高中三角函数公式大全-必背知识点

合集下载

高中数学-三角函数公式汇总

高中数学-三角函数公式汇总

高中数学-三角函数公式汇总以下是高中数学三角函数公式的汇总:一、任意角的三角函数:在角α的终边上任取一点P(x,y),记:r=x²+y²正弦:sinα=y/r余弦:cosα=x/r正切:tanα=y/x余切:cotα=x/y正割:secα=r/x余割:cscα=r/y注:我们还可以用单位圆中的有向线段表示任意角的三角函数,如图,与单位圆有关的有向线段MP、OM、AT分别叫做角α的正弦线、余弦线、正切线。

二、同角三角函数的基本关系式:倒数关系:sinα·cscα=1,cosα·secα=1,tanα·cotα=1.商数关系:tanα=sinα/cosα,cotα=cosα/sinα。

平方关系:sin²α+cos²α=1,1+tan²α=sec²α,1+cot²α=csc²α。

三、诱导公式:⑴ α+2kπ(k∈Z)、-α、π+α、π-α、2π-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号。

(口诀:函数名不变,符号看象限)⑵π/3+α、π/3-α、π-α、π+α的三角函数值,等于α的异名函数值,前面加上一个把α看成锐角时原函数值的符号。

(口诀:函数名改变,符号看象限)四、和角公式和差角公式:sin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβcos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)五、二倍角公式:sin2α=2sinα·cosαcos2α=cos²α-sin²α=2cos²α-1=1-2sin²α…(∗)tan2α=2tanα/(1-tan²α)二倍角的余弦公式(∗)有以下常用变形:(规律:降幂扩角,升幂缩角)1+cos2α=2cos²α1-cos2α=2sin²α1+sin2α=(sinα+cosα)²1-sin2α=(sinα-cosα)²cos2α=(1+cos2α)/(1-cos2α)sin2α=(1-cos2α)/(1+cos2α)tanα=sin2α/(1+cos2α)1.根据公式,cos2α=sin2α=tan2α=1/(1+tan2α),tanα可以用半角的正切表示。

三角函数公式大全高中

三角函数公式大全高中

三角函数公式大全高中一、同角三角函数的基本关系。

1. 平方关系。

- sin^2α+cos^2α = 1- 1+tan^2α=sec^2α(secα=(1)/(cosα))- 1+cot^2α=csc^2α(cscα=(1)/(sinα))2. 商数关系。

- tanα=(sinα)/(cosα)- cotα=(cosα)/(sinα)二、诱导公式。

1. 终边相同的角的三角函数值相等。

- sin(α + 2kπ)=sinα,k∈ Z- cos(α+ 2kπ)=cosα,k∈ Z- tan(α + 2kπ)=tanα,k∈ Z2. 关于x轴对称的角的三角函数值关系。

- sin(-α)=-sinα- cos(-α)=cosα- tan(-α)=-tanα3. 关于y = x对称的角的三角函数值关系(α与(π)/(2)-α)- sin((π)/(2)-α)=cosα- cos((π)/(2)-α)=sinα- tan((π)/(2)-α)=cotα4. 关于y轴对称的角的三角函数值关系(α与π-α) - sin(π-α)=sinα- cos(π - α)=-cosα- tan(π-α)=-tanα5. 关于原点对称的角的三角函数值关系(α与π+α) - sin(π+α)=-sinα- cos(π+α)=-cosα- tan(π+α)=tanα6. α与(3π)/(2)-α的三角函数关系。

- sin((3π)/(2)-α)=-cosα- cos((3π)/(2)-α)=-sinα- tan((3π)/(2)-α)=cotα7. α与(3π)/(2)+α的三角函数关系。

- sin((3π)/(2)+α)=-cosα- cos((3π)/(2)+α)=sinα- tan((3π)/(2)+α)=-cotα三、两角和与差的三角函数公式。

- sin(A + B)=sin Acos B+cos Asin B2. 两角和的余弦公式。

高中三角函数公式大全-必背知识点

高中三角函数公式大全-必背知识点

三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtanA tanB1- tanAtanB tanA tanB1 tanAtanB cotAcotB -1 cotB cotA cotAcotB 1cotB cotA2tanA1 tan2 ASin2A=2SinA?CosA Cos2A =Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式3sin3A = 3sinA-4(sinA)3cos3A = 4(cosA) -3cosAtan3a = tana ·tan(+a)· tan( -a)3 3半角公式sin( A)=1 cos A22cos( A)= 1 cos A22tan( A)=1 cos A21 cosAA 1 cos Acot( )=21 cosAtan( A )= 1cos A = sin A2 sin A 1 cosA和差化积a b a b sina+sinb=2sin2 cos2aba bsina-sinb=2cossin22cosa+cosb = 2cosabcosab2 2 cosa-cosb = -2sinabsinab 22sin( ab)tana+tanb=积化和差sinasinb = - 1[cos(a+b)-cos(a-b)] 2cosacosb = 1[cos(a+b)+cos(a-b)] 2sinacosb = 1[sin(a+b)+sin(a-b)] 2 1cosasinb = [sin(a+b)-sin(a-b)] 2引诱公式sin(-a) = -sinacos(-a) = cosasin( -a) = cosa2 cos( -a) = sina2 sin( +a) = cosa2cos( +a) = -sina2sin( -πa) = sinacos( π-a) = -cosasin( π +a)-sina=cos( π +a) -=cosasin atgA=tanA =cosa全能公式2 tan asina=2a ) 21 (tan2 1 (tan a) 2cosa= 21 (tan a)2 2tan2A =tan(A-B) = cot(A+B) =cot(A-B) =倍角公式 tan(A+B) =2tan atan (π+α)= tan αtana=2cot (π+α)= cot α (tan a)2公式三:12随意角 α与 -α的三角函数值之间的关 其余系: a?sina+b?cosa= (a2b 2) ×sin(a+c)sin (-α)= -sin αcos (-α) = cos αb[ 此中 tanc=tan (-α)= -tan α]cot (-α)= -cot αaa?sin(a)-b?cos(a) = (a2b 2) ×公式四:利用公式二和公式三能够获得 π-α与 αcos(a-c) [此中 tan(c)= a]的三角函数值之间的关系:sin (π-α)= sin αb 1+sin(a) =(sin a +cos a)2cos (π-α)= -cos α2 2 tan (π-α)= -tan αa a(πα) = -cot α1-sin(a) = (sin -cos)2cot -22公式五:非要点三角函数 利用公式 -和公式三能够获得 2π-α与 α csc(a) = 1的三角函数值之间的关系:sin (2π-α) = -sin αsin a1cos (2π-α)= cos αsec(a) =tan (2π-α) = -tan αcosa双曲函数cot (2π-α) = -cot α sinh(a)= ea- e-a公式六:±α及 3 ±α与 α的三角函数值之间222 cosh(a)=e ae -a的关系:sin (+α)= cos α22tg h(a)= sinh( a)cos ( +α)= -sin αcosh(a)2公式一:tan ( +α)= -cot α2设 α为随意角,终边同样的角的同一 cot ( +α)= -tan α 三角函数的值相等:2sin (2k π+α)= sin α sin (-α)= cos αcos (2k π+ α) = cos α2tan (2k π+α)= tan α cos ( -α)= sin α cot (2k π+α)= cot α2 公式二:tan ( -α)= cot α设 α为随意角, π+α的三角函数值与 α2的三角函数值之间的关系:cot (-α)= tan αsin (π+α)= -sin α2cos (π+α)= -cos α3sin(+α)= -cos α3cos(+α) = sin α3tan(+α)= -cot α3cot(+α)= -tan α3sin(-α) = -cos α3cos(-α)= -sin α3tan(-α) = cot α3cot(-α) = tan α(以上 k∈ Z)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)三角不等式 |a+b| ≤|a|+|b|-b||a≤|a|+|b| |a| ≤ b<=>-≤ a≤ b|a-b| ≥ -|a||b| -|a| ≤ a≤ |a|一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√ (b2-4ac)/2a根与系数的关系 X1+X2=-b/aX1*X2=c/a 注:韦达定理鉴别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式 tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式 sin(A/2)= √((1-cosA)/2)sin(A/2)=- √ ((1-cosA)/2)cos(A/2)= √ ((1+cosA)/2)cos(A/2)=-√ ((1+cosA)/2)tan(A/2)=√-cosA)/((1+cosA))tan(A/2)=- √ ((1-cosA)/((1+cosA))ctg(A/2)=√ ((1+cosA)/((1-cosA))ctg(A/2)=- √ ((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB·sin(C/2)+1????-ctgA+ctgBsin(A+B)/sinAsinB(4)sin2A+sin2B+sin2C=4sinA sinB· ·sinC????cos(A+B)=cosAcosB-sinAsinB(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1cos(A-B)=cosAcosB+sinAsinB...........................这两式相加或相减,能够获得 2 组积化和差 :已知 sin α=m sin( α+2β),<1,|m|求证tan( α +β )=(1+m)/(1-m)tan β相加:cosAcosB=[cos(A+B)+cos(A-B)]/2解:sin α=m sin( α+2β)相减:sin(a+ -β )=msin(a+ β +β )sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(a+ β )cos-cos(a+β β )sin β =msin(a+ β )cosβ +mcos(a+β )sin βsin(A+B)=sinAcosB+sinBcosA sin(a+ β )cos-βm)=cos(a+(1 β )sin β (m+1) sin(A-B)=sinAcosB-sinBcosA tan( α +β )=(1+m)/(1-m)tan β这两式相加或相减,能够获得 2 组积化和差 :相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减: sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共 4 组积化和差,而后倒过来就是和差化积了不知道这样你能够记着伐,实在记不3.三角形中的一些结论: ???(1)tanA+tanB+tanC=tanA tanB· ·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)????(3)cosA+cosB+cosC=4sin(A/2) sin(B/2)·。

高中数学必修四三角函数知识点总结

高中数学必修四三角函数知识点总结

高中数学必修四三角函数知识点总结三角函数是高中数学考试必考的一个内容, 也是很多同学遇到的一个难点, 下面是给大家带来的高中数学必修四三角函数知识点总结, 希望对你有帮助。

高中数学三角函数找知识点总结(一)高中数学三角函数知识点总结:锐角三角函数公式sin =的对边/ 斜边cos =的邻边/ 斜边tan =的对边/ 的邻边cot =的邻边/ 的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方sin2(A) )高中数学三角函数知识点总结:三倍角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a = tan a tan(/3+a) tan(/3-a)高中数学三角函数知识点总结:三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina高中数学三角函数知识点总结:辅助角公式Asin+Bcos=(A^2+B^2)^(1/2)sin(+t), 其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsin+Bcos=(A^2+B^2)^(1/2)cos(-t), tant=A/B降幂公式sin^2()=(1-cos(2))/2=versin(2)/2cos^2()=(1+cos(2))/2=covers(2)/2tan^2()=(1-cos(2))/(1+cos(2))高中数学三角函数知识点总结:推导公式tan+cot=2/sin2tan-cot=-2cot21+cos2=2cos^21-cos2=2sin^21+sin=(sin/2+cos/2)^2=2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa高中数学三角函数知识点总结(二)sin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(3/2)2-sin2a]=4sina(sin260-sin2a)=4sina(sin60+sina)(sin60-sina)=4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]cos[(60-a)/2] =4sinasin(60+a)sin(60-a)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(3/2)2]=4cosa(cos2a-cos230)=4cosa(cosa+cos30)(cosa-cos30)=4cosa*2cos[(a+30)/2]cos[(a-30)/2]*{-2sin[(a+30)/2]sin[(a-30)/2]} =-4cosasin(a+30)sin(a-30)=-4cosasin[90-(60-a)]sin[-90+(60+a)]=-4cosacos(60-a)[-cos(60+a)]=4cosacos(60-a)cos(60+a)上述两式相比可得tan3a=tanatan(60-a)tan(60+a)高中数学三角函数知识点总结:半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(++)=sincoscos+cossincos+coscossin-sinsinsincos(++)=coscoscos-cossinsin-sincossin-sinsincostan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)点击下一页分享更多高中数学必修四三角函数知识点总结。

三角函数公式的高考数学知识点总结知识点总结

三角函数公式的高考数学知识点总结知识点总结

三角函数公式的高考数学知识点总结知识点总结三角函数公式大全:锐角三角函数公式sin =的对边 / 斜边cos =的邻边 / 斜边tan =的对边 / 的邻边cot =的邻边 / 的对边倍角公式Sin2A=2SinA?CosACos2A=CosA -SinA =1-2SinA =2CosA -1tan2A=(2tanA)/(1-tanA )(注:SinA 是sinA的平方 sin2(A) )+cot=2/sin2tan-cot=-2cot21+cos2=2cos1-cos2=2sin1+sin=(sin/2+cos/2)=2sina(1-sina)+(1-2sina)sina =3sina-4sinacos3a=cos(2a+a)=cos2acosa-sin2asina=(2cosa-1)cosa-2(1-sina)cosa =4cosa-3cosasin3a=3sina-4sina=4sina(3/4-sina)=4sina[(3/2)-sina]=4sina(sin60-sina)=4sina(sin60+sina)(sin60-sina)=4sina_2sin[(60+a)/2]cos[(60-a)/2]_2sin[(60-a)/2]cos[(60-a)/2]=4sinasin(60+a)sin(60-a)cos3a=4cosa-3cosa=4cosa(cosa-3/4)=4cosa[cosa-(3/2)]=4cosa(cosa-cos30)=4cosa(cosa+cos30)(cosa-cos30)=4cosa_2cos[(a+30)/2]cos[(a-30)/2]_{-2sin[(a+30)/2]sin[(a-30)/2]} =-4cosasin(a+30)sin(a-30)=-4cosasin[90-(60-a)]sin[-90+(60+a)]=-4cosacos(60-a)[-cos(60+a)]=4cosacos(60-a)cos(60+a)上述两式相比可得tan3a=tanatan(60-a)tan(60+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin (a/2)=(1-cos(a))/2cos (a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(++)=sincoscos+cossincos+coscossin-sinsinsincos(++)=coscoscos-cossinsin-sincossin-sinsincostan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan) 两角和差cos(+)=coscos-sinsincos(-)=coscos+sinsinsin()=sincoscossintan(+)=(tan+tan)/(1-tantan)tan(-)=(tan-tan)/(1+tantan)和差化积sin+sin = 2 sin[(+)/2] cos[(-)/2]sin-sin = 2 cos[(+)/2] sin[(-)/2]cos+cos = 2 cos[(+)/2] cos[(-)/2]cos-cos = -2 sin[(+)/2] sin[(-)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 积化和差sinsin = [cos(-)-cos(+)] /2coscos = [cos(+)+cos(-)]/2sincos = [sin(+)+sin(-)]/2cossin = [sin(+)-sin(-)]/2诱导公式sin(-) = -sincos(-) = costan (a)=-tansin(/2-) = coscos(/2-) = sinsin(/2+) = coscanBtanC证:A+B=-Ctan(A+B)=tan(-C)(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC) 整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当_+y+z=nZ)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA) +(cosB) +(cosC) =1-2cosAcosBcosC(8)(sinA) +(sinB) +(sinC) =2+2cosAcosBcosC(9)sin+sin(+2/n)+sin(+2_2/n)+sin(+2_3/n)++sin[+2_(n-1)/n]=0 cos+cos(+2/n)+cos(+2_2/n)+cos(+2_3/n)++cos[+2_(n-1)/n]=0 以及 sin ()+sin (-2/3)+sin (+2/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0。

高中生必备实用三角函数公式总表

高中生必备实用三角函数公式总表

三角公式总表⒈L 弧长=αR=错误! S 扇=21L R=21R 2α=3602R n ⋅π⒉正弦定理:A asin =B b sin =Cc sin = 2RR 为三角形外接圆半径 ⒊余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cosbca cb A 2cos 222-+=⒋S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=CB A c sin 2sin sin 2=pr=))()((c p b p a p p ---其中)(21c b a p ++=, r 为三角形内切圆半径 ⒌同角关系: ⑴商的关系:①θtg =x y =θθcos sin =θθsec sin ⋅ ②θθθθθcsc cos sin cos ⋅===y x ctg ③θθθtg ry⋅==cos sin ④θθθθcsc cos 1sec ⋅===tg x r ⑤θθθctg rx⋅==sin cos ⑥θθθθsec sin 1csc ⋅===ctg y r ⑵倒数关系:1sec cos csc sin =⋅=⋅=⋅θθθθθθctg tg⑶平方关系:1csc sec cos sin 222222=-=-=+θθθθθθctg tg ⑷)sin(cos sin 22ϕθθθ++=+b a b a 其中辅助角ϕ与点a,b 在同一象限,且abtg =ϕ⒍函数y=++⋅)sin(ϕωx A k 的图象及性质:0,0>>A ω 振幅A,周期T=ωπ2, 频率f=T1, 相位ϕω+⋅x ,初相ϕ⒎五点作图法:令ϕω+x 依次为ππππ2,23,,20 求出x 与y, 依点()y x ,作图三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限 ⒐和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =±③βαβαβαtg tg tg tg tg ⋅±=± 1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±⑤γβγαβαγβαγβαγβαtg tg tg tg tg tg tg tg tg tg tg tg tg ⋅-⋅-⋅-⋅⋅-++=++1)( 其中当A+B+C=π时,有:i.tgC tgB tgA tgC tgB tgA ⋅⋅=++ ii.1222222=++C tg B tg C tg A tg B tg A tg ⒑二倍角公式:含万能公式 ①θθθθθ212cos sin 22sin tg tg +== ②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=⒒三倍角公式:①)60sin()60sin(sin 4sin 4sin 33sin 3θθθθθθ+︒-︒=-= ②)60cos()60cos(cos 4cos 4cos 33cos 3θθθθθθ+︒-︒=+-=③)60()60(313323θθθθθθθ+⋅-⋅=--=tg tg tg tg tg tg tg ⒓半角公式:符号的选择由2θ所在的象限确定 ①2cos 12sinθθ-±= ②2cos 12sin 2θθ-=③2cos 12cos θθ+±= ④2cos 12cos2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=± ⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg⒔积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++=()[]βαβαβα--+-=cos )cos(21sin sin ⒕和差化积公式: ①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos 2cos 2cos cos βαβαβα-+=+ ④2sin2sin 2cos cos βαβαβα-+-=- ⒖反三角函数:最简单的三角方程1、遗忘空集致误由于空集是任何非空集合的真子集,因此B=∅时也满足B⊆A;解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况;2、忽视集合元素的三性致误集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求;3、混淆命题的否定与否命题命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论;4、充分条件、必要条件颠倒致误对于两个条件A,B,如果A⇒B成立,则A是B的充分条件,B是A的必要条件;如果B⇒A成立,则A 是B的必要条件,B是A的充分条件;如果A⇔B,则A,B互为充分必要条件;解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断;5、“或”“且”“非”理解不准致误命题p∨q真⇔p真或q真,命题p∨q假⇔p假且q假概括为一真即真;命题p∧q真⇔p真且q真,命题p∧q假⇔p假或q假概括为一假即假;非p真⇔p假,非p假⇔p真概括为一真一假;求参数取值范围的题目,也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解,通过集合的运算求解;6、函数的单调区间理解不准致误在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法;对于函数的几个不同的单调递增减区间,切忌使用并集,只要指明这几个区间是该函数的单调递增减区间即可;7、判断函数奇偶性忽略定义域致误判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数;8、函数零点定理使用不当致误如果函数y=fx在区间a,b上的图像是一条连续的曲线,并且有fafb<0,那么,函数y=fx在区间a,b 内有零点,但fafb>0时,不能否定函数y=fx在a,b内有零点;函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题;9、复数的概念不清致对于复数a+bia,b∈R,a叫做实部,b叫做虚部;当且仅当b=0时,复数a+bia,b∈R是实数a;当b ≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;解决复数概念类试题要仔细区分以上概念差别,防止出错;另外,i2=-1是实现实数与虚数互化的桥梁,要适时进行转化,解题时极易丢掉“-”而出错;10、忽视零向量致误零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线;它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视;11、向量夹角范围不清致误解题时要全面考虑问题;数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b<0时,a与b的夹角不一定为钝角,要注意θ=π的情况;12、an与Sn关系不清致误在数列问题中,数列的通项an与其前n项和Sn之间存在下列关系:an=S1,n=1,Sn-Sn-1,n≥2;这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点;13、对数列的定义、性质理解错误等差数列的前n项和在公差不为零时是关于n的常数项为零的二次函数;一般地,有结论“若数列{an}的前n项和Sn=an2+bn+ca,b,c∈R,则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2mm∈N是等差数列;14、数列中的最值错误数列问题中其通项公式、前n项和公式都是关于正整数n的函数,要善于从函数的观点认识和理解数列问题;数列的通项an与前n项和Sn的关系是高考的命题重点,解题时要注意把n=1和n≥2分开讨论,再看能不能统一;在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴的远近而定;15、错位相减求和项处理不当致误错位相减求和法的适用条件:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和;基本方法是设这个和式为Sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,就把问题转化为以求一个等比数列的前n项和或前n-1项和为主的求和问题.这里最容易出现问题的就是错位相减后对剩余项的处理;16、不等式性质应用不当致误在使用不等式的基本性质进行推理论证时一定要准确,特别是不等式两端同时乘以或同时除以一个数式、两个不等式相乘、一个不等式两端同时n次方时,一定要注意使其能够这样做的条件,如果忽视了不等式性质成立的前提条件就会出现错误;17、忽视基本不等式应用条件致误利用基本不等式a+b≥2ab以及变式ab≤a+b22等求函数的最值时,务必注意a,b为正数或a,b非负,ab或a+b其中之一应是定值,特别要注意等号成立的条件;对形如y=ax+bxa,b>0的函数,在应用基本不等式求函数最值时,一定要注意ax,bx的符号,必要时要进行分类讨论,另外要注意自变量x的取值范围,在此范围内等号能否取到;18、不等式恒成立问题致误解决不等式恒成立问题的常规求法是:借助相应函数的单调性求解,其中的主要方法有数形结合法、变量分离法、主元法;通过最值产生结论;应注意恒成立与存在性问题的区别,如对任意x∈a,b都有fx≤gx 成立,即fx-gx≤0的恒成立问题,但对存在x∈a,b,使fx≤gx成立,则为存在性问题,即fxmin≤gxmax,应特别注意两函数中的最大值与最小值的关系;19、忽视三视图中的实、虚线致误三视图是根据正投影原理进行绘制,严格按照“长对正,高平齐,宽相等”的规则去画,若相邻两物体的表面相交,表面的交线是它们的原分界线,且分界线和可视轮廓线都用实线画出,不可见的轮廓线用虚线画出,这一点很容易疏忽;20、面积体积计算转化不灵活致误面积、体积的计算既需要学生有扎实的基础知识,又要用到一些重要的思想方法,是高考考查的重要题型.因此要熟练掌握以下几种常用的思想方法;1还台为锥的思想:这是处理台体时常用的思想方法;2割补法:求不规则图形面积或几何体体积时常用;3等积变换法:充分利用三棱锥的任意一个面都可作为底面的特点,灵活求解三棱锥的体积;4截面法:尤其是关于旋转体及与旋转体有关的组合问题,常画出轴截面进行分析求解;21、随意推广平面几何中结论致误平面几何中有些概念和性质,推广到空间中不一定成立.例如“过直线外一点只能作一条直线与已知直线垂直”“垂直于同一条直线的两条直线平行”等性质在空间中就不成立;22、对折叠与展开问题认识不清致误折叠与展开是立体几何中的常用思想方法,此类问题注意折叠或展开过程中平面图形与空间图形中的变量与不变量,不仅要注意哪些变了,哪些没变,还要注意位置关系的变化;23、点、线、面位置关系不清致误关于空间点、线、面位置关系的组合判断类试题是高考全面考查考生对空间位置关系的判定和性质掌握程度的理想题型,历来受到命题者的青睐,解决这类问题的基本思路有两个:一是逐个寻找反例作出否定的判断或逐个进行逻辑证明作出肯定的判断;二是结合长方体模型或实际空间位置如课桌、教室作出判断,但要注意定理应用准确、考虑问题全面细致;24、忽视斜率不存在致误在解决两直线平行的相关问题时,若利用l1∥l2⇔k1=k2来求解,则要注意其前提条件是两直线不重合且斜率存在;如果忽略k1,k2不存在的情况,就会导致错解;这类问题也可以利用如下的结论求解,即直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0平行的必要条件是A1B2-A2B1=0,在求出具体数值后代入检验,看看两条直线是不是重合从而确定问题的答案;对于解决两直线垂直的相关问题时也有类似的情况;利用l1⊥l2⇔k1·k2=-1时,要注意其前提条件是k1与k2必须同时存在;利用直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0垂直的充要条件是A1A2+B1B2=0,就可以避免讨论;25、忽视零截距致误解决有关直线的截距问题时应注意两点:一是求解时一定不要忽略截距为零这种特殊情况;二是要明确截距为零的直线不能写成截距式;因此解决这类问题时要进行分类讨论,不要漏掉截距为零时的情况;26、忽视圆锥曲线定义中条件致误利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及其限制条件;如在双曲线的定义中,有两点是缺一不可的:其一,绝对值;其二,2a<|F1F2|;如果不满足第一个条件,动点到两定点的距离之差为常数,而不是差的绝对值为常数,那么其轨迹只能是双曲线的一支;27、误判直线与圆锥曲线位置关系过定点的直线与双曲线的位置关系问题,基本的解决思路有两个:一是利用一元二次方程的判别式来确定,但一定要注意,利用判别式的前提是二次项系数不为零,当二次项系数为零时,直线与双曲线的渐近线平行或重合,也就是直线与双曲线最多只有一个交点;二是利用数形结合的思想,画出图形,根据图形判断直线和双曲线各种位置关系;在直线与圆锥曲线的位置关系中,抛物线和双曲线都有特殊情况,在解题时要注意,不要忘记其特殊性;28、两个计数原理不清致误分步加法计数原理与分类乘法计数原理是解决排列组合问题最基本的原理,故理解“分类用加、分步用乘”是解决排列组合问题的前提,在解题时,要分析计数对象的本质特征与形成过程,按照事件的结果来分类,按照事件的发生过程来分步,然后应用两个基本原理解决;对于较复杂的问题既要用到分类加法计数原理,又要用到分步乘法计数原理,一般是先分类,每一类中再分步,注意分类、分步时要不重复、不遗漏,对于“至少、至多”型问题除了可以用分类方法处理外,还可以用间接法处理;29、排列、组合不分致误为了简化问题和表达方便,解题时应将具有实际意义的排列组合问题符号化、数学化,建立适当的模型,再应用相关知识解决;建立模型的关键是判断所求问题是排列问题还是组合问题,其依据主要是看元素的组成有没有顺序性,有顺序性的是排列问题,无顺序性的是组合问题;30、混淆项系数与二项式系数致误在二项式a+bn的展开式中,其通项Tr+1=Crnan-rbr是指展开式的第r+1项,因此展开式中第1,2,3,...,n项的二项式系数分别是C0n,C1n,C2n,...,Cn-1n,而不是C1n,C2n,C3n,...,Cnn;而项的系数是二项式系数与其他数字因数的积;31、循环结束判断不准致误控制循环结构的是计数变量和累加变量的变化规律以及循环结束的条件;在解答这类题目时首先要弄清楚这两个变量的变化规律,其次要看清楚循环结束的条件,这个条件由输出要求所决定,看清楚是满足条件时结束还是不满足条件时结束;32、条件结构对条件判断不准致误条件结构的程序框图中对判断条件的分类是逐级进行的,其中没有遗漏也没有重复,在解题时对判断条件要仔细辨别,看清楚条件和函数的对应关系,对条件中的数值不要漏掉也不要重复了端点值;。

三角函数公式大全及记忆口诀

三角函数公式大全及记忆口诀

三角函数公式大全及记忆口诀
在数学中,三角函数是一类重要的函数,它们在几何、物理、
工程等领域中都有着广泛的应用。

为了更好地掌握三角函数,我们
需要熟练掌握它们的公式,同时也需要一些记忆口诀来帮助我们记忆。

首先,我们来看一下三角函数的公式大全:
1. 正弦函数(sine function),sin(θ) = 对边/斜边。

2. 余弦函数(cosine function),cos(θ) = 邻边/斜边。

3. 正切函数(tangent function),tan(θ) = 对边/邻边。

4. 余切函数(cotangent function),cot(θ) = 邻边/对边。

5. 正割函数(secant function),sec(θ) = 斜边/邻边。

6. 余割函数(cosecant function),csc(θ) = 斜边/对边。

这些公式是我们在解决三角函数相关问题时经常会用到的,熟练掌握它们对我们的学习至关重要。

除了公式外,记忆口诀也是我们学习三角函数的好帮手。

下面是一个简单的记忆口诀:
正弦对,余弦邻,正切比,余切颠,正割斜,余割对。

这个口诀可以帮助我们记忆三角函数的定义和关系,使我们更容易在解题时迅速找到正确的公式和方法。

总之,三角函数是数学中的重要内容,掌握好三角函数的公式和记忆口诀,对我们的学习和工作都有着重要的帮助。

希望大家能够通过不断的练习和记忆,熟练掌握三角函数,为自己的数学学习打下坚实的基础。

高中数学三角函数公式大全

高中数学三角函数公式大全

高中数学三角函数公式大全1500字高中数学中的三角函数公式是非常重要且常用的知识点,它们有助于解决各种与三角函数有关的问题。

下面是一个包含一些高中数学三角函数公式的大全,共计1500字。

一、基本公式1. 弦的定义:在单位圆上,点P(x,y)对应的弦为OP,则弦的长度为2y。

2. 弧度制和角度制的转换公式:- 弧度制转角度制:角度 = 弧度× 180°/π- 角度制转弧度制:弧度 = 角度×π/180°3. 余弦函数和正弦函数的关系:cos²θ + sin²θ = 14. 三角函数的互余关系:- 余弦函数和正弦函数的互余关系:cosθ = sin(π/2 - θ),sinθ = cos(π/2 - θ)- 正割函数和余割函数的互余关系:secθ = csc(π/2 - θ),cscθ = sec(π/2 - θ)- 正弦函数和余割函数的互余关系:sinθ = csc(θ),cscθ = sin(θ)- 余弦函数和正割函数的互余关系:cosθ = sec(θ),secθ = cos(θ)- 正弦函数和余弦函数的互余关系:sin(π - θ) = sinθ, cos(π - θ) = -cosθ二、和差角公式1. 余弦函数的和差角公式:- cos(α + β) = cosαcosβ - sinαsinβ- cos(α - β) = cosαcosβ + sinαsinβ2. 正弦函数的和差角公式:- sin(α + β) = sinαcosβ + cosαsinβ- sin(α - β) = sinαcosβ - cosαsinβ3. 余弦函数和正弦函数的和差角公式的整理形式:- cos(α + β) = cosαcosβ - sinαsinβ = cosαcosβ - cosαsinβtanβ = cosβ(cosα - sinαtanβ)- cos(α - β) = cosαcosβ + sinαsinβ = cosαcosβ + cosαsinβtanβ = cosβ(cosα + sinαtanβ)- sin(α + β) = sinαcosβ + cosαsinβ = cosαsinβ/cosβ + sinα = (sinαcosβ + cosαsin β)/cosβ = (sinαsecβ + cosαtanβ)/cosβ- sin(α - β) = sinαcosβ - cosαsinβ = cosαsinβ/cosβ - sinα = (sinαcosβ - cosαsin β)/cosβ = (sinαsecβ - cosαtanβ)/cosβ4. 正切函数的和差角公式:- tan(α + β) = (tanα + tanβ)/(1 - tanαtanβ)- tan(α - β) = (tanα - tanβ)/(1 + tanαtanβ)5. 反余弦函数的和差角公式:- arccos(cosαcosβ - sinαsinβ) = α + β或 2π - (α + β)- arccos(cosαcosβ + sinαsinβ) = α - β或 2π - (α - β)6. 反正弦函数的和差角公式:- arcsin(sinαcosβ + cosαsinβ) = α + β或π - (α + β) - arcsin(sinαcosβ - cosαsinβ) = α - β或π - (α - β)三、倍角公式1. 余弦函数和正弦函数的倍角公式:- cos2θ = 2cos²θ - 1- sin2θ = 2sinθcosθ2. 余弦函数和正切函数的倍角公式:- cos2θ = 1 - 2sin²θ = (1 - tan²θ)/(1 + tan²θ)3. 正弦函数和正切函数的倍角公式:- sin2θ = 2sinθcosθ = 2tanθ/(1 + tan²θ)4. 正切函数的倍角公式:- tan2θ = (2tanθ)/(1 - tan²θ)5. 反余弦函数的倍角公式:- arccos(2cos²θ - 1) = 2θ或 2π - 2θ- arccos((1 - tan²θ)/(1 + tan²θ)) = 2θ或 2π - 2θ6. 反正弦函数的倍角公式:- arcsin(2sinθcosθ) = 2θ或π - 2θ- arcsin(2tanθ/(1 + tan²θ)) = 2θ或π - 2θ四、半角公式1. 余弦函数的半角公式:- cos(θ/2) = ±√((1 + cosθ)/2)2. 正弦函数的半角公式:- sin(θ/2) = ±√((1 - cosθ)/2)3. 正切函数的半角公式:- tan(θ/2) = sinθ/(1 + cosθ) = (1 - cosθ)/sinθ4. 反余弦函数的半角公式:- arccos((1 + cosθ)/2) = θ/2 或 -θ/2- arccos((1 - cosθ)/2) = θ/2 或 -θ/25. 反正弦函数的半角公式:- arcsin(√((1 - cosθ)/2)) = θ/2 或π/2 - θ/2- arcsin(-√((1 - cosθ)/2)) = -θ/2 或π/2 + θ/2六、特殊角值1. 30°和150°的正弦、余弦和正切值:- sin30° = 1/2,cos30° = √(3)/2,tan30° = 1/√(3)- sin150° = 1/2,cos150° = -√(3)/2,tan150° = -1/√(3) 2. 45°和135°的正弦、余弦和正切值:- sin45° = √(2)/2,cos45° = √(2)/2,tan45° = 1- sin135° = √(2)/2,cos135° = -√(2)/2,tan135° = -13. 60°和120°的正弦、余弦和正切值:- sin60° = √(3)/2,cos60° = 1/2,tan60° = √(3)- sin120° = √(3)/2,cos120° = -1/2,tan120° = -√(3)以上是一些高中数学三角函数公式的大全。

高考数学三角函数必背公式大全

高考数学三角函数必背公式大全

高考数学三角函数必背公式大全高考数学三角函数必背公式1、设α为任意角,终边相同的角的同一三角函数的值相等sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)2、设α为任意角,π+α的三角函数值与α的三角函数值之间的关系sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα3、任意角α与-α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα4、利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα5、诱导公式sin(-α)=-sinαcos(-α)=cosαtan(—a)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαsin(π/2+α)=cosαcos(π/2+α)=-sinαsin(π-α)=sinαcos(π-α)=-cosαsin(π+α)=-sinαcos(π+α)=-cosαtanA=sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα6、和差化积公式2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB三角函数的性质三角函数性质是:如果一个函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的最小正周期。

高中数学三角函数公式汇总

高中数学三角函数公式汇总

高中数学三角函数公式汇总定义式函数公式倒数关系:①②③商数关系:①②平方关系:①②③诱导公式公式1:设为任意角,终边相同的角的同一三角函数的值相等:公式2:设为任意角,与的三角函数值之间的关系:公式3:任意角与的三角函数值之间的关系:公式4:与的三角函数值之间的关系:公式5:与的三角函数值之间的关系:公式6:及与的三角函数值之间的关系:记背诀窍:奇变偶不变,符号看象限,即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。

形如2k×90°±α,则函数名称不变。

基本公式【和差角公式】◆ 二角和差公式◆ 三角和公式【和差化积公式】口诀:正加正,正在前,余加余,余并肩,正减正,余在前,余减余,负正弦.【积化和差公式】【倍角公式】◆ 二倍角公式◆ 三倍角公式◆ 四倍角公式sin4a=-4*[cosa*sina*(2*sina^2-1)]cos4a=1+(-8*cosa^2+8*cosa^4)tan4a=(4*tana-4*tana^3)/(1-6*tana^2+tana^4)◆ 五倍角公式◆ 半角公式(正负由所在的象限决定)◆ 万能公式◆ 辅助角公式◆ 余弦定理◆ 三角函数公式算面积定理:在△ABC中,其面积就应该是底边对应的高的1/2,不妨设BC边对应的高是AD,那么△ABC的面积就是AD*BC*1/2。

而AD是垂直于BC的,这样△ADC就是直角三角形了,显然,由此可以得出,AD=ACsinC,将这个式子带回三角形的计算公式中就可以得到:,同理,即可得出三角形的面积等于两邻边及其夹角正弦值的乘积的一半。

◆ 公式:若△ABC中角A,B,C所对的三边是a,b,c:则S△ABC=1/2absinC=1/2bcsinA=1/2acsinB.◆ 反三角函数反三角函数主要是三个:y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]y=arccos(x),定义域[-1,1] ,值域[0,π]y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2)sinarcsin(x)=x,定义域[-1,1],值域【-π/2,π/2】◆ 反三角函数公式:arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotxarcsinx+arccosx=π/2=arctanx+arccotxsin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx) 当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x当x∈〔0,π〕,arccos(cosx)=xx∈(—π/2,π/2),arctan(tanx)=xx∈(0,π),arccot(cotx)=x x〉0,arctanx=arctan1/x,arccotx类似若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)。

高中数学-三角函数公式大全

高中数学-三角函数公式大全

高中数学-三角函数公式大全新课程高中数学三角公式汇总一、任意角的三角函数在角α的终边上任取一点P(x,y),记r=x²+y²。

正弦:sinα=y/r余弦:cosα=x/r正切:tanα=y/x余切:cotα=x/y正割:secα=r/x余割:cscα=r/y注:我们还可以用单位圆中的有向线段表示任意角的三角函数。

如图,与单位圆有关的有向线段MP、OM、AT分别叫做角α的正弦线、余弦线、正切线。

二、同角三角函数的基本关系式倒数关系:sinα·cscα=1,cosα·secα=1,tanα·cotα=1.商数关系:tanα=sinα/cosα,cotα=cosα/sinα。

平方关系:sin²α+cos²α=1,1+tan²α=sec²α,1+cot²α=csc²α。

三、诱导公式⑴α+2kπ(k∈Z)、-α、π+α、π-α、2π-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号。

(口诀:函数名不变,符号看象限)⑵π/3+α、-π/3+α、π-α、-π+α的三角函数值,等于α的异名函数值,前面加上一个把α看成锐角时原函数值的符号。

(口诀:函数名改变,符号看象限)四、和角公式和差角公式sin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβcos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)五、二倍角公式sin2α=2sinα·cosαcos2α=cos²α-sin²α=2cos²α-1=1-2sin²α…(※)tan2α=2tanα/(1-tan²α)二倍角的余弦公式(※)有以下常用变形:(规律:降幂扩角,升幂缩角)1+cos2α=2cos²α1-cos2α=2sin²α1+sin2α=(sinα+cosα)²1-sin2α=(sinα-cosα)²cos2α=(1+cos2α)/(1-cos2α)sin2α=(1-cos2α)/2tanα=sin2α/(1+cos2α)万能公式告诉我们,任何单角的三角函数都可以用半角的正切来表示。

高中数学_三角函数公式大全全部覆盖.doc

高中数学_三角函数公式大全全部覆盖.doc

三角公式汇总一、任意角的三角函数在角 的终边上任取 一点 P( x, y) ,记:22rxy ,..正弦: sinyx余弦: cosrry 正切: tanx注:我们还可以用单位圆中的有向线段表示任意角的三角函数: 如图,与单位圆有关的有向 线段 MP 、 OM 、 AT 分别叫做角 的正弦线、余弦线、正.. 切线。

二、同角三角函数的基本关系式商数关系: tansin ,cos平方关系: sin 2cos 21,三、诱导公式⑴2k ( kZ ) 、 、 、 、2 的三角函数值, 等于 的同名函数值,前面加上一个把看成锐角时原函数值的符号。

(口诀:函数名..不变,符号看象限)⑵、、3、3的三角函数值, 等于 的异名函数值,2 222前面加上一个把 看成锐角时原函数值的符号。

(口诀:函数名改变,符号看..象限)四、和角公式和差角公式sin( ) sin cos cos sin sin( ) sin cos cos sin cos() coscossinsincos( ) cos cos sin sintan()tantantan tan1 tan()tan tantantan1五、二倍角公式sin 22sin coscos2cos 2sin 22 cos 21 1 2sin 2( )2 tantan21 tan 2二倍角的余弦公式( ) 有以下常用变形:(规律:降幂扩角,升幂缩角)1 cos2 2cos 2 1 cos22sin 21 sin2 (sincos )21 sin2 (sincos)2cos 21 cos2 , sin 21 sin2 , tan1 cos2 sin 2。

22sin 21 cos2六、万能公式(可以理解为二倍角公式的另一种形式)2 tan 1 tan 2 , tan 22 tan 。

sin 22, cos2tan 2 1 tan 21 tan1万能公式告诉我们,单角的三角函数都可以用半角的正切..来表示。

高中数学三角函数应知应会必记公式汇总

高中数学三角函数应知应会必记公式汇总

高中数学三角函数应知应会必记公式汇总设是一个任意角,它的终边与单位圆交于点(,),那么正弦sinα=y,余弦cosα=x,正切tanα=(x≠0).设α是一个任意角,它的终边上任意一点P(x,y),记r=,那么正弦sinα=,余弦cosα=,正切tanα= (x≠0).3同角三角函数的基本关系式(必记)(1)平方关系:sin2α+cos2α=1.(2)商数关系:=tanα(α≠+kπ,k∈Z).记)5和角、差角公式(必记)6二倍角公式(必记)二倍角公式有以下常用变形结论:(规律:升幂缩角,降幂扩角)(会推导)1、升幂公式:2、降幂公式:3、正余弦的和差与积结构互化4、正切的和差与积结构互化5、倍半关系弦切互化7半角公式(熟悉其中一组即可)(会推导)8万能公式(可以理解为二倍角公式的另一种形式)(会推导)万能公式告诉我们,单角的三角函数都可以用半角的正切来表示。

万能公式推导思路:9和差化积公式(会推导)了解和差化积公式的推导,有助于我们理解并掌握好公式:10积化和差公式(会推导)我们可以把积化和差公式看成是和差化积公式的逆应用。

11辅助角公式(必记)12正弦定理(必记)13余弦定理(必记)14三角形的面积公式(必记)说明:三角问题解题思路的三个转化方向:1、转化角:分析角的和差倍半关系、异角化同角、非特殊角化特殊角。

2、转化函数名:异名化同名、弦切互化、正余弦互化。

3、转化结构:凑公式结构、和差与积结构的互化、升幂或降幂、因式分解、配完全平方、分式的合并与拆分,整式与分式的互化,出根号,分母有理化、通分、消项、去分母等代数式恒等变形方法与三角公式的分解合并的灵活结合。

高中全部三角函数公式

高中全部三角函数公式

高中全部三角函数公式高中三角函数公式是高中数学中的一个重要部分,它是解决与三角函数有关的问题的基础。

下面是高中全部三角函数公式,共分为三个部分:1.正弦函数公式正弦函数公式定义如下:sinθ = 对边/斜边其中,θ表示夹角,对边表示夹角θ的对边长度,斜边表示夹角θ的斜边长度。

2.余弦函数公式余弦函数公式定义如下:cosθ = 邻边/斜边其中,θ表示夹角,邻边表示夹角θ的邻边长度,斜边表示夹角θ的斜边长度。

3.正切函数公式正切函数公式定义如下:tanθ = 对边/邻边其中,θ表示夹角,对边表示夹角θ的对边长度,邻边表示夹角θ的邻边长度。

以上三个基本三角函数公式是高中数学中最基础和最重要的一部分,通过这些公式可以计算出夹角的正弦、余弦和正切值。

二、诱导公式1.余弦-正弦诱导公式cos(α-β) = cosαcosβ + sinαsinβcos(α+β) = cosαcosβ - sinαsinβsin(α+β) = sinαcosβ + cosαsinβsin(α-β) = sinαcosβ - cosαsinβ2.二倍角公式sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θ = 2cos^2θ - 1 = 1 - 2sin^2θtan2θ = 2tanθ/1-tan^2θ3.万能公式sinθ = 2tan(θ/2)/1+tan^2(θ/2)cosθ = 1-tan^2(θ/2)/1+tan^2(θ/2)tanθ = 2tan(θ/2)/1-tan^2(θ/2)以上是诱导公式中的一部分,它们可以通过一些变换和推导得到,使用这些公式可以简化一些复杂的三角函数表达式的计算。

三、三角函数的和差化积和积化和公式1.和差化积公式sin(α+β) = cosαsinβ + sinαcosβsin(α-β) = sinαcosβ - cosαsinβcos(α+β) = cosαcosβ - sinαsinβcos(α-β) = cosαcosβ + sinαsinβ2.积化和公式sinαsinβ = (1/2)(cos(α-β) - cos(α+β))cosαcosβ = (1/2)(cos(α-β) + cos(α+β))sinαcosβ = (1/2)(sin(α+β) + sin(α-β))以上是高中全部的三角函数公式,包括基本三角函数公式、诱导公式和三角函数的和差化积和积化和公式。

高中数学三角函数公式大全(三角函数的公式)

高中数学三角函数公式大全(三角函数的公式)

高中数学三角函数公式大全(三角函数的公式)高中数学三角函数公式大全公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα三角函数诱导公式知识点公式一:终边相同的角的同一三角函数的值相等设α为任意锐角,弧度制下的角的表示:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:π+α的三角函数值与α的三角函数值之间的关系设α为任意角,弧度制下的角的表示:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系(1)π/2+α与α的三角函数值之间的关系sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanα(2)π/2-α与α的三角函数值之间的关系sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα(3)3π/2+α的三角函数值之间的关系sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/α+α)=-tanα(4)3π/2-α的三角函数值之间的关系sin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα三角函数8个基本关系式是什么sin^2(A)+cos^2(A)=11+tan^2(A)=sec^2(A)1+cot^2(A)=csc^2(A)sin(A/2)=(1±cos(A))/2tan(A/2)=(±cos(A)-1)/(1+cos(A))cot(A/2)=(±cos(A)+1)/(1-cos(A))tan(A)+cot(A)=(2sin(A))/(cos(A)-sin(A)) tan(A)-cot(A)=(2cos(A))/(cos(A)+sin(A)) 三角函数的定义是什么?三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。

高中三角函数公式大全

高中三角函数公式大全

高中三角函数公式大全1. 正弦函数(sine function):正弦函数用sin表示,定义域为实数集,值域为[-1,1]。

基本关系式:sinθ=opposite/hypotenuse基本恒等式:- 余角关系式:sin(π/2 - θ) = cosθ ;sin(π/2 + θ) = cosθ- 符号关系式:sin(-θ) = - sinθ ;sin(θ + 2πn) = sinθ (n 为任意整数)三角和差化简公式:- 和差化简:sin(α ± β) = sinα * cosβ ± cosα * sinβ- 差和化简:sinα + sinβ = 2 * sin((α + β) / 2) *cos((α - β) / 2)- 和差化简:sinα - sinβ = 2 * cos((α + β) / 2) *sin((α - β) / 2)2. 余弦函数(cosine function):余弦函数用cos表示,定义域为实数集,值域为[-1,1]。

基本关系式:cosθ = adjacent/hypotenuse基本恒等式:- 余角关系式:cos(π/2 - θ) = sinθ ;cos(π/2 + θ) = -sinθ- 符号关系式:cos(-θ) = cosθ ;cos(θ + 2πn) = cosθ (n 为任意整数)三角和差化简公式:- 和差化简:cos(α ± β) = cosα * cosβ ∓ sinα * sinβ- 差和化简:cosα + cosβ = 2 * cos((α + β) / 2) * cos((α - β) / 2)- 和差化简:cosα - cosβ = -2 * sin((α + β) / 2) *sin((α - β) / 2)3. 正切函数(tangent function):正切函数用tan表示,定义域为实数集,值域为整个实数集。

基本关系式:tanθ = opposite/adjacent基本恒等式:- 余角关系式:tan(π/2 - θ) = 1/tanθ ;tan(π/2 + θ) = -1/tanθ三角和差化简公式:- 和差化简:tan(α ± β) = (tanα ± tanβ) / (1 ∓ tanα * tanβ)- 和差化简:tanα + tanβ = sin(α + β) / cosα * cosβ- 和差化简:tanα - tanβ = sin(α - β) / cosα * cosβ4. 正割函数(secant function):正割函数用sec表示,定义域为除了θ = π/2 + πn (n为任意整数)的实数集,值域为实数集的负数和正数。

【高中数学】高中数学知识点:三角函数公式大全

【高中数学】高中数学知识点:三角函数公式大全

【高中数学】高中数学知识点:三角函数公式大全高中数学知识点:完整的三角函数公式”,供您参考!高中数学知识点:三角函数公式大全三角函数看似众多而复杂,但只要我们掌握了三角函数的本质和内在规律,就会发现各种三角函数公式之间有着很强的联系。

掌握三角函数的内在规律和本质也是学好三角函数的关键。

以下是学习方法网络整理的三角函数公式的完整集合:锐角三角函数公式sinα=∠ α对边/斜边cosα=∠α的邻边/斜边tanα=∠ α对侧/∠ αcotα=∠α的邻边/∠α的对边倍角公式sin2a=2sina?cosacos2a=cosa^2-sina^2=1-2sina^2=2cosa^2-1tan2a=(2tana)/(1-tana^2)(注:新浪^2是新浪的平方,sin2(a))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a=tana·tan(π/3+a)·tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中sint=b/(a^2+b^2)^(1/2)成本=a/(a^2+b^2)^(1/2)tant=b/aasinα+bcosα=(a^2+b^2)^(1/2)cos(α-t),tant=a/b 降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2=2sina(1-sina)+(1-2sina)sina=3sina-4sinacos3a=cos(2a+a)=cos2acosa-sin2asina=(2cosa-1)cosa-2(1-sina)cosa=4cosa-3cosasin3a=3sina-4sina=4sina(3/4-sina)=4新浪[(√3/2-新浪]=4sina(sin60°-sina)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cosa-3cosa=4cosa(cosa-3/4)=4cosa[cosa-(√3/2)]=4cosa(cosa-cos30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)半角公式谭(a/2)=(1-cosa)/新浪=新浪/(1+cosa);cot(a/2)=sina/(1-cosa)=(1+cosa)/sina.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)两角和差cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)和差化积sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]tana+tanb=sin(a+b)/cosacosb=tan(a+b)(1-tanatanb)tana-tanb=sin(a-b)/cosacosb=tan(a-b)(1+tanatanb)可积和差sinαsinβ=[cos(α-β)-cos(α+β)]/2cosαcosβ=[cos(α+β)+cos(α-β)]/twosinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/two诱导公式cos(-α)=cosαtan(-a)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαsin(π/2+α)=cosαcos(π/2+α)=-sinαsin(π-α)=sinαcos(π-α)=-cosαsin(π+α)=-sinαcos(π+α)=-cosαtana=sina/cosatan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα记忆归纳公式的技巧:奇数变量,偶数常量,符号看象限万能公式sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]其它公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3) 1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任何非直角三角形,总有tana+tanb+tanc=tanatanbtanc证书:a+b=π-ctan(a+b)=tan(π-c)(tana+tanb)/(1-tanatanb)=(ta nπ-tanc)/(1+tanπtanc)分类可用tana+tanb+tanc=tanatanbtanc获得证书同样可以得证,当x+y+z=nπ(n∈z)时,该关系式也成立从Tana+tanb+Tanc=tanatanbtanc可以得出以下结论(5)cotacotb+cotacotc+cotbcotc=1(6)胶辊(a/2)+胶辊(b/2)+胶辊(c/2)=胶辊(a/2)胶辊(b/2)胶辊(c/2)(7)(cosa)^2+(cosb)^2+(cosc)^2=1-2cosacosbcosc(8)(新浪)^2+(新浪)^2+(新浪)^2=2+2cosacosbcosc(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0和sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanatanbtan(a+b)+tana+tanb tan(a+b)=0更多频道:。

高中三角函数公式有哪些 相关知识整理

高中三角函数公式有哪些 相关知识整理

1高中三角函数公式有哪些相关知识整理高中三角函数的相关公式sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα两角和公式1sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)和差化积公式2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB三角函数的相关学问1.三角函数包括两部分:三角形和三角函数,以及三角形分析。

重点学问点包括:任意角度的三角函数;同角三角函数的基本关系;归纳公式;三角函数的图像及其变换;三角函数的性质和应用:三角函数的求值和简化:正弦和余弦定理;解三角形及其合成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 [sin(a+b)-sin(a-b)] 2
诱导公式
sin(-a) = -sina
cos(-a) = cosa
sin( -a) = cosa 2
cos( -a) = sina 2
sin( +a) = cosa 2
cos( +a) = -sina 2
sin( π-a) = sina
cos( π-a) = -cosa
三倍角公式 sin3A = 3sinA-4(sinA) 3
cos3A = 4(cosA) 3-3cosA
tan3a = tana ·tan( +a) ·tan( -a)
3
3
半角公式
sin( A )= 1 cos A
2
2
A 1 cos A
cos( )=
2
2
A 1 cos A
tan( )=
2
1 cosA
b tanc= ]
a a?sin(a) - b?cos(a) =
(a 2 b 2 ) ×cos(a-c) [ 其
中 tan(c)= a ] b
1+sin(a) =(sin
1-sin(a) = (sin
a +cos a )2
2
2Leabharlann a - cos a )22
2
非重点三角函数
1 csc(a) =
sin a sec(a) = 1
三角函数公式
两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = tanA tanB 1- tanAtanB
cos a
双曲函数
e a - e-a sinh(a)=
2
ea e-a cosh(a)=
2
sinh( a ) tg h(a)=
cosh(a) 公式一: 设 α为任意角,终边相同的角的同一三角函数 的值相等: sin (2k π+α)= sin α cos ( 2k π+α)= cos α tan (2k π+α)= tan α cot (2k π+α)= cot α 公式二: 设 α为任意角,π+ α的三角函数值与 α的三角 函数值之间的关系: sin (π+α) = -sin α cos ( π+ α)= -cos α tan (π+ α)= tan α cot (π+ α)= cot α 公式三: 任意角 α与 - α的三角函数值之间的关系: sin (- α)= -sin α cos ( -α)= cos α tan (- α)= -tan α cot (- α)= -cot α 公式四:
cot ( -α) = tan α 2
sin ( 3 + α)= -cos α 2
三角不等式 |a+b| ≤ |a|+|b|
|a- b| ≤ |a|+|b| |a|
≤- b ≤b<=a>≤ b
|a- b| ≥ |-a|b| | - |a| ≤ a ≤ |a|
一元二次方程的解 - b+ √ (b2-4ac)/2a -b- b+ √ (b2-4ac)/2a
2 tan ( 3 + α) = -cot α
2 cot ( 3 + α) = -tan α
2 sin ( 3 - α)= -cos α
2 cos ( 3 - α)= -sin α
2 3 tan ( - α)= cot α 2 cot ( 3 - α)= tan α 2
(以上 k ∈ Z)
函数值之间的关系:
cosa-cosb = -2sin
sin
2
2
sin( a b) tana+tanb=
cos a cosb
积化和差
sinasinb = cosacosb = sinacosb = cosasinb =
1 [cos(a+b)-cos(a-b)] 2
1 [cos(a+b)+cos(a-b)] 2 1
[sin(a+b)+sin(a-b)] 2
公式表达式
sin (2 π- α) = -sin α cos ( 2π- α)= cos α tan (2π- α) = -tan α cot (2 π- α) = -cot α
乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)
公式六:
±α及 3 ±α与 α的三角函数值之间的关系:
2
2
sin ( + α) = cos α 2
cos ( + α)= -sin α 2
tan ( + α)= -cot α 2
cot ( + α)= -tan α 2
sin ( -α)= cos α 2
cos ( - α) = sin α 2
tan ( - α) = cot α 2
利用公式二和公式三可以得到 π- α与 α的三角 函数值之间的关系: sin (π- α) = sin α cos ( π- α)= -cos α tan (π- α)= -tan α cot (π- α)= -cot α 公式五: 利用公式 - 和公式三可以得到 2π- α与 α的三角
3 cos ( + α) = sin α
tan(A-B) = tanA tanB 1 tanAtanB
cot(A+B) = cotAcotB - 1 cotB cotA
cot(A-B) = cotAcotB 1 cotB cotA
倍角公式
2tanA tan2A = 1 tan2A
Sin2A=2SinA?CosA
Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A
cot( A )= 1 cos A
2
1 cosA
A 1 cos A sin A
tan( )=
=
2
sin A 1 cos A
和差化积
ab ab
sina+sinb=2sin
cos
2
2
sina-sinb=2cos a b sin a b
2
2
cosa+cosb = 2cos a b cos a b
2
2
ab ab
sin( π+a) = -sina
cos( π+a) = -cosa
tgA=tanA = sin a cos a
万能公式
a
2 tan
sina=
2
1 (tan a )2
2
1 cosa=
1
(tan a ) 2 2
(tan a )2 2
a
2 tan
tana=
2
1 (tan a ) 2
2
其他
a?sina+b?cosa= (a2 b 2) ×sin(a+c) [ 其中
相关文档
最新文档