组合数学 课后答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题二
2.1证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。
证明:
假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。
假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。
假设至少有两人谁都不认识,则认识的人数为0的至少有两人。
2.2任取11个整数,求证其中至少有两个数的差是10的整
数倍。
证明:对于任意的一个整数,它除以10的余数只能有10种情况:0,1,…,9。现在有11个整数,由鸽巢原理知,至少有2个整数的余数相同,则这两个整数的差必是10的整数倍。
2.3证明:平面上任取5个坐标为整数的点,则其中至少有
两个点,由它们所连线段的中点的坐标也是整数。
2.3证明:
有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为奇数+奇数= 偶数;偶数+偶数=偶数。因此只需找以上2个情况相同的点。而已证明:存在至少2个坐标的情况相同。证明成立。
2.4一次选秀活动,每个人表演后可能得到的结果分别为“通
过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果?
证明:
根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。
2.5一个袋子里装了100个苹果、100个香蕉、100个橘子和100个梨。那么至少取出多少水果后能够保证已经拿出20个相同种类的水果?
证明:
根据推论2.2.1,若将4*(20-1)+ 1 = 77个水果取出,必有20个相同种类的水果。
2.6证明:在任意选取的n+2个正整数中存在两个正整数,
其差或和能被2n整除。(书上例题2.1.3)
证明:对于任意一个整数,它除以2n的余数显然只有2n种情况,即:0,1,2,…,2n-2,2n-1。而现在有任意给定的n+2个整数,我们需要构造n+1个盒子,即对上面2n个余数进行分组,共n+1组:{0},{1,2n-1},{2,2n-2},{3,2n-3},…,{n-1,n+1},{n}。
根据鸽巢原理,n+2个整数,必有两个整数除以2n落入上面n+1个盒子里中的一个,若是{0}或{n}则说明它们的和及差都能被2n整除;若是剩下n-1组,因为一组有两个余数,余数相同则它们的差能被2n整除,不同则它们的和能被2n整除。证明成立。
2.7一个网站在9天中被访问了1800次,证明:存在连续的3天,这个网站的访问量超多600次。
证明:
设网站在9天中访问数分别为a1,a2,...,a9 其中
a1+a2+...+a9 = 1800,
令a1+a2+a3 = b1,a4+a5+a6 = b2,a7+a8+a9 = b3
因为(b1+b2+b3)/3 >= 600 由推论2.2.2知,b1,b2,b3中至少有一个数大于等于600。
所以存在有连续的三天,访问量大于等于600次。
2.8将一个矩形分成5行41列的网格,每个格子涂1种颜色,
有4种颜色可以选择,证明:无论怎样涂色,其中必有一个由格子构成的矩形的4个角上的格子被涂上同一种颜色。证明:首先对一列而言,因为有5行,只有4只颜色选择,根据鸽巢原理,则必有两个单元格的颜色相同。另外,每列中两个单元格的不同=10种,这样一列中两个同色单元格的位置组合共有
位置组合有5
2
10*4=40种情况。
而现在共有41列,根据鸽巢原理,无论怎样涂色,则必有两列相
同,也就是必有一个由格子构成的矩形的4个角上的格子是同一颜色。
2.9 将一个矩形分成(m +1)行112m m 列的网格每个格子涂1种颜色,有m 种颜色可以选择,证明:无论怎么涂色,其中必有一个由格子构成的矩形的4个角上的格子被涂上同一种颜色。
证明:
(1)对每一列而言,有(m+1)行,m 种颜色,有鸽巢原理,则必有两个单元格颜色相同。
(2)每列中两个单元格的不同位置组合有
12m 种,这样一列中两个同色单元格的位置组合共有
12m m 种情况 (3)现在有112m m
列,根据鸽巢原理,必有两列相同。证
明结论成立。
2.10一名实验员在50天里每天至少做一次实验,而实验总次
数不超过75。证明一定存在连续的若干天,她正好做了24次实验。
证明:令b1,b2,...,b50 分别为这50天中他每天的实验数,并做部分和
a1 = b1,a2 = b1+b2 ,。。
a50 = b1+b2+...+b50 .
由题,bi>=1(1<=i<=50)且a50<=75
所以1<=a1 考虑数列a1,a2,...,a50,a1+24,a2+24,a50+24,它们都在1与75+24=99之间。 由鸽巢原理知,其中必有两项相等。由(*)知,a1,a2,...,a50互不相等,从而a1+24,...a50+24 也互不相等,所以一定存在1<=i 24=aj-ai=(b1+b2+b3+…+bi+…+bj)-(b1+b2+…+bi)= 12... i i j b b b 所以从第i+1天到第j天这连续j-i天中,她正好做了24次实验。