高中常见函数图像

合集下载

高中函数图像总结

高中函数图像总结

高中函数图像总结1.1 直线的图像•直线的一般方程为:y = kx + b, 其中k为斜率,b为截距。

•斜率k为正时,表示直线向右上方倾斜,k为负时,表示直线向右下方倾斜。

•截距b表示直线与y轴的交点,当b为正时,直线在y轴上方,b 为负时,直线在y轴下方。

•当直线经过原点(0,0)时,方程可简化为:y = kx。

1.2 平方函数的图像•平方函数的一般方程为:y = ax^2 + bx + c, 其中a、b、c为常数。

•a决定了函数的开口方向和开口的大小。

–当a > 0时,函数开口向上,形状为U型。

–当a < 0时,函数开口向下,形状为倒U型。

•函数的顶点坐标为:(-b/2a, f(-b/2a)),其中f(-b/2a)为函数在顶点的纵坐标。

1.3 一次函数的图像•一次函数的一般方程为:y = kx + b, 其中k为斜率,b为截距。

•斜率k为正时,函数向右上方倾斜,k为负时,函数向右下方倾斜。

•截距b表示函数与y轴的交点,当b为正时,函数在y轴上方,b 为负时,函数在y轴下方。

•当斜率k为0时,函数为水平直线,与x轴平行。

•当截距b为0时,函数经过原点(0,0)。

1.4 绝对值函数的图像•绝对值函数的一般方程为:y = |x|。

•函数图像以y轴为对称轴,开口向上。

•函数在原点(0,0)处取得最小值为0。

1.5 开平方函数的图像•开平方函数的一般方程为:y = √(x + a),其中a为常数。

•函数的图像在x轴右移a个单位。

1.6 二次函数的图像•二次函数的一般方程为:y = ax^2 + bx + c,其中a、b、c为常数。

•a决定了函数的开口方向和开口的大小。

–当a > 0时,函数开口向上,形状为U型。

–当a < 0时,函数开口向下,形状为倒U型。

•函数的顶点坐标为:(-b/2a, f(-b/2a)),其中f(-b/2a)为函数在顶点的纵坐标。

1.7 对数函数的图像•对数函数的一般方程为:y = loga(x),其中a为底数。

初中高中数学七大函数的性质 图像

初中高中数学七大函数的性质 图像

初中高中数学七大函数的性质图像1.一次函数(包括正比例函数)最简单最常见的函数,在平面直角坐标系上的图象为直线。

定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R值域:R奇偶性:无周期性:无平面直角坐标系解析式(下简称解析式):①ax+by+c=0[一般式]②y=kx+b[斜截式](k为直线斜率,b为直线纵截距,正比例函数b=0)③y-y1=k(x-x1)[点斜式](k为直线斜率,(x1,y1)为该直线所过的一个点)④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]((x1,y1)与(x2,y2)为直线上的两点)⑤x/a-y/b=0[截距式](a、b分别为直线在x、y轴上的截距)解析式表达局限性:①所需条件较多(3个);②、③不能表达没有斜率的直线(平行于x轴的直线);④参数较多,计算过于烦琐;⑤不能表达平行于坐标轴的直线和过圆点的直线。

倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜角。

设一直线的倾斜角为a,则该直线的斜率k=tg(a)。

2.二次函数:题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线。

定义域:R值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)奇偶性:偶函数周期性:无解析式:①y=ax^2+bx+c[一般式]⑴a≠0⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;⑶极值点:(-b/2a,(4ac-b^2)/4a);⑷Δ=b^2-4ac,Δ>0,图象与x轴交于两点:([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);Δ=0,图象与x轴交于一点:(-b/2a,0);Δ<0,图象与x轴无交点;②y=a(x-h)^2+t[配方式]此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);3.反比例函数在平面直角坐标系上的图象为双曲线。

高中函数图像大全

高中函数图像大全

指数函数之吉白夕凡创作概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。

注意:⒈指数函数对外形要求严格,前系数要为1,否则不克不及为指数函数。

⒉指数函数的定义仅是形式定义。

指数函数的图像与性质:规律:1.当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。

2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴;当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。

在y轴右边“底大图高”;在y轴左边“底大图低”。

3.四字口诀:“大增小减”。

即:当a>1时,图像在R上是增函数;当0<a<1时,图像在R上是减函数。

4.指数函数既不是奇函数也不是偶函数。

比较幂式大小的方法:1.当底数相同时,则利用指数函数的单调性进行比较;2.当底数中含有字母时要注意分类讨论;3.当底数分歧,指数也分歧时,则需要引入中间量进行比较;4.对多个数进行比较,可用0或1作为中间量进行比较底数的平移:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。

在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。

对数函数1.对数函数的概念由于指数函数y=ax在定义域(-∞,+∞)上是单调函数,所以它存在反函数,我们把指数函数y=ax(a>0,a≠1)的反函数称为对数函数,并记为y=logax(a>0,a≠1).因为指数函数y=ax的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=logax的定义域为(0,+∞),值域为(-∞,+∞).2.对数函数的图像与性质对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x. 据此即可以画出对数函数的图像,并推知它的性质.为了研究对数函数y=logax(a >0,a≠1)的性质,我们在同一直角坐标系中作出函数y=log2x ,y=log10x ,y=log10x,y=log 21x,y=log 101x 的草图由草图,再结合指数函数的图像和性质,可以归纳、分析出对数函数y=logax(a >0,a≠1)的图像的特征和性质.见下表.图 象a >1a <1性 质(1)x >0(2)当x=1时,y=0 (3)当x >1时,y >0 0<x <1时,y <0 (3)当x >1时,y <0 0<x <1时,y >0 (4)在(0,+∞)上是增函数 (4)在(0,+∞)上是减函数弥补 性质设y1=logax y2=logbx 其中a >1,b >1(或0<a <1 0<b <1) 当x >1时“底大图低”即若a >b 则y1>y2当0<x <1时“底大图高”即若a >b ,则y1>y2比较对数大小的经常使用方法有:(1)若底数为同一常数,则可由对数函数的单调性直接进行判断. (2)若底数为同一字母,则按对数函数的单调性对底数进行分类讨论. (3)若底数分歧、真数相同,则可用换底公式化为同底再进行比较. (4)若底数、真数都不相同,则常借助1、0、-1等中间量进行比较. 3.指数函数与对数函数对比名称 指数函数 对数函数 一般形式 y=ax(a >0,a ≠1)y=logax(a >0,a ≠1)定义域 (-∞,+∞) (0,+∞) 值域(0,+∞)(-∞,+∞)幂函数幂函数的图像与性质幂函数n y x =随着n 的分歧,定义域、值域都会发生变更,可以采纳按性质和图像分类记忆的方法.熟练掌握n y x =,当112,1,,,323n =±±±的图像和性质,列表如下.从中可以归纳出以下结论:① 它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限.② 11,,1,2,332a =时,幂函数图像过原点且在[)0,+∞上是增函数. ③ 1,1,22a =---时,幂函数图像不过原点且在()0,+∞上是减函数.④何两个幂函数最多有三个公共点.定义域 R R R奇偶性奇 奇 奇 非奇非偶 奇 在第Ⅰ象限的增减性在第Ⅰ象限单调递增在第Ⅰ象限单调递增在第Ⅰ象限单调递增在第Ⅰ象限单调递增在第Ⅰ象限单调递减ny x =奇函数 偶函数 非奇非偶函数1n >01n <<0n <Oxy OxyOxyOx yOxyOxy OxyOxyOxy幂函数y x α=(x ∈R ,α是常数)的图像在第一象限的分布规律是:①所有幂函数y x α=(x ∈R ,α是常数)的图像都过点)1,1(; ②当21,3,2,1=α时函数y x α=的图像都过原点)0,0(;③当1=α时,y x α=的的图像在第一象限是第一象限的平分线(如2c );④当3,2=α时,y x α=的的图像在第一象限是“凹型”曲线(如1c )⑤当21=α时,y x α=的的图像在第一象限是“凸型”曲线(如3c )⑥当1-=α时,y x α=的的图像不过原点)0,0(,且在第一象限是“下滑”曲线(如4c )当0>α时,幂函数y x α=有下列性质:(1)图象都通过点)1,1(),0,0(; (2)在第一象限内都是增函数;(3)在第一象限内,1>α时,图象是向下凸的;10<<α时,图象是向上凸的; (4)(在第一象限内,过点)1,1(后,图象向右上方无限伸展。

高中数学常用函数图像及性质

高中数学常用函数图像及性质

性质:恒过定点(0,1);当 x = 0 时,y = 1 ;当a 1时,y 单调递增,当X ,(-::,0)时,y (0,1);当(0,::) 时,* (1「)当0:::a "时,y 单调递减,当x ・(-::,0)时,y ・(1,::);当x ・(0「:) 时,y (1,0).2.对数函数 y=logx (a 0且a = 1)对数运算法则: log a MN = log a M log a N log a M nlog a M (n R)log a N 二鯉N (换底公式)log b aMlog a log a M - log a NNalog a N 二N (对数恒等式)图像1.指数函数 图像:y 二 a x (a 0 且 a = 1)性质:恒过定点(1,0);当 x =1 时,y =0 ; 当 a 1 时,y 单调递增,当 X ,(0,1)时,y (-::,0);当 x- (1, ::)时,y (0, ::)•当 0 ::: a ::: 1 时,y 单调递减,当 x • (0,1)时,y (0/::);当 x • (1,=) 时,* (」:,0).指数函数和对数函数的关系:互为反函数3.初等函数⑴: y = x 2图像y =x 2 :开口向上,x (-::,0)时,y (0/::),函数单调递减;(0/::), 时,y (0「:),函数单调递增,且是偶函数。

y = ~x 2:开口 向下,x (- :: ,0)时,y ■ (-::,0),函数单调递增;x (0/ ::), a X (0 :: a :: 1)a x(a ■ 0)时,厂(」:,0),函数单调递减。

性质:图像都是关于y轴对称⑵:y = x3图像性质:R,r R,函数是增函数,也是奇函数⑶:y = x 4图像性质:x R 且x = 0 , y R 且y=0 ;函数在x • (- ::,0)内禾口x • (0, •::)都是单调递减,且函数是奇函数。

函数图像总结

函数图像总结

函数图像总结函数图像总结函数图像总结一基本函数图像1y=kx(x≠0)2y=kx+b(k≠0)3y4yax2bxc(a0)5yxa6yxk(k0)xk(k0)7yax(a 0,a1)x8ylogax(a0,a1)二抽象图像平移f(x)f(x+1)f(x)f(x-1)f(x)f(x)+1f(x)f(x)-1f(x)f(2x)f(x)2f(x) f(x)f(2x+2)y=f(-x)变成y=f(-x+2)练习:cosxcos2xcos2xcos(2x+4)cosxcos2x+4三图像的变换1f(x)f(|x|)保留y轴右边的,左边关于右边y轴对称2f(x)|f(x)|保留x轴上方的,下方关于x轴对称3f(x)f(-x)y轴对称4f(x)-f(x)x轴对称5f(x)-f(-x)原点对称6f(x)f(|x+1|)先根据1方法变成f(|x|),在向左平移一个单位得到f(|x+1|)7f(x)f(|x|+1)先向左平移一个单位得到f(x+1),再根据1方法变成f(|x|+1)8f(x)与f1(x)的图象关于直线yx对称联想点(x,y),(y,x)9f(x)与f(2ax)的图象关于点(a,0)对称egf(x)= 2x与g(x)=-2x关于对称一、函数yf(x)与函数yf(x)的图象关系函数yf(x)的图象是由yf(x)的图象经沿y轴翻折180°而得到的(即关于y轴对称)。

注意它与函数yf(x)满足f(x)f(x)的图象是不同的,前者代表两个函数,后者表示函数yf(x)本身是关于y轴对称的。

(二)伸缩变换及其应用:函数yaf(bx)的图像可以看作是由函数yf(x)的图像先将横坐标伸长(|b|<1)或缩短(|b|>1)到原来的1倍,再把纵坐标伸长(|a|>1)或缩短(|a|<1)到原来的|a|倍即可得到。

如:|b|1的图像x1要求:1会画y=|x+1|y=-2会画f(x)=lg|x|以及f(x)=|lgx|3会画f(x)=|lg|x+1||以及f(x)=x2-4|x|+5f(x)=|x2-2x-3|二1由图像可知f(x+1)为偶函数对称轴为2由图像可知f(x+1)为奇函数关于点(,)对称Eg、对a,bR,记max{a,b}=(A)0(B) a,ab,函数f(x)=max{|x+1|,|x-2|}(xR)的最小值是b,a<b13(C)(D)3901(选讲)1、yf(x)绕原点顺时针方向旋转;yf(x)12、yf(x);yf (x)绕原点逆时针方向旋转9000yQP(a,b)(yf(x)yQ1xP1(b,a)(yf1(x))P(a,b)(yf(x)0P1(b,a)1(yf(x))0(乙)x(甲)(图五)0说明:关于绕原点旋转180的变换实际上就是关于原点对称的问题。

《高中数学课件:几种常见函数的图像和性质》

《高中数学课件:几种常见函数的图像和性质》
高中数学课件:几种常见 函数的图像和性质
探索几种常见函数的图像和性质,包括一次函数、二次函数、反比例函数、 幂函数、指数函数、对数函数、三角函数和常函数。
一次函数
一次函数是指具有形式y = kx + b的函数,图像为一条直线,斜率k决定了直 线的倾斜程度,纵截距b决定了直线与y轴的交点。
二次函数
Step 3
根据底数a的不同,求解指数函 数的通式。
推导对数函数的通式
1
Step 2
2
代入任意一点的坐标和底数a到对数函数
的通式y = log_a(x)中。
3
Step 1
通过两个点的坐标(x1, y1)和(x2, y2)计算 底数a:a = 10^((y1 - y2) / (x1 - x2))。
Step 3
推导反比例函数的通式
1 Step 1
2 Step 2
通过两个点的坐标(x1, y1)和(x2, y2)计算比例 系数k:k = y1 * x1 = y2 * x2。
代入一个点的坐标(x, y)和比例系数k到反比例 函数的通式y = k/x中,得到反比例函数的通 式。
推导幂函数的通式
Step 1
取幂函数的对数y = log_a(x), 其中a为底数。
二次函数是指具有形式y = ax^2 + bx + c的函数,图像为一条开口向上或向下 的曲线,顶点坐标为(-b/2a, c-b^2/4a)。
反比例函数
反比例函数是指具有形式y = k/x的函数,图像为一条曲线,呈现出一个反比 例的关系,x越大,y越小。
幂函数
幂函数是指具有形式y = kx^n的函数,图像的形态取决于指数n的值,n为正 偶数时,图像在原点右侧上升,n为正奇数时,则图像在全范围上升。

(完整版)高中数学常见函数图像

(完整版)高中数学常见函数图像

高中数学常见函数图像1.2.对数函数:3.幂函数:定义形如αxy=(x∈R)的函数称为幂函数,其中x是自变量,α是常数.图像性质过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x轴与y轴.4.函数sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =; 当22xk ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数 奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭ 对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴。

常用基本函数图像与性质

常用基本函数图像与性质

高中常用函数图像与性质一、常值(数)函数1.定义:一般地,形如为常数)(c c y =,那么叫做常值(数)函数.2.图像与性质:解析式)0(>=c c y 0=y )0(<=c c y 图像性质定义域R值域{}c y y =单调性不具单调性奇偶性偶函数对称性对称轴:y 轴(0=x )二、一次函数1.定义:一般地,形如y=kx +b(k,b是常数,k≠0),那么y叫做x 的一次函数.特别地,当b=0时,y=kx ,此时y 叫做x 的正比例函数,正比例函数是一种特殊的一次函数.2.图像与性质:一次函数()0k kx b k =+≠k ,b 符号k >0k <0b >0b <0b =0b >0b <0b =图象性质y 随x 的增大而增大y 随x 的增大而减小三、二次函数1.定义:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数.2.解析式:(1)一般式:)0(2≠++=c c bx ax y ;(2)顶点式:)0(442(22≠-++=a ab ac a b x a y ;(3)两点式:)0)()((21≠--a x x x x a ,其中)0,(,)0,(21x x 为图像与x 轴了两交点的坐标.3.二次函数()2y a x h k =-+与2y ax bx c =++的比较:从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,.4.二次函数的系数c b a ,,对图像的影响(1)系数a :①0>a ,开口向上;0<a ,开口向下;②a 越大,开口越大;a 越小,开口越小;(2)系数b :b a ,的符号共同决定对称轴的位置,“左同右异”①b a 、同号:0>ab ,对称轴a bx 2-=在y 轴左侧,②b a 、异号:0<ab ,对称轴abx 2-=在y 轴右侧;(3)常数c :与y 轴交点坐标),0(c ;5.二次函数2y ax bx c =++)0(≠a 的性质()()20f x ax bx c a =++≠0a >0a <图像定义域(),-∞+∞对称轴2bx a=-顶点坐标24,24b ac b a a ⎛⎫-- ⎪⎝⎭值域),44(2∞+-ab ac 24,4ac b a ⎛⎫--∞ ⎪⎝⎭单调区间)2,(ab--∞递减)2(∞+-,ab 递增)2,(ab--∞递增)2(∞+-,ab 递减6.二次函数2y ax bxc =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住5要素:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.7.二次函数与一元二次方程(1)当抛物线)0(2≠++=a c bx ax y 与x 轴两个交点时,公共点的横坐标21,x x 是一元二次方程)0(02≠=++a c bx ax 的根.(2)①当240b ac ∆=->时,抛物线)0(2≠++=a c bx ax y 与x 轴有两个交点;②当042=-=∆ac b 时,抛物线)0(2≠++=a c bx ax y 与x 轴有1个交点(顶点);③当042<-=∆ac b 时,抛物线)0(2≠++=a c bx ax y 与x 轴无交点;(3)当042<-=∆ac b 时:①当0a >时,图象落在x 轴的上方,0y >恒成立;②当0<a 时,图象落在x 轴的下方,0<y 恒成立;四、反比例函数1.定义:一般地,形如)0(≠=x xky 的函数,称为反比例函数.2.图像与性质:函数解析式>k 0<k五、指数函数1.定义:函数)1,0(≠>=a a a y x 且,x 为自变量,函数定义域为R .2.图像与性质:10<<a 1>a 图像定义域R 值域)0(∞+,性质(1)过定点(0,1),即1,0==y x 时(2)在R 上为减函数(2)在R 上为增函数六、对数函数1.定义:函数)1,0(log ≠>=a a x y a 且,x 为自变量,函数定义域为),0(∞+.2.图像与性质:10<<a 1>a图像定义域(0,+∞)值域R性质(1)过定点(1,0),即0,1==yx时(2)在),0(∞+上为减函数(2)在),0(∞+上为增函数七、幂函数1.定义:形如αxy=叫做幂函数,其中x是自变量,α为常数.2.几种常见幂函数的图像3.几种常见幂函数.的图像与性质幂函数性质xy=2xy=3xy=21xy=1-xy=八、对勾函数1.定义:2.图像与性质:解析式)0,0()(>>+=b a xbax x f 图像性质定义域{}0≠x x 值域),2[]2,(∞+--∞ab ab 单调性单调增区间:),(,),(∞+--∞ab a b九、分式函数1.定义:一般地,形如:()()ax bf x ad cb cx d+=≠+叫做分式函数.2.图像与性质:图象是以直线,d a x y c c =-=(恰为系数之比)为渐近线的双曲线,对称中心(,d ac c-,通常用代点法确定两支双曲线的位置。

高中常用函数性质及图像汇总

高中常用函数性质及图像汇总

函数周期性
• 周期性:若存在一个正数T,使得对于函数定义域内的任意一个 x,都有f(x+T)=f(x),则称函数为周期函数,T为函数的周期。
函数有界性与无界性
有界性
若存在一个正数M,使得对于函 数定义域内的任意一个x,都有 |f(x)|≤M,则称函数为有界函数 。
无界性
若函数不满足有界性的条件,则 称函数为无界函数。
04
三角函数与反三角函数
三角函数基本概念和性质
01
02
03
04
三角函数定义
正弦、余弦、正切等函数在直 角三角形中的定义及在各象限
的符号规律。
三角函数的周期性
正弦、余弦函数周期为2π, 正切函数周期为π。
三角函数的奇偶性
正弦函数为奇函数,余弦函数 为偶函数,正切函数为奇函数

三角函数的增减性
在各象限内,正弦、余弦函数 的增减性及其与角度的关系。
复合函数应用举例
在解决实际问题时,经常会遇到需要通过多个步骤或多个因素共同影响才能得到结果的情况,这时就可以通过建 立复合函数模型来描述这种关系。例如,在经济学中,可以通过建立复合函数模型来描述商品价格与市场需求量 之间的关系。
抽象函数应用举例
抽象函数在数学研究中具有重要地位,许多数学问题都可以转化为抽象函数的问题进行研究。例如,在证明一些 数学定理时,可以通过构造抽象函数并利用其性质进行证明;在解决一些数学问题时,可以通过对抽象函数的性 质进行分析和研究来找到解决问题的方法。
特定的形状和变化趋势。
幂函数和分式函数应用举例
幂函数应用举例
在物理学中,幂函数可以用来描述物体自由落体的速度v 与时间t的关系,即v=gt^2(其中g为重力加速度)。此 外,幂函数还可以用于描述放射性元素的衰变规律等。

高中阶段常见函数图像(高清)(1)

高中阶段常见函数图像(高清)(1)
函数表达式
图像
函数表达式
y ln x x
y ln x x
函数极值点
1, 1
y x ln x
函数极值点
1 e
,
1 e
y ln x x
函数极值点
e,
1 e
y x ln x
函数极值点
e, e
y ex x
过定点
0,1
y ex x
函数极值点
0,1
y ex x
函数极值点
1, e
y ln x x 1
函数极值点
e, e
ln x x 1
y ln x 1 ex
函数极值点
0,1 ln x 1 ex
函数表达式
y sin x
y ex x 1
函数极值点
e,
1 e
ex x 1
y ex x 1
过定点
0,1
ex 1 x
y ln 1 1 1 xx
函数极值点
函数表达式
y x2 ex
图像
y
x2 ex
y
ex x2
y ex sin x y ex sin x
4 / 41
y ex sin x y ex sin x
y
sin ex
x
y ex cos x
函数表达式
图像
函数表达式
图像
y ex cos x
y ex cos x
y
cos ex
x
y x2 sin x
y xex
函数极值点
1,
1 e
y
x ex
函数极值点
1,
1 e
图像
1 / 41
函数表达式

高中数学 14种函数图像和性质知识解析 新人教A版必修1

高中数学 14种函数图像和性质知识解析 新人教A版必修1

高中数学 14种函数图像和性质知识解析新人教A版必修1高中不得不掌握的函数图像与常用性质高中常用函数有14种,它们是:1.正比例函数;2.反比例函数;3.根式函数;4一次函数;5.二次函数;6双勾函数.;7..双抛函数;8.指数函数;9对数函数;10.三角函数;11分段函数.;12.绝对值函数;13.超越函数;14.抽象函数。

而函数的性质常见的有:1.定义域;2.值域;3.单调性;4.奇偶性;5.周期性;6.对称性;7.有界性;8.反函数;9.连续性.高中都是从函数解析式入手画出函数图像,再利用函数图像研究其性质,下面我们就函数的图像和性质做归纳总结。

1.正比例函数解析式图像定义域:值域:单调性:奇偶性:反函数:2.反比例函数解析式图像性质定义域:值域:单调性:奇偶性:反函数:对称性:定义域:值域:单调性:对称性:3根式函数解析式图像定义域:值域:单调性:奇偶性:反函数:4一次函数解析式图像定义域:值域:1 性质性质性质用心爱心专心单调性:反函数:5二次函数解析式图像定义域:值域:单调性:对称性:定义域:值域:单调性:对称性:6.双勾函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:值域:单调性:奇偶性:对称性:7.双抛函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:性质性质性质用心爱心专心值域:单调性:奇偶性:对称性:8.指数函数解析式图像定义域:值域:单调性:9.对数函数解析式图像定义域:值域:单调性:10.三角函数解析式图像单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:11.分段函数分段函数是在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数,它是一类较特殊的函数。

其图像的画法是按定义域的划分分别作图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数函数概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。

注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。

⒉指数函数的定义仅是形式定义。

指数函数的图像与性质:规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。

2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴;当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。

在y轴右边“底大图高”;在y轴左边“底大图低”。

3.四字口诀:“大增小减”。

即:当a>1时,图像在R上是增函数;当0<a<1时,图像在R上是减函数。

4. 指数函数既不是奇函数也不是偶函数。

比较幂式大小的方法:1.当底数相同时,则利用指数函数的单调性进行比较;2.当底数中含有字母时要注意分类讨论;3.当底数不同,指数也不同时,则需要引入中间量进行比较;4.对多个数进行比较,可用0或1作为中间量进行比较底数的平移:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。

在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。

对数函数1.对数函数的概念由于指数函数y=a x在定义域(-∞,+∞)上是单调函数,所以它存在反函数,我们把指数函数y=a x(a>0,a≠1)的反函数称为对数函数,并记为y=log a x(a>0,a≠1).因为指数函数y=a x的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=log a x的定义域为(0,+∞),值域为(-∞,+∞).2.对数函数的图像与性质对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x. 据此即可以画出对数函数的图像,并推知它的性质.为了研究对数函数y=log a x(a>0,a≠1)的性质,我们在同一直角坐标系中作出函数y=log2x,y=log10x,y=log10x,y=log21x,y=log101x的草图由草图,再结合指数函数的图像和性质,可以归纳、分析出对数函数y=log a x(a>0,a≠1)的图像的特征和性质.见下表.图象a>1 a<1性质(1)x>0(2)当x=1时,y=0(3)当x>1时,y>00<x<1时,y<0(3)当x>1时,y<00<x<1时,y>0 (4)在(0,+∞)上是增函数(4)在(0,+∞)上是减函数补充性质设y1=log a x y2=log b x其中a>1,b>1(或0<a<1 0<b<1) 当x>1时“底大图低”即若a>b则y1>y2当0<x<1时“底大图高”即若a>b,则y1>y2比较对数大小的常用方法有:(1)若底数为同一常数,则可由对数函数的单调性直接进行判断.(2)若底数为同一字母,则按对数函数的单调性对底数进行分类讨论. (3)若底数不同、真数相同,则可用换底公式化为同底再进行比较. (4)若底数、真数都不相同,则常借助1、0、-1等中间量进行比较.3.指数函数与对数函数对比幂函数幂函数的图像与性质幂函数ny x =随着n 的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握ny x =,当112,1,,,323n =±±±的图像和性质,列表如下. 从中可以归纳出以下结论:① 它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限.② 11,,1,2,332a =时,幂函数图像过原点且在[)0,+∞上是增函数. ③ 1,1,22a =---时,幂函数图像不过原点且在()0,+∞上是减函数.④ 任何两个幂函数最多有三个公共点.ny x=奇函数偶函数非奇非偶函数1n>01n<<n<定义域R R R奇偶性奇奇奇非奇非偶奇在第Ⅰ象限的增减性在第Ⅰ象限单调递增在第Ⅰ象限单调递增在第Ⅰ象限单调递增在第Ⅰ象限单调递增在第Ⅰ象限单调递减幂函数y xα=(x∈R,α是常数)的图像在第一象限的分布规律是:①所有幂函数y xα=(x∈R,α是常数)的图像都过点)1,1(;②当21,3,2,1=α时函数y xα=的图像都过原点)0,0(;O xyO xyO xyO xyO xyO xyO xyO xyO xy③当1=α时,y x α=的的图像在第一象限是第一象限的平分线(如2c );④当3,2=α时,y x α=的的图像在第一象限是“凹型”曲线(如1c )⑤当21=α时,y x α=的的图像在第一象限是“凸型”曲线(如3c )⑥当1-=α时,y x α=的的图像不过原点)0,0(,且在第一象限是“下滑”曲线(如4c )当0>α时,幂函数y x α=有下列性质:(1)图象都通过点)1,1(),0,0(;(2)在第一象限内都是增函数;(3)在第一象限内,1>α时,图象是向下凸的;10<<α时,图象是向上凸的; (4)在第一象限内,过点)1,1(后,图象向右上方无限伸展。

当0<α时,幂函数y x α=有下列性质:(1)图象都通过点)1,1(;(2)在第一象限内都是减函数,图象是向下凸的;(3)在第一象限内,图象向上与y 轴无限地接近;向右无限地与x 轴无限地接近; (4)在第一象限内,过点)1,1(后,α越大,图象下落的速度越快。

无论α取任何实数,幂函数y x α=的图象必然经过第一象限,并且一定不经过第四象限。

对号函数函数xbax y +=(a>0,b>0)叫做对号函数,因其在(0,+∞)的图象似符号“√”而得名,利用对号函数的图象及均值不等式,当x>0时,a b x b ax 2≥+(当且仅当x bax =即a b x =时取等号),由此可得函数xbax y +=(a>0,b>0,x ∈R +)的性质:当a b x =时,函数x bax y +=(a>0,b>0,x ∈R +)有最小值a b 2,特别地,当a=b=1时函数有最小值2。

函数xbax y +=(a>0,b>0)在区间(0,a b )上是减函数,在区间(a b ,+∞)上是增函数。

因为函数x b ax y +=(a>0,b>0)是奇函数,所以可得函数xbax y +=(a>0,b>0,x ∈R -)的性质: 当a b x -=时,函数xbax y +=(a>0,b>0,x ∈R -)有最大值-a b 2,特别地,当a=b=1时函数有最大值-2。

函数xbax y +=(a>0,b>0)在区间(-∞,-a b )上是增函数,在区间(-a b ,0)上是减函奇函数和偶函数(1)如果对于函数f(x)的定义域内的任意一个x 值,都有f(-x)=-(x).那么就称f(x)为奇函数. 如果对于函数f(x)的定义域内的任意一个x 值,都有f(-x)=f(x),那么就称f(x)为偶函数.说明:(1)由奇函数、偶函数的定义可知,只有当f(x)的定义域是关于原点成对称的若干区间时,才有可能是奇 (2)判断是不是奇函数或偶函数,不能轻率从事,例如判断f(x) 是不易的.为了便于判断有时可采取如下办法:计算f(x)+f(-x),视其结果而说明是否是奇函数.用这个方法判断此函数较为方便:f(x)(3)判断函数的奇偶性时,还应注意是否对定义域内的任何x值,当x≠0时,显然有f(-x)=-f(x),但当x=0时,f(-x)=f(x)=1,∴f(x)为非奇非偶函数.(4)奇函数的图象特征是关于坐标原点为对称的中心对称图形;偶函数的图象特征是关于y轴为对称轴的对称图形.(5)函数的单调性与奇偶性综合应用时,尤其要注意由它们的定义出发来进行论证.例如果函数f(x)是奇函数,并且在(0,+∞)上是增函数,试判断在(-∞,0)上的增减性.解设x1,x2∈(-∞,0),且x1<x2<0则有-x1>-x2>0,∵f(x)在(0,+∞)上是增函数,∴f(-x1)>f(-x2)又∵f(x)是奇函数,∴f(x)=-f(x)对任意x成立,∴=-f(x1)>-f(x2)∴f(x1)<f(x2).∴f(x)在(-∞,0)上也为增函数.由此可得出结论:一个奇函数若在(0,+∞)上是增函数,则在(-∞,0)上也必是增函数,即奇函数在(0,+∞)上与(-∞,0)上的奇偶性相同.类似地可以证明,偶函数在(0,+∞)和(-∞,0)上的奇偶性恰好相反.时,f(x)的解析式解∵x<0,∴-x>0.又∵f(x)是奇函数,∴f(-x)=-f(x).偶函数图象对称性的拓广与应用我们知道,如果对于函数y=f(x)定义域内任意一个x,都有f(-x)=f(x),那么函数y=f(x)就叫做偶函数.偶函数的图象关于y轴对称,反之亦真.由此可拓广如下:如果存在常数a,b,对于函数y=f(x)定义域内任意一个x,a+x,b-x仍在(a+b-x,f(x)),而f(a+b-x)=f[a+(b-x)]=f[b-(b-x)]=f(x),对称点P'(a+b-x,称;。

相关文档
最新文档