当样品吸收液总体积为10ml,采样体积为10l时,最低检出浓度 0.008mg/m3。 f.1.4 试剂 分析中所用试剂全部为符合国家标准的分析纯试剂;使用的水为无氨水。 f.1.4.1 水:无氨,可用下述方法之一制备。 f.1.4.1.1 蒸馏法向1000ml的蒸馏水中加0.1ml硫酸(ρ=1.84g/ml),在全玻璃装置中进行重蒸馏,弃去50ml初馏液,于具塞磨口的玻璃瓶中接取其余馏出液,密封,保存。 f.1.4.1.2 离子交换法将蒸馏水通过强酸性阳离子交换树脂柱,其流出液收集在具塞磨口的玻璃瓶中。 f.1.4.2 硫酸吸收液 硫酸溶液c(1/2 h2so4)=0.005mol/l。 f.1.4.3 水杨酸—酒石酸钾溶液 称取10.0g水杨酸〔c6h4(oh)cooh〕置于150ml烧杯中,加适量水,再加入5mol/l氢氧化钠溶液 15ml,搅拌使之完全溶解。另称取10.0g酒石酸钾钠(knac4h4o6·4h2o),溶解于水,加热煮沸以除去氨,冷却后,与上述溶液合并移入200ml容量瓶中,用水稀释到标线,摇匀。此溶液ph=6.0~6.5,贮于棕色瓶中,至少可以稳定一个月。 f.1.4.4 亚硝基铁氰化钠溶液 称取0.1g亚硝基铁氰化钠{na2〔fe[(cn) 5no〕·2h2o},置于10ml具塞比色管中,加水至标线,摇动使之溶解。临用现配。 f.1.4.5 次氯酸钠溶液 市售商品试剂,可直接用碘量法测定其有效氯含量,用酸碱滴定法测定其游离碱量。方法如下: 有效氯的测定:吸取次氯酸钠1.00ml,置于碘量瓶中,加水50ml,碘化钾2.0g,混匀。加c(1/2h2so4)= 6mol/l硫酸溶液5ml,盖好瓶塞,混匀,于暗处放置5min后,用c(na2s2o3)=0.1000mol/l硫代硫酸钠标准溶液滴定至浅黄色,加淀粉溶液1ml,继续滴定至蓝色刚消失为终点。按下式计算有效氯:

相关文档
最新文档