组合数学第一章作业答案

合集下载

组合答案第一章

组合答案第一章

1.35凸10 边形的任意三个对角线不共点,试求这凸10 边形的对角线交于多少个点?解:根据题意,每4 个点可得到两条对角线,1 个对角线交点,从10 个顶点任取4 个的方案有C(10,4)中,即交于210 个点。

1.36试证一整数是另一个整数的平方的必要条件是除尽它的数目为奇数。

证:设,p1、p2、…、p l是l个不同的素数,每个能整除尽数n的正整数都可以选取每个素数p i从0到a i次,即每个素数有a i+1种选择,所以能整除n的正整数数目为(a1+1)·(a2+1)·…·(a l+1)个。

而,能被(2a1+1)·(2a2+1)·…·(2a l+1)个数整除,2a i+1为奇数(0≤i≤l),所以乘积为奇数。

证毕。

1.37给出的组合意义.解:如图:可看作是格路问题:左边第i项为从点C到点(-1,i)直接经过(0,i)的路径,再到点B的所有路径数。

左边所有项的和就是从点C到B的所有路径数即为右边的意义。

1.38给出的组合意义。

解:C(n+1,r+1)是指从n+1个元素a1, a2,…,a n+1中任取r+1个进行组合的方案数。

左边:若一定要选a n+1,则方案数为C(n,r).若不选a n+1,一定要选a n,则方案数为C(n-1,r).若不选a n+1,a n,…a r+2,则方案数为C(r,r). 所有这些可能性相加就得到了总方案数。

1.39证明:证:组合意义,右边:m个球,从中取n个,放入两个盒子,n个球中每个球都有两种放法,得到可能的方案数。

左边:第i项的意义是一个盒子中放i个,另一个盒子放n-i个,所有的方案数相加应该等于右边。

证毕。

1.40 从n个人中选r个围成一圆圈,问有多少种不同的方案?解:圆排列:共有P(n,r)/r种不同的方案。

1.43对于给定的正整数n,证明当时,C(n,k)是最大值。

证:取C(n,k)和C(n,k-1)进行比较。

组合数学卢开澄课后习题答案

组合数学卢开澄课后习题答案

组合数学卢开澄课后习题答案组合数学是一门研究离散结构和组合对象的数学学科,它广泛应用于计算机科学、统计学、密码学等领域。

卢开澄是中国著名的组合数学家,他的教材《组合数学》是该领域的经典之作。

在学习组合数学的过程中,课后习题是巩固知识、提高能力的重要途径。

下面我将为大家提供一些卢开澄课后习题的答案。

第一章:集合与命题逻辑1.1 集合及其运算习题1:设集合A={1,2,3},B={2,3,4},求A∪B和A∩B的结果。

答案:A∪B={1,2,3,4},A∩B={2,3}。

习题2:证明若A∩B=A∩C,且A∪B=A∪C,则B=C。

答案:首先,由A∩B=A∩C可得B⊆C,同理可得C⊆B,因此B=C。

然后,由A∪B=A∪C可得B⊆C,同理可得C⊆B,因此B=C。

综上所述,B=C。

1.2 命题逻辑习题1:将下列命题用命题变元表示:(1)如果今天下雨,那么我就带伞。

(2)要么他很聪明,要么他很勤奋。

答案:(1)命题变元P表示今天下雨,命题变元Q表示我带伞,命题可表示为P→Q。

(2)命题变元P表示他很聪明,命题变元Q表示他很勤奋,命题可表示为P∨Q。

习题2:判断下列命题是否为永真式、矛盾式或可满足式:(1)(P∨Q)→(P∧Q)(2)(P→Q)∧(Q→P)答案:(1)该命题为可满足式,因为当P为真,Q为假时,命题为真。

(2)该命题为永真式,因为无论P和Q取何值,命题都为真。

第二章:排列与组合2.1 排列习题1:从10个人中选取3个人,按照顺序排成一队,有多少种不同的结果?答案:根据排列的计算公式,共有10×9×8=720种不同的结果。

习题2:从10个人中选取3个人,不考虑顺序,有多少种不同的结果?答案:根据组合的计算公式,共有C(10,3)=120种不同的结果。

2.2 组合习题1:证明组合恒等式C(n,k)=C(n,n-k)。

答案:根据组合的计算公式可得C(n,k)=C(n,n-k),因此组合恒等式成立。

组合数学第三版+卢开澄+习题答案

组合数学第三版+卢开澄+习题答案

第1章 排列与组合经过勘误和调整,已经消除了全部的文字错误,不过仍有以下几个题目暂时没有找到解答:1.8 1.9 1.161.41(答案略) 1.42(答案略)1.1 从{1,2,…,50}中找一双数{a,b},使其满足:()5;() 5.a ab b a b -=-≤[解] (a) 5=-b a将上式分解,得到55a b a b -=+⎧⎨-=-⎩a =b –5,a=0时,b =5,6,7,…,50。

满足a=b-5的点共50-4=46个点. a = b+5,a=5时,b =0,1,2,…,45。

满足a=b+5的点共45-0+1=46个点. 所以,共计92462=⨯个点. (b) 5≤-b a(610)511(454)1651141531+⨯+⨯-=⨯+⨯=个点。

1.2 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列? (b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?[解] (a) 女生在一起当作一个人,先排列,然后将女生重新排列。

(7+1)!×5!=8!×5!=40320×120=4838400(b) 先将男生排列有7!种方案,共有8个空隙,将5个女生插入,故需从8个空中选5个空隙,有58C 种选择。

将女生插入,有5!种方案。

故按乘法原理,有: 7!×58C ×5!=33868800(种)方案。

(c) 先从5个女生中选3个女生放入A ,B 之间,有35C 种方案,在让3个女生排列,有3!种排列,将这5个人看作一个人,再与其余7个人一块排列,有 (7+1)! = 8!由于A ,B 可交换,如图**A***B** 或 **B***A**故按乘法原理,有:2×35C ×3!×8!=4838400(种)1.3 m 个男生,n 个女生,排成一行,其中m ,n 都是正整数,若(a) 男生不相邻(m ≢n+1); (b) n 个女生形成一个整体; (c) 男生A 和女生B 排在一起; 分别讨论有多少种方案.[解] (a) 先将n 个女生排列,有n!种方法,共有n+1个空隙,选出m 个空隙,共有m n C 1+种方法,再插入男生,有m!种方法,按乘法原理,有:n!×mn C 1+×m!=n!×)!1(!)!1(m n m n -++×m!=)!1()!1(!m n n n -++种方案。

组合数学作业答案2016

组合数学作业答案2016

组合数学作业第一章引言Page 13, ex3,4,7,30ex3. 想象一座有64个囚室组成的监狱,这些囚室被排列成8 8棋盘。

所有相邻的囚室间都有门。

某角落处意见囚室例的囚犯被告知,如果他能够经过其它每一个囚室正好一次之后,达到对角线上相对的另一间囚室,那么他就可以获释。

他能获得自由吗?解:不能获得自由。

方法一:对64个囚室用黑白两种颜色染色,使得横和竖方向相邻的囚室颜色不同。

则对角线上两个囚室颜色为同黑或同白。

总共偶数个囚室,若能遍历且不重复,则必然是黑出发白结束,矛盾。

方法二:64个囚室,若要经过每个囚室正好一次,需要走63步,即奇数步。

不妨假设该囚犯在第1行第1列,那么到第8行第8列,横着的方向需要走奇数步,竖着的方向需要走奇数步,即总共需要偶数步。

所以不能恰好经过每个囚室一次到达对角线上的囚室。

ex4. (a) 设f(n)是用多米诺牌(2-牌)对2×n棋盘作完美覆盖的个数。

估计一下f(1),f(2),f(3),f(4)和f(5). 试寻找(或证明)这个计数函数f满足的简单关系。

利用这个关系计算f(12)。

(b) 设g(n)是用多米诺牌(2-牌)对3×n棋盘作完美覆盖的个数。

估计g(1),g(2),…,g(6).解:(a)f(1)=1, f(2)=2, f(3)=3, f(n+2)=f(n+1)+f(n)f(4)=f(3)+f(2)=5,f(5)=f(4)+f(3)=8f(6)=f(5)+f(4)=13f(7)=f(6)+f(5)=21f(8)=f(7)+f(6)=34f(9)=f(8)+f(7)=55f(10)=f(9)+f(8)=89f(11)=f(10)+f(9)=144f(12)=f(11)+f(10)=233(b) g(1)=0, g(2)=3, g(3)=0, g(4)=9+2=11, g(n+4)=4g(n+2)-g(n), g(5)=0, g(6)=41.ex7. 设a和b是正整数,且a是b的因子。

李凡长版 组合数学课后习题答案 习题1

李凡长版 组合数学课后习题答案 习题1

1第一章 排列组合1、 在小于2000的数中,有多少个正整数含有数字2?解:千位数为1或0,百位数为2的正整数个数为:2*1*10*10;千位数为1或0,百位数不为2,十位数为2的正整数个数为:2*9*1*10; 千位数为1或0,百位数和十位数皆不为2,个位数为2的正整数个数为:2*9*9*1;故满足题意的整数个数为:2*1*10*10+2*9*1*10+2*9*9*1=542。

2、 在所有7位01串中,同时含有“101”串和“11”串的有多少个? 解:(1) 串中有6个1:1个0有5个位置可以插入:5种。

(2) 串中有5个1,除去0111110,个数为()62-1=14。

(或:()()4142*2+=14)(3)串中有4个1:分两种情况:①3个0单独插入,出去1010101,共()53-1种;②其中两个0一组,另外一个单独,则有()()2*)2,2(4152-P 种。

(4)串中有3个1:串只能为**1101**或**1011**,故共4*2种。

所以满足条件的串共48个。

3、一学生在搜索2004年1月份某领域的论文时,共找到中文的10篇,英文的12篇,德文的5篇,法文的6篇,且所有的都不相同。

如果他只需要2篇,但必须是不同语言的,那么他共有多少种选择? 解:10*12+10*5+10*6+12*5+12*6+5*64、设由1,2,3,4,5,6组成的各位数字互异的4位偶数共有n 个,其和为m 。

求n 和m 。

解:由1,2,3,4,5,6组成的各位数字互异,且个位数字为2,4,6的偶数均有P(5,3)=60个,于是:n = 60*3 = 180。

以a 1,a 2,a 3,a 4分别表示这180个偶数的个位、十位、百位、千位数字之和,则m = a 1+10a 2+100a 3+1000a 4。

因为个位数字为2,4,6的偶数各有60个,故 a 1 = (2+4+6)*60=720。

因为千(百,十)位数字为1,3,5的偶数各有3*P(4,2) = 36个,为2,4,6的偶数各有2*P(4,2) = 24个,故a 2 = a 3 = a 4 = (1+3+5)*36 + (2+4+6)*24 = 612。

组合数学第三版+卢开澄+习题答案

组合数学第三版+卢开澄+习题答案

第1章 排列与组合经过勘误和调整,已经消除了全部的文字错误,不过仍有以下几个题目暂时没有找到解答:1.8 1.9 1.161.41(答案略) 1.42(答案略)1.1 从{1,2,…,50}中找一双数{a,b},使其满足:()5;() 5.a ab b a b -=-≤[解] (a) 5=-b a将上式分解,得到55a b a b -=+⎧⎨-=-⎩a =b –5,a=0时,b =5,6,7,…,50。

满足a=b-5的点共50-4=46个点. a = b+5,a=5时,b =0,1,2,…,45。

满足a=b+5的点共45-0+1=46个点. 所以,共计92462=⨯个点. (b) 5≤-b a(610)511(454)1651141531+⨯+⨯-=⨯+⨯=个点。

1.2 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列? (b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?[解] (a) 女生在一起当作一个人,先排列,然后将女生重新排列。

(7+1)!×5!=8!×5!=40320×120=4838400(b) 先将男生排列有7!种方案,共有8个空隙,将5个女生插入,故需从8个空中选5个空隙,有58C 种选择。

将女生插入,有5!种方案。

故按乘法原理,有: 7!×58C ×5!=33868800(种)方案。

(c) 先从5个女生中选3个女生放入A ,B 之间,有35C 种方案,在让3个女生 排列,有3!种排列,将这5个人看作一个人,再与其余7个人一块排列,有 (7+1)! = 8!由于A ,B 可交换,如图**A***B** 或 **B***A**故按乘法原理,有:2×35C ×3!×8!=4838400(种)1.3 m 个男生,n 个女生,排成一行,其中m ,n 都是正整数,若(a) 男生不相邻(m ≤n+1); (b) n 个女生形成一个整体; (c) 男生A 和女生B 排在一起; 分别讨论有多少种方案.[解] (a) 先将n 个女生排列,有n!种方法,共有n+1个空隙,选出m 个空隙,共有m n C 1+种方法,再插入男生,有m!种方法,按乘法原理,有:n!×mn C 1+×m!=n!×)!1(!)!1(m n m n -++×m!=)!1()!1(!m n n n -++种方案。

最新组合数学习题答案(1-4章全)

最新组合数学习题答案(1-4章全)

第1章 排列与组合1.1 从{1,2,…,50}中找一双数{a,b},使其满足:()5;() 5.a ab b a b -=-≤[解] (a) 5=-b a将上式分解,得到55a b a b -=+⎧⎨-=-⎩a =b –5,a=1,2,…,45时,b =6,7,…,50。

满足a=b-5的点共50-5=45个点. a = b+5,a=5,6,…,50时,b =0,1,2,…,45。

满足a=b+5的点共45个点. 所以,共计2×45=90个点. (b) 5≤-b a(610)511(454)1651141531+⨯+⨯-=⨯+⨯=个点。

1.2 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列? (b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?[解] (a) 女生在一起当作一个人,先排列,然后将女生重新排列。

(7+1)!×5!=8!×5!=40320×120=4838400(b) 先将男生排列有7!种方案,共有8个空隙,将5个女生插入,故需从8个空中选5个空隙,有58C 种选择。

将女生插入,有5!种方案。

故按乘法原理,有:7!×58C ×5!=33868800(种)方案。

(c) 先从5个女生中选3个女生放入A ,B 之间,有35C 种方案,在让3个女生排列,有3!种排列,将这5个人看作一个人,再与其余7个人一块排列,有(7+1)! = 8!由于A ,B 可交换,如图**A***B** 或 **B***A**故按乘法原理,有:2×35C ×3!×8!=4838400(种)1.3 m 个男生,n 个女生,排成一行,其中m ,n 都是正整数,若(a) 男生不相邻(m ≤n+1); (b) n 个女生形成一个整体; (c) 男生A 和女生B 排在一起; 分别讨论有多少种方案.[解] (a) 先将n 个女生排列,有n!种方法,共有n+1个空隙,选出m 个空隙,共有mn C 1+种方法,再插入男生,有m!种方法,按乘法原理,有:n!×mn C 1+×m!=n!×)!1(!)!1(m n m n -++×m!=)!1()!1(!m n n n -++种方案。

组合数学第一章习题解答

组合数学第一章习题解答

1.16、n个完全一样的球放到r个有标志的盒中,无一空盒, 试问有多少种方案? 取r个球每盒放一个,然后n-r个放入r个不同盒中,同充许空 盒的放法。 C(r+n-r-1,n-r)=C(n-1,n-r)=C(n-1,r-1)
1.18、8个盒子排成一列,5个有标志的球放到盒子中,每盒 最多放一个球,要求空盒不相邻,问有多少种排列方案? 5!×6×5×4 1.19、n+m位由m个0,n个1组成的符号串,其中n≤m+1,试问 不存在两个1相邻的符号串的数目? (m+1)*m*...*(m-n+2)/n!=C(m+1,n) 1.20、甲单位有10个男同志,4个女同志,乙单位有15个男同 志,10个女同志,由他们产生一个7人的代表团,要求其中甲单 位占4人,面且7人中男同志5位,试问有多少种方案? 按甲单位: C(10,4)C(15,1)C(10,2)+C(10,3)C(4,1)C(15,2)C(10,1)+ C(10,2)C(4,2)C(15,3)
习题:1.15试求从1到1000000的整数中,0出现的次数。 解:先将1到999999的整数都看作6位数,例如2就看作是 000002,这样从000000到999999。0出现了多少次呢? 6×105,某一位取0,其它各位任取。 0出现在最前面的次数应该从中去掉 000000到999999中最左1位的0出现了105次, 000000到099999中左数第2位的0出现了104次, 000000到009999左数第3位的0出现了103次, 000000到000999左数第4位的0出现了102次, 000000到000099左数第5位的0出现了10次, 000000到000009左数第6位的0出现了1次。 因此不合法的0的个数为105+104+103+102+101+1=111111, 不合法的应该去掉,再加整数1000000中的6个0,这样,从1到 1000000的整数中0出现的次数为6×105-111111+6=488895。 问题:在去掉多余的零的过程中,多减去了一部分,例如: 000000这种情况在每次减的过程中都出现。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
并将
2 = 2 Cm2 1 Cn 1 k 1 k 1
若 k 是偶数,则要么
k k 个 1 插入 m-1 个空挡,要么首尾各有 1 个 1,并把 1 个 1 2 2
插入 m-1 个空档,剩下的 1 同上处理共计:
C C
附加题:
k 2 m 1ຫໍສະໝຸດ k 1 2 n 1Ck 1 2 m 1
2n 2n n n 1
(2n)! 2n ! 1 n C2 n n !n ! (n 1)!( n 1)! n 1
1.50 (a)先排好 5 个 0 在 5 个 0 中插入 2 个 1,可以产生 4 个 01/10。 在 5 个 0 中插入 1 个 1,在首尾各插入 1 个 1,可以产生 4 个 01/10。 剩下的 1 插入在原有 1 的前面,对 01/10 无贡献。
同理,也是求符合正方形约束的对角线条数 1 1 2 C10 + C10 = 96 1.25 (1) 1 + C5 3 3 (2) C15 − C5 = 445 1.26 2*200*800+200*200=360000 或者 179900 1.27 (1) 5! * 6! =86400 (2) 5! * 6! =86400 (3) 6*5*8! = 1209600 1.33 先将 r 个球放入 n 个盒子里,每个盒子里放 k 个球,然后将余下的(r-kn)个球放入 n 个
字典序法 递增法 递减法 邻位对换法
r 1 Cn 1 相当于在 n 个球的 n-1 个空中选取 r-1 个作为间隔。
40
30
40 40
60 30
40 30
3 1.18 5! ∗ C6 = 2400, 5 个有球的盒子的全排列,再将 3 个空盒插入 5 个盒子相邻的 6 个 空隙内
1.19 1.20 1.21
n Cm+1
2 2 3 1 3 2 1 4 1 2 C4 C10 C15 + C4 C10 C15 C10 +C10 C15 C10 = 768600
n −1 有标志的盒子里,结果为Cr −n k −1 −1
4 1.35 在 10 个定点中任取 4 个,对应两条对角线的一个交点,即C10 =210
1.45 (1) 2n (2) 22n (注意化简) 1.47
k=0
m 2
k k Cm Cm −k 3m −2k
1.48 将其转换为 n×n 的格路。相当于要求恒 a≤b 得: N =
1.3
m n Pn (1) Pn+1 m+1 n Pn (2) Pm+1 m+n −1 (3) 2Pm+n −1
n
1.6
i i ! 1.1! 1.1! n n! 1.1!
i 1
= 2.1! 2.2! 1.1! = 3.2! 3.2! 1.1! =(n+1)!-1 1.8 (10 , 20 ) = (2 5 ,2 5 ) = 2 5 (包括 1) 公因数共有 41·31=1271 个。 1.14 2!*3! =12 1.15 488895 1.16
2 1 3 C4 30 总数为 3C4
(b)因为 0,1 在本题里等价,不妨设 m≥n 由(a)的结论,易知:只有 k≤2n 时,才有解。 若 K 是奇数,则必须在首或尾插入一个 1,
k 1 个 1 插入 m-1 个空档中, 2 k 1 剩下的 n 个 1 放在已有的 1 前。 2 k 1 k 1 共有 2 Cm2 个盒子中放 n 个 1,每个盒子至少有 1 个的方案数) 1 (在 2
C
k 2 n 1
按照以上字典序法、递增进位制数、递减进位制数法和邻位对换法四种算法,分别求出 83674521 之后第 2015 个排列。 中介数 7244221 7442221 1222447 1012120 2015 中介数 新中介数 243321 243321 10567 10567 7000300 7153300 1211450 1001121 新排序 81237456 86451273 37624518 48673251
已知 6 个球里有 3 个白球,那么最后一个球是白球的概率为 1/2
2 2 C2 60 −6C 10 −10C 6
1.24 (1)
2
= 675
60 个点中任取 2 点,除去 2 点共线的情况,对应一条矩形的对角线(正方形也是一类 特殊的矩形) ,除以 2 是因为矩形有两条对角线 (2)
2 2 2 3 2 2 C2 +C3 +C4 +C5 + 5C6 = 115
相关文档
最新文档