数学建模课件--微分方程模型

合集下载

数学建模微分方程模型

数学建模微分方程模型

建立模型:设物体在冷却过程中的温度为 T(t),t≥0,
“T的变化速率正比于T与周围介质的温度差” 翻译为
dT 与 T m 成正比 dt
dT k (T m ), dt T ( 0) 60.
建立微分方程
数学语言
其中参数k >0,m=18. 求得一般解为
ln(T-m)=-k t+c,
该物体温度降至300c 需要8.17分钟.
二. 利用平衡与增长式
许多研究对象在数量上常常表现出某种不变 的特性,如封闭区域内的能量、货币量等. 利用变量间的平衡与增长特性,可分析和建 立有关变量间的相互关系.
例1 某车间体积为12000立方米, 开始时空气中
含有0.1% 的 CO2, 为了降低车间内空气中CO2 的含量, 用一台风量为每秒2000立方米的鼓风机 通入含 0.03%的 CO2的新鲜空气, 同时以同样的 风量将混合均匀的空气排出, 问鼓风机开动6分 钟后, 车间内 CO2的百分比降低到多少?
规律。

dM 铀的衰变速度就是 M (t ) 对时间t的导数 dt

由于衰变速度与其含量成正比,可知未知函数满足 关系式: dM M (1) ( 0) 是衰变系数
dt
且初始条件 M t 0 M0 dM dt 分离变量得 M 对上式两端积分得:ln M t ln c 因此, M (t ) Cet 代入初始条件得
{Δt时间内的净改变量} ={Δt时间内输入量}-{Δt时间内输出量}
三. 微元法 基本思想: 通过分析研究对象的有关变量在
一个很短时间内的变化情况.
例 一个高为2米的球体容器里盛了一半 的水,水从它的底部小孔流出,小孔的横截面 积为1平方厘米. 试求放空容器所需要的时间. 对孔口的流速做两条假设 : 1.t 时刻的流速v 依赖于 此刻容器内水的高度h(t). 2 .整个放水过程无能 量损失。 2米

微分方程模型——数学建模真题解析 ppt课件

微分方程模型——数学建模真题解析  ppt课件
方程)。 (2)微元法。
微分方程的稳定性理论: 对微分方程组
dx f ( x) dt
若f(x0)=0,则称x0是方程组的平衡点。
ppt课件
7
如果在平衡点x0处,f(x)的Jacobi矩阵
f1

x1
Df Dx

D( f1, f2 ,L D(x1, x2 ,L
, fn) , xn )

ppt课件
20
请你参考下面给出的数据(或自己收集资料)建立饮 酒后血液中酒精含量的数学模型,并讨论以下问题: 1. 对大李碰到的情况做出解释; 2. 在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾 车就会违反上述标准,在以下情况下回答: 酒是在很短时间内喝的; 酒是在较长一段时间(比如2小时)内喝的。 3. 怎样估计血液中的酒精含量在什么时间最高。 4. 根据你的模型论证:如果天天喝酒,是否还能开车? 5. 根据你做的模型并结合新的国家标准写一篇短文, 给想喝一点酒的司机如何驾车提出忠告。
第二种:机理分析方法: 实际上,对这一类问题,有成熟的机理分析方法: 房室模型。
ppt课件
25
我们可以把喝酒后酒精的变化过程描述为 喝酒酒精进入肠胃消化后进入血液排出。 这里,血液循环系统可以看作中心室,肠胃可以看 作吸收室。M1克酒精在很短时间进入吸收室,从吸 收室逐渐进入中心室,最后逐渐排出。
如果遇到我们不熟悉的问题时,应该怎么办? 答案:不要回避,到网上查一下相关的概念你就会 发现:这个不熟悉的问题可能是比较简单的!
ppt课件
11
分析:上网查一下热传导,我们可以了解到:热的 传导从温度高的地方向温度低的地方传导,单位时 间传送的热量与温差T成正比,与两个热源的距 离成反比。即

数学建模微分方程模型课件

数学建模微分方程模型课件

di i
dt i(0) i0
若有效接触的是病人, 则不能使病人数增加
i(t) i0et
ti ?
必须区分已感染者(病 人)和未感染者(健康人)
<>
模型2 区分已感染者(病人)和未感染者(健康人)
假设
1)总人数N不变,病人和健康
人的 比例分别为 i(t), s(t)
SI 模型
2)每个病人每天有效接触人数 ~ 日 为, 且使接触的健康人致病 接触率
t
tm
1
ln
1 i0
1
tm~传染病高潮到来时刻 t i 1 ?
(日接触率) tm
病人可以治愈!
<>
模型3
传染病无免疫性——病人治愈成 为健康人,健康人可再次被感染 SIS 模型
增加假设 3)病人每天治愈的比例为 ~日治愈率
建模
N[i(t t) i(t)] Ns(t)i(t)t Ni(t)t
0
t0
t
i()
1
1
,
1
0,
1
接触数 =1 ~ 阈值
1 i(t)
1 i(t)按S形曲线增长
i0小
感染期内有效接触感染的健 康者人数不超过病人数
模型2(SI模型)如何看作模型3(SIS模型)的特例
<>
模型4
传染病有免疫性——病人治愈 后即移出感染系统,称移出者
SIR模型
假设 1)总人数N不变,病人、健康人和移源自di dti(1
i)
i
i(0) i0
~ 日接触率 1/ ~感染期
/
~ 一个感染期内每个病人的
有效接触人数,称为接触数。
<>

数学建模-微分方程模型.pptx

数学建模-微分方程模型.pptx
2019年11月8
数学建模- 微分方程模型
xx 同济大学数学科学学院
谢谢你的阅读
1
一、什么是微分方程?
最最简单的例子
2019年11月8
谢谢你的阅读
2
引例 一曲线通过点(1,2),且在该曲线任一点
M( x ,y )处的切线的斜率为2x,求该曲线的方程。
解 若设曲线方程为 y f (x),(1)
2019年11月8
谢谢你的阅读
51
阻滞增长模型 (Logistic模型)
人口增长到一定数量后,增长率下降的原因:
资源、环境等因素对人口增长的阻滞作用
且阻滞作用随人口数量增加而变大
r是x的减函数
假定: r(x) r sx (r, s 0) r~固有增长率(x很小时)
xm~人口容量(资源、环境能容纳的最大数量)
2019年11月8
x0
谢谢你的阅读
t
x(t)~S形曲线, x增加先快后慢
53
模型的参数估计
用指数增长模型或阻滞增长模型作人口预报, 必须先估计模型参数 r 或 r, xm
• 利用统计数据用最小二乘法作拟合
例:美国人口数据(单位~百万)
1790 1800 1810 1820 1830 …… 1950 1960 1970 1980 3.9 5.3 7.2 9.6 12.9 …… 150.7 179.3 204.0 226.5
CO2的通入量 2000 dt 0.03, CO2的排出量 2000 dt x(t),
2019年11月8
谢谢你的阅读
29
CO2的改变量 CO2的通入量 CO2的排出量
12000dx 2000 dt 0.03 2000 dt x(t),

03-1第三章-第1-8节-微分方程模型市公开课获奖课件省名师示范课获奖课件

03-1第三章-第1-8节-微分方程模型市公开课获奖课件省名师示范课获奖课件

(5 13)
将(5-10)和( pr 2
ur
(5 14)
最终f 把 (54-1pA4r2)2m和r(05-6)代r0入(rr5-4)式得 (5 15) r 这里 0 是单位向径,指示向径方向。
(5-15)式表白: (1)行星运动时受旳力旳方向与它旳向径方向
相反,即在太阳—行星连线方向,指向太阳;
若记x(t),y(t)为开始用力后铅球运动轨迹旳水平和 铅垂方向旳坐标。则根据牛顿第二运动定理,由假 设3我们有
mx(t) F cos
my(t) F sin mg
(2 3)
式中m为铅球旳质量,F是对铅球旳推力, 为力旳
方向既铅球旳出手角度。
根据假设2,令t=0时运动员开始用力推球,t t0
22
§4 追踪问题旳数学模型
问题:我辑私舰雷达发觉距d海里处有一艘走私船正
以匀速 a沿直线行驶,辑私舰立即以最大旳速度 (匀v速)追赶。若用雷达进行跟踪,保持舰旳瞬时
速度方向一直指向走私船,试求辑私舰旳运动轨迹 及追上旳时间。
(留作自学)
23
§5 万有引力定律旳发觉
历史背景: 开普勒三定律: 1、各颗行星分别在不同旳椭圆轨道上绕太 阳运营,太阳位于这些椭圆旳一种焦点上。 2、每颗行星运营过程中单位时间内太 阳—行星向径扫过旳面积是常数。 3、各颗行星运营周期旳平方与其椭圆轨道 长半轴旳3次方成正比。
14
x
v2 g
cos
sin
(
v2 g2
sin 2
2h
)
1 2
g
v
cos
v
(
F m
2 2
g2
2F m
g sin )t0

《微分方程模型》PPT课件

《微分方程模型》PPT课件

房室具有以下特征:它由考察对象均匀分布而成, (注:考察对象一般并非均匀分布,这里采用了一种简 化方法一集中参数法);房室中考察对象的数量或浓度 (密度)的变化率与外部环境有关,这种关系被称为 “交换”且交换满足着总量守衡。在本节中,我们将用 房室系统的方法来研究药物在体内的分布。在下一节中, 我们将用多房室系统的方法来研究另一问题。两者都很 环境 简单,意图在于介绍建模方法。
器倾翻,图中X点处注入湖中。在采取紧急
措施后,于11:35事故得到控制,但数量不详
B
的化学物质Z已泻入湖中,初步估计Z的量在5~20m3之间。 建立一个模型,通过它来估计湖水污染程度随时间的变化
并估计:
(1)湖水何时到达污染高峰;
(2)何时污染程度可降至安全水平(<0.05%)
湖泊污染问题分析
设湖水在t时的污染程度为C(t), X
0t 3 3t 4 t4
现回答上述问题
(1)t 6 代入对应方程,求得
W (6) 57.48247kg
(2)要满足体重不增,即dW (b 16W ) /10000 0
dt
所以b 16W 1657.1256 914 (cal)
因此每天总卡路里摄取量是1200+914=2114cal
因污染源被截断,故微分方程变为 2000 dC 6C
dt
: 它的特解为
630
C(t) C(30)e 2000
当达到安全水平,即C(t)=0.0005时,可求出 此时的t=T,即
T 30 (2000 / 6) ln(0.0005 / C(30))
解得
T 30 (2000 / 6) ln(0.9564Z)
引例一

数学建模之微分方程方法ppt课件

数学建模之微分方程方法ppt课件
建模 s(t) i(t) r(t) 1
需建立 i(t),s(t),r(t)的两个方程
23.04.2020
.
26
четверг, 23 апреля
模型4
SIR模型
N [ i ( t t ) i ( t ) ] N ( t ) i ( t ) s t N ( t ) ti
N [ s ( t t) s ( t) ] N ( t) i ( t s ) t
.
一 微分方程的平衡点及稳定性
1.平衡点的概念
设方程组:
dx
dt
f (t, x)
x(t0 ) x0
(1)
如果存在某个常数(向量) x0 使得 f (t; x0 ) 0 , 则称点 x0 为方程组的平衡点(或奇点)。且称 x x0
为方程组的平凡解(或奇解)。
23.04.2020
.
7
четверг, 23 апреля
x2
提高阈值 1/ 降低
被传染人数比例 x
.
31
четверг, 23 апреля
建立微分方程模型的方法
(1)根据规律列方程 利用数学、力学、物理、化学等学科中的定理或 经过实验检验的规律等来建立微分方程模型。
(2)微元分析法
利用已知的定理与规律寻找微元之间的关系 式,与第一种方法不同的是对微元而不是直 接对函数及其导数应用规律。
增加假设 3)病人每天治愈的比例为 ~日治愈率
建模 N [ i ( t t ) i ( t ) ] N ( t ) i ( t ) s t N ( t ) t
di dt
i(1 i)
i
i(0) i0
~ 日接触率 1/ ~感染期
/ ~ 一个感染期内每个病人的

数学建模,第三章-微分方程模型

数学建模,第三章-微分方程模型

8小时20分-2小时57分=5小时23分
即死亡时间大约在下午5:23,因此张某不能被 排除在嫌疑犯之外。
理学院
3.2 目标跟踪模型
例1 饿狼追兔问题 黑 龙 现有一直兔子,一只狼,兔子位于狼的正西100米处,假 江 科 设兔子与狼同时发现对方并一起起跑,兔子往正北60米处的 技 巢穴跑,而狼在追兔子,已知兔子、狼是匀速跑且狼的速度 学 是兔子的2倍。兔子能否安全回到巢穴? 整理得到下述模型: 院 解:设狼的行走轨迹为y=f(x),则有:
理பைடு நூலகம்院
本章将通过一些最简单的实例来说明微分方程建模的 一般方法。在连续变量问题的研究中,微分方程是十分常 用的数学工具之一。
在许多实际问题中,当直接导出变量之间的函数关系 较为困难,但导出包含未知函数的导数或微分的关系式较 为容易时,可用建立微分方程模型的方法来研究该问题,
黑 龙 江 科 技 学 院 数 学 建 模
数 学 建 模
B
60
2 2xf' ' x 1 f' x y' x 0 , y 0 100 x 100 解得狼的行走轨迹为: 100 0 100 (0,h) 0, f' f 假设在某一时刻,兔子跑到 处,而狼在 (x,y)处,则有:
理学院
y y0 g e
g
车间空气中CO2浓度y 与时间t的数学模型
黑 龙 江 科 技 学 院 数 学 建 模
3.4 学习模型
一般认为,对一项技术工作,开始学得较快,但随着学 得越来越多时,内容也越来越复杂,学员学得就会越来越慢。
员学习的速度,则随y的增长而下降。
dy 设y%表示已经掌握了这项工作的百分数, dt

数学建模微分方程模型44页PPT

数学建模微分方程模型44页PPT
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
数学建模微分方程模型
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。

数学建模竞赛课件---微分方程模型

数学建模竞赛课件---微分方程模型
人的 比例分别为 i(t),s(t)
SI 模型
2)每个病人每天有效接触人数 ~ 日
为, 且使接触的健康人致病
接触率
N [ i( t t) i( t) [ ]s ( t)N ] ( t) ti
di si
dt
s(t)i(t)1

di dt

i (1 i )
三、经济增长模型
问题
四、传染病模型
• 描述传染病的传播过程 • 分析受感染人数的变化规律 • 预报传染病高潮到来的时刻
• 预防传染病蔓延的手段
• 按照传播过程的一般规律, 用机理分析方法建立模型
模型1
假设
建模
已感染人数 (病人) i(t)
• 每个病人每天有效接触
(足以使人致病)人数为
阻滞增长模型(Logistic模型)
参数估计 用指数增长模型或阻滞增长模型作人口 预报,必须先估计模型参数 r 或 r, xm
• 利用统计数据用最小二乘法作拟合
例:美国人口数据(单位~百万)
1860 1870 1880 …… 1960 1970 1980 1990 31.4 38.6 50.2 …… 179.3 204.0 226.5 251.4
i ( 0 )

i 0
模型2
di

i (1 i )
dt
Logistic 模型
i 1
i ( 0 )

i 0
1
i(t)
1/2
1


1 i0
1et
i0
0
tm
t=tm, di/dt 最大
t
t m
1
ln

数学建模--微分、积分和微分方程PPT课件

数学建模--微分、积分和微分方程PPT课件
若用雷达进行跟踪,保持船的瞬时 速度方向始终指向走私船,
缉私舰的运动轨迹是怎样的?是否 能够追上走私船?
如果能追上,需要用多长时间?
2021精选ppt
22
应用、思考和练习(追击问题)
y M0
M(x, y)
d
S0
S
2021精选ppt
x
23
应用、思考和练习(追击问题)
d2x d y2
r
(
1(dd
x)2)/ y
(1)定义法,取近似和的极限。
高等数学中不是重点内容 但数值积分的各种算法却是基于定义建立的
(2)用不定积分计算定积分。
不定积分是求导的逆运算, 而定积分是连续变量的求和(曲边梯形的面积) 表面上看是两个完全不同的概念, 通过牛顿-莱布尼兹公式联系在一起,
(3)解微分方程计算定积分
2021精选ppt
drawnow
end2021精选ppt来自29电影动画制作(zxy7_3)
moviein、 getframe、movie指令
x=-8:0.5:8; [XX,YY]=meshgrid(x);
r=sqrt(XX.^2+YY.^2)+eps;
Z=sin(r)./r;
surf(Z); %画出祯
theAxes=axis; %保存坐标值,使得所有帧都在同
例:求极限:
limsin(xs) in(3x) x0 sin(x)
syms x a
I1=limit(‘(sin(x)-sin(3*x))/sin(x)’,x,0) 运行结果
2021精选ppt
12
符号微积分(求导)
diff(f,‘var’,n) 求 f 对变量var 的n阶导数 缺省n时为求一阶导数 缺省变量'var' 时,默认变量为x 可用来求单变量函数导数 多变量函数的偏导数 还可以求抽象函数的导数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档