第二章刚体力学-1(1)解析
《大学物理》刚体力学练习题及答案解析
《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。
然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。
(完整版)理论力学题库(含答案)--1,推荐文档
理论力学---11-1.两个力,它们的大小相等、方向相反和作用线沿同一直线。
这是(A)它们作用在物体系统上,使之处于平衡的必要和充分条件;(B)它们作用在刚体系统上,使之处于平衡的必要和充分条件;(C)它们作用在刚体上,使之处于平衡的必要条件,但不是充分条件;(D)它们作用在变形体上,使之处于平衡的必要条件,但不是充分条件;1-2. 作用在同一刚体上的两个力F1和F2,若F1 = - F2,则表明这两个力(A)必处于平衡;(B)大小相等,方向相同;(C)大小相等,方向相反,但不一定平衡;(D)必不平衡。
1-3. 若要在已知力系上加上或减去一组平衡力系,而不改变原力系的作用效果,则它们所作用的对象必需是(A)同一个刚体系统;(B)同一个变形体;(C)同一个刚体,原力系为任何力系;(D)同一个刚体,且原力系是一个平衡力系。
1-4. 力的平行四边形公理中的两个分力和它们的合力的作用范围(A)必须在同一个物体的同一点上;(B)可以在同一物体的不同点上;(C)可以在物体系统的不同物体上;(D)可以在两个刚体的不同点上。
1-5. 若要将作用力沿其作用线移动到其它点而不改变它的作用,则其移动范围(A)必须在同一刚体内;(B)可以在不同刚体上;(C)可以在同一刚体系统上;(D)可以在同一个变形体内。
1-6. 作用与反作用公理的适用范围是(A)只适用于刚体的内部;(B)只适用于平衡刚体的内部;(C)对任何宏观物体和物体系统都适用;(D)只适用于刚体和刚体系统。
1-7. 作用在刚体的同平面上的三个互不平行的力,它们的作用线汇交于一点,这是刚体平衡的(A)必要条件,但不是充分条件;(B)充分条件,但不是必要条件;(C)必要条件和充分条件;(D)非必要条件,也不是充分条件。
1-8. 刚化公理适用于(A)任何受力情况下的变形体;(B)只适用于处于平衡状态下的变形体;(C)任何受力情况下的物体系统;(D)处于平衡状态下的物体和物体系统都适用。
02结构力学1-几何组成分析
§2-1 基本概念 W = 3m-(3g+2h+b) 四. 计算自由度
例3:计算图示体系的计算自由度 2 1 解法一
9根杆,9个刚片
有几个单铰?
3 3
3根单链杆
2 1
W=3 ×9-(2×12+3)=0
§2-1 基本概念
四. 计算自由度 例3:计算图示体系的计算自由度 铰结链杆体系:完全由两端 铰结的杆件所组成的体系
y 两个刚片一共6个自由 度 加两个单链杆之后:整 个体系有4个自由度 减少2个自由度
x
1单铰=2个单链杆
y
§2-1 基本概念
三. 约束(联系) 约束:减少自由度的装置 实铰 x
两个单链杆
y
y
虚铰 x
x
§2-1 基本概念
三. 约束(联系)
既不平行又不相交于一点 的三个单链杆=一个固定支 座
三个单链杆=一个固定支座?
§2-2 静定结构的组成规则
三边在两边之和大于第三边时,能唯一地组 成一个三角形——基本出发点。
二刚片规则: 二刚片规则: 两个刚片用三根 两个刚片用一 不全平行也不交 个铰和一根不通 于同一点的链杆 过此铰的链杆相 相联,组成无多 联,组成无多余 余联系的几何不 联系的几何不变 变体系。
体系。
§2-2 静定结构的组成规则
x
1单铰=2个约束
§2-1 基本概念
三. 约束(联系) 约束:减少自由度的装置 y
复铰
三个刚片一共9个自由 度 加铰之后:整个体系有 5个自由度 减少4个自由度 x
复铰 等于多少个 单铰?
1连接N个刚片的复铰 =N-1个单铰
§2-1 基本概念
三. 约束(联系) 约束:减少自由度的装置
第二章 刚体静力学基本概念与理论(5学时)
合力偶定理: M=Mi
§2-3 约束与约束反力
一、概念 自由体:位移不受限制的物体叫自由体。 非自由体:位移受限制的物体叫非自由体。 约束:对非自由体的某些位移预先施加的限制条件称为约束。
(这里,约束是名词,而不是动词的约束。) 约束反力:约束给被约束物体的力叫约束反力。
主动力:促使物体运动或有运动趋势的力,在理论力学 中它作为已知条件给出
在第三象限,如图所示。
§ 2.2力偶
如图所示,用手扳螺母时,作用在扳手上的两个力使扳 手绕O点作转动
力偶:作用在同一平面内,大小 相等、方向相反、作用线 相互平行的两个力。
作用效应
使刚体的转动状态发生改变
力偶(F,F’)两个力所在平面称力偶作用面. 两力作用线之间的垂直距离d称为力偶臂.
力偶矩 m Fd
物体受到的约束力只能沿光滑支撑面的法线方向, 并通过铰链中心。
5. 固定端约束
Fx
m
Fy
FAy
空间 A
FAz
FAx
球铰
FAy
FBy
FAz
A FAx FBz
一对轴承
FAy My
Mz B FAz
A Mx
固定端
§2-4 物体的受力分析和受力图
一、受力分析 解决力学问题时,首先要选定需要进行研究的物体,即选
y
F1 F
y F1 F
y
Fy
F
Fy
F2
F2 F2
o
Fx x
Fy O Fx
x
O F1
Fx x
讨论:力的投影与分力
力F在垂直坐标轴x、y上的投影分量与沿轴分解的 分力大小相等。
力F在相互不垂直的轴x、y上的投影分量与沿 轴分解的分力大小是不相等的。
02第二章 刚体静力学的基本概念和理论
2. 4 受力图
(b)
例 2.4 球G1、G2置于墙和板AB间,BC为绳索。画受力图。
FK
C
G2
FK G2 FH FD
A
FT
FT FD
K
FD
B
G1 FE
G1
FAy
G2
FAx
B (d)
G2
H
D
G1
FD
G1
FH …间作用力与反作用力关系。 E FAx 注意FK 与 FK、 FE与 F E (c) A FE FAy 还要注意,部分受力图中约束力必须与整体受力图一致。 FAx (e) (a) A FAy 未解除约束处的系统内力,不画出。
FE
FH
FT
B
2. 4 受力图
例 2.5 连杆滑块机构如图,受力偶 M和力F作用, 试画出其各构件和整体的受力图。 解: 研究系统整体、杆AB、BC及滑块C。
B
FBC
C B F
B
FAy
M
A
FAy
M
FCB
FAx
FBC
C
F
C
FC
A FAx
FCB
FC
注意,若将个体受力图组装到一起,应当得到与整体受力图相 同的结果。力不可移出研究对象之外。
My
A Mx
A
FAz FAz A
Mz
FBz
一对轴承
固定端
空间球铰: 反力是过球铰中心的FAx、FAy、FAz 3个分力。 一对轴承: 共5个反力。允许绕 x 轴转动;x方向有间隙。 固定端: 限制所有运动,有6个反力。
4. 几种常见的约束
空间:
FBy FAy M Ay Ay 约束力方向与所能限制的物体运动方向相反。 y A Mz 指向不能确定的约束反力,可以任意假设。 FAx FAx Mx B F F A FAz 若求解的结果为正,所设指向正确;为负则指向与假 Az A Az FBz 设相反。 一对轴承 球铰 固定端 F F
《工程力学(第2版)》课后习题及答案—理论力学篇
第一篇理论力学篇模块一刚体任务一刚体的受力分析(P11)一、简答题1.力的三要素是什么?两个力使刚体平衡的条件是什么?答:力的三要素,即力的大小、力的方向和力的作用点。
两个力使刚体处于平衡状态的必要和充分条件:两个力的大小相等,方向相反,作用在同一直线上。
2.二力平衡公理和作用与反作用公理都涉及二力等值、反向、共线,二者有什么区别?答:平衡力是作用在同一物体上,而作用力与反作用力是分别作用在两个不同的物体上。
3.为什么说二力平衡公理、加减平衡力系公理和力的可传性都只适用于刚体?答:因为非刚体在力的作用下会产生变形,改变力的传递方向。
例如,软绳受两个等值反向的拉力作用可以平衡,而受两个等值反向的压力作用就不能平衡。
4.什么是二力构件?分析二力构件受力时与构件的形状有无关系。
答:工程上将只受到两个力作用处于平衡状态的构件称为二力构件。
二力构件受力时与构件的形状没有关系,只与两力作用点有关,且必定沿两力作用点连线,等值,反向。
5.确定约束力方向的原则是什么?活动铰链支座约束有什么特点?答:约束力的方向与该约束阻碍的运动方向相反。
在不计摩擦的情况下,活动铰链支座只能限制构件沿支承面垂直方向的移动。
因此活动铰链支座的约束力方向必垂直于支承面,且通过铰链中心。
6.说明下列式子与文字的意义和区别:(1)12=F F ,(2)12F F =, (3)力1F 等效于力2F 。
答:若12=F F ,则一般只说明两个力大小相等,方向相反。
若12F F =,则一般只说明两个力大小相等,方向是否相同,难以判断。
若力1F 等效于力2F ,则两个力大小相等,方向和作用效果均相同。
7.如图1-20所示,已知作用于物体上的两个力F1与F2,满足大小相等、方向相反、作用线相同的条件,物体是否平衡?答:不平衡,平衡是指物体相对于惯性参考系保持静止或匀速直线运动的状态,而图中AC 杆与CB 杆会运动,两杆夹角会在力的作用下变大。
二、分析计算题1.试画出图1-21各图中物体A 或构件AB 的受力图(未画重力的物体重量不计,所有接触均为光滑接触)。
大学刚体力学讲义(1)
i
riz
mivi
o
mii vi miriz vi
m i
i2
mi r i
cos
i
i
Liz Lih
L Lz Lh
Lz
Liz
mii2
J z mii2
t0 t
Lh
Mz
dLz dt
M z J z
F ma
Lz J z
定轴转动定律
Lh(t t)
Lh
Lh (t)
Mz
dLz dt
Lz J z
M zdt dLz dJ z
推广到 J z可变情形(保持所有质点 相同)
t
4
4l
r
dJ dmx2 dJ m dx x2 1 r 2m dx
l
4l
ox
x
l
J
l
2 l
2
m
dx l
x2
1 4
r2m
dx l
mr 2 4
ml 2 12
6.2.4 定轴转动刚体的角动量与角动量定理
定轴转 动刚体的角动量
Li Li
ri (mivi )
r
i
cosi
i
0
i
L
mii2 J
i
惯量主轴
主转动惯量
定轴转动刚体的角动量定理
M
大学物理刚体力学总结
大学物理刚体力学总结大学物理刚体力学总结大学物理刚体力学总结篇一:大学物理力学总结大学物理力学公式总结 ? 第一章(质点运动学)1. r=r(t)=x(t)i+y(t)j+z(t)k Δr=r(t+Δt)- r(t) 一般地|Δr|?Δr2. v= a= dt dx d??d?? d2??dt3. 匀加速运动:a=常矢 v0=vx+vy+vz r=r0+v0t+at2 ????4. 匀加速直线运动:v= v0+at x= v02 v2-v02=2ax 215. 抛体运动:ax=0 ay=-g vx=v0cs vy=v0sinθ-gt x=v0csθ?t y=v0sinθ?tgt2 216. 圆周运动:角速度= dt Rdθ v 角加速度dt dω 加速度 a=an+at 法相加速度an==Rω2 ,指向圆心 Rv2 切向加速度at=Rα ,沿切线方向dt d??7. 伽利略速度变换:v=v’+u ? 第二章(牛顿运动定律)1. 牛顿运动定律: 第一定律:惯性和力的概念,惯性系的定义第二定律:F=, p=mv dtd?? 当m为常量时,F=ma 第三定律:F12=-F21 力的叠加原理:F=F1+F2+……2. 常见的几种力:重力:G=mg 弹簧弹力:f=-kx3. 用牛顿定律解题的基本思路:1) 认物体 2) 看运动 3) 查受力(画示力图) 4) 列方程(一般用分量式) ? 第三章(动量与角动量)1. 动量定理:合外力的冲量等于质点(或质点系)动量的增量,即 Fdt=dp2. 动量守恒定律:系统所受合外力为零时, p= ??????=常矢量3. 质心的概念:质心的位矢 rc= ???????? 离散分布) m 或 rc = ??dmm (连续分布)4. 质心运动定理:质点系所受的合外力等于其总质量乘以质心的加速度,即 F=mac5. 质心参考系:质心在其中静止的平动参考系,即零动量参考系。
6. 质点的角动量:对于某一点, L=r×p=mr×v7. 角动量定理:M= dtd?? 其中M 为合外力距,M=r×F,他和L 都是对同一定点说的。
《大学物理学》第二章 刚体力学基础 自学练习题
第二章 刚体力学基础 自学练习题一、选择题4-1.有两个力作用在有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3)当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4)当这两个力对轴的合力矩为零时,它们的合力也一定是零; 对上述说法,下述判断正确的是:( )(A )只有(1)是正确的; (B )(1)、(2)正确,(3)、(4)错误; (C )(1)、(2)、(3)都正确,(4)错误; (D )(1)、(2)、(3)、(4)都正确。
【提示:(1)如门的重力不能使门转动,平行于轴的力不能提供力矩;(2)垂直于轴的力提供力矩,当两个力提供的力矩大小相等,方向相反时,合力矩就为零】4-2.关于力矩有以下几种说法:(1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度; (2)一对作用力和反作用力对同一轴的力矩之和必为零;(3)质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同。
对上述说法,下述判断正确的是:( )(A )只有(2)是正确的; (B )(1)、(2)是正确的; (C )(2)、(3)是正确的; (D )(1)、(2)、(3)都是正确的。
【提示:(1)刚体中相邻质元间的一对内力属于作用力和反作用力,作用点相同,则对同一轴的力矩和为零,因而不影响刚体的角加速度和角动量;(2)见上提示;(3)刚体的转动惯量与刚体的质量和大小形状有关,因而在相同力矩的作用下,它们的运动状态可能不同】3.一个力(35)F i j N =+作用于某点上,其作用点的矢径为m j i r )34(-=,则该力对坐标原点的力矩为 ( )(A )3kN m -⋅; (B )29kN m ⋅; (C )29kN m -⋅; (D )3kN m ⋅。
【提示:(43)(35)4302092935i j kM r F i j i j k k k =⨯=-⨯+=-=+=】4-3.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴 转动,如图所示。
跟我学《大学物理》(上)_ 刚体力学(1)_重点难点讲解_
合内力矩 Mij M ji r i fij rj f ji 0
➢说明只需考虑外力矩对定轴转动的影响。
设 M 为 i 刚体上质点Δmi所受的合外力矩,则:
Mi fir i (mir2 )
质点在Δ t 时间内的角位移:
(t t )(t ) (rad)
方向沿转轴方向
平均角速度: t
(rad/s)
瞬时角速度: lim d
t0 t dt
(rad/s)
方向沿转轴方向(右手螺旋法)
平均角加速度:
t
(rad/s2 )
瞬时角加速度:
lim
t0
t
d
dt
d 2
dt2
(rad/s2 )
其中 d r sin 称为外力对转轴的力臂。
力矩的方向:右手螺旋法则判断
2、刚体的转动定理:
(力矩和刚体角加速度的关系)
(1)质点的圆周运动 仅考虑切向分力:f ma mr
2
定义:质点作圆周运动的转动惯量:
I mr 2
单位:kg·m2
所以,质点作圆周运动的力矩:
M I
(2)刚体的定轴转动
方向沿转轴方向
注意
➢刚体加速转动时, 与的方向相同; ➢刚体减速转动时, 与的方向相反;
讨论
用角量来描述刚体的定轴转动的优势
➢刚体定轴转动时,各质元线量dri ,vi ,ai 均不相同;
➢刚体上所有质点绕定轴转动的各角量 d ,, 均相
同。
2、刚体的匀变速转动:
( =常量)
设t=0时刻角位置θ0,角速度ω0,则:
合外力矩: Mi (mir )2
理论力学 第二章 刚体的基本运动
0
nπ 式中n为转速 单位:转/ 分(r/min) 。 山东大学 土建与水利学院工程力学系 THEORETICAL MECHANICS 30
§ 2.2 刚体绕定轴的转动
3.角加速度
描述角速度变化的快慢程度
2
d d lim 2 t 0 t dt dt
单位:弧度/秒2 (rad/s2 ) α与同号,刚体加速转动;
THEORETICAL MECHANICS
山东大学 土建与水利学院工程力学系
§2.4 轮系的传动比
1 n1 r2 Z2 i1,2 2 n2 r1 Z1
此结论对于锥齿轮传动和带 轮传动同样适用。 在一些复杂轮系(如变速器) 中包含有几对齿轮。可将每一对 齿轮的传动算出后,将它们连乘 起来,变为可得总的传动比。
392.8 62.5 转 2π
THEORETICAL MECHANICS
山东大学 土建与水利学院工程力学系
例 题
例2- 3 轮子绕O点作定轴转动,其加速度方向和轮的半径
成60度角,求轮的转动方程,以及角速度和转角之间的关系。
00, 0.
M
O
a
60
THEORETICAL MECHANICS
解 : AB 杆 为 平 移 , O1A 为 定 轴 转 动 。 根 据 平移的特点,在同一瞬 时,M、A两点具有相同 的速度和加速度。
THEORETICAL MECHANICS
山东大学 土建与水利学院工程力学系
例 题
A点作圆周运动,其运动方程为
s O1 A 3π t
ds dv vA 3π (m/s) a A t 0 dt dt
§ 2.1 刚体的平行移动
工程力学第二章基本理论
力在任一轴上的投影可求,力
沿一轴上的分量不可定。
8
合力投影定理:合力在任一轴上的投影等于各分 力在该轴上之投影的代数和。
由合力投影定理有:
ac-bc=ab FRx=F1x+F2x+…+Fnx=Fx
FRy=F1y+F2y+…+Fny=Fy
正交坐标系有: FRx = FRx ; FRy = FRy
FR
非自由体: 运动受到限制的物体。
吊重、火车、传动轴等
FT
。
W
约束:
限制物体运动的周围物体。如绳索、铁轨、轴承。
约束力: 约束作用于被约束物体的力。
是被动力,大小取决于作用于物体的主动力。
作用位置在约束与被约束物体的接触面上。
作用方向与约束所能限制的物体运动方向相反。
20
返回主目录
约束力方向与所能限制的物体运动方向相反。
1
一般问题
(复杂问题)
抽象与简化 分析求解
验证
基本问题:
(1)受力分析—分析作用在物体上的各种力 弄清被研究对象的受力情况。
(2)平衡条件—建立物体处于平衡状态时, 作用在其上各力组成的力系 所应满足的条件。
(3)应用平衡条件解决工程中的各种问题。
2
返回主目录
第二章 刚体静力学基本概念与理论
2.1 力 2.2 力偶 2.3 约束与约束反力 2.4 受力图 2.5 平面力系的平衡条件
G
返回3主0目录
3)可确定作用点的约束
固定铰链: 约束反力FRA,过铰链中心。
大小和方向待定,用FAx、FAy表示
y
FAy
FA FAy
A
FAx
理论力学教学材料-第二章
3 . 固定端支座
固定端(插入端)约束 : 既不能移动,又不能 转动的约束
FAx 固定端约束简图 FAy
4 . 简化结果分析 合力矩定理
● F′ =0,MO≠0 R ● F′ ≠ 0,MO=0 R
● F′ ≠ 0,MO ≠0 R
● F′ =0,MO=0 R
1. 平面任意力系简化为一个力偶的情形
MO=0
力 偶
平 衡
此力偶为原力系的合力偶,在这种情 况下主矩与简化中心的位置无关
8. 力在空间直角坐标轴上的投影
z
直 接 投 影 法
二次投影法
O F z
y
O
F
Fxy
y
x
X F cos Y F cos Z F cos
x
X F sin cos Y F sin sin Z F cos
例题3
在长方形平板的O, A,B,C点上分别作用有四 个力:F1=1 kN,F2=2 kN, F3=F4=3 kN(如图),试求 以上四个力构成的力系对O点 的简化结果,以及该力系的最 后合成结果。
y
F2 A
60°
B
F3
2m
F1
C
F4
30°
x 3m
O
解:(1)求向O点简化结果
1).求主矢 FR 。
§2-3 平面任意力系向一点简化
1.力的平移定理
F′ F B d A F′′ M B A F′
M=F. d=MB(F)
可以把作用于刚体上点A 的力F平行移到同一刚体上 的任意点B,但必须同时附 加一个力偶,这个附加力偶 的矩等于原来的力F对新作 用点B的矩。
刚体力学讲座1
8.质量为M的匀质圆盘,可绕通过盘中心垂直于盘的固定 1 2 Mr 光滑轴转动,转动惯量为 2 .绕过盘的边缘挂有质量 为m,长为l的匀质柔软绳索(如图).设绳与圆盘无相对 滑动,试求:当圆盘两侧绳长之差为S时,绳的加速度的 大小.
2
1
a
s
解:选坐标如图所示,任一时刻圆盘两侧的绳长分别为x1、 x2 选长度为x1、x2的两段绳和绕着绳的盘为研究对象.设 a为绳的加速度,β为盘的角加速度,r为盘的半径,为绳 的线密度,且在1、2两点处绳中的张力分别为T1、T2,则 = m / l,
Mg
根据转动定律,对滑轮有 (T2-T1 ③ 因绳与滑轮无相对滑动, a= R ④ ①、②、③、④四式联立解得 a=2g / 7
/4
7、物体A和B叠放在水平桌面上,由跨过定滑轮的轻 质细绳相互连接,如图所示.今用大小为F的水平 力拉A.设A、B和滑轮的质量都为m,滑轮的半径 1 2 mR 为R,对轴的转动惯量J=
M J
(3)、转动惯量:
J mi ri
2
,或
J r 2 dm
2
平行轴定理: J J C md 决定刚体转动惯量的三要素:(1)刚体的体密度; (2)刚体的几何形状;(3)转轴的位置。
典型题形:
, , 1、已知受力,求转动参数(
2、已知一些转动参量,求其他转动参数。 3、已知转动状态,求力矩。 4、利用牛顿定律和转动定律解决问题 5、力学的综合问题
解:在r处的宽度为dr 的环带面积上摩擦力矩为
mg dM 2 r rdr 2 R 总摩擦力矩
M
R 0
2 dM mgR 3
故平板角加速度 =M /J 设停止前转数为n,则转角 = 2n
大学物理刚体力学习题讲解
m ,r
m1
6 解:撤去外加力矩后受力分析如图所示
m1g-T = m1a
Tr=J
a=r a = m1gr / ( m1r + J / r) 代入J =
a
T
P
m1 v 0
m, r1 2 mrFra bibliotek2m1 g a= = 6.32 ms2 1 m1 m 2
∵
v 0-at=0
∴
t=v / a=0.095 s
设m1下降,m2 上升 m1g - T1 m1 a T2 m 2 g m 2 a T1 R T2 R I 1 2 I m3 R 2 a R
2(m1 m2 ) a 联立方程得到 g 2(m1 m2 ) m3 2(m1 m2 ) g [2(m1 m2 ) m3 ]R 4m1m2 m1m3 T1 g 2(m1 m2 ) m3 4m1m2 m2 m3 T2 g 2( m m ) m
①物体状态at=rβ (P-atm)r=Jβ ②拉力情况下Pr=Jβ
挂重物时,mg-T= ma =mRβ, TR =J, P=mg 由此解出
mgR 2 mR J
而用拉力时, mgR = Jβ`
mgR J
/
故有 β`>
3. 三个质量均为m的质点,位于边长为a的等边 三角形的三个顶点上.此系统 对通过三角形中心并垂直于三角形平面的轴的转 动惯量J0=ma2 , 对通过三角形中心且平行于其一边的轴的转动惯 量为JA=1/2ma2, 对通过三角形中心和一个顶点的轴的转动惯量为 JB=1/2ma2 .
工程力学习题 及最终答案
第一章 绪论思 考 题1) 现代力学有哪些重要的特征?2) 力是物体间的相互作用。
按其是否直接接触如何分类?试举例说明。
3) 工程静力学的基本研究内容和主线是什么? 4) 试述工程力学研究问题的一般方法。
第二章刚体静力学基本概念与理论习题2-1 求图中作用在托架上的合力F R 。
2-2 已知F 1=7kN ,F 2=5kN, 求图中作用在耳环上的合力F R 。
2-3 求图中汇交力系的合力F R 。
习题2-1图12030200N F4560F 习题2-2图2-4 求图中力F 2的大小和其方向角α。
使 a )合力F R =1.5kN, 方向沿x 轴。
b)合力为零。
2-5二力作用如图,F 1=500N 。
为提起木桩,欲使垂直向上的合力为F R =750N ,且F 2力尽量小,试求力F 2的大小和α角。
2-6 画出图中各物体的受力图。
(b)x453=30N =20N=40N A x45600N 2=700N0N 习题2-3图 (a )F 1习题2-4图F 12习题2-5图(b)(a )2-7 画出图中各物体的受力图。
(c)(d)(e)(f) (g) 习题2-6图(a)ACD2-8 试计算图中各种情况下F 力对o 点之矩。
(b)(d)习题2-7图P(d)(c)(a ) CA2-9 求图中力系的合力F R 及其作用位置。
2-10 求图中作用在梁上的分布载荷的合力F R 及其作用位置。
习题2-8图习题2-9图( a )1F 3 ( b )F 3F 2( c)1F /m( d )F 32-11 图示悬臂梁AB 上作用着分布载荷,q 1=400N/m ,q 2=900N/m, 若欲使作用在梁上的合力为零,求尺寸a 、b的大小。
第三章 静力平衡问题习 题3-1 图示液压夹紧装置中,油缸活塞直径D=120mm ,压力p =6N/mm 2,若α=30︒, 求工件D 所受到的夹紧力F D 。
( b )q ( c )习题2-10图B习题2-11图3-2 图中为利用绳索拔桩的简易方法。
第二章力系简化
例 在图示长方体的顶点B处作 用一力F,F=700N。分别求力F 对各坐标轴之矩,并写出力F对 点O之矩矢量Mo(F)。 解1:力F矢量作用点坐标为: B( x, y, z ) B(2,3,0) 力F矢量在三个坐标轴的投影为:
( Fx , Fy , Fz ) ( 100 14,150 14,50 14)
F2
z
M1 M3
45°
F2 F3 O F1
y
M2
F3 F1
O
45°
y
x
x
M x M 1x M 2 x M 3 x 0
M y M 1 y M 2 y M 3 y 11.2 N m
M z M 1z M 2 z M 3 z 41.2 N m
3. 平面力偶系的合成与平衡
作为空间力偶系的特例,平面力偶系合成的结果 是位于各分力偶作用平面内的一个合力偶, 该合力偶矩等于各分力偶矩的代数和。即
M M1 M 2 M n M i
代数和
平面力偶系平衡的必要和充分条件是:各分力偶 的代数和等于零。即
M Mi 0
[ M O ( F )]x M x ( F ) [ M O ( F )] y M y ( F ) [ M O ( F )]z M z ( F )
力矩关系定理: 力对点之矩矢量 在过该点之轴上 的投影等于该力 对该轴之矩.
M O ( F ) M x ( F )i M y ( F ) j M z ( F )k
M D
30 30
B R C
A
E
解: 1.研究AB杆
M i 0
M FD AD 3R FD
M D
建筑力学第二章完整版
各力的作用线在同一平面内且汇交于一点的力系,称为平面汇交力系(coplanar concurrent forces),它是一种基本的力系,也是工程结构中常见的较为简单的力系。
本章研究平面汇交力系的合成(简化)与平衡,重点是讨论平衡问题。
研究的方法有:(1) 几何法(矢量法);(2) 解析法(投影法)。
平面汇交力系的平衡问题不仅是研究复杂力系平衡问题的基础,而且由于它所涉及的基本概念和分析方法具有一般性,因而在整个静力学理论中占有重要的地位。
一、三力情况设刚体上作用有汇交于同一点O的三个力 F → 1 、 F → 2 、 F → 3 ,如图2-1a 所示。
显然,连续应用力的平行四边形法则,或力的三角形法则,就可以求出合力(resultant force)。
首先,根据力的可传性原理,将各力沿其作用线移至O点,变为平面共点力系(图2-1b),然后,按力的三角形法则,将这些力依次相加。
为此,先选一点A,按一定比例尺,作矢量AB →平行且等于 F → 1 ,再从B点作矢量 BC →平行且等于 F → 2 ,于是矢 AC →即表示力 F → 1 与 F → 2 的合力 F → 12 (图2-1c)。
仿此,再从C点作矢量 CD →平行且等于 F → 3 ,于是矢量 AD →即表示力 F → 12 与 F → 3 的合力,也就是 F →1 、 F → 2 和 F → 3 的合力 F → R 。
其大小可由图上量出,方向即为图示方向,而合力的作用线通过汇交点O(图2-1e)。
图2-1其实,由图2-1c可见,作图时中间矢量 AC →是可以省略的。
只要把各矢量 F → 1 、F → 2 、 F → 3 首尾相接,形成一条折线ABCD,最后将 F → 1 的始端A与 F → 3 的末端D相连,所得的矢量 AD →就代表合力 F → R 的大小和方向。
这个多边形ABCD叫力多边形(force polygon),而代表合力的 AD →边叫力多边形的封闭边。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O
v r 求得。所以
0
r an a at
v
P
at r π[m/s ]
2
an r 6.16 10 [m/s ]
2 3 2
a
(6.16 10 ) 3.14 3 2 6.16 10 [m /s ] a 的方向几乎和 an 相同。
2.1.1 平动和转动
2.1.2 角速度和角加速度
2.1.3 定轴转动刚体的转动惯量 2.1.4 定轴转动刚体的角动量
(2)
2.1.1 平动和转动 (The translation and rotation of a rigid body) 1.刚体(特殊的质点系):受力时物体的形状和体积不变
2.刚体运动的两种基本形式 1)平动(任意两质点的连线方向始终不变) 特点:刚体上每个质点的位移、速度、加速度均相等。 平动通常用刚体质心的运动来代表。 2)转动(所有质点绕同一直线作圆周运动) 转动平面是垂直于转轴的平面。 特点:各质点角位移,角速度,角加速 度相等;位移,速度,加速度不相等。
dS
r dr
则质元dm对OO'轴的转动惯量为
1 2 2 ( J mR mR ) 问:1)圆盘绕y轴的转动惯量? y 2
dJ r dm r dS J r 2dS R 2 1 3 r dr d mR2 0 0 2
O
2)圆盘边缘有一质量为m1的小块(很小)脱落了, 求对过中心垂直轴的转动惯量?
O
dx
x dm
2
l
0
m 2 1 x dx ml 2 l 3
y
2)由平行轴公式
l 1 J c J m ml 2 4 12
2
O
c
x
(11)
例3:圆盘(m, R)绕OO' 轴的转动惯量 解:取面积元dS, 其质元的质 d r
2
y
O
d
0
O
r
P
v
0
t
50 2 [rad/s ] 50
(5)
从开始制动到静止,飞轮的角位移及转数N分别为
1 2 1 2 Δ 0 0 t t 50 50 50 2 2 1250 [rad] 0 , Δ 1250 N =625 [re v] 2 2 O r
转动平面 O
r
, v
P
x
(3)
转轴
2.1.2 角速度和角加速度 (angular velocity and angular acceleration) 定轴转动(转轴方向不随时间变化) , d dr rd d v v r 2 r P dt v O 2 2 a r n r d d a x 2 dv dt dt at r
当 const .
dt
d
0
t
0
t
dt
0 t
0 0t t 2 / 2
d dt
0
0
2
2 2 0
(4)
例1: 一飞轮转速n=1500rev/min,受到制动后均匀 地减速,经t=50s后静止。 (1) 求角加速度 和飞轮从制动开始到静止所转过的 转数N; (2)求制动开始后t=25 s时飞轮的角速度; (3)设飞轮的半径r=1m,求在t=25 s时边缘上一点的 速度和加速度。 解:(1)设初角速度为0, 方向如图 量值为0=21500/60=50 [rad/s] 在t= 50s时刻, = 0 , 代入方程 = 0 + t 得
(2) t=25 s 时飞轮的角速度
P
v
0 t 50 25 25 [rad/s]
的方向与 0相同;
(6)
(3) t=25 s 时飞轮边缘上一点P的速度可由
v v r sin r sin90 r 25 [m/s] 方向如图
第二章 刚体( rigid body) §2.1 §2.2 §2.3 §2.4 刚体的定轴转动 刚体定轴转动定律及其应用 对定轴转动的角动量守恒 刚体定轴转动的功和能
第二章作业: 1、5、10、11、15、16、18、24 共 8题
(1)
§2.1 刚体的定轴转动 (The rotation of a rigid body about a fixed axis)
2 n 2 t 3 2 2
(7)
a a
2.1.3 定轴转动刚体的转动惯量 (moment of inertia of a rigid body about a fixed-axis rotation )
1.质点(m)对转动轴的转动惯量:
J mr
2
r
2.质点系对同一个转动轴的转动惯量:
m
J A J C md
2
A
d
C
(10)
例2:质量为m,长为l 的匀质棒的转动惯量 求: 1)定轴在一端, 2)定轴在质心 解: 积分四大步: y
(1)化整为零, 写出微分 (2)寻找对称, 选择坐标 (3)引入密度, 统一变量 (4)定上下限, 积零为整
1) J
dm
x m 2 2 2 dJ x dm x dx x dx l
说明
1) J与质量有关
J r dl
2 L
J r 2dS
S
J r dV
2 V
木 (J小 )
铁 (J大 )
2) J与质量的分布有关 (m相同)
球 J 最小
圆盘
圆环 J最大
3) J与轴的位置有关
(9)
4)平行轴定理:刚体对任一轴A的转动惯量JA和通过质 心并与A轴平行的转动惯量JC有如下关系:
J m1r12 m2r22 ..... mi ri2
3.刚体的转动惯量
刚体上取质元dm, 质元对转动轴的转动惯量: r 2dm
刚体的转动惯量
r
dm
J r dm
2
(8)
[kg/m]线密度 dm= dl [kg/m2]面密度 dm=dS [kg/m3]体密度 dm=dV