组合数学第五章习题答案
Richard组合数学第5版-第5章课后习题答案(英文版)
Richard组合数学第5版-第5章课后习题答案(英⽂版)Math475Text:Brualdi,Introductory Combinatorics5th Ed. Prof:Paul TerwilligerSelected solutions for Chapter51.For an integer k and a real number n,we shown k=n?1k?1+n?1k.First assume k≤?1.Then each side equals0.Next assume k=0.Then each side equals 1.Next assume k≥1.RecallP(n,k)=n(n?1)(n?2)···(n?k+1).We haven k=P(n,k)k!=nP(n?1,k?1)k!.n?1 k?1=P(n?1,k?1)(k?1)!=kP(n?1,k?1)k!.n?1k(n?k)P(n?1,k?1)k!.The result follows.2.Pascal’s triangle begins111121133114641151010511615201561172135352171182856705628811936841261268436911104512021025221012045101···13.Let Z denote the set of integers.For nonnegative n∈Z de?ne F(n)=k∈Zn?kk.The sum is well de?ned since?nitely many summands are nonzero.We have F(0)=1and F(1)=1.We show F(n)=F(n?1)+F(n?2)for n≥2.Let n be /doc/6215673729.htmling Pascal’s formula and a change of variables k=h+1,F(n)=k∈Zn?kk=k∈Zn?k?1k?1=k∈Zn?k?1k+h∈Zn?h?2h=F(n?1)+F(n?2).Thus F(n)is the n th Fibonacci number.4.We have(x+y)5=x5+5x4y+10x3y2+10x2y3+5xy4+y5and(x+y)6=x6+6x5y+15x4y2+20x3y3+15x2y4+6xy5+y6.5.We have(2x?y)7=7k=07k27?k(?1)k x7?k y k.6.The coe?cient of x5y13is35(?2)13 185.The coe?cient of x8y9is0since8+9=18./doc/6215673729.htmling the binomial theorem,3n=(1+2)n=nk=0nSimilarly,for any real number r,(1+r)n=nk=0nkr k./doc/6215673729.htmling the binomial theorem,2n=(3?1)n=nk=0(?1)knk3n?k.29.We haven k =0(?1)k nk 10k =(?1)n n k =0(?1)n ?k n k 10k =(?1)n (10?1)n =(?1)n 9n .The sum is 9n for n even and ?9n for n odd.10.Given integers 1≤k ≤n we showk n k =n n ?1k ?1.Let S denote the set of ordered pairs (x,y )such that x is a k -subset of {1,2,...,n }and yis an element of x .We compute |S |in two ways.(i)To obtain an element (x,y )of S there are n k choices for x ,and for each x there are k choices for y .Therefore |S |=k n k .(ii)Toobtain an element (x,y )of S there are n choices for y ,and for each y there are n ?1k ?1 choices for x .Therefore |S |=n n ?1k ?1.The result follows.11.Given integers n ≥3and 1≤k ≤n .We shown k ? n ?3k = n ?1k ?1 + n ?2k ?1 + n ?3k ?1.Let S denote the set of k -subsets of {1,2,...,n }.Let S 1consist of the elements in S thatcontain 1.Let S 2consist of the elements in S that contain 2but not 1.Let S 3consist of the elements in S that contain 3but not 1or 2.Let S 4consist of the elements in S that do|S |= n k ,|S 1|= n ?1k ?1 ,|S 2|= n ?2k ?1 ,|S 3|= n ?3k ?1 ,|S 4|= n ?3k .The result follows.12.We evaluate the sumnk =0(?1)k nk 2.First assume that n =2m +1is odd.Then for 0≤k ≤m the k -summand and the (n ?k )-summand are opposite.Therefore the sum equals 0.Next assume that n =2m is even.Toevaluate the sum in this case we compute in two ways the the coe?cient of x n in (1?x 2)n .(i)By the binomial theorem this coe?cient is (?1)m 2m m .(ii)Observe (1?x 2)=(1+x )(1?x ).We have(1+x )n =n k =0n k x k,(1?x )n =n k =0nk (?1)k x k .3By these comments the coe?cient of x n in(1?x2)n isn k=0nn?k(?1)knk=nk=0(?1)knk2.2=(?1)m2mm.13.We show that the given sum is equal ton+3k .The above binomial coe?cient is in row n+3of Pascal’s /doc/6215673729.htmling Pascal’s formula, write the above binomial coe?cient as a sum of two binomial coe?ents in row n+2of Pascal’s triangle.Write each of these as a sum of two binomial coe?ents in row n+1of Pascal’s triangle.Write each of these as a sum of two binomial coe?ents in row n of Pascal’s triangle.The resulting sum isn k+3nk?1+3nk?2+nk?3.14.Given a real number r and integer k such that r=k.We showr k=rr?kr?1k.First assume that k≤?1.Then each side is0.Next assume that k=0.Then each side is 1.Next assume that k≥1.ObserverP(r?1,k?1)k!,andr?1k=P(r?1,k)k!=(r?k)P(r?1,k?1)k!.The result follows.15.For a variable x consider(1?x)n=nk=0nk(?1)k x k.4Take the derivative with respect to x and obtain n(1x)n1=nk=0nk(?1)k kx k?1.Now set x=1to get(?1)k k.The result follows.16.For a variable x consider(1+x)n=nk=0nkx k.Integrate with respect to x and obtain(1+x)n+1 n+1=nk=0nkx k+1k+1+Cfor a constant C.Set x=0to?nd C=1/(n+1).Thus (1+x)n+1?1n+1=nk=0nkx k+1k+1.Now set x=1to get2n+1?1 n+1=k+1.17.Routine.18.For a variable x consider(x?1)n=nk=0nk(?1)n?k x k.Integrate with respect to x and obtain(x?1)n+1 n+1=nk=0nk(?1)n?kx k+1k+1+Cfor a constant C.Set x=0to?nd C=(?1)n+1/(n+1).Thus (x?1)n+1?(?1)n+1n+1=nk=0nk(?1)n?kx k+1k+1Now set x =1to get(?1)n n +1=n k =0n k(?1)n ?k 1k +1.Therefore1n +1=n k =0 n k (?1)k 1k +1 .19.One readily checks2 m 2 + m 1=m (m ?1)+m =m 2.Therefore n k =1k 2=nk =0k 2=2nk =0 k 2 +n k =0k1=2 n +13 +n +12 =(n +1)n (2n +1)6.20.One readily checksm 3=6 m 3 +6 m 2 + m1.Thereforen k =1k3=n=6nk =0 k3+6n k =0 k2 +n k =0k1 =6 n +14 +6 n +13 +n +12 =(n +1)2n 24= n +12 2.621.Given a real number r and an integer k .We showrk=(?1)kr +k ?1k .First assume that k <0.Then each side is zero.Next assume that k ≥0.Observe r k =(r )(r 1)···(r k +1)k !=(?1)kr (r +1)···(r +k ?1)k !=(?1)kr +k ?1k.22.Given a real number r and integers k,m .We showr m m k = r k r ?km ?k.First assume that mObserver m m k =r (r ?1)···(r ?m +1)m !m !k !(m ?k )!=r (r ?1)···(r ?k +1)k !(r ?k )(r ?k ?1)···(r ?m +1)(m ?k )!= r k r ?k m ?k .23.(a) 2410.(b) 94 156.(c) 949363.(d)94156949363.24.The number of walks of length 45is equal to the number of words of length 45involving10x ’s,15y ’s,and 20z ’s.This number is45!10!×15!×20!.725.Given integers m 1,m 2,n ≥0.Shown k =0m 1k m 2n ?k = m 1+m 2n .Let A denote a set with cardinality m 1+m 2.Partition A into subsets A 1,A 2with cardinalitiesm 1and m 2respectively.Let S denote the set of n -subsets of A .We compute |S |in two ways.(i)By construction|S |= m 1+m 2n .(ii)For 0≤k ≤n let the set S k consist of the elements in S whose intersection with A 1has cardinality k .The sets {S k }n k =0partition S ,so |S |= nk =0|S k |.For 0≤k ≤n we now compute |S k |.To do this we construct an element x ∈S k via the following 2-stage procedure: stage to do #choices 1pick x ∩A 1 m 1k2The number |S k |is the product of the entries in the right-most column above,which comes to m 1k m 2n ?k .By these comments |S |=n k =0m 1k m 2n ?k .The result follows.26.For an integer n ≥1shown k =1 n k n k ?1 =12 2n +2n +1 ? 2n n .Using Problem 25,n k =1 n k nk ?1 =n k =0n k n k ?1 =n k =0n k nn +1?k =2n n +1 =12 2n n ?1 +12 2n n +1.8It remains to show12 2nn ?1 +12 2n n +1 =12 2n +2n +1 ? 2n n.This holds since2n n ?1 +2 2n n + 2n n +1 = 2n +1n +2n +1n +1= 2n +2n +1.27.Given an integer n ≥1.We shown (n +1)2n ?2=nk =1Let S denote the set of 3-tuples (s,x,y )such that s is a nonempty subset of {1,2,...,n }and x,y are elements (not necessarily distinct)in s .We compute |S |in two ways.(i)Call an element (s,x,y )of S degenerate whenever x =y .Partition S into subsets S +,S ?with S +(resp.S ?)consisting of the degenerate (resp.nondegenerate)elements of S .So |S |=|S +|+|S ?|.We compute |S +|.To obtain an element (s,x,x )of S +there are n choices for x ,and given x there are 2n ?1choices for s .Therefore |S +|=n 2n ?1.We compute |S ?|.To obtain an element (s,x,y )of S ?there are n choices for x,and given x there are n ?1choices for y ,and given x,y there are 2n ?2choices for s .Therefore |S ?|=n (n ?1)2n ?2.By these comments|S |=n 2n ?1+n (n ?1)2n ?2=n (n +1)2n ?2.(ii)For 1≤k ≤n let S k denote the set of elements (s,x,y )in S such that |s |=k .Thesets {S k }nk =1give a partition of S ,so |S |= n k =1|S k |.For 1≤k ≤n we compute |S k |.To obtain an element (s,x,y )of S k there are n k choices for s ,and given s there are k 2ways to choose the pair x,y .Therefore |S k |=k 2 nk .By these comments|S |=n k =1k 2 n k .The result follows.28.Given an integer n ≥1.We shown k =1k n k 2=n 2n ?1n ?1 .Let S denote the set of ordered pairs (s,x )such that s is a subset of {±1,±2,...,±n }andx is a positive element of s .We compute |S |in two ways.(i)To obtain an element (s,x )of S There are n choices for x ,and given x there are 2n ?1n ?1 choices for s .Therefore|S |=n 2n ?1n ?1.9(ii)For1≤k≤n let S k denote the set of elements(s,x)in S such that s contains exactlyk positive elements.The sets{S k}nk=1partition S,so|S|=nk=1|S k|.For1≤k≤nwe compute|S k|.To obtain an element(s,x)of S k there are nkways to pick the positiveelements of s and nn?kways to pick the negative elements of s.Given s there are kways to pick x.Therefore|S k|=k nk2.By these comments |S|=nk=1knk2.The result follows.29.The given sum is equal tom2+m2+m3n .To see this,compute the coe?cient of x n in each side of(1+x)m1(1+x)m2(1+x)m3=(1+x)m1+m2+m3.In this computation use the binomial theorem.30,31,32.We refer to the proof of Theorem5.3.3in the text.Let A denote an antichain such that|A|=nn/2.For0≤k≤n letαk denote the number of elements in A that have size k.Sonk=0αk=|A|=nn/2.As shown in the proof of Theorem5.3.3,≤1,with equality if and only if each maximal chain contains an element of A.By the above commentsnk=0αknn/2nknk≤0,with equality if and only if each maximal chain contains an element of A.The above sum is nonpositive but each summand is nonnegative.Therefore each summand is zero and the sum is zero.Consequently(a)each maximal chain contains an element of A;(b)for0≤k≤n eitherαk is zero or its coe?cient is zero.We now consider two cases.10Case:n is even.We show that for0≤k≤n,αk=0if k=n/2.Observe that for0≤k≤n, if k=n/2then the coe?cient ofαk isnonzero,soαk=0.Case:n is odd.We show that for0≤k≤n,eitherαk=0if k=(n?1)/2orαk=0 if k=(n+1)/2.Observe that for0≤k≤n,if k=(n±1)/2then the coe?cient ofαk is nonzero,soαk=0.We now show thatαk=0for k=(n?1)/2or k=(n+1)/2. To do this,we assume thatαk=0for both k=(n±1)/2and get a contradiction.By assumption A contains an element x of size(n+1)/2and an element y of size(n?1)/2. De? ne s=|x∩y|.Choose x,y such that s is maximal.By construction0≤s≤(n?1)/2. Suppose s=(n?1)/2.Then y=x∩y?x,contradicting the fact that x,y are incomparable. So s≤(n?3)/2.Let y denote a subset of x that contains x∩y and has size(n?1)/2. Let x denote a subset of y ∪y that contains y and has size(n+1)/2.By construction |x ∩y|=s+1.Observe y is not in A since x,y are comparable.Also x is not in A by the maximality of s.By construction x covers y so they are together contained in a maximal chain.This chain does not contain an element of A,for a contradiction.33.De?ne a poset(X,≤)as follows.The set X consists of the subsets of{1,2,...,n}. For x,y∈X de?ne x≤y whenever x?y.Forn=3,4,5we display a symmetric chain decomposition of this poset.We use the inductive procedure from the text.For n=3,,1,12,1232,233,13.For n=4,,1,12,123,12344,14,1242,23,23424,For n=5,,1,12,123,1234,123455,15,125,12354,14,124,124545,1452,23,234,234525,23524,2453,13,134,134535,13534,345.1134.For 0≤k ≤ n/2 there are exactlyn kn k ?1symmetric chains of length n ?2k +1.35.Let S denote the set of 10jokes.Each night the talk show host picks a subset of S for his repertoire.It is required that these subsets form an antichain.By Corollary 5.3.2each antichain has size at most 105 ,which is equal to 252.Therefore the talk show host can continue for 252nights./doc/6215673729.htmlpute the coe?cient of x n in either side of(1+x )m 1(1+x )m 2=(1+x )m 1+m 2,In this computation use the binomial theorem.37.In the multinomial theorem (Theorem 5.4.1)set x i =1for 1≤i ≤t .38.(x 1+x 2+x 3)4is equal tox 41+x 42+x 43+4(x 31x 2+x 31x 3+x 1x 32+x 32x 3+x 1x 33+x 2x 33)+6(x 21x 22+x 21x 23+x 22x 23)+12(x 21x 2x 3+x 1x 22x 3+x 1x 2x 23).39.The coe?cient is10!3!×1!×4!×0!×2!which comes to 12600.40.The coe?cient is9!3!×3!×1!×2!41.One routinely obtains the multinomial theorem (Theorem 5.4.1)with t =3.42.Given an integer t ≥2and positive integers n 1,n 2,...,n t .De?ne n = ti =1n i .We shownn 1n 2···n t=t k =1n ?1n 1···n k ?1n k ?1n k +1···n t.Consider the multiset{n 1·x 1,n 2·x 2,...,n t ·x t }.Let P denote the set of permutations of this multiset.We compute |P |in two ways.(i)We saw earlier that |P |=n !n 1!×n 2!×···×n t != n n 1n 2···n t.12(ii)For1≤k≤t let P k denote the set of elements in P that have?rst coordinate x k.Thesets{P k}tk=1partition P,so|P|=tk=1|P k|.For1≤k≤t we compute|P k|.Observe that|P k|is the number of permutations of the multiset{n1·x1,...,n k?1·x k?1,(n k?1)·x k,n k+1·x k+1,...,n t·x t}. Therefore|P k|=n?1n1···n k?1n k?1n k+1···n t.By these comments|P|=tn1···n k?1n k?1n k+1···n t.The result follows.43.Given an integer n≥1.Show by induction on n that1 (1?z)n =∞k=0n+k?1kz k,|z|<1.The base case n=1is assumed to hold.We show that the above identity holds with n replaced by n+1,provided that it holds for n.Thus we show1(1?z)n+1=∞=0n+z ,|z|<1.Observe1(1?z)n+1=1(1?z)n11?z=∞k=0n+k?1kz k∞h=0z h=0c zwherec =n?1+n1+n+12+···+n+ ?1=n+.The result follows.1344.(Problem statement contains typo)The given sum is equal to (?3)n .Observe (?3)n =(?1?1?1)n=n 1+n 2+n 3=nnn 1n 2n 3(?1)n 1+n 2+n 3=n 1+n 2+n 3=nnn 1+n 2+n 3=nnn 1n 2n 3(?1)n 2.45.(Problem statement contains typo)The given sum is equal to (?4)n .Observe (?4)n =(?1?1?1?1)n=n 1+n 2+n 3+n 4=nnn 1n 2n 3n 4(?1)n 1+n 2+n 3+n 4=n 1+n 2+n 3+n 4=nnn 1n 2n 3n 4(?1)n 1?n 2+n 3?n 4.Also0=(1?1+1?1)n= n 1+n 2+n 3+n 4=nnn 1n 2n 3n 4(?1)n 2+n 4.46.Observe√30=5=5∞ k =01/2k z k.For n =0,1,2,...the n th approximation to √30isa n =5n k =0 1/2k 5?k.We have14n a n051 5.52 5.4753 5.47754 5.47718755 5.477231256 5.4772246887 5.4772257198 5.4772255519 5.477225579 47.Observe101/3=21081/3=2(1+z)1/3z=1/4,=2∞k=01/3kz k.For n=0,1,2,...the n th approximation to101/3isnk=01/3k4?k.We haven a n021 2.1666666672 2.1527777783 2.1547067904 2.1543852885 2.1544442306 2.1544327697 2.1544350898 2.1544346059 2.15443470848.We show that a poset with mn+1elements has a chain of size m+1or an antichain of size n+1.Our strategy is to assume the result is false,and get a contradiction.By assumption each chain has size at most m and each antichain has size at most n.Let r denote the size of the longest chain.So r≤m.By Theorem5.6.1the elements of the posetcan be partitioned into r antichains{A i}ri=1.We have|A i|≤n for1≤i≤r.Thereforemn+1=ri=1|A i|≤rn≤mn, 15for a contradiction.Therefore,the poset has a chain of size m+1or an antichain of size n+1.49.We are given a sequence of mn+1real numbers,denoted{a i}mni=0.Let X denote the setof ordered pairs{(i,a i)|0≤i≤mn}.Observe|X|=mn+1.De?ne a partial order≤on X as follows:for distinct x=(i,a i)and y=(j,a j)in X,declare xof{a i}mni=0,and the antichains correspond to the(strictly)decreasing subsequences of{a i}mni=0sequence{a i}mni=0has a(weakly)increasing subsequence of size m+1or a(strictly)decreasingsubsequence of size n+1.50.(i)Here is a chain of size four:1,2,4,8.Here is a partition of X into four antichains:8,124,6,9,102,3,5,7,111Therefore four is both the largest size of a chain,and the smallest number of antichains that partition X. (ii)Here is an antichain of size six:7,8,9,10,11,12.Here is a partition of X into six chains:1,2,4,83,6,1295,10711Therefore six is both the largest size of an antichain,and the smallest number of chains that partition X.51.There exists a chain x116。
组合数学 课后答案 PDF 版
循环群也是群,所以群的定义不用再证,只需证明对于任意a, b G, G是循环群,有a * b b * a成立,因为循环群中的元素可写成a=xm 形式 所以等式左边xm × x n x m n , 等式右边x n xm=x m n, a b b a,即所有 的循环群都是ABEL群。
因为 H 是 G 的子群, 所以在 H 中的一个 (b m ) r 一定在 G 中对应一个 a m 使得
(b m ) r a m ,
所以有 b rm a m ,则 rm 一定是 m 的倍数,所以则 H 的阶必除尽 G 的阶。 4.9 G 是有限群,x 是 G 的元素,则 x 的阶必除尽 G 的阶。
N-1 N-2
N
1
2 3
……
……
图N! C N!
如图: N 个人围成一个圆桌的所有排列如上图所示。一共 N!个。
……
…
6
…………………………
… …
……
… …
…
…
旋转 360/i,i={n,n-1,n-2,……1}; 得到 n 种置换 当且仅当 i=1 的置换(即顺时针旋转 360/1 度:P1=(c1)(c2)……(cn!);) 时有 1 阶循环存在 (因为只要圆桌转动,所有圆排列中元素的绝对位置都发生了 变化,所以不可能有 1 阶循环存在) 。 不同的等价类个数就是不同的圆排列个数,根据 Burnside 引理,
4.18 若以给两个 r 色球,量个 b 色的球,用它装在正六面体的顶点,试问有多 少种不同的方案。 解:单位元素(1) (2) (3) (4) (5) (6) (7) (8) ,格式为(1)8. 绕中轴旋转 90。的置换非别为(1234) (5678) , (4321) (8765) 2 格式为(4) ,同格式的共轭类有 6 个。
北师大版高中数学选择性必修第一册课后习题 第五章 §3 第1课时 组合(一)
第五章计数原理§3组合问题第1课时组合(一)课后篇巩固提升合格考达标练1.下列问题中,组合问题的个数是( )①从全班50人中选出5人组成班委会;②从全班50人中选出5人分别担任班长、副班长、团支部书记、学习委员、生活委员;③从1,2,3,…,9中任取两个数求积;④从1,2,3,…,9中任取两个数求差或商.A.1B.2C.3D.4,从50人中选出5人组成班委会,不考虑顺序,是组合问题;②为排列问题;对于③,从1,2,3,…,9中任取两个数求积是组合问题;因为乘法满足交换律,而减法和除法不满足,故④为排列问题.2.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ) A.60种 B.70种 C.75种 D.150种,选2名男医生、1名女医生的方法有C 62C 51=75(种). 3.C 30+C 41+C 52+C 63+…+C 的值为( )A.C 3B.C 3C.C 4D.C 430+C 41+C 52+C 63+…+C =C 44+C 43+C 53+…+C 3=C 4.4.若集合M={的元素共有 ( )A.1个B.3个C.6个D.7个C 70=C 77=1,C 71=C 76=7,C 72=C 75=7×62!=21,C 73=C 74=7×6×53×2=35>21,∴x=0,1,2,5,6,7.5.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有 种(用数字填写答案).方法一)可分两种情况:第一种情况,只有1位女生入选,不同的选法有C 21C 42=12(种);第二种情况,有2位女生入选,不同的选法有C 22C 41=4(种).根据分类加法计数原理知,至少有1位女生入选的不同的选法有16种.(方法二)从6人中任选3人,不同的选法有C 63=20(种),从6人中任选3人都是男生,不同的选法有C 43=4(种),所以至少有1位女生入选的不同的选法有20-4=16(种).6.以下四个式子:①C n m =A n m m !;②A n m =n A n -1m -1;③C n m ÷C nm+1=m+1n -m;④C n+1m+1=n+1m+1C n m.其中正确的个数是 .;②式中A n m =n(n-1)(n-2)…(n -m+1),A n -1m -1=(n-1)(n-2)…(n -m+1), 所以A n m =n A n -1m -1,故②式成立; 对于③式,C nm ÷C nm+1=C n m C nm+1=A n m ·(m+1)!m !·A nm+1=m+1n -m,故③式成立;对于④式,C n+1m+1=A n+1m+1(m+1)!=(n+1)·A n m (m+1)m !=n+1m+1C n m,故④式成立.7.从2,3,5,7四个数中任取两个不同的数相乘,有m个不同的积;任取两个不同的数相除,有n个不同的商,则mn=.m=C42,n=A42,∴mn =12.8.如图,有A,B,C,D四个区域,用五种不同的颜色给它们涂色,要求共边的两区域颜色互异,每个区域只涂一种颜色,共有多少种不同的涂色方法?1步,涂A区域有C51种方法;第2步,涂B区域有C41种方法;第3步,涂C区域和D区域;若C区域涂与A区域相同的颜色,则D区域有4种涂法;若C区域涂A、B剩余3种颜色之一,即有C31种涂法,则D区域有C31种涂法.故共有C51·C41·(4+C31·C31)=260种不同的涂色方法.9.在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人去参加市级培训,在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加;(3)甲、乙、丙三人不能参加;(4)甲、乙、丙三人只能有1人参加.从中任取5人是组合问题,共有C125=792种不同的选法.(2)甲、乙、丙三人必须参加,则只需从另外9人中选2人,是组合问题,共有C92=36种不同的选法.(3)甲、乙、丙三人不能参加,则只需从另外的9人中选5人,共有C95=126种不同的选法.(4)甲、乙、丙三人只能有1人参加,可分为两步:先从甲、乙、丙中选1人,有C31=3种选法,再从另外9人中选4人,有C94种选法,共有C31C94=378种不同的选法.等级考提升练10.用0,1,…,9十个数字组成的三位数中,有重复数字的三位数的个数为( )A.243B.252C.261D.2799×10×10=900.没有重复数字的三位数有C91A92=648,所以有重复数字的三位数的个数为900-648=252.11.若A n3=12C n2,则n等于( )A.8B.5或6C.3或4D.4A n3=n(n-1)(n-2),C n2=12n(n-1),所以n(n-1)(n-2)=12×12n(n-1).又n∈N+,且n≥3,所以n=8.12.(山东济宁期末)某校开设10门课供学生选修,其中A,B,C三门由于上课时间相同,至多选一门,学校规定每位学生选修三门,则每位学生不同的选修方案种数是( )A.120B.98C.63D.35,分2种情况讨论:①从A,B,C三门中选出1门,其余7门中选出2门,选法有C31C72=63(种);②从除A,B,C三门之外的7门中选出3门,选法有C73=35(种).故不同的选法种数为63+35=98.13.(多选题)若C17x=C172x-1,则正整数x的值是( )A.1B.4C.6D.8C 17x =C 172x -1,∴x=2x-1或x+2x-1=17, 解得x=1或x=6, 经检验都满足题意. 故选AC.14.(多选题)在100件产品中,有98件合格品,2件不合格品,从这100件产品中任意抽出3件,则( )A.抽出的3件中恰好有1件是不合格品的抽法有C 21C 982种B.抽出的3件中恰好有1件是不合格品的抽法有C 21C 982+C 22C 981种C.抽出的3件中至少有1件是不合格品的抽法有C 21C 982+C 22C 981种D.抽出的3件中至少有1件是不合格品的抽法有C 1003−C 983种,依次分析选项:对于A,抽出的3件中恰好有1件是不合格品,即2件合格品,1件不合格品,有C 21C 982种抽取方法,A 正确,B 错误;对于C,抽出的3件中至少有1件是不合格品,即2件合格品,1件不合格品或1件合格品,2件不合格品,有C 21C 982+C 22C 981种抽取方法,C 正确;对于D,用间接法分析,抽出的3件中没有不合格品的抽取方法有C 983种,则抽出的3件中至少有1件是不合格品的抽法有C 1003−C 983种,D 正确.故选ACD.15.某餐厅供应饭菜,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上不同的选择,则餐厅至少还需准备不同的素菜品种 种(结果用数值表示).x 种不同的素菜.由题意,得C 52·C x 2≥200, 从而有C x 2≥20,即x(x-1)≥40.又x ∈N +,所以x 的最小值为7.16.已知集合A={1,2,3,4,5},则至少含一个偶数的集合A 的子集个数为 .方法一)当子集中含有1个偶数时,共有C 21(C 30+C 31+C 32+C 33)=16(个);当子集中含有2个偶数时,共有C 30+C 31+C 32+C 33=8(个);满足题意的集合A的子集个数为16+8=24(个).(方法二)集合A的子集共有C50+C51+C52+C53+C54+C55=32(个),不符合题意的子集有空集、分别只含有1,2,3个奇数的子集,有C50+C31+ C32+C33=8(个),故符合题意的子集个数为32-8=24(个).17.已知10件不同产品中有4件是次品,现对它们一一进行测试,直至找出所有4件次品为止.(1)若恰在第5次测试,才测试到第一件次品,第十次测试才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?先排前4次测试,只能取正品,有A64种不同的测试方法,再从4件次品中选2件排在第5和第10的位置上测试,有A42种测法,再排余下4件的测试位置,有A44种测法.所以共有不同测试方法A64·A42·A44=103680(种).(2)第5次测试恰为最后一件次品,另3件在前4次中出现,从而前4次有一件正品出现.所以共有不同测试方法C41·(C61·C33)A44=576(种).新情境创新练18.某次足球比赛中,共有32支球队参加,它们先平均分成8个小组进行循环赛,决出16强(每队均与本组其他队赛一场,各组第一、二名晋级16强),这16支球队按确定的程序进行淘汰赛,最后决出冠、亚军,此外还要决出第三名、第四名,请问这次足球赛总共进行多少场比赛?:(1)小组循环赛:每组有C42=6(场),8个小组共有48场;(2)八分之一淘汰赛:8个小组的第一、二名组成16强,根据赛制规则,每两个队比赛一场,可以决出8强,共有8场;(3)四分之一淘汰赛:根据赛制规则,8强中每两个队比赛一次,可以决出4强,共有4场;(4)半决赛:根据赛制规则,4强每两个队比赛一场,可以决出2强,共有2场;(5)决赛:2强比赛1场确定冠、亚军,4强中的另两支队比赛1场决出第三、四名,共有2场.综上,由分类加法计数原理知,共有48+8+4+2+2=64场比赛.。
最新组合数学习题答案(1-4章全)
第1章 排列与组合1.1 从{1,2,…,50}中找一双数{a,b},使其满足:()5;() 5.a ab b a b -=-≤[解] (a) 5=-b a将上式分解,得到55a b a b -=+⎧⎨-=-⎩a =b –5,a=1,2,…,45时,b =6,7,…,50。
满足a=b-5的点共50-5=45个点. a = b+5,a=5,6,…,50时,b =0,1,2,…,45。
满足a=b+5的点共45个点. 所以,共计2×45=90个点. (b) 5≤-b a(610)511(454)1651141531+⨯+⨯-=⨯+⨯=个点。
1.2 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列? (b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?[解] (a) 女生在一起当作一个人,先排列,然后将女生重新排列。
(7+1)!×5!=8!×5!=40320×120=4838400(b) 先将男生排列有7!种方案,共有8个空隙,将5个女生插入,故需从8个空中选5个空隙,有58C 种选择。
将女生插入,有5!种方案。
故按乘法原理,有:7!×58C ×5!=33868800(种)方案。
(c) 先从5个女生中选3个女生放入A ,B 之间,有35C 种方案,在让3个女生排列,有3!种排列,将这5个人看作一个人,再与其余7个人一块排列,有(7+1)! = 8!由于A ,B 可交换,如图**A***B** 或 **B***A**故按乘法原理,有:2×35C ×3!×8!=4838400(种)1.3 m 个男生,n 个女生,排成一行,其中m ,n 都是正整数,若(a) 男生不相邻(m ≤n+1); (b) n 个女生形成一个整体; (c) 男生A 和女生B 排在一起; 分别讨论有多少种方案.[解] (a) 先将n 个女生排列,有n!种方法,共有n+1个空隙,选出m 个空隙,共有mn C 1+种方法,再插入男生,有m!种方法,按乘法原理,有:n!×mn C 1+×m!=n!×)!1(!)!1(m n m n -++×m!=)!1()!1(!m n n n -++种方案。
Richard组合数学第5版-第5章课后习题答案(英文版)
evaluate the sum in this case we compute in two ways the the coefficient of xn in (1−x2)n. (i)
By the binomial theorem this coefficient is (−1)m
2m m
.
(ii) Observe (1 − x2) = (1 + x)(1 − x).
5
Now set x = 1 to get Therefore
(−1)n n =
n (−1)n−k 1 .
n+1
k
k+1
k=0
1
n
=
n (−1)k 1 .
n+1
k
k+1
k=0
19. One readily checks
m 2
+
m
= m(m − 1) + m = m2.
2
1
Therefore
n
n
k2 =
not contain 1 or 2 or 3. Note that {Si}4i=1 partition S so |S| =
4 i=1
|Si|.
We
have
n
n−1
n−2
n−3
n−3
|S| =
, k
|S1| =
, k−1
|S2| =
, k−1
|S3| =
, k−1
|S4| =
. k
The result follows.
We have
n P (n, k) nP (n − 1, k − 1)
=
组合数学(哈工大 第五章)
. ..
. ..
. ..
. ..
.
任世军 (哈尔滨工业大学)
组合数学 递推关系
December 22, 2014
2 / 46
递推关系
. Definition . 设{an } 为一序列, 把该序列中an 和它前面几个ai (0 ≤ i ≤ n) 关联起来的 方程称做一个递推关系(递归关系)。 .
..
Example
..
. ..
. ..
.
. . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. ..
. ..
. ..
. ..
. ..
.
任世军 (哈尔滨ember 22, 2014
4 / 46
递推关系
. . 在一个平面上有一个圆和n 条直线, 这些直线中的每一条在圆内都同其他 的直线相交。如果没有多于三条的直线相交于一点, 试问这些直线将圆分 成多少个不同区域? . 解: 设这n 条直线将圆分成的区域数为an , 如果有n − 1 条直线将圆分 成an−1 个区域, 那么再加入第n 条直线与在圆内的其他n − 1 条直线相 交。显然, 这条直线在圆内被分成n 条线段, 而每条线段又将第n 条直线 在圆内经过的区域分成两个区域。这样, 加入第n 条直线后, 圆内就增加 了n 个区域。 而对于n = 0, 显然有a0 = 1, 于是对于每个整数 n, 可以建立 如下带初值的递推关系 a0 = 1, a1 = 2, an = an−1 + n
. ..
. ..
.
. . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. ..
组合数学 习题
r r −2 cn − c − r +1 ( n − 4 ) − ( r − 2 ) +1
4
20. 任一正整数 n 可唯一地表成如下形式:
n =
∑
i≥ 1
a i ⋅ i! ,
其中 0 ≤ a i ≤ i ,
i ≥ 1
证: (1)存在性
(对 n 用归纳法)
当 n=1 时,1=1· 1!命题成立。假设对 n=k 时,命题成立,即
结论成立
由归纳法知,结论成立。 (2)唯一性(反证法) 设 n = ∑ ai ⋅ p i = ∑ bi ⋅ p i , 0 ≤ a i , bi ≤ p − 1, i ≥ 0
i≥ 0 i≥ 0
若
∃i , 使得 a i ≠ bi ,则
i i
{i ai ≠ bi } 令 j = min i ≥0
i i≥ 相当于从 1,,2,…,n 取 r 个作不相邻组合。 于是,从 1,2,…,n-r+1 这 n- r+1 个中任取 r 个作不允许重复组合,总 可以从 1,,2,…,n 这 n 个中取 r 个作不相邻组合与之对应。 因此,在 1~n 这 n 个不同元素中取出 r 个作不相邻的组合与 在 1~n- r+1 这 n- r+1 个不同元素中取出 r 个进行不允许重复的组合 之间一一对应,故有结论。 『注』若将 1 和 n 看成是两个相邻的数,结果又如何?
k=
∑a
i= 1
t
i
⋅ i!,
其中 0 ≤ a i ≤ i,
i = 1, 2 , L t ,
则 n=k+1 时,有
k +1 =
∑a
i =1
t
i
⋅ i! + 1 ,
t i =1
组合数学课后答案
作业习题答案习题二2.1证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。
证明:假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。
假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。
2.3证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。
证明:方法一:有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。
由鸽巢原理知,至少有2个坐标的情况相同。
又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。
因为奇数+奇数= 偶数;偶数+偶数=偶数。
因此只需找以上2个情况相同的点。
而已证明:存在至少2个坐标的情况相同。
证明成立。
方法二:对于平面上的任意整数坐标的点而言,其坐标值对2取模后的可能取值只有4种情况,即:(0,0) ,(0,1) ,(1,0), (1,1),根据鸽巢原理5个点中必有2个点的坐标对2取模后是相同类型的,那么这两点的连线中点也必为整数。
2.4一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果?证明:根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。
2.9将一个矩形分成(m+1)行112mm+⎛⎫+⎪⎝⎭列的网格每个格子涂1种颜色,有m种颜色可以选择,证明:无论怎么涂色,其中必有一个由格子构成的矩形的4个角上的格子被涂上同一种颜色。
证明:(1)对每一列而言,有(m+1)行,m种颜色,有鸽巢原理,则必有两个单元格颜色相同。
(2)每列中两个单元格的不同位置组合有12m+⎛⎫⎪⎝⎭种,这样一列中两个同色单元格的位置组合共有12mm+⎛⎫⎪⎝⎭种情况(3)现在有112m m +⎛⎫+⎪⎝⎭列,根据鸽巢原理,必有两列相同。
组合数学邵嘉裕第五章答案
组合数学邵嘉裕第五章答案一、选择题1.某年级有6个班,分别派3名语文教师任教,每个教师教2个班,则不同的任课方法种数为()A.C26C24C22 B.A26A24A22C.C26C24C22C33 D.A26C24C22A33[答案]A2.从单词“equation”中取5个不同的字母排成一排,含有“qu”(其中“qu”相连且顺序不变)的不同排法共有() A.120种B.480种C.720种D.840种[答案]B[解析]先选后排,从除qu外的6个字母中任选3个字母有C36种排法,再将qu看成一个整体(相当于一个元素)与选出的3个字母进行全排列有A44种排法,由分步乘法计数原理得不同排法共有C36A44=480(种).3.从编号为1、2、3、4的四种不同的种子中选出3种,在3块不同的土地上试种,每块土地上试种一种,其中1号种子必须试种,则不同的试种方法有()A.24种B.18种C.12种D.96种[答案]B[解析]先选后排C23A33=18,故选B.4.把0、1、2、3、4、5这六个数,每次取三个不同的数字,把其中最大的数放在百位上排成三位数,这样的三位数有() A.40个B.120个C.360个D.720个[答案]A[解析]先选取3个不同的数有C36种方法,然后把其中最大的数放在百位上,另两个不同的数放在十位和个位上,有A22种排法,故共有C36A22=40个三位数.5.(2010湖南理,7)在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A.10B.11C.12D.15[答案]B[解析]与信息0110至多有两个对应位置上的数字相同的信息包括三类:第一类:与信息0110只有两个对应位置上的数字相同有C24=6(个)第二类:与信息0110只有一个对应位置上的数字相同有C14=4(个)第三类:与信息0110没有一个对应位置上的数字相同有C04=1(个)与信息0110至多有两个对应位置上的数字相同的信息有6+4+1=11(个)6.北京《财富》全球论坛开幕期间,某高校有14名志愿者参加接待工作.若每天排早,中,晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为()A.C414C412C48 B.C1214C412C48C.C1214C412C48A33 D.C1214C412C48A33[答案]B[解析]解法1:由题意知不同的排班种数为:C414C410C46=14×13×12×114!10×9×8×74!6×52!=C1214C412C48.故选B.解法2:也可先选出12人再排班为:C1214C412C48C44,即选B.7.(2009湖南理5)从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为()A.85B.56C.49D.28[答案]C[解析]考查有限制条件的组合问题.(1)从甲、乙两人中选1人,有2种选法,从除甲、乙、丙外的7人中选2人,有C27种选法,由分步乘法计数原理知,共有2C27=42种.(2)甲、乙两人全选,再从除丙外的其余7人中选1人共7种选法.由分类计数原理知共有不同选法42+7=49种.8.以一个正三棱柱的顶点为顶点的四面体共有()A.6个B.12个C.18个D.30个[答案]B[解析]C46-3=12个,故选B.9.(2009辽宁理,5)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有()A.70种B.80种C.100种D.140种[答案]A[解析]考查排列组合有关知识.解:可分两类,男医生2名,女医生1名或男医生1名,女医生2名,∴共有C25C14+C15C24=70,∴选A.10.设集合Ⅰ={1,2,3,4,5}.选择Ⅰ的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有() A.50种B.49种C.48种D.47种[答案]B[解析]主要考查集合、排列、组合的基础知识.考查分类讨论的`思想方法.因为集合A中的最大元素小于集合B中的最小元素,A中元素从1、2、3、4中取,B中元素从2、3、4、5中取,由于A、B非空,故至少要有一个元素.1°当A={1}时,选B的方案共有24-1=15种,当A={2}时,选B的方案共有23-1=7种,当A={3}时,选B的方案共有22-1=3种,当A={4}时,选B的方案共有21-1=1种.故A是单元素集时,B有15+7+3+1=26种.2°A为二元素集时,A中最大元素是2,有1种,选B的方案有23-1=7种.A中最大元素是3,有C12种,选B的方案有22-1=3种.故共有2×3=6种.A中最大元素是4,有C13种.选B的方案有21-1=1种,故共有3×1=3种.故A中有两个元素时共有7+6+3=16种.3°A为三元素集时,A中最大元素是3,有1种,选B的方案有22-1=3种.A中最大元素是4,有C23=3种,选B的方案有1种,∴共有3×1=3种.∴A为三元素时共有3+3=6种.4°A为四元素时,只能是A={1、2、3、4},故B只能是{5},只有一种.∴共有26+16+6+1=49种.二、填空题11.北京市某中学要把9台型号相同的电脑送给西部地区的三所希望小学,每所小学至少得到2台,共有______种不同送法.[答案]10[解析]每校先各得一台,再将剩余6台分成3份,用插板法解,共有C25=10种.12.一排7个座位分给3人坐,要求任何两人都不得相邻,所有不同排法的总数有________种.[答案]60[解析]对于任一种坐法,可视4个空位为0,3个人为1,2,3则所有不同坐法的种数可看作4个0和1,2,3的一种编码,要求1,2,3不得相邻故从4个0形成的5个空档中选3个插入1,2,3即可.∴不同排法有A35=60种.13.(09海南宁夏理15)7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有________种(用数字作答).[答案]140[解析]本题主要考查排列组合知识.由题意知,若每天安排3人,则不同的安排方案有C37C34=140种.14.2010年上海世博会期间,将5名志愿者分配到3个不同国家的场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数是________种.[答案]150[解析]先分组共有C35+C25C232种,然后进行排列,有A33种,所以共有(C35+C25C232)A33=150种方案.三、解答题15.解方程Cx2+3x+216=C5x+516.[解析]因为Cx2+3x+216=C5x+516,所以x2+3x+2=5x+5或(x2+3x+2)+(5x+5)=16,即x2-2x-3=0或x2+8x-9=0,所以x=-1或x=3或x=-9或x=1.经检验x=3和x=-9不符合题意,舍去,故原方程的解为x1=-1,x2=1.16.在∠MON的边OM上有5个异于O点的点,边ON上有4个异于O点的点,以这10个点(含O点)为顶点,可以得到多少个三角形?[解析]解法1:(直接法)分几种情况考虑:O为顶点的三角形中,必须另外两个顶点分别在OM、ON上,所以有C15C14个,O不为顶点的三角形中,两个顶点在OM上,一个顶点在ON上有C25C14个,一个顶点在OM上,两个顶点在ON上有C15C24个.因为这是分类问题,所以用分类加法计数原理,共有C15C14+C25C14+C15C24=5×4+10×4+5×6=90(个).解法2:(间接法)先不考虑共线点的问题,从10个不同元素中任取三点的组合数是C310,但其中OM上的6个点(含O点)中任取三点不能得到三角形,ON上的5个点(含O点)中任取3点也不能得到三角形,所以共可以得到C310-C36-C35个,即C310-C36-C35=10×9×81×2×3-6×5×41×2×3-5×41×2=120-20-10=90(个).。
北师大高中数学选择性必修第一册第五章课时作业36组合
北师大高中数学选择性必修第一册第五章课时作业36组合(原卷版)一、选择题1.甲、乙、丙三地之间有直达的火车,相互之间距离均不相等且无通票,则车票票价的种数是()A.1B.2C.3D.62.若3-6=4,则n=()A.8B.7C.6D.53.集合{0,1,2,3}含有3个元素的子集的个数是()A.4B.5C.7D.84.从2,3,4,5,6五个数中任取不相同的两个数分别作为a,b,则对数式ln a+ln b的不同值个数为()A.10B.9C.8D.65.某市选派6名主任医生,3名护士,组成3个医疗小组分配到甲、乙、丙三地进行医疗支援,每个小组包括2名主任医生和1名护士,则不同的分配方案有()A.60种B.300种C.150种D.540种6.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种7.(多选题)下列判断正确的是()A.(m≥2且m∈N*)B.从4名男生3名女生中任选2人,至少有1名女生的选法共有种C.把4本书分成3堆,每堆至少一本共有种不同分法D.从6男4女中选出5人参加一项活动,则甲当选且乙不当选的选法有70种8.(多选题)将四个不同的小球放入三个分别标有1、2、3号的盒子中,不允许有空盒子的放法有多少种?下列结论正确的有()A. B.C. D.18二、填空题9.计算:=46.(用数值作答)10.某城市的交通道路如图,从城市的西南角A到城市的东北角B,不经过十字道路维修处C,最近的走法种数有66.11.如图,有一种游戏画板,要求参与者用六种颜色给画板涂色,这六种颜色分别为红色、黄色1、黄色2、黄色3、金色1、金色2,其中黄色1、黄色2、黄色3是三种不同的颜色,金色1、金色2是两种不同的颜色,要求红色不在两端,黄色1、黄色2、黄色3有且仅有两种相邻,则不同的涂色方案有288种.①②③④⑤⑥三、解答题12.一个口袋里装有除颜色外完全相同的7个白球和1个红球,从口袋中任取5个球.(1)共有多少种不同的取法?(2)其中恰有1个红球,共有多少种不同的取法?(3)其中不含红球,共有多少种不同的取法?13.高二(1)班共有35名同学,其中男生20名,女生15名,今从中选出3名同学参加活动.(1)其中某一女生必须在内,不同的取法有多少种?(2)其中某一女生不能在内,不同的取法有多少种?(3)恰有2名女生在内,不同的取法有多少种?(4)至少有2名女生在内,不同的取法有多少种?(5)至多有2名女生在内,不同的取法有多少种?14.有5名学生做志愿者服务,将他们分配到图书馆、科技馆、养老院这三个地方去服务,每个地方至少有1名学生,则不同的分配方案种数为()A.145B.150C.155D.16015.如图,A,B,C,D为海上的四个小岛,要建三座桥,将这四个小岛连接起来,则不同的建桥方案有16种.16.从1到9的9个数中取3个偶数和4个奇数,则:(1)能组成多少个没有重复数字的七位数?(2)上述七位数中3个偶数排在一起的有几个?(3)在(1)中的七位数中,偶数排在一起,奇数也排在一起的有几个?(4)在(1)中任意2个偶数都不相邻的七位数有几个?北师大高中数学选择性必修第一册第五章课时作业36组合(解析版)一、选择题1.甲、乙、丙三地之间有直达的火车,相互之间距离均不相等且无通票,则车票票价的种数是(C)A.1B.2C.3D.6解析:因为票价与路程的远近有关,与站点的起始无关,所以属于组合问题,从甲、乙、丙三地中任取两个地点则对应着一个票价,所有的组合为甲乙、甲丙、乙丙,故票价应为3种.故选C.2.若3-6=4,则n=(D)A.8B.7C.6D.5解析:因为3-6=4,所以3-6=4,所以3n(n-1)(n-2)-6n(n-1)=4×,即3(n-1)(n-2)-6(n-1)=2(n+1),即3n2-17n+10=0,解得n=5(不合题意的舍去).故选D.3.集合{0,1,2,3}含有3个元素的子集的个数是(A)A.4B.5C.7D.8解析:由于集合中的元素是没有顺序的,一个含有3个元素的子集就是一个从{0,1,2,3}中取出3个元素的组合,这是一个组合问题,所有的组合为{0,1,2},{0,1,3},{0,2,3},{1,2,3},共4个.故选A.4.从2,3,4,5,6五个数中任取不相同的两个数分别作为a,b,则对数式ln a+ln b的不同值个数为(B)A.10B.9C.8D.6解析:根据题意,由ln a+ln b=ln(ab),可知a,b的所有组合为(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共10种,又因为ln(2×6)=ln(3×4),所以对数式ln a+ln b的不同值个数为10-1=9.故选B.5.某市选派6名主任医生,3名护士,组成3个医疗小组分配到甲、乙、丙三地进行医疗支援,每个小组包括2名主任医生和1名护士,则不同的分配方案有(D)A.60种B.300种C.150种D.540种解析:根据题意,分2步进行分析:①将6名主任医生分成3组,每组2人,有种分组方法,将3名护士分成3组,每组1人,有1种方法;②将分好的三组医生、护士全排列,对应甲、乙、丙,有种情况,则有=540(种).故选D.6.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有(D)A.60种B.63种C.65种D.66种解析:满足题设的取法可分为三类:一是四个奇数相加,其和为偶数,在5个奇数1,3,5,7,9中,任意取4个,有=5(种);二是两个奇数加两个偶数其和为偶数,在5个奇数中任取2个,再在4个偶数2,4,6,8中任取2个,有=60(种);三是四个偶数相加,其和为偶数,4个偶数的取法有1种,所以满足条件的取法共有5+60+1=66(种).故选D.7.(多选题)下列判断正确的是(CD)A.(m≥2且m∈N*)B.从4名男生3名女生中任选2人,至少有1名女生的选法共有种C.把4本书分成3堆,每堆至少一本共有种不同分法D.从6男4女中选出5人参加一项活动,则甲当选且乙不当选的选法有70种解析:选项A,由组合数性质易知错误;选项B,从4名男生3名女生中任选2人,至少有1名女生的选法共有=15(种),错误;选项C,把4本书分成3堆,每堆至少一本共有种不同分法,正确;选项D,甲当选且乙不当选,只需从余下的8人中任选4人,有=70种选法,正确.故选CD.8.(多选题)将四个不同的小球放入三个分别标有1、2、3号的盒子中,不允许有空盒子的放法有多少种?下列结论正确的有(BC)A. B.C. D.18解析:根据题意,四个不同的小球放入三个分别标有1,2,3号的盒子中,且没有空盒,则三个盒子中有1个盒子中放2个球,剩下的2个盒子中各放1个,有2种解法:(1)分2步进行分析:①先将四个不同的小球分成3组,有种分组方法;②将分好的3组全排列,对应放到3个盒子中,有种放法,则没有空盒的放法有种;(2)分2步进行分析:①在4个小球中任选2个,在3个盒子中任选1个,将选出的2个小球放入选出的小盒中,有种情况,②将剩下的2个小球全排列,放入剩下的2个小盒中,有种放法,则没有空盒的放法有种.故选BC.二、填空题9.计算:=46.(用数值作答)解析:由组合数性质可得,2n+3≥10-n且n+7≥3n,n∈N*,解得n=3,所以原式==36+10=46.10.某城市的交通道路如图,从城市的西南角A到城市的东北角B,不经过十字道路维修处C,最近的走法种数有66.解析:从城市的西南角A到城市的东北角B,最近的走法种数共有=126(种)走法.从城市的西南角A经过十字道口维修处C,最近的走法有=10(种),从C到城市的东北角B,最近的走法种数为=6(种),所以从城市西南角A到城市的东北角B,经过十字道口维修处C最近的走法有10×6=60(种),所以从城市的西南角A到城市东北角B,不经过十字道路维修处C,最近的走法种数有126-60=66(种).11.如图,有一种游戏画板,要求参与者用六种颜色给画板涂色,这六种颜色分别为红色、黄色1、黄色2、黄色3、金色1、金色2,其中黄色1、黄色2、黄色3是三种不同的颜色,金色1、金色2是两种不同的颜色,要求红色不在两端,黄色1、黄色2、黄色3有且仅有两种相邻,则不同的涂色方案有288种.①②③④⑤⑥解析:不考虑红色的位置,黄色1、黄色2、黄色3有且仅有两个相邻的涂色方案有()·=432(种).这种情况下,红色在左右两端的涂色方案有()·=144(种);从而所求的结果为432-144=288(种).三、解答题12.一个口袋里装有除颜色外完全相同的7个白球和1个红球,从口袋中任取5个球.(1)共有多少种不同的取法?(2)其中恰有1个红球,共有多少种不同的取法?(3)其中不含红球,共有多少种不同的取法?解:(1)从口袋里的8个球中任取5个球,不同取法的种数是=56.(2)从口袋里的8个球中任取5个球,其中恰有1个红球,可以分两步完成:第1步,从7个白球中任取4个白球,有种取法;第2步,把1个红球取出,有种取法.故不同取法的种数是=35.(3)从口袋里任取5个球,其中不含红球,只需从7个白球中任取5个白球即可,不同取法的种数是=21.13.高二(1)班共有35名同学,其中男生20名,女生15名,今从中选出3名同学参加活动.(1)其中某一女生必须在内,不同的取法有多少种?(2)其中某一女生不能在内,不同的取法有多少种?(3)恰有2名女生在内,不同的取法有多少种?(4)至少有2名女生在内,不同的取法有多少种?(5)至多有2名女生在内,不同的取法有多少种?解:(1)从余下的34名学生中选取2名,有=561(种).∴不同的取法有561种.(2)从34名可选学生中选取3名,有种.或者=5984(种).∴不同的取法有5984种.(3)从20名男生中选取1名,从15名女生中选取2名,有=2 100(种).∴不同的取法有2100种.(4)选取2名女生有种,选取3名女生有种,共有选取方式N==2100+455=2555(种).∴不同的取法有2555种.(5)选取3名的总数有,因此选取方式共有N==6545-455=6090(种).∴不同的取法有6090种.14.有5名学生做志愿者服务,将他们分配到图书馆、科技馆、养老院这三个地方去服务,每个地方至少有1名学生,则不同的分配方案种数为(B)A.145B.150C.155D.160解析:将5名志愿者分配到这三个地方服务,每个地方至少1人,其方案为2,2,1型或3,1,1型.其选法有或,而每一种选法可有安排方法,故不同的分配方案有=150(种).故选B.15.如图,A,B,C,D为海上的四个小岛,要建三座桥,将这四个小岛连接起来,则不同的建桥方案有16种.解析:四个小岛中每两岛建一座桥共建六座桥,即AB,AC,AD,BC,BD,CD,其中建三座桥连接四个小岛符合要求的建桥方案是只要三座桥不围成封闭的三角形区域就符合要求,如桥{AC,BC,BD}符合要求,而围成封闭三角形不符合要求,如桥{AC,CD,DA}不符合要求.从六座桥中选出三座桥作为一组,所有的组合为{AB,AC,AD},{AB,AC,BC},{AB,AC,BD},{AB,AC,CD},{AB,AD,BC},{AB,AD,BD},{AB,AD,CD},{AB,BC,BD},{AB,BC,CD},{AB,BD,CD},{AC,AD,BC},{AC,AD,BD},{AC,AD,CD},{AC,BC,BD},{AC,BC,CD},{AC,BD,CD},{AD,BC,BD},{AD,BC,CD},{AD,BD,CD},{BC,BD,CD},共20种组合,其中组合{AB,AC,BC},{AB,AD,BD},{AC,AD,CD},{BC,BD,CD}不符合题意,所以不同的建桥方案共有20-4=16(种).16.从1到9的9个数中取3个偶数和4个奇数,则:(1)能组成多少个没有重复数字的七位数?(2)上述七位数中3个偶数排在一起的有几个?(3)在(1)中的七位数中,偶数排在一起,奇数也排在一起的有几个?(4)在(1)中任意2个偶数都不相邻的七位数有几个?解:(1)分步完成:第1步,在4个偶数中取3个,可有种情况;第2步,在5个奇数中取4个,可有种情况;第3步,3个偶数,4个奇数进行排列,可有种情况,所以有=100800(个)符合题意的七位数.(2)上述七位数中,3个偶数排在一起的个数共有=14 400.(3)上述七位数中,3个偶数排在一起,4个奇数也排在一起的个数共有=5760.(4)上述七位数中,偶数都不相邻,可先把4个奇数排好,再将3个偶数分别插入5个空当中,共有=28800(个)符合题意的七位数.。
组合数学答案合集
=
8 9
−
2 3
n
+
1 9
(−2)n
18.确定长为n,不包含两个相连的0或相连的1的三进制串(即由一些0、1、2组成
的串)的个数an的递推关系,然后求出an的公式 解:根据题意可知h2 = 5,h3 =12,h4 = 29
当n ≥ 5时,对于三进制串,第一个位置不为0,
当第一个位置为1时,第二个位置为0或2,对应的三进制串分别为an−2种和an−2 + an−3种 当第一个位置为2时,第二个位置为0,1或2,此时三进制串有an−1 + an−2种 于是an满足递推关系an = an−1 +3an−2 + an−3 (n ≥ 5) 它的特征方程为x3 − x2 −3x3 −1= 0
rn +
s
=
6(r(n −1) +
s) − 9(r(n − 2) +
s) + 2n ,求得 r
=
1 2
,s
=
3 2
,则 hn
=
c1 3n
+ c2n3n
+
n 2
+
3 2
。
由初始条件 h0
= 1 , h1
=
0
,得出 c1
=
−
1 2
, c2
=
−1 6
。故 hn
=
−
3n 2
−
n3n 2
+
n 2
+
3 2
为原问题的解。
=1 (1− x3 )4
元素e1不出现,而e2出现至多一次。 对每个ei引入一个因子,我们发现
g ( x) = (1)(1+ x)(1+ x + x2 +")(1+ x + x2 +")
李凡长版 组合数学课后习题答案 习题5
李凡长版组合数学课后习题答案习题5第五章Pólya计数理论1. 计算,并指出它的共轭类. 解:题中出现了5个不同的元素:分别是:1,2,3,4,5。
即|Sn|=5。
(123)(234)(5)(14)(23)?12345??12345??12 345? ???23145????13425????43215? ????????12345??12345????34125????432 15?? ?????12345????21435?? ???(12)(34)( 5) 的置换的型为1122而Sn中属于1122型的元素个数为个其共轭类为,,,,,,,,,,,,, 2. 设D是n元集合,G是D上的置换群.对于D 的子集A和B,如果存在??G,使得B?{?(a)|a?A},则称A与B是等价的.求G 的等价类的个数. 1n?c1(ai),其中c1(ai)表示在置换ai作用下保持不变解:根据Burnside引理l?Gi?15!?152!1!1122的元素个数,则有c1(σI)=n; 设在σ的作用下,A的元素在B中的个数为i,则c2(σ)=n-2i;1若没有其他置换,则G诱出来的等价类个数为l=[n?(n?2i)]?n?i 23. 0,1,6,8,9组成的n位数,如果把一个数调转过来读得到另一个数,则称这两个数是相等的.例如,0168和8910,0890与0680是相等的.问不相等的n位数有多少个?解:该题可理解为相当于n位数,0,1,6,8,9这5个数存在一定的置换关系31 对于置换群G={g1,g2} g1为不动点置换,型为1n;为5n;n??n?g2置换:(2(n-1))(3(n-2))…(??2??2?) ????分为2种情况:n为奇数时12 ,但是只有中间的数字是0,1,8的时候,才可能调转过来的时候是相同的,所以这里的剩下的中间数字只能是有3种。
即:个数为3×5n2n2n?12 n2 n为偶数时 2 ,个数为 5 该置换群的轮换指标为1n122(5?5)?5 n为偶数时,等价类的个数l=221nn为奇数时,等价类的个数l=(5?3?52n?12n3n) 4. 现有8个人计划去访问3个城市,其中有3个人是一家,另外有2个人是一家.如果一家人必须去同一个城市,问有多少种方案?写出它们的模式. 解:令D={d1,d2,…,d8},其中,d1,d2,d3为一家,d4,d5为一家。
组合数学课件第五章容斥原理
5.1.3 包含排斥原理
例2、求从1到1000的整数中不能被5,6 和8中任何一个整除的整数个数。 解:用lcm{a1,a2,…,an}表示n个整数a1,a2,…,an的最小公倍数。 设S={1,2,…,1000},令A,B,C分别为1~1000中能被5,6,8除尽的整数 集合。显然,其补集代表不具备被整除性质的集合。根据题意有
5.1.2 计数定理 (1) (2)
同样可用Venn图说明该定理的正确性。 或通过组合分析法,若A代表具有性质P1的元素集合,B代 表具有性质P2的元素集合,等式左端表示至少具有性质P1 、 P2之一的元素个数,|A|表示具有性质P1的元素个数,|B|表示 具有性质P2的元素个数,但二者相加时,同时具有性质P1 、 P2的元素计数重复加了一次,故需要减去重复的数|A∩B|。 另外:
类似的分析可得 |A∩B|=C(4+3-1,3),|A∩C|=C(4+2-1,2),|A∩D|=C(4+1-1,1), |B∩C|=C(4+3-1,3),|B∩D|=C(4+2-1,2),|C∩D|=C(4+1-1,1), |A∩B∩C|=|A∩B∩D|=|A∩C∩D|=|B∩C∩D|=|A∩B∩C∩D|=0。 根据容斥原理,B的12−组合数为
5.1.3包含排斥原理
考虑S中一个恰好具有n个性质中的m(1≤m≤n)个性质的一个元 素y,由于y∈S ,故在S中被计算的次数为1=C(m,0);又由于y恰好 具有m个性质,故它是Ai(i=1,2,…,n)中的m个集合的元素,因而在 中被计算的次数为C(m,1) ;又因为在m个性质中取出一对性质的 方法有C(m,2)个,故y是C(m,2)个集合Ai∩Aj(i≠j)的一个元素,在 中被计算的次数为C(m,2) ,…,因此y在等式右端被计算的次数净值 C(m,0)-C(m,1)+C(m,2)+…+(-1)n C(m,n),由于m<k时,C(m,k)=0 ,有
北师版高中数学选择性必修第一册课后习题 第5章 计数原理 习题课——组合的综合应用
习题课——组合的综合应用课后训练巩固提升1.某学习小组有4名男生和4名女生,一次问卷调查活动需要选3名同学参加,若至少选1名女生,则不同的选法种数为( ).A.120B.84C.52D.48解析:用间接法,共有C83−C43=52种选法.答案:C2.某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案共有( ).A.16种B.36种C.42种D.60种解析:若3个不同的项目投资到4个城市中的3个,则每个城市1个项目,有A43种方案;若3个不同的项目投资到4个城市中的2个,则一个城市1个项目、一个城市2个项目,有C32A42种方案.由分类加法计数原理,知共有A43+C32A42=60种方案.答案:D3.已知有男运动员6名、女运动员4名,其中男、女队长各1人,现选派5人参加比赛,则至少选1名队长的选派方法有( ).A.252种B.196种C.240种D.56种解析:(方法一:直接法)选1名队长,有C21C84种选法;选2名队长,有C22C83种选法,故共有C21C84+C22C83=196种.(方法二:间接法)至少选1名队长,共有C105−C85=196种.答案:B4.某龙舟队有9名队员,其中3人只会划左舷,4人只会划右舷,2人既会划左舷又会划右舷.现要选派划左舷的3人、划右舷的3人,共6人去参加比赛,则不同的选派方法共有( ).A.56种B.68种C.74种D.92种解析:根据划左舷中有“多面手”人数的多少进行分类:划左舷中没有“多面手”的选派方法有C33C63种,有1个“多面手”的选派方法有C21C32C53种,有2个“多面手”的选派方法有C22C31C43种,故共有20+60+12=92种不同的选派方法.答案:D5.某学校派出5名优秀教师去边远地区的三所中学进行教学交流,每所中学至少派1名教师,则不同的分派方法有( ).A.80种B.90种C.120种D.150种解析:有两类情况:第1类,其中一所学校3名教师,另两所学校各1名教师的分派方法有C 53C 21C 11A 22·A 33=60种;第2类,其中一所学校1名教师,另两所学校各2名教师的分派方法有C 51C 42C 22A 22·A 33=90种,故共有150种不同的分派方法.答案:D 6.在平面直角坐标系xOy 中,平行直线x=n(n=0,1,2,…,5)与平行直线y=n(n=0,1,2,…,5)组成的图形中,矩形共有 个.解析:在垂直于x 轴的6条直线中任取2条,在垂直于y 轴的6条直线中任取2条,4条直线相交得出一个矩形,所以矩形总数为C 62C 62=15×15=225个.答案:2257.将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子内.每个盒内放一个球,则恰好有3个球的标号与其所在盒子的标号不一致的放入方法共有 种.(以数字作答)解析:从10个球中任取3个,有C 103种取法.取出的3个球与其所在盒子的标号不一致的放法有2种.因此,共有2C 103=240种放法.答案:2408.用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有个.(用数字作答)解析:分为2类:第1类,个位、十位和百位上各有一个偶数,有C31A33+C32A33C41=90个.第2类,个位、十位和百位上共有两个奇数、一个偶数,有C32A33C41+C31C31C32A33=234个.故共有90+234=324个.答案:3249.从1到7的7个数字中取2个偶数和3个奇数组成没有重复数字的五位数.问:(1)能组成多少个不同的五位偶数?(2)2个偶数排在一起的有多少个?(3)2个偶数不相邻且3个奇数也不相邻的五位数有多少个?(所有结果均用数值表示)解:(1)分4步完成:第1步,在3个偶数中取2个,有C32种取法;第2步,在4个奇数中取3个,有C43种取法;第3步,个位排偶数,其他四个数全排列,有A21A44种排法.所以符合题意的五位偶数共有C32C43A21A44=576个.(2)在组成的没有重复数字的五位数中,2个偶数排在一起的共有C32C43A22A44=576个.(3)2个偶数不相邻且3个奇数也不相邻的五位数共有C32C43A33A22=144个.10.按照下列要求,分别求有多少种不同的放法.(1)6个不同的小球放入4个不同的盒子;(2)6个不同的小球放入4个不同的盒子,每个盒子中至少有1个小球;(3)6个相同的小球放入4个不同的盒子,每个盒子中至少有1个小球. 解:(1)每个小球都有4种放法,根据分步乘法计数原理,共有46=4096种不同放法.(2)分2类:第1类,6个小球分为3,1,1,1个放入盒中;第2类,6个小球分·A44=1560种不同放法.为2,2,1,1个放入盒中,共有C63A44+C62C42C21C11A22A22(3)(方法一)按3,1,1,1放入有C41种方法,按2,2,1,1放入有C42种方法,共有C41+C42=10种不同放法.(方法二:挡板法)在6个球之间的5个空中插入三个挡板,将6个球分成四份,共有C53=10种不同放法.1.5个不同的球放入4个不同的盒子中,每个盒子中至少有1个球,若甲球必须放入A盒,则不同的放法种数是( ).A.120B.72C.60D.36解析:将甲球放入A盒后分两类:一类是除甲球外,A盒还放其他球,有A44=24种放法;另一类是A盒中只有甲球,其他4个球放入另外3个盒中,有C42A33=36种放法.故不同的放法共有24+36=60种.答案:C2.编号为1,2,3,4,5,6,7的七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案有( ).A.60种B.20种C.10种D.8种解析:四盏熄灭的灯产生的5个间隔中插入三盏亮灯,即C53=10.答案:C3.某科技小组有6名学生,其中男生人数占一半或一半以上,现从中选出3名去参加展览,至少有1名女生入选的不同选法有16种,则该小组中的女生人数为( ).A.2B.3C.4D.5解析:设男生有x人,则女生有(6-x)人.依题意得C63−C x3=16,即C x3=4,又3≤x≤5,x∈N+.解得x=4,故女生有2人.答案:A4.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( ).A.4种B.10种C.18种D.20种解析:分两种情况:①选2本画册、2本集邮册送给4位朋友有C42=6种方法;②选1本画册、3本集邮册送给4位朋友有C41=4种方法,所以不同的赠送方法共有6+4=10种,故选B.答案:B5.某城市纵向有6条道路,横向有5条道路,构成如图所示的矩形道路图(图中黑线表示道路),则从西南角A地到东北角B地的最短路线共有条.(第5题)解析:从西南角A地到东北角B地的最短路线即只向右、向上走,共需9步,分析可得,最短路线的9步中,必须是5次向右、4次向上,原问题可转化为从9步中任取5次向右,剩下4次向上,有C95=126种走法,故从A地到B地的最短路线共有126条.答案:1266.如图,在四棱锥中,顶点为P,从其他的顶点和各棱中点中取3个,使它们和点P在同一平面内,则不同的取法种数为.(用数字作答)(第6题)解析:满足要求的点的取法可分为三类:第1类,在四棱锥的每个侧面上除点P外任取3点,有4C53种取法;第2类,在两个对角面上除点P外任取3点,有2C43种取法;第3类,过点P的每一条棱上的三点和与这条棱异面的两条棱的中点也分别共面,有4C21种取法.因此,满足题意的不同取法共有4C53+2C43+4C21=56种.答案:567.10双互不相同的鞋子混装在一只布袋中,从中任意取出4只,试求若出现下列结果各有多少种取法:(1)4只鞋子没有成双的;(2)4只鞋子恰有两双;(3)4只鞋子有2只成双,另2只不成双.解:(1)从10双鞋子中选取4双,有C104种不同选法,每双鞋子中各取一只,分别有2种取法,根据分步乘法计数原理,共有N=C104×24=3360种不同取法.(2)从10双鞋子中选取2双有C102种取法,即有45种不同取法.(3)先选取一双有C101种选法,再从9双鞋中选取2双有C92种选法,每双鞋只取一只各有2种取法,根据分步乘法计数原理,共有N=C101C92×22=1440种不同取法.8.某校阅览室的一个书架上有6本不同的课外书,有5名学生想阅读这6本书,在同一时间内他们到这个书架上取书.(1)求每名学生只取1本书的不同取法种数;(2)求每名学生最少取1本书,最多取2本书的不同取法种数;(3)求恰有1名学生没取到书的不同取法种数.解:(1)每名学生只取1本书的不同取法有A65=720种.(2)每名学生最少取1本书,最多取2本书分为2类:第1类,每名学生只取1本书,取法为A65种;第2类,一名学生取2本书,其余学生每人取1本书.先确定取2本书的学生有C51种方法,这名学生取哪2本书有C62种方法,其余4名学生取剩下的4本书且每人一本有A 44种方法,故一名学生取2本书,其余学生每人取一本书取法为C 51C 62A 44种.所以,每名学生最少取1本书,最多取2本书的不同取法有A 65+C 51C 62A 44=720+1800=2520种.(3)恰有1名学生没取到书分为2类:第1类,1名学生取3本书,3名学生每人取1本书,1名学生取0本书,取法种数为C 63A 55.第2类,2名学生每人取2本书,2名学生每人取1本书,1名学生取0本书,取法有C 62C 42C 21C 11A 22A 22·A 55种.所以,恰有1名学生没取到书的不同取法有C 63A 55+C 62C 42C 21C 11A 22A 22·A 55=(C 63+C 62C 42C 21C 11A 22A 22)A 55=(20+45)×120=7800种.。
高中数学第五章计数原理3组合问题第1课时组合组合数公式及其性质课件北师大版选择性必修第一册
100
=100
101×100
99
99
2
+ 100 =C101 =C101 =
=5
2×1
050.
(2)若 4> 6 ,则n的取值集合是________.
答案:{6,7,8,9}
解析:由
4
>
n!
6
, 得
4! n−4
>
n!
, 所 以 n2 - 9n - 10<0 , 得 -
! 6! n−6 !
方法归纳
区分排列与组合的办法是首先弄清楚事件是什么,区分的标志是有
无顺序,而区分有无顺序的方法是:把问题的一个选择结果写出来,
然后交换这个结果中任意两个元素的位置,看是否会产生新的变化,
若有新变化,即说明有顺序,是排列问题;若无新变化,即说明无顺
序,是组合问题.
跟踪训练1 判断下列问题是排列问题还是组合问题:
C.18
D.9
)
答案:B
解析:∵ Cn10 =Cn8 ,
∴n=18,
20×19
18
n
2
∴ C20 =C20 =C20 =
=190.故选B.
2×1
题型三 组合数性质的应用
98
99
例3 (1)计算: 97
+
+
99
99
100 =________;
答案:5 050
98
解析: 97
99+99
+
99
原等式化为:
−
=
5!
6!
10×7!
化简得:m2-23m+42=0,解得m=21或m=2.