小学数学应用题4大类型汇总

合集下载

小学数学常考的10种应用题类型_考前必看

小学数学常考的10种应用题类型_考前必看

小学数学常考的10种应用题类型_考前必看今天小编给大家带来小学数学常考的10种应用题类型,希望可以帮助到大家。

一、归一问题1.含义在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

2.数量关系总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数3.解题思路和方法先求出单一量,以单一量为标准,求出所要求的数量。

例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解:(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解:(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。

例35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

二、归总问题1.含义解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

小学数学应用题类型汇总

小学数学应用题类型汇总

小学数学应用题类型汇总解承诺用题既要综合应用小学数学中的概念性质、法则、公式、数量关系和解题方法等最差不多的知识,还要具有分析、综合、判定、推理的能力。

这也是什么缘故小孩觉得难的缘故。

今天和大伙儿来详细研究应用题的四大类型。

一、一样应用题一样应用题没有固定的结构,也没有解题规律可循,完全要依靠分析题目的数量关系找出解题的线索。

要点:从条件入手?从问题入?从条件入手分析时,要随时注意题目的问题从问题入手分析时,要随时注意题目的已知条件。

例题如下:某五金厂一车间要生产1100个零件,差不多生产了5天,平均每天生产130个。

剩下的假如平均每天生产150个,还需几天完成?思路分析:已知“差不多生产了5天,平均每天生产130个”,就能够求出差不多生产的个数。

已知“要生产1100个机器零件”和差不多生产的个数,已知“剩下的平均每天生产150个”,就能够求出还需几天完成。

二、典型应用题用两步或两步以上运算解答的应用题中,有的题目由于具有专门的结构,因而能够用特定的步骤和方法来解答,如此的应用题通常称为典型应用题。

(一)求平均数应用题解答求平均数问题的规律是:总数量÷对应总份数=平均数注:在这类应用题中,我们要抓住的是对应,可依照总数量来划分成不同的子数量,再一一地依照子数量找出各自的份数,最终得出对应关系。

例题一如下:一台碾米机,上午4小时碾米1360千克,下午3小时碾米1096千克,这天平均每小时碾米约多少千克?思路分析:要求这天平均每小时碾米约多少千克,需解决以下三个问题:1、这一天总共碾了多少米?(一天包括上午、下午)。

2、这一天总共工作了多少小时?(上午的4小时,下午的3小时)。

3、这一天的总数量是多少?这一天的总份数是多少?(从而找出了对应关系,问题也就得到了解决。

)(二)归一问题归一问题的题目结构是:题目的前部分是已知条件,是一组相关联的量;题目的后半部分是问题,也是一组相关联的量,其中有一个量是未知的。

三年级数学上册应用题七大类型重点考点

三年级数学上册应用题七大类型重点考点

一、加减法两步计算应用题例:红领巾小学三年级有男生257人,女生235人,已经体检身体的有387人,没有体检的有多少人?257+235-387=105(人)答:没有体检的有105人。

二、乘加乘减两步计算应用题例:红星小学三年级的同学乘四辆汽车去春游,前3辆车各坐68个同学,第4辆车坐74人,这次春游一共去了多少人?68×3+74=278(人)答:这次春游一共去了278人。

三、连乘两步计算应用题例:书法小组有6个同学,每人每天写24个大字照这样计算,一星期,这个书法小组共写多少个大字?一星期=7天24×6×7=1008 (个)答:这个书法小组共写1008个大字。

四、比较问题应用题例:一篇文章600字,小芳的爸爸平均每分钟能打67字,9分钟能打完吗?67×9=603(字) 603字>600字答:能打完。

五、长方形、正方形的周长例:一个长方形的周长与边长是9厘米的正方形周长相等,长方形的长14厘米,这个长方形的宽是多少?4x9=36(厘米)36-14×2=8 (厘米)8÷2=4(厘米)答:这个长方形的宽是4厘米。

六、有余数的除法应用题例:一根绳子长25米,先剪下10米,剩下的每两米做一根短跳绳。

可以做多少根短跳绳,还剩多少米?(25-10)÷2=7(根)……1(米)答:可以做7根跳绳,剩1米。

七、含有倍数条件的应用题例:一根绳子的5倍是45米,一根铁丝是这根绳子的7倍。

这根铁丝长多少米?(45÷5)×7=63(米)答:这根铁丝长63米。

小学数学应用题类型汇总资料讲解

小学数学应用题类型汇总资料讲解

小学数学应用题类型汇总第一章:已知单位相同的数的应用题的解题公式1、已知单位相同的两个数:①求共是多少用加法;②求多多少、少多少、大多少、小多少、增加多少、减少多少、相差多少都用减法算;③求大数是小数的几倍用“大数÷小数=倍数”的方法计算;④求一个数是另一个数的几分之几用“一个数÷另一个数= ”的方法计算。

2、已知单位相同的两个数,是在原数上增加一个数后是多少用加法。

(简记为增加了用加法)3、已知单位相同的两个数,是在原数上减少一个数后是多少用减法。

(简记为减少了用减法)4、已知两个数共是多少,又知其中一个数是多少,求另一个数是多少用减法。

5、已知三个数共是多少,又知其中两个数各是多少(或者共是多少),求第三个数是多少用减法。

第二章:已知相差多少的应用题的解题公式1、已知甲数比乙数多多少,就是甲数多,乙数少;又知少的求多的用“小数+相差的数=大数”的方法计算;又知多的求少的用“大数相差的数=小数”的方法计算。

(简记为求多的用加法,求少的用减法)2、已知甲数比乙数少多少,就是甲数少,乙数多,又知少的求多的用“小数+相差的数=大数”的方法计算;又知多的求少的用“大数—相差的数=小数”的方法计算。

(简记为求多的用加法,求少的用减法)3、已知两个数共是多少,又知两个数相差多少,用“(和+差)÷2=大数”“(和—差)÷2=小数”的方法计算。

第三章:已知每份是多少的应用题的解题公式1、已知每份是多少,又知份数,求共是多少用乘法(每份的数×份数=总数);已知每份是多少,又知共是多少,求份数用包含除法(总数÷每份的数=份数)。

2、归总应用题:①用“每份的数×份数=总数”求出共是多少;②在总数不变的情况下,每份的数发生变化后,用“总数÷变化后每份的数=变化后的份数”求出变化后的份数;③在总数不变的情况下,用“总数÷变化后的份数=变化后的每份的数”求出变化后每份的数是多少。

小学数学典型应用题归纳总结汇总30种题型

小学数学典型应用题归纳总结汇总30种题型

小学数学典型应用题归纳汇总30种题型1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

2 归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米? 3.2×791=2531.2(米)(2)现在可以做多少套?2531.2÷2.8=904(套)列成综合算式 3.2×791÷2.8=904(套)答:现在可以做904套。

3 和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。

例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。

小学数学应用题13种类型解题方法

小学数学应用题13种类型解题方法

小学数学应用题13种类型解题方法
以下是小学数学应用题13种类型解题方法:
1. 对等关系类型:确定两个物品或人物之间的对等关系,例如“如果一个苹果的重量是1斤,那么两个苹果的重量是多少?”
2. 比例关系类型:确定两个或多个物品或人物之间的比例关系,例如“一个篮球场长50米,那么120米长的篮球场需要多大?”
3. 增减关系类型:确定两个物品或人物之间的增减关系,例如“小明有30元钱,买了一杯奶茶,还剩多少钱?”
4. 总量平均数类型:确定总量和平均数之间的关系,例如“班里有30个同学,平均每人有8本书,那么班里一共有多少本书?”
5. 比价关系类型:确定两个物品或服务之间的价值比较,例如“一瓶可乐比一瓶雪碧贵3元,一瓶雪碧多少钱?”
6. 时间关系类型:确定时间之间的关系,例如“如果8点钟开始读书,读完4个小时,那么读书到几点钟?”
7. 容量类型:确定两个容器之间的关系,例如“一杯水有200ml,那么3杯水有多少毫升?”
8. 多项式类型:确定多项式之间的关系,例如“如果5x+2=17,那么x=多少?”
9. 周长关系类型:确定周长之间的关系,例如“一个正方形的周长是48cm,那么它的面积是多少?”10. 面积类型:确定两个或多个图形面积之间的关系,例如“一个长方形的长是8cm,宽是6cm,它的面积是多少?”
11. 相似关系类型:确定两个或多个图形之间的相似关系,例如“如果两个三角形相似,其中一个三角形的底是5cm,那么另一个三角形的底是多少?”12. 倍数类型:确定两个物品或人物之间的倍数关系,例如“5个苹果的价格是25元,那么一个苹果的价格是多少?”
13. 百分比类型:确定一个数值的百分比,例如“如果一个物品原价是120元,打8折后的价格是多少?”。

小学数学各类应用题类型及解题方法

小学数学各类应用题类型及解题方法

2016-06-05差倍问题:已知两个数的差及两个数的倍数关系,求这两个数的应用题,叫做差倍问题。

基本关系式是:两数差÷倍数差=较小数。

例:有两堆煤,第二堆比第一堆多40吨,如果从第二堆中拿出5吨煤给第一堆,这时第二堆煤的重量正好是第一堆的3倍。

原来两堆煤各有多少吨?分析:原来第二堆煤比第一堆多40吨,给了第一堆5吨后,第二堆煤比第一堆就只多40-5×2吨,由基本关系式列式是:(40-5×2)÷(3-1)-5 =(40-10)÷2-5 =30÷2-5 =15-5 =10(吨)第一堆煤的重量10+40=50(吨)→第二堆煤的重量答:第一堆煤有10吨,第二堆煤有50吨和差问题:已知两个数的和与差,求这两个数的应用题,叫做和差问题。

一般关系式有:(和-差)÷2=较小数(和+差)÷2=较大数。

例:甲乙两数的和是24,甲数比乙数少4,求甲乙两数各是多少?(24+4)÷2 =28÷2 =14 乙数(24-4)÷2 =20÷2 =10 甲数答:甲数是10,乙数是14差倍问题:已知两个数的差及两个数的倍数关系,求这两个数的应用题,叫做差倍问题。

基本关系式是:两数差÷倍数差=较小数例:有两堆煤,第二堆比第一堆多40吨,如果从第二堆中拿出5吨煤给第一堆,这时第二堆煤的重量正好是第一堆的3倍。

原来两堆煤各有多少吨?分析:原来第二堆煤比第一堆多40吨,给了第一堆5吨后,第二堆煤比第一堆就只多40-5×2吨,由基本关系式列式是:(40-5×2)÷(3-1)-5 =(40-10)÷2-5 =30÷2-5 =15-5 =10(吨)第一堆煤的重量10+40=50(吨)→第二堆煤的重量答:第一堆煤有10吨,第二堆煤有50吨。

还原问题:已知一个数经过某些变化后的结果,要求原来的未知数的问题,一般叫做还原问题。

小学数学应用题类型汇总

小学数学应用题类型汇总

小学数学应用题类型汇总导语:应用题是指将所学知识应用到实际生活实践的题目。

在数学上,应用题分两大类:一个是数学应用。

另一个是实际应用。

数学应用就是指单独的数量关系,构成的题目,没有涉及到真正实量的存在及关系。

实际应用也就是有关于数学与生活题目。

以下是小编整理小学数学应用题类型汇总,以供参考。

只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。

1、加法应用题:a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。

b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。

2、减法应用题:a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。

b求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。

c求比一个数少几的数的应用题:已知甲数是多少,,乙数比甲数少多少,求乙数是多少。

3、乘法应用题:a求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。

b求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。

4、除法应用题:a把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。

b求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。

C 求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。

d已知一个数的几倍是多少,求这个数的应用题。

5、常见的数量关系:总价 = 单价×数量路程 = 速度×时间工作总量=工作时间×工效总产量=单产量×数量有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。

1、含有三个已知条件的两步计算的应用题。

求比两个数的和多几个数的应用题。

比较两数差与倍数关系的应用题。

2、含有两个已知条件的两步计算的应用题。

小学四年级数学常见应用题类型总结,给孩子练练看!

小学四年级数学常见应用题类型总结,给孩子练练看!

小学四年级数学常见应用题类型总结,给孩子练练看!一、归一问题:1、买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?2、3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?二、归总问题:1、服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套?2、小华每天读24页书,12天读完了《红岩》一书。

小明每天读36页书,几天可以读完《红岩》?三、连乘问题:1、小东每天练2张毛笔字,每张上有16个字,小东一星期(7天)写了多少个字?2、一个方队,共8列,小明在第3列,小明前面有5个人,后面有6个人,这个方队共有多少人?3、一个方队有8列,小明在第6列,从前往后数,小明是第5个人,从后往前数,小明是第6个人,这个方队共有多少人?4、一学校为四川灾区捐款,学校共有6个年级,每个年级有3个班,平均每班捐款123元,他们一共捐了多少钱?5、每个书架有3层,每层可放书36本,学校有20个这样的书架。

一共可放书多少本?6、1只青蛙1天吃害虫98条,按这样计算,20只青蛙一个月(30天)能捉多少条害虫?7、三年级一班有38个同学,举行接力赛,每人跑2圈。

(操场长30米,宽20米)这个班的学生大约一共跑了多少米?8、一本小说大约50页,每页大约有25行字,每行大约30个字,这本书大概有多少字?9、铅笔每盒有24支,每支9角,小明想买2盒,小明要付多少元钱?10、新兴小区一幢楼有16层,共3个单元,每个单元每层住2户,这幢楼住多少户人家?11、六一节,老师准备给每个同学准备2个香蕉,1个苹果,全班有36人,一共要准备多少个水果?12、每盒有16个鸡蛋,每箱有4盒,6箱共需要多少个鸡蛋?四、连除问题:1、4台织布机一周织布1568米,平均每台织布机每天织布多少米?2、360人排成4个方阵,每个方阵有5列,平均每列站多少人?3、服装店一天工卖出3箱衣服,每箱6件,一共收入3600元,平均每件衣服多少元?4、7头猪一星期喂245千克食料,平均1头猪1天喂多少食料?5、1盒月饼有2层,每层有4个,一个工厂一天生产了560个月饼,这个工厂一天生产了几盒月饼?6、奶奶家养了59只母鸡,125只公鸡,把这些鸡关在8只鸡笼里,平均每只鸡笼里关几只鸡?7、森林里有420张桌子,想摆成7个大组,每个大组摆6列,平均每列有几张桌子?8、128个梨,每盒装8个,2盒装一箱。

小学五年级数学应用题类型有哪些

小学五年级数学应用题类型有哪些

小学五年级数学应用题类型一、整数应用题整数应用题涉及正整数、零和负整数的加减乘除运算。

在小学五年级中,整数应用题常常涉及温度变化、海拔高度、资产负债等实际情境。

示例:1.小明去年考试成绩为80分,今年进步了15%,今年的考试成绩是多少?2.从上海到北京的航班起飞时气温是15℃,到达北京时气温下降了9℃,到达北京时的气温是多少?二、面积和周长应用题面积和周长应用题主要涉及图形的边长、面积和周长的计算,包括矩形、正方形、三角形和圆等常见几何图形。

示例:1.一个长为6厘米,宽为4厘米的矩形花坛,花坛的面积是多少平方厘米?2.一个半径为8厘米的圆形花坛,花坛的周长是多少厘米?三、时间和速度应用题时间和速度应用题常常涉及到时间、速度和距离之间的关系。

在小学五年级中,其中包括车辆的速度、行人的速度、旅程的时间等。

示例:1.小明从家里到学校步行需要15分钟,如果换乘公交车只需要5分钟,那么小明步行的速度是多少米/分钟?2.一辆汽车以每小时60公里的速度行驶,从上海到北京的距离是1200公里,需要多长时间?四、分数应用题分数应用题涉及到分数的加减乘除运算,以及与整数的组合运算。

在小学五年级中,常常涉及到面积、容积、比例等问题。

示例:1.小红拿了一个长为2/3米,宽为1/5米的地毯,这块地毯的面积是多少平方米?2.一瓶可乐有1.5升,小明喝掉了其中的1/4,剩下的可乐有多少升?五、数字推理应用题数字推理应用题是指涉及到数字规律和逻辑推理的问题。

在小学五年级中,数字序列、矩阵等问题都属于数字推理应用题的范畴。

示例:1.数列5,8,11,14,17,…,请写出数列的第10项。

2.请在下面的方阵中填入适当的数字,使得每一行、每一列和每一条对角线上的数字之和都相等。

以上是小学五年级数学应用题的主要类型,通过这些题目的练习,学生可以提高自己的数学应用能力,并在实际生活中更好地运用数学知识。

小升初小学数学应用题类型大全

小升初小学数学应用题类型大全

小学数学应用题类型大全1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量 1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱? 0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式 0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式 90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。

例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材? 100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材? 5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式 105÷(100÷5÷4×7)=3(次)答:需要运3次。

2 、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

小学数学应用题各种类型大全

小学数学应用题各种类型大全

小学数学应用题各种类型大全一、方程的应用1.学校建校舍计划投资45万元,实际投资40万元。

实际投资节约了百分之几?2.学校五月份计划用电480度,实际少用60度。

实际用电节省百分之几?(福建云宵小学)3.某厂计划三月份生产电视机400台,实际上半个月生产了250台,下半个月生产了230台,实际超额完成计划的百分之几?(南昌市青云谱区)4.现有甲、乙、丙三个水管,甲水管以每秒4克的流量流出含盐20%的盐水,乙水管以每秒6克的流量流出含盐15%的盐水,丙水管以每秒10克的流量流出水,丙管打开后开始2秒不流,接着流5秒,然后又停2秒,再流5秒……三管同时打开,1分钟后都关上,这时流出的混合液含盐百分之几?(武汉大学附属外国语学校)5.新光小学书画班有75人,舞蹈班有48人,书画班人数比舞蹈班多百分之几?(南宁市)6.小明用一包绿豆做实验,其中发芽的种子有100粒,没有发芽的种子有25粒,求这包绿豆的发芽率。

(浙江温岭市)8.为灾区捐款,小华捐4.2元,比小丽多捐了0.4元,小华比小丽多捐几分之几?(河南安阳市)9.一件衣服打八折出售卖100元,实际90元卖出。

实际几折卖出?(浙江仙居县)10.食堂运来600千克大米,已经吃了4天,每天吃50千克。

剩下的5天吃完,平均每天吃多少千克?(南京市建邺区)11.3箱橘子比3筐苹果少24千克。

平均每箱橘子重20千克,每筐苹果重多少千克?(浙江台州市市区)12.在绿化祖国采集树种的活动中,某校四年级5个班级,每班采集树种20千克,五年级3个班共采集60千克,平均每班采集树种多少千克?(上海市)13.大桥乡修一条长2100米的水渠,已修了5天,平均每天修240米。

余下的任务要在3天内完成,平均每天应修多少米?(南京市秦淮区)14.小明到商店买了3个小型足球付出20元,找回1.85元,每个足球多少元?(银川市实验小学)15.某班有4个小队,每个小队有12名少先队员,在“希望工程”捐款活动中,共捐款240元。

人教版小学四年级数学上下册应用题类型总结(完整版)

人教版小学四年级数学上下册应用题类型总结(完整版)

人教版小学四年级数学上下册应用题类型总结(完整版)刘军义(附:上册)归一归总连乘除,路程面积足不足,和差倍数看总份,价格优惠算度数。

(下册)方案划算问题解,小数简便查鸡兔。

四则各部巧应用,边角关系须清楚。

【下册解释(上册附后)】:第一句:1.选方案问题、2.怎样划算问题;第二句:3.含小数应用题、4.需简便运算应用题、5.鸡兔同笼问题;第三句:6.利用加、减、乘、除四则运算各部分关系设计的应用题;第四句:7.利用三角形边角关系设计的应用题。

【下册举例(上册附后)】:一、选方案问题1.四年级两位老师带38名同学去参观航天展览,成人门票费48元,儿童费是半价;如果10人以上(包含10人)可以购团体票每人25元,怎样购票最划算?2.动物园推出“一日游”的活动价两种方案:方案一:成人每人150元;儿童每人60元,方案二:团体5人以上(包括)5人每人100元。

现在有成人4人,儿童6人要去游玩,想一想怎样买票最省钱?3.动物园推出“一日游”的活动价两种方案:方案一:成人每人150元;儿童每人60元,方案二:团体5人以上(包括5人)每人100元。

现在有成人4人,儿童6人要去游玩,想一想怎样买票最省钱?4.旅行社推出“××风景区一日游”的两种出游价格方案。

方案一:成人每人150元,儿童每人60元方案二:团体10人以上(包括10人)每人100元(1)成人6人,儿童3人,选哪种方案合算?(2)成人4人,儿童6人,选哪种方案合算?二、怎样划算问题1.大船每条24元,限乘6人.小船每条20元,限乘4人.有50人去划船,怎样租船最省钱?2.大船限载8人,小船限载6人,共38人,怎样才能把人全部坐完?3.35个同学去租船,大船限坐10人,小船限坐6人,大船每条8元,小船每条6元。

你准备怎样租船?4.50名同学游三峡,可以租两条船:大船每条可坐6人,租金10元;小船每条可坐4人,租金8元,怎样租船省钱?5.有65名游客去游玩,,下面是租车信息:一辆小车120元,限乘客10人,一辆大车160元,限乘客15人,怎样租车最省钱?最少花多少钱?三、含小数应用题修路队修一条公路,第一天修了3.4千米,比第二天多修了0.6千米,两天共修了多少千米?.1 2.小兰的妈妈带50元钱去买菜,买荤菜用去28.75元,买素菜用去6.35元。

小学数学六年级应用题13种类型解题方法

小学数学六年级应用题13种类型解题方法

1、已知条件类:根据题干中给定的条件,推导出最终结论;
2、识别规律类:根据题干中给出的数据,找出规律,然后得出结果;
3、概率类:依据事物发生的可能性计算结果;
4、几何类:借助图形,利用已知信息
求未知数;5、省略号类:找出省略号读值,得出结论;6、二次根式类:根据题干中给出的二次根式,求出解;7、变量代换类:根据题干中的变
量的特点,替换变量,得出结论;8、方程组类:根据题干给出的方程组,求解出结果;9、类比类:根据题干中的类比情景,得出相应结果;10、
对比分析类:根据题干中的对比情景,得出结论;11、容斥原理类:根据
题干中的容斥原理,求出解;12、反证法类:根据题干中的给定条件,反
证出结果;13、短路法类:根据题干中的情景,分析各种结果,不断缩小
范围,得出最终答案。

小学数学应用题题型

小学数学应用题题型

小学数学应用题型汇总1、归一问题:在解题时先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的量。

【数量关系】总量÷份数=1份数量 1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

2、归总问题:解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题。

【数量关系】 1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

3、和差问题:已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=(和+差)÷ 2 小数=(和-差)÷ 2【解题思路和方法】把大小两个数的和转化成两个大数(或两小数)的和,然后再求另一个数。

4、和倍问题:已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。

【数量关系】和÷倍数和=标准数标准数×倍数=另一个数【解题思路和方法】找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。

求出倍数和之后,再求出标准的数量是多少。

再根据倍数关系求另一个数。

5、差倍问题:已知两个数的差及两个数的倍数关系,求两个数各是多少的应用题。

【数量关系】两个数的差÷(倍数-1)=标准数标准数×倍数=另一个数【解题思路和方法】找准标准数。

6、倍比问题:有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。

【数量关系】总量÷一个数量=倍数另一个数量×倍数=另一总量【解题思路和方法】先求出倍数,再用倍比关系求出要求的数。

7、相遇问题:两个运动的物体同时由两地出发相向而行,在途中相遇。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学应用题4大类型汇总
解答应用题既要综合应用小学数学中的概念性质、法则、公式、数量关系和解题方法等最基本的知识,还要具有分析、综合、判断、推理的能力。

这也是为什么孩子觉得难的原因。

今天咱们来详细研究应用题的四大类型。

一般应用题没有固定的结构,也没有解题规律可循,完全要依赖分析题目的数量关系找出解题的线索。

要点:从条件入手?从问题入?
从条件入手分析时,要随时注意题目的问题
从问题入手分析时,要随时注意题目的已知条件。

例题如下:
某五金厂一车间要生产1100个零件,已经生产了5天,平均每天生产130个。

剩下的如果平均每天生产150个,还需几天完成?
思路分析:
已知“已经生产了5天,平均每天生产130个”,就可以求出已经生产的个数。

已知“要生产1100个机器零件”和已经生产的个数,已知“剩下的平均每天生产150个”,就可以求出还需几天完成。

用两步或两步以上运算解答的应用题中,有的题目由于具有特殊的结构,因而可以用特定的步骤和方法来解答,这样的应用题通常称为典型应用题。

(一)求平均数应用题
解答求平均数问题的规律是:
总数量÷对应总份数=平均数
注:在这类应用题中,我们要抓住的是对应,可根据总数量来划分成不同的子数量,再一一地根据子数量找出各自的份数,最终得出对应关系。

例题一如下:
一台碾米机,上午4小时碾米1360千克,下午3小时碾米1096千克,这天平均每小时碾米约多少千克?
思路分析:
要求这天平均每小时碾米约多少千克,需解决以下三个问题:
1、这一天总共碾了多少米?(一天包括上午、下午)。

2、这一天总共工作了多少小时?(上午的4小时,下午的3小时)。

3、这一天的总数量是多少?这一天的总份数是多少?(从而找出了对应关系,问题也就得到了解决。


(二)归一问题
归一问题的题目结构是:
题目的前部分是已知条件,是一组相关联的量;
题目的后半部分是问题,也是一组相关联的量,其中有一个量是未知的。

解题规律是,先求出单一的量,然后再根据问题,或求单一量的几倍是多少,或求有几个单一量。

例题如下:
6台拖拉机4小时耕地300亩,照这样计数,8台拖拉机7小时可耕地多少亩?
思路分析:
先求出单一量,即1台拖拉机1小时耕地的亩数,再求8台拖拉机7小时耕地的亩数。

(三)相遇问题
指两运动物体从两地以不同的速度作相向运动。

相遇问题的基本关系是:
1、相遇时间=相隔距离(两个物体运动时)÷速度和。

例题如下:两地相距500米,小红和小明同时从两地相向而行,小红每分钟行60米,小明每分钟行65米,几分钟相遇?
2、相隔距离(两物体运动时)=速度之和×相遇时间
例题如下:一列客车和一列货车分别从甲乙两地同时相对开出,10小时后在途中相遇。

已知货车平均每小时行45千米,客车每小时的速度比货车快20﹪,求甲乙相距多少千米?
3、甲速=相隔距离(两个物体运动时)÷相遇时间-乙速
例题如下:一列货车和一列客车同时从相距648千米的两地相对开出,4.5小时相遇。

客车每小时行80千米,货车每小时行多少千米?
相遇问题可以有不少变化。

如两个物体从两地相向而行,但不同时出发;
或者其中一个物体中途停顿了一下;
或两个运动的物体相遇后又各自继续走了一段距离等,都要结合具体情况进行分析。

另:相遇问题可以引申为工程问题:即工效和×合做时间=工作总量
分数和百分数的基本应用题有三种,下面分别谈一谈每种应用题的特征和解题的规律。

(一)求一个数是另一个数的百分之几
这类问题的结构特征是,已知两个数量,所求问题是这两个量间的百分率。

求一个数是另一个数的百分之几与求一个数是另一个数的几倍或几分之几的实质是一样的,只不过计算结果用百分数表示罢了,所以求一个数是另一数的百分之几时,要用除法计算。

解题的一般规律是:设a、b是两个数,当求a是b的百分之几时,列式是a÷b。

解答这类应用题时,关键是理解问题的含意。

例题如下:
养猪专业户李阿姨去年养猪350头,今年比去年多养猪60头,今年比去年多养猪百分之几?
思路分析:
问题的含义是:今年比去年多养猪的头数是去年养猪头数的百分之几。

所以应用今年比去年多养猪的头数去÷去年养猪的头数,然后把所得的结果转化成百分数。

(二)求一个数的几分之几或百分之几
求一个数的几分之几或百分之几是多少,都用乘法计算。

解答这类问题时,要从反映两个数的倍数关系的那个已知条件入手分析,先确定单位“1”,然后确定求单位“1”的几分之几或百分之几。

(三)已知一个数的几分之几或百分之几是多少,求这个数
这类应用题可以用方程来解,也可以用算术法来解。

用算术方法解时,要用除法计算。

解答这类应用题时,也要反映两个数的倍数关系的已知条件入手分析:
先确定单位“1”,再确定单位“1”的几分之几或百分之几是多少。

一些稍难的应用题,可以画图帮助分析数量关系。

(四)工程问题
工程问题是研究工作效率、工作时间和工作总量的问题。

这类题目的特点是:
工作总量没有给出实际数量,把它看做“1”,工作效率用来表示,所求问题大多是合作时间。

例题如下:
一件工程,甲工程队修建需要8天,乙工程队修建需要12天,两队合修4天后,剩下的任务,有乙工程队单独修,还需几天?
思路分析:
把一件工程的工作量看作“1”,则甲的工作效率是1/8,乙的工作效率是1/12。

已知两队合修了4天,就可求出合修的工作量,进而也就能求出剩下的工作量。

用剩下的工作量除以乙的工作效率,就是还需要几天完成。

比和比例应用题是小学数学应用题的重要组成部分。

在小学中,比的应用题包括:比例尺应用题和按比例分配应用题,正、反比例应用题。

(一)比例尺应用题
这种应用题是研究图上距离、实际距离和比例尺三者之间的关系的。

解答这类应用题时,最主要的是要清楚比例尺的意义,即:
图上距离÷实际距离=比例尺
根据这个关系式,已知三者之间的任意两个量,就可以求出第三个未知的量。

例题如下:
在比例尺是1:3000000的地图上,量得A城到B城的距离是8厘米,A城到B城的实际距离是多少千米?
思路分析:
把比例尺写成分数的形式,把实际距离设为x,代入比例尺的关系式就可解答了。

所设未知数的计量单位名称要与已知的计量单位名称相同。

(二)按比例分配应用题
这类应用题的特点是:把一个数量按照一定的比分成两部分或几部分,求各部分的数量是多少。

这是学生在小学阶段唯一接触到的不平均分问题。

这类应用题的解题规律是:
先求出各部分的份数和,在确定各部分量占总数量的几分之几,最后根据求一个数的几分之几是多少,用乘法计算,求出各部分的数量。

按比例分配也可以用归一法来解。

例题如下:
一种农药溶液是用药粉加水配制而成的,药粉和水的重量比是1:100。

2500千克水需要药粉多少千克?
5.5千克药粉需加水多少千克?
思路分析:
已知药和水的份数,就可以知道药和水的总份数之和,也就可以知道药和水各自占总份数的几分之几,知道了分率,相应地也就可以求出各自相对量。

(三)正、反比例应用题
解答这类应用题,关键是判断题目中的两种相关联的量是成正比里的量,还是成反比例的量。

如果用字母x、y表示两种相关联的量,用K表示比值(一定),两种相向关联的量成正比例时,用下面的式子来表示:
kx=y(一定)。

如果两种相关联的量成反比例时,可用下面的式子来表示:
×y=K(一定)。

例题如下:
六一玩具厂要生产2080套儿童玩具。

前6天生产了960套,照这样计算,完成全部任务共需要多少天?
思路分析:
因为工作总量÷工作时间=工作效率,已知工作效率一定,所以工作总量与工作时间成正比例。

攻克小学应用题其实很简单,抓住重点,不受题面干扰,自然可以顺利解答啦!。

相关文档
最新文档