恒成立存在性问题

合集下载

恒成立与存在性问题的解题策略

恒成立与存在性问题的解题策略

“恒成立问题”与“存在性问题”的基本解题战略之袁州冬雪创作一、“恒成立问题”与“存在性问题”的基本类型 恒成立、能成立、恰成立问题的基本类型 1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()mina f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另外一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f =,设f(x)在区间[a,b]上的值域为A ,g(x)在区间[c,d]上的值域为B,则A B.9、若不等式()()>在区间D上恒成立,则等价于在区间D上f xg x函数()y g x=图象上方;=和图象在函数()y f x10、若不等式()()<在区间D上恒成立,则等价于在区间Df xg x上函数()=图象下方;y g xy f x=和图象在函数()恒成立问题的基本类型在数学问题研究中常常碰到在给定条件下某些结论恒成立的命题.函数在给定区间上某结论成立问题,其表示形式通常有:在给定区间上某关系恒成立;某函数的定义域为全体实数R;某不等式的解为一切实数;某表达式的值恒大于a等等…恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形连系、函数与方程等思想方法,有利于考察学生的综合解题才能,在培养思维的矫捷性、创造性等方面起到了积极的作用.因此也成为积年高考的一个热点.恒成立问题在解题过程中大致可分为以下几种类型:①一次函数型;②二次函数型;③变量分离型;④根据函数的奇偶性、周期性等性质;⑤直接根据函数的图象.二、恒成立问题处理的基本战略大家知道,恒成立问题分等式中的恒成立问题和不等式中的恒成立问题.等式中的恒成立问题,特别是多项式恒成立问题,常简化为对应次数的系数相等从而建立一个方程组来处理问题的.(一)两个基本思想处理“恒成立问题”思路1、max )]([)(x f m D x x f m ≥⇔∈≥上恒成立在 思路2、min )]([)(x f m D x x f m ≤⇔∈≤上恒成立在如何在区间D 上求函数f(x)的最大值或者最小值问题,我们可以通过习题的实际,采纳合理有效的方法停止求解,通常可以思索操纵函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导等等方法求函数f (x )的最值.这类问题在数学的学习涉及的知识比较广泛,在处理上也有许多特殊性,也是近些年来高考中频频出现的试题类型,希望同学们在日常学习中注意积累.(二)、赋值型——操纵特殊值求解等式恒成立问题等式中的恒成立问题,经常常使用赋值法求解,特别是对处理填空题、选择题能很快求得.例1.如果函数y=f(x)=sin2x+acos2x 的图象关于直线x=8π-对称,那末a=().A.1B.-1 C .2 D. -2.略解:取x=0及x=4π-,则f(0)=f(4π-),即a=-1,故选B. 此法体现了数学中从一般到特殊的转化思想. 例(备用).由等式x4+a1x3+a2x2+a3x+a4=(x+1)4+b1(x+1)3+ b2(x+1)2+b3(x+1)+b4 定义映射f :(a1,a2,a3,a4)→b1+b2+b3+b4,则f :(4,3,2,1) → ( )略解:取x=0,则 a4=1+b1+b2+b3+b4,又 a4=1,所以b1+b2+b3+b4 =0 ,故选D(三)分清基本类型,运用相关基本知识,掌控基本的解题战略1、一次函数型:若原题可化为一次函数型,则由数形连系思想操纵一次函数知识求解,十分简捷给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(直线)可得上述结论等价于0)(0)(>>n f m f 同理,若在[m,n]内恒有f(x)<0, 则有)(0)(<<n f m f求使不等式x 关键在于该把哪一个字母当作是一个变量,另外一个作为常数.显然可将a 视作自变量,则上述问题即可转化为在[-2,2]内关于a 的一次函数大于0恒成立的问题.解:原不等式转化为(x-1)a+x2-2x+1>0在|a|≤2时恒成立,设f(a)= (x-1)a+x2-2x+1,则f(a)在[-2,2]上恒大于0,故有:⎩⎨⎧>>-0)2(0)2(f f 即⎪⎩⎪⎨⎧>->+-0103422x x x 解得:⎩⎨⎧-<><>1113x x x x 或或∴x<-1或x>3. 即x∈(-∞,-1)∪(3,+∞)此类题实质上是操纵了一次函数在区间[m,n]上的图象是一线段,故只需包管该线段两头点均在x 轴上方(或下方)即可.2、二次函数型涉及到二次函数的问题是复习的重点,同学们要加强学习、归纳、总结,提炼出一些详细的方法,在此后的解题中自觉运用.(1)若二次函数y=ax2+bx+c(a≠0)大于0恒成立,则有00<∆>且a(2)若是二次函数在指定区间上的恒成立问题,可以操纵韦达定理以及根的分布知识求解.类型1:设)0()(2≠++=a c bx ax x f 在R 上恒成立,(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a .类型2:设)0()(2≠++=a c bx ax x f 在区间],[βα上恒成立(1)当>a 时,],[0)(βα∈>x x f 在上恒成立⎪⎩⎪⎨⎧>>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a ba b f a b 或或, ],[0)(βα∈<x x f 在上恒成立⎩⎨⎧<<⇔0)(0)(βαf f(2)当0<a 时,],[0)(βα∈>x x f 在上恒成立⎩⎨⎧>>⇔0)(0)(βαf f],[0)(βα∈<x x f 在上恒成立⎪⎩⎪⎨⎧<>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a ba b f a b 或或 类型3:设)0()(2≠++=a c bx ax x f 在区间 (-∞ , ]上恒成立. f(x)>0a>0且<0或-b/2a>且f()>0 f(x)<0a<0且<0或-b/2a>且f()<0类型4:设)0()(2≠++=a c bx ax x f 在区间 [,+∞)上恒成立. f(x)>0a>0,<0或-b/2a<且f()>0 f(x)<0a<0,<0或-b/2a<且f()<0例3. 若函数12)1()1()(22++-+-=a x a x a x f 的定义域为R ,求实数 a 的取值范围.分析:该题就转化为被开方数012)1()1(22≥++-+-a x a x a 在R 上恒成立问题,而且注意对二次项系数的讨论.解:依题意,当时,R x ∈012)1()1(22≥++-+-a x a x a 恒成立, 所以,①当,1,01,01{,0122=≠+=-=-a a aa 时,即当此时.1,0112)1()1(22=∴≥=++-+-a a x a x a ②当时,时,即当012)1(4)1(,01{012222≤+---=∆>-≠-a a a a a有,91,09101{22≤<⇒≤+->a a a a 综上所述,f(x)的定义域为R 时,]9,1[∈a2()3f x x ax a =++-,在R 上()0f x ≥恒成立,求a 的取值范围.分析:()y f x =的函数图像都在X 轴及其上方,如右图所示:略解:()22434120a a a a ∆=--=+-≤62a ∴-≤≤ 变式1:若[]2,2x ∈-时,()0f x ≥恒成立,求a 的取值范围.解析一. (零点分布战略) 本题可以思索f(x)的零点分布情况停止分类讨论,分无零点、零点在区间的左侧、零点在区间的右侧三种情况,即Δ≤0或⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥--≤->∆0)2(0)2(22f f a 或⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥-≥->∆0)2(0)2(22f f a ,即a 的取值范围为[-7,2].解法二分析:(运用二次函数极值点的分布分类讨论)要使[]2,2x ∈-时,()0f x ≥恒成立,只需)(x f 的最小值0)(≥a g 即可.略解:(分类讨论)22()324a a f x x a ⎛⎫=+--+ ⎪⎝⎭,令()f x 在[]2,2-上的最小值为()g a .⑴当22a -<-,即4a >时,()(2)730g a f a =-=-≥73a ∴≤ 又4a >a ∴不存在.⑵当222a -≤-≤,即44a -≤≤时,2()()3024a a g a f a ==--+≥62a ∴-≤≤又44a -≤≤42a ∴-≤≤⑶当22a->,即4a <-时,()(2)70g a f a ==+≥7a ∴≥- 又4a <-74a ∴-≤<- 综上所述,72a -≤≤.变式2:若[]2,2x ∈-时,()2f x ≥恒成立,求a 的取值范围. 解法一:分析:题目中要证明2)(≥x f 在[]2,2-上恒成立,若把2移到等号的左边,则把原题转化成左边二次函数在区间[]2,2-时恒大于等于0的问题.例2 已知a ax x x f -++=3)(2,若0)(],2,2[≥-∈x f x 恒成立,求a 的取值范围.略解:2()320f x x ax a =++--≥,即2()10f x x ax a =++-≥在[]2,2-上成立.⑴()2410a a ∆=--≤22a ∴--≤≤-+⑵24(1)0(2)0(2)02222a a f f a a ⎧∆=-->⎪≥⎪⎪⎨-≥⎪⎪-≥-≤-⎪⎩或2225--≤≤-∴a 综上所述,2225-≤≤-a .解法二:(运用二次函数极值点的分布)⑴当22a -<-,即4a >时,()(2)732g a f a =-=-≥()54,3a ∴≤∉+∞a∴不存在.⑵当222a -≤-≤,即44a -≤≤时,2()()3224a a g a f a ==--+≥,⑶当22a ->,即4a <-时,()(2)72g a f a ==+≥,综上所述2225-≤≤-a .此题属于含参数二次函数,求最值时,对于轴变区间定的情形,对轴与区间的位置停止分类讨论;还有与其相反的,轴动区间定,方法一样.对于二次函数在R 上恒成立问题往往采取辨别式法(如例4、例5),而对于二次函数在某一区间上恒成立问题往往转化为求函数在此区间上的最值问题 3、变量分离型若在等式或不等式中出现两个变量,其中一个变量的范围已知,另外一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的双方,则可将恒成立问题转化成函数的最值问题求解.运用不等式的相关知识不难推出如下结论:若对于x 取值范围内的任何一个数都有f(x)>g(a)恒成立,则g(a)<f(x)min;若对于x 取值范围内的任何一个数,都有f(x)<g(a)恒成立,则g(a)>f(x)max.(其中f(x)max 和f(x)min 分别为f(x)的最大值和最小值)例 5.已知三个不等式①0342<+-x x ,②0862<+-x x ,③0922<+-m x x .要使同时知足①②的所有x 的值知足③,求m 的取值范围.略解:由①②得2<x<3,要使同时知足①②的所有x 的值知足③,即不等式0922<+-m x x 在)3,2(∈x 上恒成立,即)3,2(922∈+-<x x x m 在上恒成立,又,上大于在9)3,2(922∈+-x x x所以 9≤m例6. 函数)(x f 是奇函数,且在]1,1[-上单调递增,又1)1(-=-f ,若12)(2+-≤at t x f 对所有的]1,1[-∈a 都成立,求t 的取值范围 .解:据奇函数关于原点对称,,1)1(=f又1)1()(]1,1[)(max ==-f x f x f 上单调递增在12)(2+-≤at t x f 对所有的]1,1[-∈a 都成立.因此,只需122+-at t 大于或等于上在]1,1[)(-x f 的最大值1, 都成立对所有又]1,1[-∈a ,即关于a 的一次函数在[-1,1]上大于或等于0恒成立,即:),2[}0{]2,(+∞--∞∈ t操纵变量分离处理恒成立问题,主要是要把它转化为函数的最值问题补例. 已知()||,=-+∈R f x x x a b x .若0b <,且对任何[]0,1x ∈不等式()0f x <恒成立,求实数a 的取值范围.解:当0x =时,a 取任意实数,不等式()0f x <恒成立, 故只需思索(]0,1x ∈,此时原不等式变成||b x a x--< 即b b x a x x x+<<- 故(]max min ()(),0,1b b x a x x x x+<<-∈ 又函数()b g x x x =+在(]0,1上单调递增,所以max ()(1)1b x g b x+==+; 对于函数(](),0,1b h x x x x=-∈ ①当1b <-时,在(]0,1上()h x 单调递减,min ()(1)1b x h b x-==-,又11b b ->+,所以,此时a 的取值范围是(1,1)b b +-.②当10b -≤<,在(]0,1上,()b h x x x =-≥ 当x =min ()b x x-=a 存在,必须有110b b ⎧+<⎪⎨-≤<⎪⎩ 即13b -≤<,此时a 的取值范围是(1b +综上,当1b <-时,a 的取值范围是(1,1)b b +-;当13b -≤<时,a 的取值范围是(1b +;当2230b -≤<时,a 的取值范围是∅. 4、根据函数的奇偶性、周期性等性质 若函数f(x)是奇(偶)函数,则对一切定义域中的x ,f(-x)=-f(x)(f(-x)=f(x))恒成立;若函数y=f(x)的周期为T ,则对一切定义域中的x,f(x)=f(x+T)恒成立.5、直接根据图象断定若把等式或不等式停止合理的变形后,能非常容易地画出等号或不等号双方函数的图象,则可以通过画图直接断定得出成果.尤其对于选择题、填空题这种方法更显方便、快捷.例7. a a x x x 恒成立,求实数,不等式对任意实数>--+21的取值范围.分析:设y=|x+1|-|x-2|,恒成立,不等式对任意实数a x x x >--+21即转化为求函数y=|x+1|-|x-2|的最小值,画出此函数的图象即可求得a 的取值范围.解:令⎪⎩⎪⎨⎧≥<<---≤-=--+=2321121321x x x x x x y在直角坐标系中画出图象如图所示,由图象可看出,要使a x x x >--+21,不等式对任意实数恒成立,只需3-<a .故实数.3)-∞a的取值范围是(-,注:本题中若将a--1改为对任意实数>+2,不等式axxx恒成立,求实数,同样由图象可得①a--对任意实数<1+2axxx恒成立,求实数,不等式a>3;②a-对任意实数>+21,构造函数,画出+a,不等式xx恒成立,求实数x图象,得a<3.操纵数形连系处理恒成立问题,应先构造函数,作出符合已知条件的图形,再思索在给定区间上函数与函数图象之间的关系,得出答案或列出条件,求出参数的范围.例8. 设常数a∈R,函数f(x)=3|x|+|2x-a|,g(x)=2-x.若函数y=f(x)与y=g(x)的图像有公共点,则a的取值范围为.解:1)a<=0x<=a/2<=0时,f(x)=-3x+(-2x+a)=-5x+aa/2<=x<=0时,f(x)=-3x+(2x-a)=-x-ax>=0时,f(x)=3x+(2x-a)=5x-a,最小值为-a<=2则与g(x)有交点,即:-2<=a<=0.2)a>0x<=0时,f(x)=-3x+(-2x+a)=-5x+a0<=x<=a/2时,f(x)=3x+(-2x+a)=x+ax>=a/2时,f(x)=3x+(2x-a)=5x-a最小值a<=2时与g(x)有交点,即:0<a<=2综上所述,-2<=a<=2时f(x)=3|x|+|2x-a|与g(x)=2-x 有交点.三、在恒成立问题中,主要是求参数的取值范围问题,是一种热点题型,先容一些基本的解题战略,在学习中学会把问题分类、归类,熟练基本方法.(一)换元引参,显露问题实质1、对于所有实数x ,不等式恒成立,求a 的取值范围.解:因为的值随着参数a 的变更而变更,若设, 则上述问题实质是“当t 为何值时,不等式恒成立”.这是我们较为熟悉的二次函数问题,它等价于求解关于t 的不等式组:. 解得,即有,易得. 2、设点P (x ,y )是圆4)1(22=-+y x 上任意一点,若不等式x+y+c ≥0恒成立,求实数c 的取值范围.(二)分离参数,化归为求值域问题3、若对于任意角总有成立,求m 的范围.解:此式是可分离变量型,由原不等式得, 又,则原不等式等价变形为恒成立. 根据鸿沟原理知,必须小于2cos cos )(2+=θθθf 的最小值,这样问题化归为怎样求的最小值.因为2cos cos )(2+=θθθf 即时,有最小值为0,故.(三)变动主元,简化解题过程4、若对于,方程都有实根,求实根的范围.解:此题一般思路是先求出方程含参数m 的根,再由m 的范围来确定根x 的范围,但这样会遇到很多费事,若以m 为主元,则,由原方程知,得 又,即解之得或.5、当1≤a 时,若不等式039)6(2>-+-+a x a x 恒成立,求x 的取值范围.(四)图象解题,形象直观6、设]40(,∈x ,若不等式ax x x >-)4(恒成立,求a 的取值范围. 解:若设)4(1x x y -=,则为上半圆.设,为过原点,a 为斜率的直线. 在同一坐标系内 作出函数图象依题意,半圆恒在直线上方时,只有时成立,即a 的取值范围为. 7、当x ∈(1,2)时,不等式(x-1)2<logax 恒成立,求a 的取值范围.解:设y1=(x-1)2,y2=logax,则y1的图象为右图所示的抛物线要使对一切x ∈ (1,2),y1<y2恒成立,显然a>1,而且必须也只需当x=2时y2的函数值大于等于y1的函数值.故loga2>1, ∴ 1<a <2.8、已知关于x 的方程lg(x2+4x)-lg(2x-6a-4)=0有唯一解,求实数a 的取值范围.分析:方程可转化成lg(x2+4x)=lg(2x-6a-4),从而得x2+4x=2x-6a-4>0,注意到若将等号双方当作是二次函数y= x2+4x 及一次函数y=2x-6a-4,则只需思索这两个函数的图象在x 轴上方恒有唯一交点即可.解:令y1=x2+4x=(x+2)2-4,y2=2x-6a-4,y1的图象为一个定抛物线 y2的图象是k=2,而截距不定的直线,要使y1和y2在x 轴上方有唯一交点,则直线必须位于l1和l2之间.(包含l1但不包含l2)当直线为l1时,直线过点(-4,0),此时纵截距为-8-6a-4=0,a=2-;当直线为l2时,直线过点(0,0),纵截距为-6a-4=0,a=32-∴a 的范围为)32,2[-- (五)合理联想,运用平几性质9、不管k 为何实数,直线与曲线恒有交点,求a 的范围.分析:因为题设中有两个参数,用解析几何中有交点的实际将二方程联立,用辨别式来解题是比较坚苦的.若思索到直线过定点A (0,1),而曲线为圆,圆心C (a ,0),要使直线恒与圆有交点,那末定点A(0,1)必在圆上或圆内. 解:,C (a ,0),当时,联想到直线与圆的位置关系,则有点A (0,1)必在圆上或圆内,即点A (0,1)到圆心间隔不大于半径,则有,得.(六)分类讨论,防止重复遗漏10、当时,不等式恒成立,求x 的范围. 解:使用的条件,必须将m 分离出来,此时应对停止讨论.①当时,要使不等式恒成立,只要, 解得. ②当时,要使不等式恒成立,只要,解得. ③当时,要使恒成立,只有. 综上①②③得. 解法2:可设,用一次函数知识来解较为简单.我们可以用改变主元的法子,将m 视为主变元,即将元不等式化为:0)12()1(2<---x x m ,;令)12()1()(2---=x x m m f ,则22≤≤-m 时,0)(<m f 恒成立,所以只需⎩⎨⎧<<-0)2(0)2(f f 即⎪⎩⎪⎨⎧<---<----0)12()1(20)12()1(222x x x x ,所以x 的范围是)231,271(++-∈x .此类题实质上是操纵了一次函数在区间[m,n]上的图象是一线段,故只需包管该线段两头点均在x 轴上方(或下方)即可.11、当31<<x 时,不等式0622>+-ax x 恒成立,求实数a 的取值范围. 解:xx a 32+< 当31<<x 时,623232=≥+x x ,当x x 32=,即6=x 时等号成立. 故实数a 的取值范围:6<a(七)构造函数,体现函数思想12、(1990年全国高考题)设,其中a 为实数,n 为任意给定的自然数,且,如果当时有意义,求a 的取值范围.解:本题即为对于,有恒成立. 这里有三种元素交织在一起,布局复杂,难以下手,若思索到求a 的范围,可先将a 分离出来,得,对于恒成立. 构造函数,则问题转化为求函数在上的值域.由于函数在上是单调增函数,则在上为单调增函数.于是有的最大值为:,从而可得.(八)操纵集合与集合间的关系在给出的不等式中,若能解出已知取值范围的变量,便可操纵集合与集合之间的包含关系来求解,即:[]()(),,m n f a g a ⊂⎡⎤⎣⎦,则()f a m ≤且()g a n ≥,不等式的解即为实数a 的取值范围.例13、当1,33x ⎛⎫∈ ⎪⎝⎭时,log 1a x <恒成立,求实数a 的取值范围. 解:1log 1a x -<<(1) 当1a >时,1x a a <<,则问题转化为11,3,3a a ⎛⎫⎛⎫⊆ ⎪ ⎪⎝⎭⎝⎭3113a a ≥⎧⎪∴⎨≤⎪⎩3a ∴≥ (2) 当01a <<时,1a x a <<,则问题转化为11,3,3a a ⎛⎫⎛⎫⊆ ⎪ ⎪⎝⎭⎝⎭1313a a⎧≤⎪⎪∴⎨⎪≥⎪⎩103a ∴<≤ 综上所得:103a <≤或3a ≥ 四、其它类型恒成立问题能成立问题有时是以不等式有解的形式出现的.1、已知函数12)(2+-=ax x x f ,xa x g =)(,其中0>a ,0≠x . 对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;【分析:】思路、对在分歧区间内的两个函数)(x f 和)(x g 分别求最值,即只需知足)()(max min x g x f >即可.简解:令n(a)=gmax(x)=a/2;令m(a)=fmin(x),f(x)=(x-a)2+1-a2,故(1)对称轴x=a<1,即或0<a<1时,m(a)= fmin(x)=f(1)=2-2a ,由m(a)>n(a) 解得a<4/5,(注意到a 的范围)从而得a 的范围:0<a<4/5;(2)对称轴x=a>2时,m(a)= fmin(x)=f(2)=5-4a ,由m(a)>n(a) 解得a<10/9,(注意到a 的范围)从而得a 无解:;(3)对称轴x=a∈[1,2]时,m(a)= fmin(x)=f(a)=2-2a ,由m(a)>n(a) 解得4171+->a 或4171--<a ,(注意到a 的范围)从而得a的范围21≤<a :;; 综合(1)(2)(3)知实数a 的取值范围是:(0,4/5)∪[1,2]2、已知两函数2)(x x f =,m x g x -⎪⎭⎫ ⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为解析:对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥等价于m x g x -⎪⎭⎫ ⎝⎛=21)(在[]2,1上的最小值m -41不大于2)(x x f =在[]2,0上的最小值0,既041≤-m ,∴41≥m题型二、主参换位法(已知某个参数的范围,整理成关于这个参数的函数)题型三、分离参数法(欲求某个参数的范围,就把这个参数分离出来)题型四、数形连系(恒成立问题与二次函数接洽(零点、根的分布法))五、不等式能成立问题(有解、存在性)的处理方法 若在区间D 上存在实数x 使不等式()f x A >成立,则等价于在区间D 上()max f x A >;若在区间D 上存在实数x 使不等式()f x B <成立,则等价于在区间D 上的()min f x B <.1、存在实数x ,使得不等式2313x x a a ++-≤-有解,则实数a 的取值范围为______.解:设()31f x x x =++-,由()23f x a a ≤-有解,()2min 3a a f x ⇒-≥, 又()()31314x x x x ++-≥+--=,∴234a a -≥,解得41a a ≥≤-或.1、求使关于p 的不等式x p px x 212+<++在p∈[-2,2]有解的x 的取值范围.解:即关于p 的不等式012)1(2<+-+-x x p x 有解,设()()2121f p x p x x =-+-+,则()f p 在[-2,2]上的最小值小于0.(1)当x>1时,f(p)关于p 单调增加,故fmin(p)=f(-2)=x2-4x+3<0,解得1<x<3;2222(2) 当x<1时,f(p)关于p 单调减少,故fmin(p)=f(2)=x2-1<0,解得-1<x<1;(3)当x=1时,f(p)=0,故fmin(p)=f(p)<0不成立.综合(1)(2)(3)知实数x 的取值范围是:(-1,1)∪(1,3) 例、设命题P:x1,x2是方程x2-ax-2=0的二个根,不等式|m2-5m-3|≥|x1-x2|对任意实数a∈[-1,1]恒成立;命题Q :不等式|x-2m|-|x|>1(m>0)有解;若命题P 和命题Q 都是真命题,求m 的值范围.解:(1)由P 真得:8||221+=-a x x ,注意到a 在区间[-1,1], 3||max 21=-x x ,由于|m2-5m-3|≥|x1-x2|对任意实数a∈[-1,1]恒成立,故有3|||35|max 212=-≥--x x m m解得: m≤-1或m≥6或0≤m≤5(1)由Q 真,不等式|x-2m|-|x|>1(m>0)有解,得(|x-2m|-|x|)max=2m>1,解得:m>1/2由于(1)(2)都是相公命题,故m 的值范围:1/2<m≤5或m≥6. [举例](1)已知不等式0224>+⋅-x x a 对于+∞-∈,1[x )恒成立,求实数a 的取值范围.(2)若不等式0224>+⋅-x x a 对于]3,(-∞∈a 恒成立,求实数x 的取值范围.分析:(1)由0224>+⋅-x x a 得:x x a 222+<对于+∞-∈,1[x )恒成立,因212≥x ,所以22222≥+x x ,当22=x 22<a . (2)注意到0224>+⋅-x x a 对于]3,(-∞∈a 恒成立是关于a )24(2)(++⋅-=x x a a f ,则)(a f 在]3,(-∞∈a 上单调递减,则问题等价于0)3(>f ,所以2202234>⇒>+⋅-x x x 或12<x ,则x 取值范围为),1()0,(+∞-∞ .小结:恒成立与有解的区别:恒成立和有解是有分明区此外,以下充要条件应细心思考,甄别差别,恰当使用,等价转化,切不成混为一体.①不等式()f x M <对x I ∈时恒成立max ()f x M•⇔<,x I ∈.即()f x 的上界小于或等于M ;②不等式()f x M <对x I ∈时有解min ()f x M•⇔<,x I ∈. 或()f x 的下界小于或等于M ;③不等式()f x M >对x I ∈时恒成立min ()f x M•⇔>,x I ∈.即()f x 的下界大于或等于M ;④不等式()f x M >对x I ∈时有解max()f x M ⇔>,x I ∈.. 或()f x 的上界大于或等于M ; 高中数学难点强化班第四讲(140709)课后操练答案:一.填空选择题(每小题6分,共60分)1、对任意的实数x ,若不等式a x x >--+21恒成立,那末实数a 的取值范围.答案:|x+1|-|x-2| -|(x+1)-(x-2)|=-3,故实数a 的取值范围:a<-32、不等式2sin 4sin 10x x a -+-<有解,则a 的取值范围是解:原不等式有解()()22sin 4sin 1sin 231sin 1a x x x x ⇒>-+=---≤≤有解,而()2minsin 232x ⎡⎤--=-⎣⎦,所以2a >-. x R ∈,不等式||x ax ≥恒成立,则实数a 的取值范围是( )(A)1a <- (B)||1a ≤ (C)||1a < (D )1a ≥ 解析:对∀x R ∈,不等式||x ax ≥恒成立 则由一次函数性质及图像知11a -≤≤,即||a 答案:选B 4.当(1,2)x ∈时,不等式240x mx ++<恒成立,则m 的取值范围是. 解析: 当(1,2)x ∈时,由240x mx ++<得24x m x +<-.令244()x f x x x x+==+,则易知()f x 在(1,2)上是减函数,所以[1,2]x ∈时()(1)5max f x f ==,则2min 4()5x x+->-∴5m ≤-. 5.已知不等式223(1)1ax x a x x a -++>--+对任意(0)a ∈+∞,都成立,那末实数x 的取值范围为.分析:已知参数a 的范围,要求自变量x 的范围,转换主参元x 和a 的位置,构造以a 为自变量x 作为参数的一次函数()g a ,转换成∀(0)a ∈+∞,,()0g a >恒成立再求解. ax y x解析:由题设知“223(1)1ax x a x x a -++>--+对∀(0)a ∈+∞,都成立,即22(2)20a x x x +-->对∀(0)a ∈+∞,都成立.设22()(2)2g a x a x x =+--(a R ∈),则()g a 是一个以a 为自变量的一次函数.220x +>恒成立,则对∀x R ∈,()g a 为R 上的单调递增函数. 所以对∀(0)a ∈+∞,,()0g a >恒成立的充分需要条件是(0)0g ≥,220x x --≥,∴20x -≤≤,于是x 的取值范围是{|20}x x -≤≤.6.已知函数()()()22241,f x mx m x g x mx =--+=,若对于任一实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是( )A .(0,2)B .(0,8)C .(2,8)D .(-∞,0)分析:()f x 与()g x 的函数类型,直承受参数m 的影响,所以首先要对参性质及图像解题.解析:当0m =时,()810f x x =-+>在1(,)8-∞在R 上恒成立,显然不知足题意;(如图1) 当0m <时,()g x 在R 上递减且()0g x mx =>只在(-∞而()f x 是一个启齿向下且恒过定点(0,1知足题意.当0m >时,()g x 在R 上递增且()0g x mx =>在(0,)+∞上恒成立, 而()f x 是一个启齿向上且恒过定点(0,1)的二次函数,要使对任一实数x ,()f x 与()g x 的值至少有一个为正数则只需()0f x >在(,0]-∞上 恒成立.(如图3) 则有24024(4)80m m m m -⎧<⎪⎨⎪∆=--<⎩或402m m -≥解得48m <<或04m <≤, 综上可得08m <≤即(0,8)m ∈. 故选B.7、已知两函数()2728f x x x c =--,g(x)=6x2-24x+21.(1)对任意[]3,3x ∈-,都有()()f x g x ≤成立,那末实数c 的取值范围 c≥0 ;(2)存在[]3,3x ∈-,使()()f x g x ≤成立,那末实数c 的取值范围 c≥-25;(3)对任意[]12,3,3x x ∈-,都有()()12f x g x ≤,那末实数c 的取值范围 c≥150 ;(4)存在[]12,3,3x x ∈-,都有()()12f x g x ≤,那末实数c 的取值范围 c≥-175 ;解析:(1)设()()()322312h x g x f x x x x c =-=--+,问题转化为[]3,3x ∈-时,()0h x ≥恒成立,故()min 0h x ≥.令()()()266126120h x x x x x '=--=+-=,得1x =-或2.由导数知识,可知()h x 在[]3,1--单调递增,在[]1,2-单调递减,在[]2,3单调递增,且()345h c -=-,()()17h x h c =-=+极大值,()()220h x h c ==-极小值,()39h c =-,∴()()min345h x h c =-=-,由450c -≥,得45c ≥.(2)据题意:存在[]3,3x ∈-,使()()f x g x ≤成立,即为:()()()0h x g x f x =-≥在[]3,3x ∈-有解,故()max 0h x ≥,由(1)知()max 70h x c =+≥,于是得7c ≥-.(3)它与(1)问虽然都是不等式恒成立问题,但却有很大的区别,对任意[]12,3,3x x ∈-,都有()()12f x g x ≤成立,不等式的左右两头函数的自变量分歧,1x ,2x 的取值在[]3,3-上具有任意性,∴要使不等式恒成立的充要条件是:max min ()(),[3,3]f x g x ••x •≤∈-.∵()()[]27228,3,3f x x c x =---∈-∴()()max 3147f x f c =-=-, ∵()26840g x x x '=+-=()()23102x x +-,∴()0g x '=在区间[]3,3-上只有一个解2x =. ∴()()min 248g x g ==-,∴14748c -≤-,即195c ≥.(4)存在[]12,3,3x x ∈-,都有()()12f xg x ≤,等价于()()min 1max 2f x g x ≤,由(3)得()()min 1228f x f c ==--,()()max 23102g x g =-=,28102130c c --≤⇒≥- 点评:本题的三个小题,概况形式非常相似,究其实质却大相径庭,应认真审题,深入思考,多加训练,准确使用其成立的充要条件.二.简答题(每题10分)8、(10分)若不等式2(1)(1)3(1)0m x m x m +--+-<对任意实数x 恒成立,求实数m 取值范围 解:)10,2[9、①对一切实数x,不等式32x x a --+>恒成立,求实数a 的范围. ②若不等式32x x a --+>有解,求实数a 的范围. ③若方程32x x a --+=有解,求实数a 的范围.解:①5-<a ②5<a ③]5,5[-∈a(Ⅰ)若()x f 的定义域Φ≠A ,试求a 的取值范围.(Ⅱ) 若()x f 在()3,2∈x 上有意义, 试求a 的取值范围.(Ⅲ)若()0>x f 的解集为()3,2,,试求a 的值.解答:这三问中,第(Ⅰ)问是能成立问题,第(Ⅱ)问是恒成立问题,第(Ⅲ)问是恰成立问题. (Ⅰ) ()x f 的定义域非空,相当于存在实数x ,使02>--x ax a 成立, 即()2x ax a x --=ϕ的最大值大于0成立,(),0444422max >+=---=a a a a x ϕ解得 4-<a 或0>a . (Ⅱ)()x f 在区间()3,2上有意义,等价于()2x ax a x --=ϕ0>在()3,2恒成立,即()x ϕ的最小值大于0.解不等式组 ()⎪⎩⎪⎨⎧≥≤-,03,252ϕa 或()⎪⎩⎪⎨⎧≥>-,02,252ϕa ⎩⎨⎧≥---≥,093,5a a a 或⎩⎨⎧≥---<042,5a a a 解得 .29-≤a (Ⅲ)()0>x f 的解集为()3,2,等价于不等式12>--x ax a 的解集为()3,2;于是有012<-++a ax x ,这等价于方程012=-++a ax x 的两个根为2和3, 于是可解得5-=a .。

(完整版)恒成立存在性问题

(完整版)恒成立存在性问题

专题 恒成立存在性问题知识点梳理1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈Bx f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;9、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;题型一、常见方法1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的取值范围.3、已知两函数2)(x x f =,m x g x-⎪⎭⎫ ⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为题型二、主参换位法(已知某个参数的范围,整理成关于这个参数的函数)1、对于满足2p ≤的所有实数p,求使不等式212x px p x ++>+恒成立的x 的取值范围。

恒成立与存在性问题课件

恒成立与存在性问题课件

数列极限问题例题
要点一
总结词
数列极限问题例题是恒成立与存在性问题中另一类常见的 题目,主要考察学生对数列极限的定义和求解能力。
要点二
详细描述
数列极限问题例题通常包括给定数列的通项公式,求数列 的极限值,或者在一定条件下判断数列的收敛性等问题。 在解题时,学生需要熟练掌握极限的定义和求解方法,以 及数列的通项公式和收敛性的判断等知识。
总结词
对于连续函数,极值点通常在导数为零 的点处取得。
VS
详细描述
对于一元函数,我们可以通过求解导数为 零的点来找到极值点。而对于多元函数, 我们需要求解偏导数为零的点,这些点通 常被称为驻点。
数列中项问题
总结词
详细描述
总结词
详细描述
数列中项问题是探求数列中 某一项的值小于或大于该项 前面的所有项和该项后面的 所有项。
02
反证法
反证法是一种间接证明存在性命题的方法。它通过假设命题不成立,然
后推出矛盾,从而证明命题的正确性。
03
排除法
排除法是一种通过排除不可能的情况来证明存在性命题的方法。它通过
列出所有不可能的情况,然后证明其中至少有一种情况是成立的,从而
证明命题的正确性。
03
恒成立问题的应用
函数最值问题
总结词
函数最值问题是恒成立问题的一个重要应用,通过求解函数的最值,可以解决许 多实际生活中的问题。
详细描述
函数最值问题主要研究一个或多个自变量取值时,函数所取得的最大或最小值。 在解决函数最值问题时,通常需要考虑函数的单调性、极值、导数等性质,以及 可能涉及的几何意义等。
数列极限问题
总结词
数列极限问题是数学中的一个经典问题,主要研究当数列的 项数趋于无穷时,数列的项的值是如何变化的。

恒成立与存在性问题

恒成立与存在性问题
202X
函数中的 恒成立和存在性 问题
单击此处添加文本具体内容,简明扼要地 阐述你的观点
(1)恒成立问题 1. ∀x∈D,均有 f(x)>A 恒成立,则 f(x)min>A; 2. ∀x∈D,均有 f(x)﹤A 恒成立,则 f(x)max<A. 3. ∀x∈D,均有 f(x) >g(x)恒成立,则 F(x)= f(x)- g(x) >0
x1, x2 D, 使得f (x1) g(x2 ) 两值域有交集 对x1, x2 , 有f (x1) g(x2 ) f (x)值域 g(x)值域
x1, 对x2 , 都有f (x1) g (x2 ) f (x)值域 g(x)值域
两x个1, x变2 量D,都有f (x1) g(x2 ) f (x)min g(x)max
(2)存在性问题
1. ∃x0∈D,使得 f(x0)>A 成立,则 f(x) max >A; 2. ∃x0∈D,使得 f(x0)﹤A 成立,则 f(x) min <A
3. ∃x0∈D,使得 f(x0) >g(x0)成立,设 F(x)= f(x)- g(x)
∴ F(x) max >0
4. ∃x0∈D,使得 f(x0) <g(x0)成立,设 F(x)= f(x)- g(x)
练习 使得f (x1) g(x2 ),求a的取值范围。
PART 1
若本题(2)条件改为:对任意x1 (0,),使得任意的x2 [0,1] 都有f (x1) g(x2 )求a的取值范围
x1, x2 D, 使得f (x1) g(x2 ) 两值域有交集 对x1, x2 , 有f (x1) g(x2 ) f (x)值域 g(x)值域
使得f (x1) gx2 ,求a的范围。

专题4 双变量存在恒成立与存在性问题-(人教A版2019选择性必修第二、三册) (教师版)

专题4 双变量存在恒成立与存在性问题-(人教A版2019选择性必修第二、三册) (教师版)

双变量存在---恒成立问题恒成立问题、存在性问题归根到底是最值问题.1 恒成立问题(1)∀x∈D,f(x)≥0恒成立⟺在D上的f(x)min≥0;(2)∀x∈D,f(x)≤0恒成立⟺在D上的f(x)max≤0;2 存在性问题(1)∃x∈D,f(x)≥0恒成立⟺在D上的f(x)max≥0;(2)∃x∈D,f(x)≤0恒成立⟺在D上的f(x)min≤0;3双变量存在—恒成立问题(1)∀x1∈D,∀x2∈E,f(x1)≥g(x2)恒成立⟺ f(x)min≥g(x)max;(2)∀x1∈D,∃x2∈E,f(x1)≥g(x2)恒成立⟺ f(x)min≥g(x)min;(3)∃x1∈D,∀x2∈E,f(x1)≥g(x2)恒成立⟺ f(x)max≥g(x)max;(4)∃x1∈D,∃x2∈E,f(x1)≥g(x2)恒成立⟺ f(x)max≥g(x)min;4 常见处理方法方法1 直接构造函数法:求f(x)≥g(x)恒成立⇔ℎ(x)=f(x)−g(x)≥0恒成立.恒成立.方法2 分离参数法:求f(x)≥a∙g(x)(其中g(x)>0)恒成立⇔a≤f(x)g(x)方法3 变更主元:题型特征(已知谁的范围把谁作为主元);方法4 数形结合法:求f(x)−g(x)≥0恒成立⇔证明y=f(x)在y=g(x)的上方;方法5 同构法:对不等式进行变形,使得不等式左右两边式子的结构一致,再通过构造的函数单调性进行求解;方法6 放缩法:利用常见的不等式或切线放缩或三角函数有界性等手段对所求不等式逐步放缩达到证明所求不等式恒成立的目的;学习各种方法时,要注意理解它们各自之间的优劣性,有了比较才能快速判断某种题境中采取哪种方法较简洁,建议学习时一题多解,多发散思考.【典题1】已知两个函数f(x)=8x2+16x−k,g(x)=2x3+5x2+4x,其中k为实数.(1)对任意x∈[−3,3],都有f(x)≤g(x)成立,求k的取值范围;(2)存在x∈[−3,3],使f(x)≤g(x)成立,求k的取值范围;(3)对任意x1,x2∈[−3,3],都有f(x1)≤g(x2),求k的取值范围.【解析】(1)设ℎ(x)=g(x)−f(x)=2x3−3x2−12x+k问题转化为x∈[−3,3]时,ℎ(x)≥0恒成立,故ℎ(x)min≥0;易得ℎ(x)min≥−45+k,由k−45≥0⇒k≥45.(2)据题意:存在x∈[−3,3],使f(x)≤g(x)成立⇔ℎ(x)=g(x)−f(x)≥0在x∈[−3,3]有解,易得ℎ(x)max=k+7,于是k≥−7.(3) 问题转化为f(x)max≤g(x)min ,x∈[−3,3],易得g(x)min=g(−3)=−21,f(x)max=f(3)=120−k,则120−k≤−21⇒k≥141.【点拨】①第一问是恒成立问题,第二问是存在性问题,第三问是双变量成立问题;②第三问怎么确定f(x)max≤g(x)min,即到底是函数最大值还是最小值呢?可把问题转化为第一、二问的问题,具体如下,先把g(x2)看成定值m,那∀x1∈[−3,3],都有f(x1)≤m,当然是要f(x)max≤m;再把f(x1)看成定值n,那∀x2∈[−3,3],都有n≤g(x2),当然是g(x)min≥n;故问题转化为f(x)max≤g(x)min.其他形式的双变量成立问题同理.x3+2x2−3x+c.若对∀x1∈(0 ,+∞),∃x2∈[1 ,3],使f(x1)=【典题2】已知函数f(x)=x2e−x,g(x)=−13g(x2)成立,则c的取值范围是.【解析】(若要满足f(x1)=g(x2)成立,则y=g(x)的值域包含y=f(x)的值域)因为f(x)=x2e−x,x∈(0 ,+∞),,令f′(x)=0,解得x=2,所以f′(x)=x(2−x)e x故f(x)在(0 ,2)递增,在(2 ,+∞)递减,故f(x)max=f(2)=4,e2而x →0时,f(x)→0,x →+∞时,f(x)→+∞, 故f(x)∈(0 ,4e 2],因为g (x )=−13x 3+2x 2−3x +c ,g ′(x )=−(x −3)(x −1), 所以当x ∈[1 ,3]时,g′(x)>0,故g(x)在[1 ,3]递增, 则g (x )min =g(1)=−43+c ,g (x )max =g(3)=c , 故g(x)∈[−43+c ,c],若对∀x 1∈(0 ,+∞),∃x 2∈[1 ,3],使f(x 1)=g(x 2)成立, 则(0 ,4e2]⊆[−43+c ,c],故{−43+c ≤04e2≤c,解得:4e 2≤c ≤43.【典题3】 已知函数f (x )=lnx −x +1,x ∈(0 ,+∞),g (x )=sinx −ax(a ∈R). (1)求f(x)的最大值;(2)若对∀x 1∈(0 ,+∞),总存在x 2∈(0 ,π2),使得f (x 1)<g(x 2)成立,求实数a 的取值范围;(3)证明不等式sin(1n)n +sin(2n)n +⋅⋅⋅+sin(n n)n <e e−1(其中e 是自然对数的底数).【解析】(1)过程略,当x =1时f(x)取得最大值为f(1)=0;(2)解:对∀x 1∈(0 ,+∞),总存在x 2∈(0 ,π2),使得f(x 1)<g(x 2)成立,等价于f (x )max <g (x )max 成立,由(1)知,f (x )max =0, 则问题等价于g (x )max >0, 因为g (x )=sinx −ax ,所以g ′(x )=cosx −a , 当x ∈(0 ,π2)时,cosx ∈(0 ,1),(利用三角函数的有界性)①当a ≥1时,若x ∈(0 ,π2),g′(x)<0,g(x)单调递减,g(x)<g(0)=0,不合题意; ②当0<a <1时,∃x 0∈(0 ,π2),使得g′(x 0)=0, 若x ∈(0 ,x 0),g′(x)>0,若x ∈(x 0 ,π2)时,g′(x)<0, 即当g (x )max =g(x 0)>g(0)=0,则∃x2∈(0 ,π2),使得g(x2)>0,符合题意;③当a≤0时,若x∈(0 ,π2),g′(x)>0,g(x)单调递增,g(x)>g(0)=0,则∃x2∈(0 ,π2),使得g(x2)>0,符合题意,综上可知,所求实数a的范围是(−∞ ,1);(3)证明:由(2)可知,当a=1时,若x∈(0 ,1],sinx<x,令x=kn (k≤n ,k ,n∈N∗),(kn)n∈(0 ,1],有sin(kn )n<(kn)n,再由(1)可得lnx<x﹣1,则ln kn ≤kn−1=k−nn,即n⋅ln kn≤k﹣n⇒ln(kn)n≤k﹣n,∴(kn)n≤e k−n,∴(1n )n+(2n)n+...+(nn)n≤e1−n+e2−n+...+e n−n=e1−n(1−e n)1−e=e−e1−ne−1<ee−1则sin(1n )n+sin(2n)n+...+sin(nn)n<(1n)n+(2n)n+...+(nn)n<ee−1.(放缩法证明,利用不等式sinx<x和lnx<x﹣1,要熟悉常见恒等式)1(★★) 已知1<a<4,函数f(x)=x+9x,∃x1∈[1 ,a] ,x2∈[a ,4],使得f(x1)f(x2)≥80,则a的取值范围.【答案】(1,4−√7]【解析】f′(x)=1−9x2=x2−9x,令f′(x)=0,得x=±3,所以在(1,3)上,f′(x)>0,f(x)单调递增,在(3,4)上,f′(x)<0,f(x)单调递减,f(1)=10,f(4)=6.25,f(3)=6,若∃x1∈[1,a],x2∈[a,4],使得f(x1)f(x2)≥80,只需x1∈[1,a],x2∈[a,4],使得[f(x1)f(x2)]max≥80,而f(x1)max=f(1)=10,所以f(x2)max≥8,过点B作BC⊥y轴,与函数f(x)的图象交于点C,令x+9x=6.25,解得x=4或2.25,所以当x∈[2.25,4]时,f(x)∈[6,6.25],所以x2∈(1,2.25),所以a∈(1,2.25),才能使得x2∈[a,4]时,f(x2)max≥8,即f(a)≥8,所以a+9a≥8,解得a≥4+√7(舍去)或a≤4−√7,所以1<a≤4−√7,所以实数a的取值范围为(1,4−√7],故答案为:(1,4−√7].2(★★)已知函数f(x)=x+4x ,g(x)=2x+a,若任意x1∈[12,1],都存在x2∈[2 ,3],使得f(x1)≥g(x2),则实数a的取值范围是.【答案】(-∞,1]【解析】任意x1∈[12,1],都存在x2∈[2,3],使得f(x1)≥g(x2),⇔f(x1)min≥[g(x2)]min,x1∈[12,1],x2∈[2,3],对于函数f(x)=x+4x ,x∈[12,1],f′(x)=1−4x2=x2−4x2<0,因此函数f(x)在x∈[12,1]上单调递减,∴f(x)min=f(1)=5.对于函数g(x)=2x+a,在x∈[2,3]单调递增,∴g(x)min=4+a.∴5≥4+a,解得a≤1.∴实数a的取值范围是(-∞,1].故答案为:(-∞,1].3(★★★)已知函数f(x)=−x|x−a|,若对任意的x1∈(2 ,+∞),都存在x2∈(−1 ,0),使得f(x1)f(x2)=−4,则实数a的最大值为.【答案】1【解析】①a≥2时,当x≥a时,f(x)=-x(x-a),当x<a时,f(x)=-x(a-x),画出y=f(x)的图象(如右图):x1∈(2,+∞)时,f(x1)∈(-∞,0],而对任意的x1∈(2,+∞),都存在x2∈(-1,0),使得f(x1)•f(x2)=-4,要求f(x2)∈(0,+∞).而x2∈(-1,0)时,令f(-1)=a,则有f(x2)∈(0,a),不符题意;②a<2时,当x≥a时,f(x)=-x(x-a),当x<a时,f(x)=-x(a-x),画出y=f(x)的图象(如下图):当x1∈(2,+∞)时,f(x1)∈(-∞,f(2)),即f(x1)∈(-∞,2a-4),则f(x2)∈(0,22−a)时,f(x1)f(x2)=-4成立才有可能;x2∈(-1,0),则f(x2)∈(0,f(-1)),f(-1)=a+1,需满足f(-1)≥22−a ,即1+a≥22−a,即(a+1)(2-a)≥2,a(a-1)≤0,解得0≤a≤1,所以a的最大值为1.故答案为:1.4(★★★) 已知函数f(x)=lnx,若对任意的x1 ,x2∈(0 ,+∞),都有[f(x1)−f(x2)](x12−x22)>k(x1x2+x22)恒成立,则实数k的最大值是.【答案】0【解析】∵f(x)=lnx,∴f(x1)-f(x2)=lnx1−lnx2=ln x1x2,∵[f(x1)-f(x2)](x12-x22)>k(x1x2+x22)恒成立,且x1,x2∈(0,+∞),∴x 1x 2+x 22>0,x 1+x 2>0, 得k <lnx 1x 2(x 12−x 22)x 1x 2+x 22=x 1x 2lnx 1x 2−ln x1x 2,令t =x 1x 2,g (t )=tlnt -lnt ,(t >0且t ≠1),则g ′(t )=lnt +1−1t,令g ′(t )=0,得t =1. ∴当t ∈(0,1)时,g ′(t )<0,g (t )单调递减, 当t ∈(1,+∞)时,g ′(t )>0,g (t )单调递增, ∴g (t )min >g (1)=0. ∴k ≤0.则实数k 的最大值是0. 5(★★★) 设f(x)=2x 2x+1,g (x )=ax +5−2a(a >0). (1)求f(x)在x ∈[0,1]上的值域;(2)若对于任意x 1∈[0,1],总存在x 0∈[0,1],使得g(x 0)=f(x 1)成立,求a 的取值范围. 【答案】(1) [0 ,1] (2) 52≤a ≤4 【解析】(1)法一:(导数法)f′(x)=4x(x+1)−2x 2(x+1)2=2x 2+4x (x+1)2≥0在x ∈[0,1]上恒成立.∴f(x)在[0,1]上增, ∴f(x)值域[0,1].法二:f(x)={0 x =021x +1x 2x ∈(0,1],用复合函数求值域.法三:f(x)=2x 2x+1=2(x +1)+2x+1−4用双勾函数求值域.(2)f(x)值域[0,1],g(x)=ax +5-2a(a >0)在x ∈[0,1]上的值域[5-2a ,5-a]. 由条件,只须[0,1]⊆[5-2a ,5-a]. ∴{5−2a ≤05−a ≥1⇒52≤a ≤4. 6(★★★) 设函数f(x)=lnx −2ax−1−a 在开区间(0 ,12)内有极值. (1)求实数a 的取值范围;(2)若x 1∈(0 ,1) ,x 2=(1 ,+∞).求证:f (x 1)−f(x 2)>2ln2+32.【答案】(1)(−∞ ,−14)(2)略【解析】(1)解:函数f(x)的定义域是(0,1)∪(1,+∞),f′(x)=x2−(2−2a)x+1x(x−1)2,由f′(x)=0在(0,12)内有解,令g(x)=x2-(2-2a)x+1,由g(0)=1>0,所以g(12)=122−2−2a2+1<0,解得:a<−14,即a的取值范围是(-∞,−14);(2)证明:由(1)f′(x)<0,令g(x)=x2-(2-2a)x+1=(x-α)(x-β),不妨设0<α<12,则β>2,则αβ=1,α+β=2-2a,故f′(x)<0⇔α<x<1,1<x<β,由f′(x)>0⇔x<α或x>β,得f(x)在(0,α)内递增,在(α,1)内递减,在(1,β)内递减,在(β,+∞)递增,由x1∈(0,1),得f(x1)≤f(α)=lnα−2aα−1−a,由x2∈(1,+∞),得f(x2)≥f(β)=lnβ−2aβ−1−a,所以f(x2)-f(x1)≥f(β)-f(α),因为αβ=1,α+β=2-2a,a<−14,所以f(β)-f(α)=lnβ−2aβ−1−a-lnα+2aα−1+a=lnβ-ln1β+2a•(11β−1−1β−1)≥2lnβ+β−1β,令h(β)=2lnβ+β−1β(β>2),则h′(β)=2β+1+1β2>0,(β>2),所以h(β)在(2,+∞)上单调递增故h(β)>h(2)=2ln2+3,2.所以f(x2)-f(x1)>2ln2+32。

恒成立存在性问题课件

恒成立存在性问题课件

详细描述
不等式证明问题是数学中常见的问题类型,这类问题 通常涉及到比较两个数或两个函数的大小。通过证明 不等式,我们可以找到满足某些条件的参数或函数的 取值范围,从而解决恒成立存在性问题。
导数综合问题变式
总结词
利用导数性质和函数单调性,解决恒成立存在性问题。
详细描述
导数综合问题涉及到导数的计算、单调性判断以及极值 和最值的求解等知识点。通过利用导数的性质和函数的 单调性,我们可以找到满足某些条件的参数或函数的取 值范围,从而解决恒成立存在性问题。
转化与化归法
总结词
将问题转化为已知的问题或简单的问题,从而解决问题。
详细描述
转化与化归法是一种常用的解题策略,通过将复杂的问题转化为已知的问题或简单的问题,可以降低问题的难度 。在处理恒成立问题时,可以将问题转化为求最值问题、不等式问题等已知的问题类型,从而利用已知的解题方 法来解决该问题。
03
THANKS
感谢观看
常见错误反思
忽视定义域
在解决恒成立存在性问题时,容易忽 视函数的定义域,导致解题错误。
混淆最值与恒成立
在处理最值问题时,容易将最值与恒 成立混淆,导致解题思路出现偏差。
忽视参数的取值范围
在确定参数的取值范围时,容易忽视 参数的实际取值范围,导致答案不准 确。
缺乏对题目的深入理解
在解题过程中,容易缺乏对题目的深 入理解,导致解题思路不清晰,答案 不完整。
06
总结与反思
解题思路总结
转化思想
将恒成立存在性问题转化为最 值问题,通过求最值来确定参
数的取值范围。
数形结合
利用数形结合的方法,将问题 转化为几何图形,通过观察图 形的性质和变化规律来解决问 题。

高考数学复习专题19 恒成立与存在性问题(解析版)

高考数学复习专题19  恒成立与存在性问题(解析版)

专题19恒成立与存在性问题专题知识梳理恒成立问题①∀x∈D,均有f(x)>A恒成立,则f(x)min>A;②∀x∈D,均有f(x)﹤A恒成立,则f(x)ma x<A;③∀x∈D,均有f(x)>g(x)恒成立,则F(x)=f(x)-g(x)>0,∴F(x)min>0;④∀x∈D,均有f(x)﹤g(x)恒成立,则F(x)=f(x)-g(x)<0,∴F(x)ma x<0;⑤∀x1∈D,∀x2∈E,均有f(x1)>g(x2)恒成立,则f(x)min>g(x)ma x;⑥∀x1∈D,∀x2∈E,均有f(x1)<g(x2)恒成立,则f(x)ma x<g(x)min.存在性问题①∃x0∈D,使得f(x0)>A成立,则f(x)ma x>A;②∃x0∈D,使得f(x0)﹤A成立,则f(x)min<A;③∃x0∈D,使得f(x0)>g(x0)成立,设F(x)=f(x)-g(x),∴F(x)ma x>0;④∃x0∈D,使得f(x0)<g(x0)成立,设F(x)=f(x)-g(x),∴F(x)min<0;⑤∃x1∈D,∃x2∈E,使得f(x1)>g(x2)成立,则f(x)ma x>g(x)min;⑥∃x1∈D,∃x2∈E,均使得f(x1)<g(x2)成立,则f(x)min<g(x)ma x.考点探究【例1】(2018·徐州模拟)若关于x的不等式x3﹣3x2+ax+b<0对任意的实数x∈[1,3]及任意的实数b∈[2,4]恒成立,则实数a的取值范围是.【解析】关于x的不等式x3﹣3x2+ax+b<0对任意的实数x∈[1,3]及任意的实数b∈[2,4]恒成立,可得x3﹣3x2+ax<﹣b的最小值,即为x3﹣3x2+ax<﹣4,可得a<3x﹣x2﹣的最小值,设f (x )=3x ﹣x 2﹣,x ∈[1,3],导数为f′(x )=3﹣2x+,可得1<x <2时,f′(x )>0,f (x )递增;2<x <3时,f′(x )<0,f (x )递减,又f (1)=﹣2,f (3)=﹣,可得f (x )在[1,3]的最小值为﹣2,可得a <﹣2.即有a 的范围是(﹣∞,﹣2).故答案为:(﹣∞,﹣2).【例2】已知函数()(0,0,1,1)x x f x a b a b a b =+>>≠≠.设12,2a b ==.若对任意x R ∈,不等式(2)()6f x mf x ≥-恒成立,求实数m 的最大值;【解析】由条件知2222(2)22(22)2(())2x x x x f x f x --=+=+-=-.因为(2)()6f x mf x ≥-对于x R ∈恒成立,且()0f x >,所以2(())4()f x m f x +≤对于x R ∈恒成立.而2(())44()4()()f x f x f x f x +=+≥=,且2((0))44(0)f f +=,所以4m ≤,故实数m 的最大值为4.【例3】已知=)(x f x x +221,=)(x g a x -+)1ln(,(1)若存在]2,0[,21∈x x ,使得)()(21x g x f >,求实数a 的取值范围;(2)若存在]2,0[,21∈x x ,使得)()(21x g x f =,求实数a 的取值范围.【解析】()(),f x g x 在[]0,2上都是增函数,所以()f x 的值域,,]40[=A ()g x 的值域]3ln ,[a a B --=.(1)若存在]2,0[,21∈x x ,使得)()(21x g x f >,则min max )()(x g x f >,即4>a -,所以4->a .(2)若存在21,x x 使得)()(21x g x f =,则A B ≠∅ ,∴4a -≤且ln 30a -≥,∴实数a 的取值围是[]4,ln 3-.题组训练1.已知函数()()32ln 3,a f x x x g x x x x =++=-,若()()12121,,2,03x x f x g x ⎡⎤∀∈-≥⎢⎥⎣⎦,则实数a 的取值范围为_________________.【解析】由题意()()12121,,2,03x x f x g x ⎡⎤∀∈-≥⎢⎥⎣⎦得()()min max f x g x ≥()32g x x x =-,()´232g x x x =-所以()g x 在1233⎡⎤⎢⎥⎣⎦,单调递减,在223⎡⎤⎢⎥⎣⎦单调递增,所以()()()12243max g x max g g g ⎧⎫⎛⎫===⎨⎬ ⎪⎝⎭⎩⎭,,则()ln 34a f x x x x =++>得2a x x lnx ≥-令()2h x x x lnx =-,()´12h x xlnx x =--,()¨23h x lnx =--,在1,23⎡⎤⎢⎥⎣⎦上()¨0h x <,则()´h x 单调递减,又()10h =,所以()h x 在113⎡⎤⎢⎥⎣⎦,单调递增,在[]12,单调递减,()()max 11h x h ==,所以1a ≥,故填[)1,+∞.2.已知函数f(x)=22e 1+x x ,g(x)=2e ex x ,对任意的x 1,x 2∈(0,+∞),不等式1()g x k ≤2()1+f x k 恒成立,则正数k的取值范围是.【解析】因为k 为正数,所以对任意的x 1,x 2∈(0,+∞),不等式1()g x k ≤2()1+f x k 恒成立⇒max()⎡⎤⎢⎥⎣⎦g x k ≤min ()1⎡⎤⎢⎥+⎣⎦f x k .令g'(x)=0,即2e (1-)e xx =0,得x=1,当x∈(0,1)时,g'(x)>0,当x∈(1,+∞)时,g'(x)<0,所以max ()⎡⎤⎢⎥⎣⎦g x k =(1)g k =e k .同理,令f'(x)=0,即222e -1x x =0,得x=1e ,当x∈10,e ⎛⎫ ⎪⎝⎭时,f'(x)<0,当x∈1,e ∞⎛⎫+ ⎪⎝⎭时,f'(x)>0,所以min ()1⎡⎤⎢⎥+⎣⎦f x k =1e 1⎛⎫ ⎪⎝⎭+f k =2e 1+k ,所以e k ≤2e 1+k ,又k>0,所以k≥1.3.已知()1()2,11f x x x x =-->-+,若2()21f x t at ≤-+对于所有的()[]1,,1,1x a ∈-+∞∈-恒成立,求实数t 的取值范围.【解析】2()21f x t at ≤-+对于所有的()[]1,,1,1x a ∈-+∞∈-恒成立,即()f x 的最大值都小于等于221t at -+;即220ta t -≤对于所有的[]1,1a ∈-恒成立,令2()2g a ta t =-,只要(1)0(1)0g g -≤⎧⎨≤⎩,即可解出实数t 的取值范围.容易得出11()23132111f x x x x x ⎛⎫=--=-++≤-= ⎪++⎝⎭,即()f x 的最大值为1,则2()21f x t at ≤-+对于所有的()[]1,,1,1x a ∈-+∞∈-恒成立⇔2121t at ≤-+对于所有的[]1,1a ∈-恒成立,即220ta t -≤对于所有的[]1,1a ∈-恒成立,令2()2g a ta t =-,只要(1)0(1)0g g -≤⎧⎨≤⎩,∴2t ≤-或2t ≥或0t =.4.已知函数()()1522>+-=a ax x x f .若()x f 在区间(]2,∞-上是减函数,且对任意的[]1,1,21+∈a x x ,总有()()421≤-x f x f ,求实数a 的取值范围;【解析】条件12()()4f x f x -≤表示的含义是函数f (x )在[1,1]a +上的最大值与最小值的差小于或等于4.若2a ≥.又[1,1]x a a =∈+,且(1)1a a a +-≤-.所以max ()(1)62f x f a ==-.2min ()()5f x f a a ==-.因为对任意的12,[1,1]x x a ∈+.总有12()()4f x f x -≤.所以max min ()()4f x f x -≤.即2(62)(5)4a a ---≤.解得13a -≤≤.又2a ≥.所以23a ≤≤.若12a <<.2max ()(1)6f x f a a =+=-.2min ()()5f x f a a ==-.max min ()()4f x f x -≤显然成立.综上13a <≤.5.函数()()m mx x g x x x f 25,342-+=+-=,若对任意的[]4,11∈x ,总存在[]4,12∈x ,使()()21x g x f =成立,求实数m 的取值范围.【解析】由题可知函数()f x 的值域为函数()g x 的值域的子集[][]2()43,1,4,()1,3f x x x x f x =-+∈∴∈-,以下求函数()52g x mx m =+-的值域:①0m =时,()52g x m =-为常函数,不符合题意;②0m >,[]()52,52g x m m ∈-+,∴521,523,m m -≤-⎧⎨+≥⎩解得6m ≥;③0m <,[]()52,52g x m m ∈+-,∴521,523,m m +≤-⎧⎨-≥⎩解得3m ≤-.综上所述,m 的取值范围为(][),36,-∞-+∞ .6.已知函数()()1ln f x x x ax a =+-+(a 为正常数).(1)若()f x 在()0,+∞上单调递增,求a 的取值范围;(2)若不等式()()10≥-x f x 恒成立,求a 的取值范围.【解析】(1)()()1ln f x x x ax a =+-+,1()ln 0x f x x a x +'=+-≥,1ln 1≤++a x x 恒成立令1()ln 1g x x x =++,21()x g x x-'=列表略min ()(1)2g x g ==,02a <≤.(2)当0a <≤2时,由(1)知,若()f x 在()0,+∞上单调递增,又()10f =,当(0,1),()0x f x ∈<;当(1,),()0x f x ∈+∞>,故不等式()()10x f x -≥恒成立当2a >,ln (1)1()x x a x f x x+-+'=,令()ln (1)1p x x x a x =+-+,令()ln 20p x x a '=+-=,则21a x e -=>,当2(1,)a x e -∈时,()0p x '<,则()(1)20p x p a <=-<,当2(1,)a x e -∈,()0f x '<,则()f x 单调递减,()(1)0f x f <=,矛盾,因此02≤<a .法二:1()()ln 1g x f x x a x '==++-,22111()x g x x x x-'=-=,讨论单调性可得min ()(1)2g x g a ==-.当02a <<时,()()0g x f x '=>,()f x 在(0,)+∞单调递增,又(1)0f =,符合题意;当2a >时,(1)20g a =-<,1()10a a g e e=+>,因为()g x 在(0,)+∞不间断,所以()g x 在(1,)a e 上存在零点1x ,1(1,),()∈x x f x 单调减,1(,),()∈a x x e f x 单调增,所以当11<<x x 时,()(1)0<=f x f 不合题意;当2a =时,符合题意;综上02≤<a .。

浅谈高中数学中的“恒成立”与“存在性”的综合问题

浅谈高中数学中的“恒成立”与“存在性”的综合问题

浅谈高中数学中的“恒成立”与“存在性”的综合问题高中数学的学习中,恒成立与存在性是两个基本概念,也是学习和教学中一个重要的问题。

在高中数学课堂上,恒成立与存在性是非常重要的知识点,其研究内容也是极其庞大的,学生们需要正确理解这两个重要的概念,在实际应用中有效地利用。

本文将从概念界定、定义、历史背景等方面,对高中数学中“恒成立”和“存在性”问题进行浅谈。

首先,了解恒成立和存在性的定义和概念界定,以及它们之间的关系。

高中数学中,所谓的“恒成立”是指在某些条件下,某个数学定理或结论的正确性可以永远保持不变,不会因为任何环境的改变而改变,只要条件满足,定理的正确性就不会改变。

同时,“存在性”指的是某种数学定理或公式的真实存在,无论它到底是否正确,它都可以被实际检验,也就是说它是真实存在的。

其次,要正确理解恒成立与存在性的历史背景。

这两个概念在数学史上有着悠久的历史,早在古希腊和罗马时期,“恒成立”就成为了数学的基本理念,是一种对数学理论的基本信念。

而到了中世纪,数学家们发现存在性也是一种非常重要的概念,为了避免科学谬误,数学家们逐渐发现存在性也很重要。

此外,可以在高中数学学习和教学中更好地引申和应用这两个概念。

在高中数学教学中,要让学生更深刻地理解恒成立与存在性的区别,并且熟练掌握关于他们的基本概念,以便在实际的学习和应用中准确地使用这两个概念。

此外,教师还应当采取适当的方法引导学生在学习中不断检验和深入思考,以便他们能够更好地应用这两个概念,而不是单纯的熟记而已。

最后,再次强调,“恒成立”与“存在性”是高中数学学习和教学中一个重要的问题,非常值得我们重视。

正确理解这两个概念,正确掌握如何在数学研究中应用,不仅可以提高学生高中数学学习的素质,也为他们研究更深入的数学问题打下基础。

恒成立或存在性问题课件-2024届高三数学二轮复习

恒成立或存在性问题课件-2024届高三数学二轮复习
专题研究一 恒成立或存在性问题
要点 解决恒成立或有解问题的常见结论 下列是恒成立问题的一些常见结论: (1)不等式f(x)≥0在定义域内恒成立,等价于f(x)min≥0; (2)不等式f(x)≤0在定义域内恒成立,等价于f(x)max≤0; (3)不等式f(x)>g(x),x∈(a,b)恒成立,等价于F(x)=f(x)-g(x)>0,x∈(a,b) 恒成立.
例1 已知a≠0,函数f(x)=ax(x-2)2(x∈R).若对任意x∈[-2,1],不等式 f(x)<32恒成立,求a的取值范围.
【解析】 方法一:因为f(x)=ax(x2-4x+4)=ax3-4ax2+4ax. 所以f′(x)=3ax2-8ax+4a=a(3x2-8x+4)=a(3x-2)(x-2). 当a>0时,f(x)在-2,23上单调递增, 在23,1上单调递减. 故f(x)的最大值为f23=3227a<32,即a<27.
即22aa+ +b4+ b+1= 2=0, 0,解得ab= =- -1313, . 经验证,符合题意. (2)在 14,1 上存在x0,使得不等式f(x0)-c≤0成立,只需c≥f(x)min,x∈ 14,1, 因为f′(x)=-23-31x2+1x=-2x2-3x32x+1=-(2x-1)3x(2 x-1), 所以当x∈14,12时,f′(x)<0,f(x)单调递减;
题型二 存在性问题
例2 已知函数f(x)=-ax2+ln x(a∈R).
(1)讨论f(x)的单调性;
(2)若存在x∈(1,+∞),f(x)>-a,求实数a的取值范围. 【解析】 (1)函数f(x)的定义域为(0,+∞),f′(x)=-2ax+1x=1-x2ax2.
当a≤0时,f′(x)>0,则f(x)在(0,+∞)上单调递增.

高考数学《恒成立和存在性问题》

高考数学《恒成立和存在性问题》

高考数学 恒成立和存在性问题
2. 已知 e 为自然对数的底数,函数 f(x)=ex-ax2 的图象恒在直线 y=32ax 上方,求 实数 a 的取值范围.
高考数学 恒成立和存在性问题
解析:由题意得不等式 ex-ax2>32ax 在 x∈(-∞,+∞)上恒成立,即 ex>ax2+32ax 恒成立,根据图象可得当 a>0 时不等式不恒成立;当 a=0 时,不等式恒成立;当 a<0 时,令 g(x)=ex,h(x)=ax2+32ax,设函数 g(x)与 h(x)图象的公切线为 l,切点 P(t,et),且 t<0.因为 g′(x)=ex,h′(x)=2ax+32a,所以 l 的斜率 k=et=2at+32at ①.因为点 P 在函数 h(x)的图象上,所以 et=at2+32at ②.由①②可得 t=32(舍去)或 t=-1,则 a=-2e,所以-2e<a≤0.
例 1 已知函数 f(x)=ax2-lnx(a 为常数). (1) 当 a=12时,求 f(x)的单调减区间; (2) 若 a<0,且对任意的 x∈[1,e],f(x)≥(a-2)x 恒成立,求实数 a 的取值范围.
高考数学 恒成立和存在性问题
解析:(1) f(x)的定义域为(0,+∞),f′(x)=2ax-1x=2axx2-1.当 a=12时,f′(x)= x2-1
解析:(1) f′(x)=mx -12=2m2-x x(x>0).
当 m≤0 时,f′(x)<0.所以 f(x)的单调减区间为(0,+∞).
当 m>0 时,由 f′(x)=0 得 x=2m,列表如下:
x (0,2m) 2m (2m,+∞)
f′(x) +
0

高中语文中的存在性问题与恒成立问题例题

高中语文中的存在性问题与恒成立问题例题

高中语文中的存在性问题与恒成立问题例题引言高中语文教学中存在许多存在性问题和恒成立问题,这些问题对学生的研究产生了一定的困扰。

本文将通过提供几个例题,探讨高中语文中的存在性问题与恒成立问题,以期增进对这些问题的理解和解决。

存在性问题例题例题1: 评价文学作品的主观性- 问题描述:文学作品的评价存在主观性,不同人对同一作品可能有不同的评价。

这是否表明文学评价完全是主观的?- 解答方式:分析文学作品评价的主观性,以及评价的标准和依据。

通过比较不同人对同一作品的评价,可以认识到评价的主观性是相对的,不同的评价角度和标准可以导致不同的结果,但也存在一些客观的评价标准,如作品的文学性、人物形象的塑造等。

例题2: 文字的多义性- 问题描述:文字具有多义性,同一个词语在不同的语境中可能有不同的含义。

这是否意味着读者与作者之间存在理解上的隔阂?- 解答方式:探讨多义性对文学作品阅读和理解的影响。

多义性在一定程度上可能增加读者与作者之间的理解隔阂,但也可以通过注释、解读和文学讨论等方式来减少隔阂,促进更好的理解。

恒成立问题例题例题3: 平行比喻的修辞效果- 问题描述:平行比喻是一种常见的修辞手法,它在表达上有何特点,是否具有恒成立的效果?- 解答方式:分析平行比喻的修辞手法,在比较中强调相似之处,通过对比凸显事物的特点。

平行比喻可以增强修辞效果,但其恒成立的效果取决于具体的语境和比较对象。

例题4: 唯美诗中的情感表达- 问题描述:唯美诗作品中的情感表达方式常常抽象而含蓄,读者如何理解其中的情感内涵?- 解答方式:探讨唯美诗作品中情感表达的特点和阅读的方法。

唯美诗常通过意象、象征等手法来表达情感,读者可以通过倾听自己的感受、结合文本语境等方式进行情感共鸣和理解。

结论高中语文中存在性问题和恒成立问题的探讨能够帮助学生更好地理解和解决相关困惑。

通过分析存在性问题和恒成立问题的例题,我们可以增强对这些问题的认识,并掌握解决这些问题的方法和技巧,促进语文学科的学习和发展。

恒成立与存在性问题的解题策略

恒成立与存在性问题的解题策略

“恒成立问题”与“存在性问题”的基本解题策略一、“恒成立问题”与“存在性问题”的基本类型 恒成立、能成立、恰成立问题的基本类型1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f =,设fx 在区间a,b 上的值域为A,gx 在区间c,d 上的值域为B,则AB. 9、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;10、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方; 恒成立问题的基本类型在数学问题研究中经常碰到在给定条件下某些结论函数在给定区间上某结论成立问题,其表现形式通常有:在给定区间上某关系恒成立;某函数的定义域为全体实数R;某不等式的解为一切实数;某表达式的值恒大于a 等等…恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用;因此也成为历年高考的一个热点;恒成立问题在解题过程中大致可分为以下几种类型:①一次函数型;②二次函数型;③变量分离型;④根据函数的奇偶性、周期性等性质;⑤直接根据函数的图象; 二、恒成立问题解决的基本策略大家知道,恒成立问题分等式中的恒成立问题和不等式中的恒成立问题;等式中的恒成立问题,特别是多项式恒成立问题,常简化为对应次数的系数相等从而建立一个方程组来解决问题的; 一两个基本思想解决“恒成立问题”思路1、max )]([)(x f m D x x f m ≥⇔∈≥上恒成立在 思路2、min )]([)(x f m D x x f m ≤⇔∈≤上恒成立在如何在区间D 上求函数fx 的最大值或者最小值问题,我们可以通过习题的实际,采取合理有效的方法进行求解,通常可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导等等方法求函数fx 的最值;这类问题在数学的学习涉及的知识比较广泛,在处理上也有许多特殊性,也是近年来高考中频频出现的试题类型,希望同学们在日常学习中注意积累; 二、赋值型——利用特殊值求解等式恒成立问题等式中的恒成立问题,常常用赋值法求解,特别是对解决填空题、选择题能很快求得.例1.如果函数y=fx=sin2x+acos2x 的图象关于直线x=8π-对称,那么a= .C .2D . -2.略解:取x=0及x=4π-,则f0=f 4π-,即a=-1,故选B. 此法体现了数学中从一般到特殊的转化思想.例备用.由等式x 4+a 1x 3+a 2x 2+a 3x+a 4= x+14+b 1x+13+ b 2x+12+b 3x+1+b 4 定义映射f :a 1,a 2,a 3,a 4→b 1+b 2+b 3+b 4,则f :4,3,2,1 →略解:取x=0,则 a 4=1+b 1+b 2+b 3+b 4,又 a 4=1,所以b 1+b 2+b 3+b 4 =0 ,故选D 三分清基本类型,运用相关基本知识,把握基本的解题策略 1、一次函数型:若原题可化为一次函数型,则由数形结合思想利用一次函数知识求解,十分简捷 给定一次函数y=fx=ax+ba≠0,若y=fx 在m,n 内恒有fx>0,则根据函数的图象直线可得上述结论等价于0)(0)(>>n f m f 同理,若在m,n 内恒有fx<0,则有 0)(0)(<<n f mf恒成立的x 的x 及a,关键在于该把哪个字母看成是一个变量,另一个作为常数.显然可将a 视作自变量,则上述问题即可转化为在-2,2内关于a 的一次函数大于0恒成立的问题.解:原不等式转化为x-1a+x 2-2x+1>0在|a|≤2时恒成立,设fa= x-1a+x 2-2x+1,则fa 在-2,2上恒大于0,故有:⎩⎨⎧>>-0)2(0)2(f f 即⎪⎩⎪⎨⎧>->+-0103422x x x 解得:⎩⎨⎧-<><>1113x x x x 或或 ∴x<-1或x>3. 即x∈-∞,-1∪3,+∞此类题本质上是利用了一次函数在区间m,n 上的图象是一线段,故只需保证该线段两端点均在x 轴上方或下方即可. 2、二次函数型涉及到二次函数的问题是复习的重点,同学们要加强学习、归纳、总结,提炼出一些具体的方法,在今后的解题中自觉运用;1若二次函数y=ax 2+bx+ca≠0大于0恒成立,则有00<∆>且a2若是二次函数在指定区间上的恒成立问题,可以利用韦达定理以及根的分布知识求解;类型1:设)0()(2≠++=a c bx ax x f 在R 上恒成立,(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;2R x x f ∈<在0)(上恒成立00<∆<⇔且a ;类型2:设)0()(2≠++=a c bx ax x f 在区间],[βα上恒成立(1)当0>a时,],[0)(βα∈>x x f 在上恒成立⎪⎩⎪⎨⎧>>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a ba b f a b 或或, ],[0)(βα∈<x x f 在上恒成立⎩⎨⎧<<⇔0)(0)(βαf f(2)当0<a时,],[0)(βα∈>x x f 在上恒成立⎩⎨⎧>>⇔0)(0)(βαf f],[0)(βα∈<x x f 在上恒成立⎪⎩⎪⎨⎧<>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a ba b f a b 或或 类型3:设)0()(2≠++=a c bx ax x f 在区间 -∞ , 上恒成立; fx>0a>0且<0或-b/2a>且f>0 fx<0a<0且<0或-b/2a>且f<0类型4:设)0()(2≠++=a c bx ax x f 在区间 ,+∞上恒成立; fx>0a>0,<0或-b/2a<且f>0 fx<0a<0,<0或-b/2a<且f<0例3. 若函数12)1()1()(22++-+-=a x a x a x f 的定义域为R,求实数 a 的取值范围.分析:该题就转化为被开方数012)1()1(22≥++-+-a x a x a 在R 上恒成立问题,并且注意对二次项系数的讨论.解:依题意,当时,R x ∈012)1()1(22≥++-+-a x a x a 恒成立, 所以,①当,1,01,01{,0122=≠+=-=-a a a a 时,即当此时.1,0112)1()1(22=∴≥=++-+-a a x a x a ②当时,时,即当012)1(4)1(,01{012222≤+---=∆>-≠-a a a a a 有,91,09101{22≤<⇒≤+->a a a a 综上所述,fx 的定义域为R 时,]9,1[∈a 例4.已知函数2()3f x x ax a =++-,在R 上()0f x ≥恒成立,求a 的取值范围. 图所分析:()y f x =的函数图像都在X 轴及其上方,如右示:略解:()22434120a a a a ∆=--=+-≤62a ∴-≤≤ 范变式1:若[]2,2x ∈-时,()0f x ≥恒成立,求a 的取值围.解析一. 零点分布策略 本题可以考虑fx 的零点分布情况进行分类讨论,分无零点、零点在区间的左侧、零点在区间的右侧三种情况,即Δ≤0或⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥--≤->∆0)2(0)2(220f f a或⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥-≥->∆0)2(0)2(22f f a ,即a 的取值范围为-7,2.解法二分析:运用二次函数极值点的分布分类讨论要使[]2,2x ∈-时,()0f x ≥恒成立,只需)(x f 的最小值0)(≥a g 即可.略解:分类讨论22()324a a f x x a ⎛⎫=+--+ ⎪⎝⎭,令()f x 在[]2,2-上的最小值为()g a .⑴当22a-<-,即4a >时,()(2)730g a f a =-=-≥ 73a ∴≤ 又4a >a ∴不存在.⑵当222a-≤-≤,即44a -≤≤时,2()()3024a a g a f a ==--+≥ 62a ∴-≤≤ 又44a -≤≤ 42a ∴-≤≤⑶当22a->,即4a <-时,()(2)70g a f a ==+≥ 7a ∴≥- 又4a <-74a ∴-≤<-综上所述,72a -≤≤.变式2:若[]2,2x ∈-时,()2f x ≥恒成立,求a 的取值范围.解法一:分析:题目中要证明2)(≥x f 在[]2,2-上恒成立,若把2移到等号的左边,则把原题转化成左边二次函数在区间[]2,2-时恒大于等于0的问题.例2 已知a ax x x f -++=3)(2,若0)(],2,2[≥-∈x f x 恒成立,求a 的取值范围. 略解:2()320f x x ax a =++--≥,即2()10f x x ax a =++-≥在[]2,2-上成立. ⑴()2410a a ∆=--≤22a ∴--≤≤-+⑵24(1)0(2)0(2)02222a a f f a a ⎧∆=-->⎪≥⎪⎪⎨-≥⎪⎪-≥-≤-⎪⎩或2225--≤≤-∴a 综上所述,2225-≤≤-a .解法二:运用二次函数极值点的分布⑴当22a-<-,即4a >时,()(2)732g a f a =-=-≥ ()54,3a ∴≤∉+∞ a ∴不存在.⑵当222a-≤-≤,即44a -≤≤时,2()()3224a a g a f a ==--+≥,⑶当22a ->,即4a <-时,()(2)72g a f a ==+≥, 综上所述2225-≤≤-a .此题属于含参数二次函数,求最值时,对于轴变区间定的情形,对轴与区间的位置进行分类讨论;还有与其相反的,轴动区间定,方法一样.对于二次函数在R 上恒成立问题往往采用判别式法如例4、例5,而对于二次函数在某一区间上恒成立问题往往转化为求函数在此区间上的最值问题 3、变量分离型若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解;运用不等式的相关知识不难推出如下结论:若对于x 取值范围内的任何一个数都有fx>ga 恒成立,则ga<fx min ;若对于x 取值范围内的任何一个数,都有fx<ga 恒成立,则ga>fx max .其中fx max 和fx min 分别为fx 的最大值和最小值例5.已知三个不等式①0342<+-x x ,②0862<+-x x ,③0922<+-m x x .要使同时满足①②的所有x 的值满足③,求m 的取值范围.略解:由①②得2<x<3,要使同时满足①②的所有x 的值满足③, 即不等式0922<+-m x x 在)3,2(∈x 上恒成立, 即)3,2(922∈+-<x x x m 在上恒成立,又,上大于在9)3,2(922∈+-x x x 所以 9≤m例 6. 函数)(x f 是奇函数,且在]1,1[-上单调递增,又1)1(-=-f ,若12)(2+-≤at t x f 对所有的]1,1[-∈a 都成立,求t 的取值范围 .解:据奇函数关于原点对称,,1)1(=f 又1)1()(]1,1[)(max ==-f x f x f 上单调递增在12)(2+-≤at t x f 对所有的]1,1[-∈a 都成立.因此,只需122+-at t 大于或等于上在]1,1[)(-x f 的最大值1,都成立对所有又]1,1[-∈a ,即关于a 的一次函数在-1,1上大于或等于0恒成立, 即:),2[}0{]2,(+∞--∞∈ t利用变量分离解决恒成立问题,主要是要把它转化为函数的最值问题 补例. 已知()||,=-+∈R f x x x a b x .若0b <,且对任何[]0,1x ∈不等式()0f x <恒成立,求实数a 的取值范围.解:当0x =时,a 取任意实数,不等式()0f x <恒成立, 故只需考虑(]0,1x ∈,此时原不等式变为||bx a x--< 即b b x a x x x +<<-故(]max min ()(),0,1b bx a x x x x+<<-∈又函数()b g x x x =+在(]0,1上单调递增,所以max ()(1)1bx g b x +==+;对于函数(](),0,1bh x x x x=-∈①当1b <-时,在(]0,1上()h x 单调递减,min ()(1)1bx h b x-==-,又11b b ->+,所以,此时a 的取值范围是(1,1)b b +-.②当10b -≤<,在(]0,1上,()b h x x x=-≥当x b =-时,min ()2bx b x-=-,此时要使a 存在,必须有1210b bb ⎧+<-⎪⎨-≤<⎪⎩ 即1223b -≤<-,此时a 的取值范围是(1,2)b b +-综上,当1b <-时,a 的取值范围是(1,1)b b +-;当1223b -≤<-时,a 的取值范围是(1,2)b b +-;当2230b -≤<时,a 的取值范围是∅.4、根据函数的奇偶性、周期性等性质若函数fx 是奇偶函数,则对一切定义域中的x ,f-x=-fx f-x=fx 恒成立;若函数y=fx 的周期为T,则对一切定义域中的x,fx=fx+T 恒成立; 5、直接根据图象判断若把等式或不等式进行合理的变形后,能非常容易地画出等号或不等号两边函数的图象,则可以通过画图直接判断得出结果;尤其对于选择题、填空题这种方法更显方便、快捷;例7. a a x x x 恒成立,求实数,不等式对任意实数>--+21的取值范围. 分析:设y=|x+1|-|x-2|,恒成立,不等式对任意实数a x x x >--+21即转化为求函数y=|x+1|-|x-2|的最小值,画出此函数的图象即可求得a 的取值范围.解:令⎪⎩⎪⎨⎧≥<<---≤-=--+=2321121321x x x x x x y在直角坐标系中画出图象如图所示,由图象可看出,要使a x x x >--+21,不等式对任意实数恒成立,只需3-<a .故实数.3),的取值范围是(-∞-a 注:本题中若将a a x x x 恒成立,求实数,不等式对任意实数>--+21改为 ①a a x x x 恒成立,求实数,不等式对任意实数<--+21,同样由图象可得a>3; ②a a x x x 恒成立,求实数,不等式对任意实数>-++21,构造函数,画出图象,得a<3.利用数形结合解决恒成立问题,应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数与函数图象之间的关系,得出答案或列出条件,求出参数的范围.例8. 设常数a∈R,函数fx=3|x|+|2x-a|,gx=2-x.若函数y=fx 与y=gx 的图像有公共点,则a 的取值范围为 ;解:1a<=0x<=a/2<=0时,fx=-3x+-2x+a=-5x+aa/2<=x<=0时,fx=-3x+2x-a=-x-ax>=0时,fx=3x+2x-a=5x-a,最小值为-a<=2则与gx 有交点,即:-2<=a<=0;2a>0x<=0时,fx=-3x+-2x+a=-5x+a0<=x<=a/2时,fx=3x+-2x+a=x+ax>=a/2时,fx=3x+2x-a=5x-a 最小值a<=2时与gx 有交点,即:0<a<=2综上所述,-2<=a<=2时fx=3|x|+|2x-a|与gx=2-x 有交点;三、在恒成立问题中,主要是求参数的取值范围问题,是一种热点题型,介绍一些基本的解题策略,在学习中学会把问题分类、归类,熟练基本方法;一换元引参,显露问题实质 1、对于所有实数x,不等式恒成立,求a 的取值范围;解:因为的值随着参数a 的变化而变化,若设, 则上述问题实质是“当t 为何值时,不等式恒成立”;这是我们较为熟悉的二次函数问题,它等价于 求解关于t 的不等式组:; 解得,即有,易得;2、设点Px,y 是圆4)1(22=-+y x 上任意一点,若不等式x+y+c ≥0恒成立,求实数c 的取值范围;二分离参数,化归为求值域问题 3、若对于任意角总有成立,求m 的范围;解:此式是可分离变量型,由原不等式得,又,则原不等式等价变形为恒成立; 根据边界原理知,必须小于2cos cos )(2+=θθθf 的最小值,这样问题化归为怎样求的最小值;因为2cos cos )(2+=θθθf即时,有最小值为0,故;三变更主元,简化解题过程 4、若对于,方程都有实根,求实根的范围;解:此题一般思路是先求出方程含参数m 的根,再由m 的范围来确定根x 的范围,但这样会遇到很多麻烦,若以m 为主元,则,由原方程知,得又,即解之得或;5、当1≤a 时,若不等式039)6(2>-+-+a x a x 恒成立,求x 的取值范围; 四图象解题,形象直观6、设]40(,∈x ,若不等式ax x x >-)4(恒成立,求a 的取值范围;解:若设)4(1x x y -=,则为上半圆;设,为过原点,a为斜率的直线;在同一坐标系内作出函数图象依题意,半圆恒在直线上方时,只有时成立,即a的取值范围为;7、当x∈1,2时,不等式x-12<logax恒成立,求a的取值范围;解:设y1=x-12,y2=logax,则y1的图象为右图所示的抛物线要使对一切x∈ 1,2,y1<y2恒成立,显然a>1,并且必须也只需当x=2时y2的函数值大于等于y1的函数值;故loga2>1, ∴ 1<a<2.8、已知关于x的方程lgx2+4x-lg2x-6a-4=0有唯一解,求实数a的取值范围;分析:方程可转化成lgx2+4x=lg2x-6a-4,从而得x2+4x=2x-6a-4>0,注意到若将等号两边看成是二次函数y= x2+4x及一次函数y=2x-6a-4,则只需考虑这两个函数的图象在x轴上方恒有唯一交点即可;解:令y1=x2+4x=x+22-4,y2=2x-6a-4,y1的图象为一个定抛物线 y2的图象是k=2,而截距不定的直线,要使y1和y2在x轴上方有唯一交点,则直线必须位于l1和l2之间;包括l1但不包括l2当直线为l1时,直线过点-4,0,此时纵截距为-8-6a-4=0,a=2-;当直线为l2时,直线过点0,0,纵截距为-6a-4=0,a=32-∴a的范围为)32,2[--五合理联想,运用平几性质9、不论k为何实数,直线与曲线恒有交点,求a的范围;分析:因为题设中有两个参数,用解析几何中有交点的理论将二方程联立,用判别式来解题是比较困难的;若考虑到直线过定点A0,1,而曲线为圆,圆心Ca,0,要使直线恒与圆有交点,那么定点A0,1必在圆上或圆内;解:,Ca,0,当时,联想到直线与圆的位置关系,则有点A0,1必在圆上或圆内,即点A0,1到圆心距离不大于半径,则有,得;六分类讨论,避免重复遗漏10、当时,不等式恒成立,求x 的范围;解:使用的条件,必须将m 分离出来,此时应对进行讨论;①当时,要使不等式恒成立,只要, 解得;②当时,要使不等式恒成立,只要,解得;③当时,要使恒成立,只有; 综上①②③得;解法2:可设,用一次函数知识来解较为简单;我们可以用改变主元的办法,将m 视为主变元,即将元不等式化为:0)12()1(2<---x x m ,;令)12()1()(2---=x x m m f ,则22≤≤-m 时,0)(<m f 恒成立,所以只需⎩⎨⎧<<-0)2(0)2(f f 即⎪⎩⎪⎨⎧<---<----0)12()1(20)12()1(222x x x x ,所以x 的范围是)231,271(++-∈x ;此类题本质上是利用了一次函数在区间m,n 上的图象是一线段,故只需保证该线段两端点均在x 轴上方或下方即可.11、当31<<x 时,不等式0622>+-ax x 恒成立,求实数a 的取值范围; 解:xx a 32+<当31<<x 时,623232=≥+x x ,当x x 32=,即6=x 时等号成立;故实数a 的取值范围:6<a 七构造函数,体现函数思想12、1990年全国高考题设,其中a 为实数,n 为任意给定的自然数,且,如果当时有意义,求a 的取值范围; 解:本题即为对于,有恒成立;这里有三种元素交织在一起,结构复杂,难以下手,若考虑到求a 的范围,可先将a 分离出来,得,对于恒成立;构造函数,则问题转化为求函数在上的值域;由于函数在上是单调增函数,则在上为单调增函数;于是有的最大值为:,从而可得;八利用集合与集合间的关系在给出的不等式中,若能解出已知取值范围的变量,就可利用集合与集合之间的包含关系来求解,即:[]()(),,m n f a g a ⊂⎡⎤⎣⎦,则()f a m ≤且()g a n ≥,不等式的解即为实数a 的取值范围;例13、当1,33x ⎛⎫∈ ⎪⎝⎭时,log 1a x <恒成立,求实数a 的取值范围;解:1log 1a x -<<(1) 当1a >时,1x a a <<,则问题转化为11,3,3a a ⎛⎫⎛⎫⊆ ⎪ ⎪⎝⎭⎝⎭ 3113a a ≥⎧⎪∴⎨≤⎪⎩ 3a ∴≥(2) 当01a <<时,1a x a <<,则问题转化为11,3,3a a ⎛⎫⎛⎫⊆ ⎪ ⎪⎝⎭⎝⎭1313a a⎧≤⎪⎪∴⎨⎪≥⎪⎩103a ∴<≤综上所得:103a <≤或3a ≥ 四、其它类型恒成立问题能成立问题有时是以不等式有解的形式出现的;1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;分析:思路、对在不同区间内的两个函数)(x f 和)(x g 分别求最值,即只需满足)()(max min x g x f >即可.简解:令na=g max x=a/2;令ma=f min x,fx=x-a 2+1-a 2,故1对称轴x=a<1,即或0<a<1时,ma= f min x=f1=2-2a,由ma>na 解得a<4/5,注意到a 的范围从而得a 的范围:0<a<4/5;2对称轴x=a>2时,ma= f min x=f2=5-4a,由ma>na 解得a<10/9,注意到a 的范围从而得a 无解:;3对称轴x=a∈1,2时,ma= fminx=fa=2-2a,由ma>na 解得4171+->a 或4171--<a ,注意到a 的范围从而得a 的范围21≤<a :;; 综合123知实数a 的取值范围是:0,4/5∪1,2 2、已知两函数2)(x x f =,m x g x-⎪⎭⎫⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为解析:对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥等价于m x g x-⎪⎭⎫⎝⎛=21)(在[]2,1上的最小值m -41不大于2)(x x f =在[]2,0上的最小值0,既041≤-m ,∴41≥m题型二、主参换位法已知某个参数的范围,整理成关于这个参数的函数题型三、分离参数法欲求某个参数的范围,就把这个参数分离出来 题型四、数形结合恒成立问题与二次函数联系零点、根的分布法 五、不等式能成立问题有解、存在性的处理方法若在区间D 上存在实数x 使不等式()f x A >成立,则等价于在区间D 上()max f x A >; 若在区间D 上存在实数x 使不等式()f x B <成立,则等价于在区间D 上的()min f x B <.1、存在实数x ,使得不等式2313x x a a ++-≤-有解,则实数a 的取值范围为______; 解:设()31f x x x =++-,由()23f x a a ≤-有解,()2min3a a f x ⇒-≥, 又()()31314x x x x ++-≥+--=,∴234a a -≥,解得41a a ≥≤-或;1、求使关于p 的不等式x p px x 212+<++在p ∈-2,2有解的x 的取值范围;解:即关于p 的不等式012)1(2<+-+-x x p x 有解,设()()2121f p x p x x =-+-+,则()f p 在-2,2上的最小值小于0;1当x>1时,fp 关于p 单调增加,故f min p=f-2=x 2-4x+3<0,解得1<x<3;2 当x<1时,fp 关于p 单调减少,故f min p=f2=x 2-1<0,解得-1<x<1; 3当x=1时,fp=0,故f min p=fp<0不成立;综合123知实数x 的取值范围是:-1,1∪1,3例、设命题P:x1,x2是方程x 2-ax-2=0的二个根,不等式|m 2-5m-3|≥|x 1-x 2|对任意实数a∈-1,1恒成立;命题Q :不等式|x-2m|-|x|>1m>0有解;若命题P 和命题Q 都是真命题,求m的值范围;解:1由P 真得:8||221+=-a x x ,注意到a 在区间-1,1, 3||max 21=-x x ,由于|m 2-5m-3|≥|x 1-x 2|对任意实数a∈-1,1恒成立,故有3|||35|max 212=-≥--x x m m解得: m≤-1或m≥6或0≤m≤51由Q 真,不等式|x-2m|-|x|>1m>0有解,得|x-2m|-|x|max =2m>1,解得:m>1/2 由于12都是相公命题,故m 的值范围:1/2<m≤5或m≥6.举例1已知不等式0224>+⋅-x x a 对于+∞-∈,1[x 恒成立,求实数a 的取值范围. 2若不等式0224>+⋅-x x a 对于]3,(-∞∈a 恒成立,求实数x 的取值范围. 分析:1由0224>+⋅-x x a 得:xx a 222+<对于+∞-∈,1[x 恒成立,因212≥x,所以22222≥+xx ,当22=x时等号成立.所以有22<a . 2注意到0224>+⋅-x x a 对于]3,(-∞∈a 恒成立是关于a 的一次不等式.不妨设)24(2)(++⋅-=x x a a f ,则)(a f 在]3,(-∞∈a 上单调递减,则问题等价于0)3(>f ,所以2202234>⇒>+⋅-x x x 或12<x ,则x 取值范围为),1()0,(+∞-∞ .小结:恒成立与有解的区别:恒成立和有解是有明显区别的,以下充要条件应细心思考,甄别差异,恰当使用,等价转化,切不可混为一体;①不等式()f x M <对x I ∈时恒成立max ()f x M•⇔<,x I ∈;即()f x 的上界小于或等于M ; ②不等式()f x M <对x I ∈时有解min ()f x M•⇔<,x I ∈; 或()f x 的下界小于或等于M ; ③不等式()f x M >对x I ∈时恒成立min ()f x M•⇔>,x I ∈;即()f x 的下界大于或等于M ; ④不等式()f x M >对x I ∈时有解max ()f x M ⇔>,x I ∈.; 或()f x 的上界大于或等于M ;高中数学难点强化班第四讲140709课后练习答案:一.填空选择题每小题6分,共60分1、对任意的实数x ,若不等式a x x >--+21恒成立,那么实数a 的取值范围 ;答案:|x+1|-|x-2| -|x+1-x-2|=-3,故实数a 的取值范围:a<-3 2、不等式2sin 4sin 10x x a -+-<有解,则a 的取值范围是解:原不等式有解()()22sin 4sin 1sin 231sin 1a x x x x ⇒>-+=---≤≤有解,而()2minsin 232x ⎡⎤--=-⎣⎦,所以2a >-;3.若对任意x R ∈,不等式||x ax ≥恒成立,则实数a 的取值范围是 A 1a <- B ||1a ≤ C ||1a < D 1a ≥ 解析:对∀x R ∈,不等式||x ax ≥恒成立 则由一次函数性质及图像知11a -≤≤,即||1a ≤;答案:选B4.当(1,2)x ∈时,不等式240x mx ++<恒成立,则m 的取值范围是 .解析: 当(1,2)x ∈时,由240x mx ++<得24x m x +<-.令244()x f x x x x+==+,则易知()f x 在(1,2)上是减函数,所以[1,2]x ∈时()(1)5maxf x f ==,则2min 4()5x x+->-∴5m ≤-.5.已知不等式223(1)1ax x a x x a -++>--+对任意(0)a ∈+∞,都成立,那么实数x 的取值范围为 .分析:已知参数a 的范围,要求自变量x 的范围,转换主参元x 和a 的位置,构造以a 为自变量x 作为参数的一次函数()g a ,转换成∀(0)a ∈+∞,,()0g a >恒成立再求解;解析:由题设知“223(1)1ax x a x x a -++>--+对∀(0)a ∈+∞,都成立,即22(2)20a x x x +-->对∀(0)a ∈+∞,都成立;设22()(2)2g a x a x x =+--a R ∈,则()g a 是一个以a 为自变量的一次函数;220x +>恒成立,则对∀x R ∈,()g a 为R 上的单调递增函数; 所以对∀(0)a ∈+∞,,()0g a >恒成立的充分必要条件是(0)0g ≥,220x x --≥,∴20x -≤≤,于是x 的取值范围是{|20}x x -≤≤;6.已知函数()()()22241,f x mx m x g x mx =--+=,若对于任一实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是 A .0,2 B .0,8 C .2,8 D .-∞,0分析:()f x 与()g x 的函数类型,直接受参数m 的影响,所以首先要对参 数进行分类讨论,解析:当0m =时,()810f x x =-+>在1(,)8-∞上恒成立在R 上恒成立,显然不满足题意;如图1当0m <时,()g x 在R 上递减且()0g x mx =>只在(,0)-∞而()f x 是一个开口向下且恒过定点0,1的二次函数,当0m >时,()g x 在R 上递增且()0g x mx =>在(0,)+∞而()f x 是一个开口向上且恒过定点0,1的二次函数,数x ,()f x 与()g x 的值至少有一个为正数则只需()0f x >在(-∞恒成立;如图3则有24024(4)80m m m m -⎧<⎪⎨⎪∆=--<⎩或402m m -≥解得48m <<或04m <≤, 综上可得08m <≤即(0,8)m ∈; 故选B;7、已知两函数()2728f x x x c =--,gx=6x 2-24x+21;1对任意[]3,3x ∈-,都有()()f x g x ≤成立,那么实数c 的取值范围 c ≥0 ; 2存在[]3,3x ∈-,使()()f x g x ≤成立,那么实数c 的取值范围 c ≥-25 ; 3对任意[]12,3,3x x ∈-,都有()()12f xg x ≤,那么实数c 的取值范围 c ≥150 ; 4存在[]12,3,3x x ∈-,都有()()12f xg x ≤,那么实数c 的取值范围 c ≥-175 ;解析:1设()()()322312h x g x f x x x x c =-=--+,问题转化为[]3,3x ∈-时,()0h x ≥恒成立,故()min 0h x ≥;令()()()266126120h x x x x x '=--=+-=,得1x =-或2;由导数知识,可知()h x 在[]3,1--单调递增,在[]1,2-单调递减,在[]2,3单调递增,且()345h c -=-,()()17h x h c =-=+极大值,()()220h x h c ==-极小值,()39h c =-,∴()()min 345h x h c =-=-,由450c -≥,得45c ≥;2据题意:存在[]3,3x ∈-,使()()f x g x ≤成立,即为:()()()0h x g x f x =-≥在[]3,3x ∈-有解,故()max 0h x ≥,由1知()max 70h x c =+≥,于是得7c ≥-;3它与1问虽然都是不等式恒成立问题,但却有很大的区别,对任意[]12,3,3x x ∈-,都有()()12f xg x ≤成立,不等式的左右两端函数的自变量不同,1x ,2x 的取值在[]3,3-上具有任意性,∴要使不等式恒成立的充要条件是:max min ()(),[3,3]f x g x ••x •≤∈-;∵()()[]27228,3,3f x x c x =---∈-∴ ()()max3147f x f c =-=-,∵()26840g x x x '=+-=()()23102x x +-,∴()0g x '=在区间[]3,3-上只有一个解2x =; ∴()()min248g x g ==-,∴14748c -≤-,即195c ≥.4存在[]12,3,3x x ∈-,都有()()12f xg x ≤,等价于()()min 1max 2f x g x ≤,由3得()()min 1228f x f c ==--,()()max 23102g x g =-=,28102130c c --≤⇒≥-点评:本题的三个小题,表面形式非常相似,究其本质却大相径庭,应认真审题,深入思考,多加训练,准确使用其成立的充要条件; 二.简答题每题10分8、10分若不等式2(1)(1)3(1)0m x m x m +--+-<对任意实数x 恒成立,求实数m 取值范围 解:)10,2[9、①对一切实数x,不等式32x x a --+>恒成立,求实数a 的范围; ②若不等式32x x a --+>有解,求实数a 的范围; ③若方程32x x a --+=有解,求实数a 的范围; 解:①5-<a ②5<a ③]5,5[-∈a10.已知函数()()2lg x ax a x f --=Ⅰ若()x f 的定义域Φ≠A ,试求a 的取值范围.Ⅱ 若()x f 在()3,2∈x 上有意义, 试求a 的取值范围. Ⅲ若()0>x f 的解集为()3,2,,试求a 的值.解答:这三问中,第Ⅰ问是能成立问题,第Ⅱ问是恒成立问题,第Ⅲ问是恰成立问题.Ⅰ ()x f 的定义域非空,相当于存在实数x ,使02>--x ax a 成立,即()2x ax a x --=ϕ的最大值大于0成立,(),0444422max >+=---=a a a a x ϕ 解得 4-<a 或0>a .Ⅱ()x f 在区间()3,2上有意义,等价于()2x ax a x --=ϕ0>在()3,2恒成立,即()x ϕ的最小值大于0.解不等式组 ()⎪⎩⎪⎨⎧≥≤-,03,252ϕa 或()⎪⎩⎪⎨⎧≥>-,02,252ϕa ⎩⎨⎧≥---≥,093,5a a a 或⎩⎨⎧≥---<042,5a a a 解得 .29-≤aⅢ()0>x f 的解集为()3,2,等价于不等式12>--x ax a 的解集为()3,2;于是有012<-++a ax x ,这等价于方程012=-++a ax x 的两个根为2和3, 于是可解得5-=a .。

恒成立、存在问题

恒成立、存在问题

恒成立和存在性问题一、恒成立问题例1 已知函数f(x)=x|x-a|+2x.(1)若函数f(x)在R上是增函数,求实数a的取值范围;(2)求所有的实数a,使得对任意x∈[1,2]时,函数f(x)的图象恒在函数g(x)=2x+1图象的下方.f(x)=x3-6ax2+9a2x(a∈R),当a>0时,若对∀x∈[0,3]有f(x)≤4恒成立,求实数a的取值范围.例2已知函数f(x)=ax3+bx2-3x(a,b∈R),在点(1,f(1))处的切线方程为y+2=0.(1)求函数f(x)的解析式;(2)若对于区间[-2,2]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤c,求实数c的最小值.例3 已知函数f (x )=x -1-a ln x (a ∈R). (1)求证:f (x )≥0恒成立的充要条件是a =1; (2)若a <0,且对任意x 1,x 2∈(0,1],都有|f (x 1)-f (x 2)|≤4⎪⎪⎪⎪⎪⎪1x 1-1x 2,求实数a 的取值范围.已知函数f (x )=lg x ,求证:∀x 1,x 2∈(0,+∞),f (x 1)+f (x 2)2≤f ⎝ ⎛⎭⎪⎪⎫x 1+x 22.g (x )=1sin θ·x+ln x 在[1,+∞)上为增函数,且θ∈(0,π),则θ的值为________.二、存在性问题例1 已知函数f (x )=x 3-ax 2+10.(1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)在区间[1,2]内至少存在一个实数x ,使得f (x )<0成立,求实数a 的取值范围.f (x )=x (x -a )2,g (x )=-x 2+(a -1)x +a (其中a为常数).(1)如果函数y =f (x )和y =g (x )有相同的极值点,求a 的值;(2)设a >0,问是否存在x 0∈⎝ ⎛⎭⎪⎫-1,a 3,使得f (x 0)>g (x 0),若存在,请求出实数a 的取值范围;若不存在,请说明理由.例3 已知函数f (x )=2|x -m |和函数g (x )=x |x -m |+2m -8. (1)若方程f (x )=2|m |在[-4,+∞)上恒有惟一解,求实数m 的取值范围;(2)若对任意x 1∈(-∞,4],均存在x 2∈[4,+∞), 使得f (x 1)>g (x 2)成立,求实数m 的取值范围.(教材选修2-1 P20复习题5改编)例 命题“∃x ∈(0,+∞),x 2-ax +1≤0”为真命题,则a 的取值范围为________.f (x )=mx 33+x 2-x ,m ∈R ,函数f (x )在(2,+∞)上存在单调递增区间,求m 的取值范围.参考答案 例1【解答】 (1)f (x )=x |x -a |+2x =⎩⎨⎧x 2+(2-a )x ,x ≥a ,-x 2+(2+a )x ,x <a .由f (x )在R 上是增函数,则⎩⎪⎨⎪⎧a ≥-2-a 2,a ≤2+a 2,即-2≤a ≤2,故a 的取值范围为-2≤a ≤2.(2)由题意得对任意的实数x ∈[1,2],f (x )<g (x )恒成立,即x |x -a |<1在[1,2]恒成立,也即x -1x <a <x +1x 在[1,2]恒成立,故当x ∈[1,2]时,只要x -1x 的最大值小于a 且x +1x 的最小值大于a 即可,而当x ∈[1,2]时,⎝ ⎛⎭⎪⎪⎫x -1x ′=1+1x 2>0,从而x -1x 为增函数,由此得⎝ ⎛⎭⎪⎪⎫x -1x max =32; 当x ∈[1,2]时,⎝ ⎛⎭⎪⎪⎫x +1x ′=1-1x 2>0,从而x +1x 为增函数,由此得⎝⎛⎭⎪⎪⎫x +1x min =2, 所以32<a <2.变1【解答】 f ′(x )=3x 2-12ax +9a 2=3(x -a )(x -3a ),故f (x )在(0,a )上单调递增,在(a,3a )上单调递减,在(3a ,+∞)上单调递增.(1)当a ≥3时,函数f (x )在[0,3]上递增, 所以函数f (x )在[0,3]上的最大值是f (3),若对∀x ∈[0,3]有f (x )≤4恒成立,需要有⎩⎪⎨⎪⎧f (3)≤4,a ≥3,解得a ∈∅.(2)当1≤a <3时,有a <3≤3a ,此时函数f (x )在[0,a ]上递增,在[a,3]上递减,所以函数f (x )在[0,3]上的最大值是f (a ),若对∀x ∈[0,3]有f (x )≤4恒成立,需要有⎩⎪⎨⎪⎧f (a )≤4,1≤a <3,解得a =1.(3)当a <1时,有3>3a ,此时函数f (x )在[a,3a ]上递减,在[3a,3]上递增,所以函数f (x )在[0,3]上的最大值是f (a )或者是f (3).由f (a )-f (3)=(a -3)2(4a -3),① 0<a ≤34时,f (a )≤f (3),若对∀x ∈[0,3]有f (x )≤4恒成立,需要有⎩⎪⎨⎪⎧f (3)≤4,0<a ≤34,解得a ∈⎣⎢⎢⎡⎦⎥⎥⎤1-239,34. ②34<a <1时,f (a )>f (3),若对∀x ∈[0,3]有f (x )≤4恒成立,需要有⎩⎪⎨⎪⎧f (a )≤4,34<a <1,解得a ∈⎝ ⎛⎭⎪⎪⎫34,1.综上所述,a ∈⎣⎢⎢⎡⎦⎥⎥⎤1-239,1.例2【解答】 (1)∵f ′(x )=3ax 2+2bx -3,根据题意,得⎩⎨⎧ f (1)=-2,f ′(1)=0,即⎩⎨⎧ a +b -3=-2,3a +2b -3=0,解得⎩⎨⎧a =1,b =0,∴f (x )=x 3-3x .(2)令f ′(x )=3x 2-3=0,即3x 2-3=0,解得x =±1,(-2,-1) (-1,1) (1,2) + - + ∵f (-1)=max min 2. 则对于区间[-2,2]上任意两个自变量的值x 1,x 2,都有|f (x 1)-f (x 2)|≤f (x )max -f (x )min =4,所以c ≥4,即c 的最小值为4.变题【解答】 (1)①充分性:当a =1时,f (x )=x -1-ln x ,f ′(x )=1-1x =x -1x ,所以当x >1时,f ′(x )>0,所以函数f (x )在(1,+∞)上是增函数,当0<x <1时,f ′(x )<0,所以函数f (x )在(0,1)上是减函数,所以f (x )≥f (1)=0.②必要性.f ′(x )=1-a x =x -ax ,其中x >0.(i)当a ≤0时,f ′(x )>0恒成立,所以函数f (x )在(0,+∞)上是增函数. 而f (1)=0,所以当x ∈(0,1)时,f (x )<0,与f (x )≥0恒成立相矛盾. 所以a ≤0不满足题意. (ii)当a >0时,因为当x >a 时,f ′(x )>0,所以函数f (x )在(a ,+∞)上是增函数; 当0<x <a 时,f ′(x )<0,所以函数f (x )在(0,a )上是减函数. 所以f (x )≥f (a )=a -1-a ln a .因为f (1)=0,所以当a ≠1时,f (a )<f (1)=0,此时与f (x )≥0恒成立相矛盾. 所以a =1,综上所述,f (x )≥0恒成立的充要条件是a =1.(2)由(1)可知,当a <0时,函数f (x )在(0,1]上是增函数,又函数y =1x 在(0,1]上是减函数,不妨设0<x 1≤x 2≤1,则|f (x 1)-f (x 2)|=f (x 2)-f (x 1),⎪⎪⎪⎪⎪⎪⎪⎪1x 1-1x 2=1x 1-1x 2, 所以|f (x 1)-f (x 2)|≤4⎪⎪⎪⎪⎪⎪⎪⎪1x 1-1x 2等价于f (x 2)-f (x 1)≤4x 1-4x 2,即f (x 2)+4x 2≤f (x 1)+4x 1. 设h (x )=f (x )+4x =x -1-a ln x +4x .则|f (x 1)-f (x 2)|≤4⎪⎪⎪⎪⎪⎪⎪⎪1x 1-1x 2等价于函数h (x )在区间(0,1]上是减函数. 因为h ′(x )=1-a x -4x 2=x 2-ax -4x 2,所以所证命题等价于证x 2-ax -4≤0在x ∈(0,1]时恒成立,即a ≥x -4x 在x ∈(0,1]上恒成立,即a 不小于y =x -4x 在区间(0,1]内的最大值.而函数y =x -4x 在区间(0,1]上是增函数,所以y =x -4x 的最大值为-3, 所以a ≥-3.又a <0,所以a ∈[-3,0).θ=π2 【解析】 由题意,g ′(x )=-1sin θ·x 2+1x≥0在[1,+∞)上恒成立,即sin θ·x -1sin θ·x 2≥0在[1,+∞)上恒成立.∵θ∈(0,π),∴sin θ>0.故sin θ·x -1≥0在[1,+∞)上恒成立,只需sin θ·1-1≥0,即sin θ≥1,只有sin θ=1.结合θ∈(0,π),得θ=π2.存在问题【解答】 (1)当a =1时,f ′(x )=3x 2-2x ,f (2)=14, 曲线y =f (x )在点(2,f (2))处的切线斜率k =f ′(2)=8, 所以曲线y =f (x )在点(2,f (x ))处的切线方程为 8x -y -2=0.(2)解法一:f ′(x )=3x 2-2ax =3x ⎝⎛⎭⎪⎪⎫x -23a (1≤x ≤2), 当23a ≤1,即a ≤32时,f ′(x )≥0,f (x )在[1,2]上为增函数, 故f (x )min =f (1)=11-a ,所以11-a <0,a >11,这与a ≤32矛盾.当1<23a <2,即32<a <3时,当1≤x <23a ,f ′(x )<0;当23a <x ≤2,f ′(x )>0,所以x =23a 时,f (x )取最小值,因此有f ⎝ ⎛⎭⎪⎪⎫23a <0,即827a 3-49a 3+10=-427a 3+10<0,解得a >3352,这与32<a <3矛盾;当23a ≥2,即a ≥3时,f ′(x )≤0,f (x )在[1,2]上为减函数,所以f (x )min =f (2)=18-4a ,所以18-4a <0,解得a >92,这符合a ≥3.综上所述,a 的取值范围为a >92.解法二:由已知得:a >x 3+10x 2=x +10x2,设g (x )=x +10x 2(1≤x ≤2),g ′(x )=1-20x3,∵1≤x ≤2,∴g ′(x )<0,所以g (x )在[1,2]上是减函数.g (x )min =g (2),所以a >92.【解答】 (1)f (x )=x (x -a )2=x 3-2ax 2+a 2x , 则f ′(x )=3x 2-4ax +a 2=(3x -a )(x -a ),令f ′(x )=0,得x =a 或a3,而g (x )在x =a -12处有极大值.∴a -12=a ⇒a =-1,或a -12=a 3⇒a =3.综上,a =3或a =-1.(2)假设存在,即存在x 0∈⎝ ⎛⎭⎪⎫-1,a 3,使得 f (x 0)-g (x 0)=x 0(x 0-a )2-[-x 20+(a -1)x 0+a ]=x 0(x 0-a )2+(x 0-a )(x 0+1)=(x 0-a )[x 20+(1-a )x 0+1]>0,当x 0∈⎝ ⎛⎭⎪⎫-1,a 3时,又a >0,故x 0-a <0, 则存在x 0∈⎝ ⎛⎭⎪⎫-1,a 3,使得x 20+(1-a )x 0+1<0. ①当a -12>a 3,即a >3时,由⎝ ⎛⎭⎪⎫a 32+(1-a )⎝ ⎛⎭⎪⎫a 3+1<0得a >3或a <-32,∴a >3;②当-1≤a -12≤a 3,即0<a ≤3时,4-(a -1)24<0得a <-1或a >3,∴a 无解.综上,a >3.【解答】 (1)f ′(x )=-x 2-23x +53,令f ′(x )>0,即x 2+23x -53<0,解得-53<x <1,∴f (x )的单调增区间为⎝ ⎛⎭⎪⎫-53,1;单调减区间为⎝ ⎛⎭⎪⎫-∞,-53和(1,+∞).(2)由(1)可知:当x ∈[0,1]时,f (x )单调递增,∴当x ∈[0,1]时,f (x )∈[f (0),f (1)],即f (x )∈[-4,-3].又g ′(x )=3x 2-3a 2,且a ≥1,∴当x ∈[0,1]时,g ′(x )≤0,g (x )单调递减,∴当x ∈[0,1]时,g (x )∈[g (1),g (0)],即g (x )∈[-3a 2-2a +1,-2a ],又对于任意x 1∈[0,1],总存在x 0∈[0,1],使得f (x 1)=g (x 0)成立⇔[-4,-3]⊆[-3a 2-2a +1,-2a ],即⎩⎪⎨⎪⎧-3a 2-2a +1≤-4,-3≤-2a ,解得1≤a ≤32.【解答】 (1)由f (x )=2|m |在x ∈[-4,+∞)上恒有惟一解, 得|x -m |=|m |在x ∈[-4,+∞)上恒有惟一解. 当x -m =m 时,得x =2m ,则2m =0或2m <-4, 即m <-2或m =0.综上,m 的取值范围是m <-2或m =0.(2)f (x )=⎩⎨⎧2x -m (x ≥m ),2m -x (x <m ),原命题等价为f (x 1)min >g (x 2)min .①当4≤m ≤8时,f (x )在(-∞,4]上单调递减,故f (x )≥f (4)=2m -4,g (x )在[4,m ]上单调递减,[m ,+∞)上单调递增,故g (x )≥g (m )=2m -8,所以2m -4>2m -8,解得4<m <5或m >6.所以4<m <5或6<m ≤8.②当m >8时,f (x )在(-∞,4]上单调递减,故f (x )≥f (4)=2m -4,g (x )在⎣⎢⎢⎡⎦⎥⎥⎤4,m 2单调递增,⎣⎢⎢⎡⎦⎥⎥⎤m 2,m 上单调递减,[m ,+∞)上单调递增,g (4)=6m -24>g (m )=2m -8,故g (x )≥g (m )=2m -8,所以2m -4>2m -8, 解得4<m <5或m >6.所以m >8.③0<m <4时,f (x )在(-∞,m ]上单调递减,[m,4]上单调递增, 故f (x )≥f (m )=1.g (x )在[4,+∞)上单调递增,故g (x )≥g (4)=8-2m ,所以8-2m <1,即72<m <4.④m ≤0时,f (x )在(-∞,m ]上单调递减,[m,4]上单调递增, 故f (x )≥f (m )=1.g (x )在[4,+∞)上单调递增,故g (x )≥g (4)=8-2m ,所以8-2m <1,即m >72(舍去).综上,m 的取值范围是⎝⎛⎭⎪⎪⎫72,5∪(6,+∞).【答案】 a ≥2【解析】 原命题等价为∃x ∈(0,+∞),x 2+1x ≤a ,令f (x )=x 2+1x =x +1x ≥2,所以a ≥2.。

函数恒成立存在性问题

函数恒成立存在性问题

函数恒成立存在性问题f X 恒成立af X max ;af x恒成立af x mnf X能成立af X m in ;a f x 能成立a f x max另一转化方法:W x D,f(x) A 在D 上恰成立,等价于 f(x)在D 上的最小值f m in (x) x D, f(x) B 在D 上恰成立,则等价于 f(x)在D 上的最大值f max (x) B .5、设函数 f x 、g x ,对任意的 x 1a ,b ,存在 x 2c ,d ,使得 f x i g x 2 ,则 f max x g max x6、设函数 f x 、g x ,存在 x i a , b ,存在 x 2 c, d ,使得 f x i g x 2 ,则 f max x g min x7、设函数 f x 、g x ,存在 x ia ,b ,存在 x 2c, d ,使得f x ig x 2 ,则 f min x g max x 8、若不等式f x g x 在区间D 上包成立,则等价于在区间 D 上函数y f x 和图象在函数 y g x 图象上方; 9、若不等式f x g x 在区间D 上包成立,则等价于在区间D 上函数yf x 和图象在函数y g x 图象下方;例题讲解:题型一 I 、常见方法i 、已知函数 f (x) x 2 2ax i , g(x)-,其中 a 0 , x 0 . xi )对任意x [i,2],都有f (x) g(x)恒成立,求实数a 的取值范围;2 )对任意x i [i,2],x 2 [2,4],都有f(x i ) g(x 2)恒成立,求实数a 的取值范围;a . i ..一 i2、设函数h(x) — x b,对任意a [―,2],都有h(x) io 在x [—,i]恒成立,求实数b 的取值范围.x 2 4xi3、已知两函数f(x) x , g(x) - m,对任息x i0,2 ,存在x 2 i,2 ,使得f(x i ) g x 2,则实数m 的取值范围为 _____________题型二、十参换位法(已知某个参数的范围,整理成关于这个参数的函数)... (2)_i 、对于满足 p 2的所有头数p,求使不等式x px i p 2x 恒成立的x 的取值范围。

高一数学复习考点知识与题型讲解14---恒成立和存在性问题

高一数学复习考点知识与题型讲解14---恒成立和存在性问题

高一数学复习考点知识与题型讲解第14讲恒成立和存在性问题1 恒成立和存在性问题单变量的恒成立问题①恒成立,则;②恒成立,则;③恒成立,则;④恒成立,则;单变量的存在性问题①,使得成立,则;②,使得成立,则;③,使得恒成立,则;④,使得恒成立,则;双变量的恒成立与存在性问题①,使得恒成立,则;②,使得恒成立,则;③恒成立,则;④,使得恒成立,则;相等问题①,使得,则两个函数的值域的交集不为空集;②,使得,则的值域的值域2 解题方法恒成立和存在性问题最终可转化为最值问题,具体的方法有◆直接最值法◆分类参数法◆变换主元法◆数形结合法【题型一】恒成立和存在性问题的解题方法1 直接构造函数最值法【典题1】设函数的最大值是,若对于任意的,恒成立,则的取值范围是.【解析】当时,;当时,,则,即.由题意知<在上恒成立,即<在上恒成立,(把不等式中移到右边,使得右边为,从而构造函数求最值)令,则问题等价于在上恒成立,在上,-,即.【点拨】①直接构造函数最值法:遇到类似不等式恒成立问题,可把不等式变形为,从而构造函数求其最值解决恒成立问题;②在求函数的最值时,一定要优先考虑函数的定义域;③题目中在上是取不到最大值,,而要使得恒成立,可等于,即,而不是.2 分离参数法【典题1】已知函数关于点对称,若对任意的,恒成立,则实数k的取值范围为.【解析】由为奇函数,可得其图象关于对称,可得的图象关于对称,函数关于点-对称,可得,对任意的恒成立,-恒成立,【思考:此时若利用最值法,求函数-的最小值,第一函数较复杂,第二函数含参要分离讨论,路漫漫其修远兮,务必另辟蹊径】即在恒成立,所以3,(使得不等式一边是参数,另一边不含关于的式子,达到分离参数的目的)令,由,可得,设,当时,取得最大值,则的取值范围是,【点拨】①分离参数法:遇到类似或等不等式恒成立问题,可把不等式化简为或的形式,达到分离参数的目的,再求解的最值处理恒成立问题;②恒成立问题最终转化为最值问题,而分离参数法,最好之处就是转化后的函数不含参,避免了麻烦的分离讨论.【典题2】已知,其中为常数(1)当时,求的值;(2)当时,关于的不等式恒成立,试求的取值范围;【解析】(1) ⇒ -⇒ - ⇒ ⇒;(2)⇒⇒,令,,设,则在上为增函数⇒ 时,有最小值为2,.【点拨】在整个解题的过程中不断的利用等价转化,把问题慢慢变得更简单些.3 变换主元法【典题1】对任意,不等式恒成立,求的取值范围.思考痕迹见到本题中“恒成立”潜意识中认为是变量,是参数,这样会构造函数,而已知条件是,觉得怪怪的做不下去;此时若把看成变量,看成参数呢?【解析】因为不等式恒成立不等式恒成立...①,令若要使得①成立,只需要解得或故的取值范围或【点拨】变换主元法,就是要分辨好谁做函数的自变量,谁做参数,方法是以已知范围的字母为自变量.4 数形结合法【典题1】已知当时,有恒成立,求的取值范围.思考痕迹本题若用直接最值法,去求函数的最大值,就算用高二学到的导数求解也是难度很大的事情;用分离参数法呢?试试也觉得一个硬骨头.看看简单些的想法吧!【解析】不等式恒成立等价于恒成立...①,令,若①成立,则当时,的图像恒在图像的下方,则需要或(不要漏了,因为,不一定是指数函数)又,解得或即实数的取值范围为【点拨】①数形结合法:恒成立⇒在上,函数的图像在函数图像的下方.② 遇到不等式恒成立,可以把不等式化为用数形结合法,而函数与最好是熟悉的函数类型,比如本题中构造出,两个常见的基本初级函数.【题型二】恒成立与存在性问题混合题型【典题1】已知函数.(1)若对任意,任意都有成立,求实数的取值范围.(2)若对任意,总存在使得成立,求实数m的取值范围.【解析】(1)由题设函数,.对任意,任意都有成立,知:,在上递增,又在上递减,有,的范围为(2)由题设函数,.对任意,总存在,使得成立,知,有,即,的范围为.【点拨】对于双变量的恒成立--存在性问题,比如第二问中怎么确定,即到底是函数最大值还是最小值呢?具体如下思考如下,先把看成定值,那,都有,当然是要;再把看成定值,那,都有,当然是;故问题转化为.其他形式的双变量成立问题同理,要理解切记不要死背..【典题2】设,,若对于任意,总存在,使得成立,则的取值范围是.【解析】,当时,,当时,,由,即,,,故,又因为,且.由递增,可得-,对于任意,总存在,使得成立,可得, 可得, . 巩固练习1(★★) 已知 对一切 上恒成立,则实数 的取值范围是. 【答案】【解析】可化为,令 = - ,由 -∞, ,得 [,+∞), 则 - - ,- - 在 , ∞ 上递减,当 时- - 取得最大值为,所以.故答案为:, ∞ .2(★★)若不等式 对满足 的所有 都成立,求 的取值范围. 【答案】【解析】令x m x m f 21)1()(2-+-=;不等式()2211x m x ->-对满足2m ≤的所有m 都成立⇔对任意22≤≤-m ,021)1(2<-+-x m x 恒成立⇔⎩⎨⎧<-->-+⇔⎩⎨⎧<<-012203220)2(0)2(22x x x x f f ,解得。

恒成立与存在性问题的解题策略

恒成立与存在性问题的解题策略

“恒成立问题”与“存在性问题”得基本解题策略一、“恒成立问题”与“存在性问题”得基本类型恒成立、能成立、恰成立问题得基本类型1、恒成立问题得转化:恒成立;2、能成立问题得转化:能成立;3、恰成立问题得转化:在M上恰成立得解集为M另一转化方法:若在D上恰成立,等价于在D上得最小值,若在D上恰成立,则等价于在D上得最大值、4、设函数、,对任意得,存在,使得,则5、设函数、,对任意得,存在,使得,则6、设函数、,存在,存在,使得,则7、设函数、,存在,存在,使得,则8、设函数、,对任意得,存在,使得,设f(x)在区间[a,b]上得值域为A,g(x)在区间[c,d]上得值域为B,则A B、9、若不等式在区间D上恒成立,则等价于在区间D上函数与图象在函数图象上方;10、若不等式在区间D上恒成立,则等价于在区间D上函数与图象在函数图象下方;恒成立问题得基本类型在数学问题研究中经常碰到在给定条件下某些结论恒成立得命题、函数在给定区间上某结论成立问题,其表现形式通常有: 在给定区间上某关系恒成立; 某函数得定义域为全体实数R;●某不等式得解为一切实数;❍某表达式得值恒大于a等等…恒成立问题,涉及到一次函数、二次函数得性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生得综合解题能力,在培养思维得灵活性、创造性等方面起到了积极得作用。

因此也成为历年高考得一个热点。

恒成立问题在解题过程中大致可分为以下几种类型:①一次函数型;②二次函数型;③变量分离型;④根据函数得奇偶性、周期性等性质;⑤直接根据函数得图象。

二、恒成立问题解决得基本策略大家知道,恒成立问题分等式中得恒成立问题与不等式中得恒成立问题。

等式中得恒成立问题,特别就是多项式恒成立问题,常简化为对应次数得系数相等从而建立一个方程组来解决问题得。

(一)两个基本思想解决“恒成立问题”思路1、思路2、如何在区间D上求函数f(x)得最大值或者最小值问题,我们可以通过习题得实际,采取合理有效得方法进行求解,通常可以考虑利用函数得单调性、函数得图像、二次函数得配方法、三角函数得有界性、均值定理、函数求导等等方法求函数f(x)得最值。

不等式的恒成立与存在性问题

不等式的恒成立与存在性问题

恒成立与存在性问题【基础知识整合】1、恒成立问题①.x D ∀∈,()a f x >恒成立,则max ()a f x >②.x D ∀∈,()a f x <恒成立,则min()a f x <③.x D ∀∈,()()f x g x >恒成立,记()() (0)F x f x g x =->,则min 0() F x >④.x D ∀∈,()()f x g x <恒成立,记()() (0)F x f x g x =-<,则max 0() F x <⑤.1122,x D x D ∀∈∈,12()()f x g x >恒成立,则min max ()()f x g x >⑥.1122,x D x D ∀∈∈,12()()f x g x <恒成立,则max min ()()f x g x <2、存在性问题①.x D ∃∈,()a f x >成立,则min ()a f x >②.x D ∃∈,()a f x <成立,则max()a f x <③.x D ∃∈,()()f x g x >成立,记()() (0)F x f x g x =->,则max 0() F x >④.x D ∃∈,()()f x g x <成立,记()() (0)F x f x g x =-<,则min 0() F x <⑤.1122,x D x D ∃∈∈,12()()f x g x >成立,则max min ()()f x g x >⑥.1122,x D x D ∃∈∈,12()()f x g x <成立,则min max ()()f x g x <3、恒成立与存在性混合不等问题①.1122,x D x D ∀∈∃∈,12()()f x g x >成立,则min min ()()f x g x >②.1122,x D x D ∀∈∃∈,12()()f x g x <成立,则max max ()()f x g x <4、恒成立与存在性混合相等问题若()f x ,()g x 的值域分别为,A B ,则①.1122,x D x D ∀∈∃∈,12()()f x g x =成立,则A B ⊆②.1122,x D x D ∃∈∃∈,12()()f x g x =成立,则A B ≠∅ 5、解决高中数学函数的存在性与恒成立问题常用以下几种方法①函数性质法;②分离参数法;③主参换位法;④数形结合法等.6、一次函数)0()(≠+=k b kx x f 若[]n m x f y ,)(在=内恒有0)(>x f ,则根据函数的图像可得⎩⎨⎧><⎩⎨⎧>>0)(00)(0n f a m f a 或可合并成⎩⎨⎧>>0)(0)(n f m f ,同理若[]n m x f y ,)(在=内恒有0)(<x f 则有⎩⎨⎧<<0)(0)(n f m f 例1:对于满足||2p ≤的所有实数p ,求使不等式212x px p x ++>+恒成立的x 的取值范围.例2:若不等式)1(122->-x m x 的所有22≤≤-m 都成立,则x 的取值范围__________7、二次函数——利用判别式、韦达定理及根的分布求解有以下几种基本类型:类型1:设2()(0).f x ax bx c a =++≠R x x f ∈>在0)(上恒成立00<∆>⇔且a ;R x x f ∈<在0)(上恒成立00<∆<⇔且a 类型2:设2()(0).f x ax bx c a =++≠(用函数图象解决,不太适用)(1)当0>a 时,],[0)(βα∈>x x f 在上恒成立,222()00()0.bb b a aa f f ααββαβ⎧⎧⎧-<≤-≤->⎪⎪⎪⇔⎨⎨⎨⎪⎪⎪>∆<>⎩⎩⎩或或],[0)(βα∈<x x f 在上恒成立()0,()0.f f αβ<⎧⇔⎨<⎩(2)当0<a 时,],[0)(βα∈>x x f 在上恒成立()()0,0.f f αβ>⎧⎪⇔⎨>⎪⎩],[0)(βα∈<x x f 在上恒成立,222()00()0.b b b a a af f ααββαβ⎧⎧⎧-<≤-≤->⎪⎪⎪⇔⎨⎨⎨⎪⎪⎪>∆<<⎩⎩⎩或或【基础典例分析】例1:已知函数()log a f x x =,()2log (22)a g x x t =+-,其中0a >且1a ≠,t R ∈.(Ⅰ)若4t =,且1[,2]4x ∈时,()()()F x g x f x =-的最小值是-2,求实数a 的值;(Ⅱ)若01a <<,且1[,2]4x ∈时,有()()f x g x ≥恒成立,求实数t 的取值范围.例2:已知=)(x f x x +221,=)(x g a x -+)1ln(,(Ⅰ)若存在]2,0[,21∈x x ,使得)()(21x g x f >,求实数a 的取值范围;(Ⅱ)若存在]2,0[,21∈x x ,使得)()(21x g x f =,求实数a 的取值范围.例3:设函数()21ln 2a f x a x x bx -=+-,a R ∈且1a ≠.曲线()y f x =在点()()1,1f 处的切线的斜率为0.若存在[)1,x ∈+∞,使得()1af x a <-,求a 的取值范围.例4:已知函数()133x x af x b+-+=+(Ⅰ)当1a b ==时,求满足()3x f x =的x 的取值;(Ⅱ)若函数()f x 是定义在R 上的奇函数;①存在R t ∈,不等式()()2222f t t f t k -<-有解,求k 的取值范围;②若()g x 满足()()()12333x x f x g x -⋅+=-⎡⎤⎣⎦,若对任意x R ∈,不等式(2)()11g x m g x ⋅-≥恒成立,求实数m 的最大值.例5:已知=)(x f x x +221,=)(x g a x -+)1ln(,⑴若存在]2,0[∈x ,使得)()(x g x f =,求实数a 的取值范围;⑵若存在]2,0[∈x ,使得)()(x g x f >,求实数a 的取值范围;⑶若对任意]2,0[∈x ,恒有)()(x g x f >,求实数a 的取值范围;⑷若对任意]2,0[,21∈x x ,恒有)()(21x g x f >,求实数a 的取值范围;⑸若对任意]2,0[2∈x ,存在]2,0[1∈x ,使得)()(21x g x f >,求实数a 的取值范围;⑹若对任意]2,0[2∈x ,存在]2,0[1∈x ,使得)()(21x g x f =,求实数a 的取值范围;⑺若存在]2,0[,21∈x x ,使得)()(21x g x f >,求实数a 的取值范围;⑻若存在]2,0[,21∈x x ,使得)()(21x g x f =,求实数a 的取值范围.【高考真题研究】(2017天津卷理8)已知函数()23,12,1x x x f x x x x ⎧-+⎪=⎨+>⎪⎩,设a R ∈,若关于x 的不等式()2xf x a + 在R 上恒成立,则a 的取值范围是()(A)47,216⎡⎤-⎢⎥⎣⎦(B)4739,1616⎡⎤-⎢⎥⎣⎦(C)23,2⎡⎤-⎣⎦(D)3923,16⎡⎤-⎢⎥⎣⎦(2015全国卷Ⅰ理12)设函数()f x =(21)xe x ax a --+,其中a 1,若存在唯一的整数0x ,使得0()f x 0,则a 的取值范围是()(A)[32e-,1)(B)[32e -,34)(C)[32e ,34)(D)[32e,1)(2014全国卷Ⅰ理11)已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为()(A)(2,)+∞(B)(,2)-∞-(C)(1,)+∞(D)(,1)-∞-(2015全国卷Ⅱ理21(2))设函数()2emxf x x mx =+-.若对于任意[]12,1,1x x ∈-,都有()()121e f x f x -- ,求m 的取值范围.(2015山东卷理21(2))设函数()()()2ln 1f x x a x x =++-,其中a R ∈,若0x ∀>,()0f x 成立,求a 的取值范围.【名题精选,提升能力】1、函数2()3f x x ax =++,当[]2,2x ∈-时,()f x a ≥恒成立,则a 的取值范围是2、已知函数()f x =(,1]-∞上有意义,则a 的取值范围是3、若不等式()2211x m x ->-对任意[]1,1m ∈-恒成立,则x 的取值范围是4、若=)(x f x x +221,=)(x g a x -+)1ln(,对∀123,,[0,2]x x x ∈,恒有()()()123f x f x g x +>,则实数a 的取值范围是5、已知数列{}n a 是各项均不为零的等差数列,n S 为其前n项和,且n a =(n *∈Ν).若不等式8nn a n λ+≤对任意n *∈Ν恒成立,则实数λ的最大值为5、设函数x x e x f 1)(22+=,x ex e x g 2)(=,对),0(,21+∞∈∀x x ,不等式1)()(21+≤k x f k x g 恒成立,则正数k 的取值范围为7、已知函数213,1()log , 1x x x f x x x ⎧-+≤⎪=⎨>⎪⎩,()|||1|g x x k x =-+-,若对任意的12,x x R ∈,都有12()()f x g x ≤成立,则实数k 的取值范围为8、当210≤<x 时,x a x log 4<,则a 的取值范围是()(A)(0,22)(B)(22,1)(C)(1,2)(D)(2,2)9、已知函数()931x x f x m m =-⋅++对()0 x ∈+∞,的图象恒在x 轴上方,则m 的取值范围是()(A)22m -<<+(B)2m<(C)2m<+(D)2m ≥+10、设函数3()f x x x =+,x R ∈.若当02πθ<<时,不等式0)1()sin (>-+m f m f θ恒成立,则实数m 的取值范围是()(A)1(,1]2(B)1(,1)2(C)[1,)+∞(D)(,1]-∞11、定义在R 上的偶函数()f x 在[)0,+∞上递减,若()()()ln 1ln 121f ax x f ax x f -+++--≥对[]1,3x ∈恒成立,则实数a 的取值范围为()(A)()2,e (B)1,e⎡⎫+∞⎪⎢⎣⎭(C)1,e e ⎡⎤⎢⎥⎣⎦(D)12ln3,3e+⎡⎤⎢⎥⎣⎦12、不等式2220x axy y -+≥对于任意]2,1[∈x 及]3,1[∈y 恒成立,则实数a 的取值范围是()(A)a ≤22(B)a ≥22(C)a ≤311(D)a ≤2913、已知函数()()2ln 1f x a x x =+-,若对(),0,1p q ∀∈,且p q ≠,有()()112f p f q p q+-+>-恒成立,则实数a 的取值范围为()(A)(),18-∞(B)(],18-∞(C)[)18,+∞(D)()18,+∞14、若对[),0,x y ∀∈+∞,不等式2242x y x y ax ee +---≤++,恒成立,则实数a 的最大值是()(A)14(B)1(C)2(D)1215、已知函数2ln ()()()x x b f x b R x+-=∈,若存在1[,2]2x ∈,使得()'()f x x f x >-⋅,则实数b的取值范围是()(A)(-∞(B)3(,2-∞(C)9(,)4-∞(D)(,3)-∞16、设曲线()e x f x x =--上任意一点处的切线为1l ,总存在曲线()32cos g x ax x =+上某点处的切线2l ,使得12l l ⊥,则实数a 的取值范围为()(A)[]1,2-(B)()3,+∞(C)21,33⎡⎤-⎢⎥⎣⎦(D)12,33⎡⎤-⎢⎥⎣⎦17、若曲线21:C y x =与曲线2:x C y ae =(0)a >存在公共切线,则a 的取值范围为()(A)28[,)e+∞(B)28(0,e(C)24[,)e+∞(D)24(0,]e18、若存在两个正实数,x y ,使得等式()()324ln ln 0x a y ex y x +--=成立,其中e 为自然对数的底数,则实数a 的取值范围是()(A)(),0-∞(B)30,2e ⎛⎤ ⎥⎝⎦(C)3,2e⎡⎫+∞⎪⎢⎣⎭(D)()3,0,2e⎡⎫-∞+∞⎪⎢⎣⎭ 19、已知函数321()3f x x x ax =++.若1()x g x e =,对任意11[,2]2x ∈,存在21[,2]2x ∈,使12'()()f x g x ≤成立,则实数a 的取值范围是()(A)(,8]e-∞-(B)[8,)e-+∞(C))e (D)3(,]32e -20、设函数()3269f x x x x =-+,()32111(1)323a g x x x ax a +=-+->,若对任意的[]20,4x ∈,总存在[]10,4x ∈,使得()()12f x g x =,则实数a 的取值范围为()(A)91,4⎛⎤ ⎥⎝⎦(B)[)9,+∞(C)][91,9,4⎛⎫⋃+∞ ⎪⎝⎭(D)][39,9,24⎡⎫⋃+∞⎪⎢⎣⎭21、设函数()()()21ln 31f x g x ax x =-=-+,若对任意[)10,x ∈+∞,都存在2x R ∈,使得()()12f x g x =,则实数a 的最大值为()(A)94(B)2(C)92(D)422、已知()()2cos ,43f x x x g x x x =+=-+-,对于[],1a m m ∀∈+,若,03b π⎡⎤∃∈-⎢⎥⎣⎦,满足()()g a f b =,则m 的取值范围是()(A)22⎡-+⎣(B)1⎡+⎣(C)2⎡+⎣(D)12⎡+⎣23、已知函数()()()221ln ,,1xf x ax a x x a Rg x e x =-++∈=--,若对于任意的()120,,x x R ∈+∞∈,不等式()()12f x g x ≤恒成立,,则实数a 的取值范围为()(A)[)1,0-(B)[]1,0-(C)3,2⎡⎫-+∞⎪⎢⎣⎭(D)3,2⎛⎤-∞- ⎥⎝⎦。

恒成立与存在性问题

恒成立与存在性问题

01
总结词
一次函数性质简单,常用于基础问 题。
总结词
一次函数在定义域内单调,不存在 极值点。
03
02
总结词
一次函数图像为直线,单调性明显。
总结词
一次函数在定义域内单调,恒成立 与存在性问题较易解决。
04
二次函数的恒成立与存在性问题实例
总结词
二次函数开口方向由二次项系数决定。
总结词
二次函数在区间$[-infty, frac{b}{2a}]$上单调递增,在区间$[-
利用三角函数的周期性、对称性、数形结合 等方法,判断三角函数在某个区间内是否存 在极值点或零点。
三角函数存在性问题的应 用
在解决实际问题中,如物理、工程等领域, 常常需要判断某个三角函数是否满足某些条
件,如是否存在最优解或可行解。
03
恒成立与存在性问题的解 法
分离参数法
总结词
分离参数法是一种通过将参数分离到不等式的两边,从而简化问题的方法。
判别式法
总结词
判别式法是一种通过引入判别式来解决 问题的方法。
VS
详细描述
判别式法的基本思想是通过引入判别式来 简化方程的解的求解过程。这种方法在处 理一元二次方程和二元二次方程组时非常 有效。通过判别式,我们可以更容易地找 到方程的解,并且可以更好地理解解的性 质和分布。
04
实例分析
一次函数的恒成立与存在性问题实例
详细描述
分离参数法的基本思想是将参数从不等式中分离出来,单独放在不等式的另一 边,这样可以更容易地找到参数的取值范围,从而解决问题。这种方法在处理 包含参数的不等式问题时非常有效。
数形结合法
总结词
数形结合法是一种通过将问题转化为 图形问题,从而直观地理解问题的方 法。

恒成立问题与存在性问题(最新精华)

恒成立问题与存在性问题(最新精华)

恒成立问题与存在性问题思路一:(1)若函数)(x f 在D 区间上存在最小值min )(x f 和最大值max )(x f ,则不等式a x f >)(在区间D 上恒成立a x f >⇔min )(;不等式a x f ≥)(在区间D 上恒成立a x f ≥⇔min )(;不等式a x f <)(在区间D 上恒成立a x f <⇔max )(;不等式a x f ≤)(在区间D 上恒成立a x f ≤⇔max )(;(2)若函数在D 区间上不存在最小值min )(x f 和最大值max )(x f ,且值域为),(n m 则 不等式a x f >)(或))((a x f ≥在区间D 上恒成立a m ≥⇔;不等式a x f <)(或a x f ≤)(在区间D 上恒成立a n ≤⇔。

例题1:已知函数.ln )(x x x f =(1)求函数.ln )(x x x f =的最小值;(2)若对所有的1≥x 都有1)(-≥ax x f ,求实数a 的取值范围。

答案:(1)11min )()(---==e e f x f ;(2)]1,(-∞变式:设函数)1ln(2)1()(2x x x f +-+=(1)求函数)(x f 的单调区间;(2)若当]1,1[1--∈-e e x 时,不等式m x f <)(恒成立,求实数m 的取值范围;(3)若关于x 的方程a x x x f ++=2)(在区间]2,0[上恰有两个相异实根,求实数a 的取 值范围。

答案:(1)递增区间是),0(+∞;递减区间是)0,1(-(2)22->e m(3))3ln 23,2ln 22(--思路二(1)若函数)(x f 在D 区间上存在最小值min )(x f 和最大值max )(x f ,即],[)(n m x f ∈则不等式有解的问题有下列结论:不等式a x f >)(在区间D 上有解max )(x f a <⇔;不等式a x f ≥)(在区间D 上有解max )(x f a ≤⇔;不等式a x f <)(在区间D 上有解min )(x f a >⇔;不等式a x f ≤)(在区间D 上有解min )(x f a ≥⇔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题 恒成立存在性问题知识点梳理1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈Bx f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;9、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;题型一、常见方法1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的取值范围.3、已知两函数2)(x x f =,m x g x-⎪⎭⎫ ⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为题型二、主参换位法(已知某个参数的范围,整理成关于这个参数的函数)1、对于满足2p ≤的所有实数p,求使不等式212x px p x ++>+恒成立的x 的取值范围。

2、已知函数()ln()(x f x e a a =+为常数)是实数集R 上的奇函数,函数()()sin g x f x x λ=+是区间[]1,1-上的减函数, (Ⅰ)求a 的值;(Ⅱ)若[]2()11,1g x t t x λ≤++∈-在上恒成立,求t 的取值范围;题型三、分离参数法(欲求某个参数的范围,就把这个参数分离出来)1、当()1,2x ∈时,不等式240x mx ++<恒成立,则m 的取值范围是 .题型四、数形结合(恒成立问题与二次函数联系(零点、根的分布法)) 1、若对任意x R ∈,不等式||x ax ≥恒成立,则实数a 的取值范围是________2、已知函数()222f x x kx =-+,在1x ≥-恒有()f x k ≥,求实数k 的取值范围。

题型五、不等式能成立问题(有解、存在性)的处理方法若在区间D 上存在实数x 使不等式()f x A >成立,则等价于在区间D 上()max f x A >; 若在区间D 上存在实数x 使不等式()f x B <成立,则等价于在区间D 上的()min f x B <.1、存在实数x ,使得不等式2313x x a a ++-≤-有解,则实数a 的取值范围为______。

2、已知函数()()21ln 202f x x ax x a =--≠存在单调递减区间,求a 的取值范围小结:恒成立与有解的区别恒成立和有解是有明显区别的,以下充要条件应细心思考,甄别差异,恰当使用,等价转化,切不可混为一体。

①不等式()f x M <对x I ∈时恒成立max ()f x M•⇔<,x I ∈。

即()f x 的上界小于或等于M ; ②不等式()f x M <对x I ∈时有解min ()f x M•⇔<,x I ∈。

或()f x 的下界小于或等于M ; ③不等式()f x M >对x I ∈时恒成立min ()f x M•⇔>,x I ∈。

即()f x 的下界大于或等于M ; ④不等式()f x M >对x I ∈时有解max ()f x M ⇔>,x I ∈.。

或()f x 的上界大于或等于M ;课后作业:1、设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为( ) (A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤(D ){2,3}2、若任意满足05030x y x y y -≤⎧⎪+-≥⎨⎪-≤⎩的实数,x y ,不等式222()()a x y x y +≤+恒成立,则实数a 的最大值是 ___ .3、不等式2sin 4sin 10x x a -+-<有解,则a 的取值范围是4、不等式ax ≤[]0,3x ∈内恒成立,求实数a 的取值范围。

5、已知两函数()2728f x x x c =--,()322440g x x x x =+-。

(1)对任意[]3,3x ∈-,都有()()f x g x ≤)成立,求实数c 的取值范围; (2)存在[]3,3x ∈-,使()()f x g x ≤成立,求实数c 的取值范围; (3)对任意[]12,3,3x x ∈-,都有()()12f x g x ≤,求实数c 的取值范围; (4)存在[]12,3,3x x ∈-,都有()()12f x g x ≤,求实数c 的取值范围;6、设函数3221()23(01,)3f x x ax a x b a b R =-+-+<<∈. (Ⅰ)求函数()f x 的单调区间和极值;(Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤成立,求a 的取值范围。

7、已知A 、B 、C 是直线 上的三点,向量OA →,OB →,OC →满足:()[]()0OC 1x ln OB 1f 2y OA =⋅++⋅'+-. (1)求函数y =f(x)的表达式;(2)若x >0,证明:f(x)>2xx +2;(3)若不等式()3bm 2m x f x 21222--+≤时,[]1,1x -∈及[]1,1b -∈都恒成立,求实数m 的取值范围.8、设()x ln 2x q px x f --=,且()2epqe e f --=(e 为自然对数的底数)(I) 求 p 与 q 的关系;(II)若()x f 在其定义域内为单调函数,求 p 的取值范围;(III)设()xe2x g =,若在[]e ,1上至少存在一点0x ,使得()()00x g x f >成立, 求实数 p 的取值范围.参考答案:题型一、常见方法1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;【分析:】1)思路、等价转化为函数0)()(>-x g x f 恒成立,在通过分离变量,创设新函数求最值解决. 2)思路、对在不同区间内的两个函数)(x f 和)(x g 分别求最值,即只需满足)()(max min x g x f >即可.简解:(1)由12012232++<⇒>-+-x x x a x a ax x 成立,只需满足12)(23++=x xx x ϕ的最小值大于a 即可.对12)(23++=x x x x ϕ求导,0)12(12)(2224>+++='x x x x ϕ,故)(x ϕ在]2,1[∈x 是增函数,32)1()(min ==ϕϕx ,所以a 的取值范围是320<<a .2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的取值范围.分析:思路、解决双参数问题一般是先解决一个参数,再处理另一个参数.以本题为例,实质还是通过函数求最值解决.方法1:化归最值,10)(10)(max ≤⇔≤x h x h ;方法2:变量分离,)(10x x ab +-≤或x b x a )10(2-+-≤; 方法3:变更主元,0101)(≤-++⋅=b x a x a ϕ,]2,21[∈a简解:方法1:对b x x a b x x g x h ++=++=)()(求导,22))((1)(xa x a x x a x h +-=-=', 由此可知,)(x h 在]1,41[上的最大值为)41(h 与)1(h 中的较大者.⎪⎩⎪⎨⎧-≤-≤⇒⎪⎩⎪⎨⎧≤++≤++⇒⎪⎩⎪⎨⎧≤≤∴ab ab b a b a h h 944391011041410)1(10)41(,对于任意]2,21[∈a ,得b 的取值范围是47≤b .3、已知两函数2)(x x f =,m x g x-⎪⎭⎫ ⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为解析:对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥等价于m x g x-⎪⎭⎫ ⎝⎛=21)(在[]2,1上的最小值m -41不大于2)(x x f =在[]2,0上的最小值0,既041≤-m ,∴41≥m题型二、主参换位法(已知某个参数的范围,整理成关于这个参数的函数)1、对于满足2p ≤的所有实数p,求使不等式212x px p x ++>+恒成立的x 的取值范围。

相关文档
最新文档