02第二章 刚体静力学的基本概念和理论
刚体静力学基本概念PPT
过此汇交点,且三个力共面。 F1
作业:证明该定理
A
C
F3
OB
F2
①该定理说明了不平行的三个力平衡的必要条件。
②可用来确定第三个力的作用线的方位。
分析和讨论
试想你是一名宇航员,你正在太空站外 面做太空行走。由于过于兴奋,你忘了时间, 结果你背包中的燃料在不知不觉中已消耗殆 尽。你将怎样回到太空站?
尽管你的背包已经空了,但是只要你把 它给扔了,照样能够回到太空站。
表达形式
未知数 1
桥梁支座约束实例
A
③ 中间铰
Fy
未知数 2
Fx
?
约束符号
Fx
Fy
Fy
Fx Fx
?
?
Fy
n
w
t
法向反力 FN
未知数 1
FN
A
O
B
FN
齿轮啮合实例
动脑又动笔
FA A
W
B FB
C FC
n
W O
t
FN
⑶ 光滑圆柱铰链
用圆柱销钉将两个零件连接在一起,并假设接触面光滑,由此 构成的约束。
连接件
销钉
连接件
约束力确定∶
FR
Fy
A O
Fx
Fy Fx
未知数2
y
F
α
x
飞机起落架约束实例
光滑圆柱铰链
变形体在某一力系作用下处于平衡,如将此 变形体刚化为刚体,则平衡状态保持不变。
①建立了刚体静力学与变形体静力学的联系。 ②刚体的平衡条件是变形体平衡的必要条件,而非充 分条件。
柔性绳
刚性杆
2.2 约束和约束力 1. 概念
★ 自由体
工程力学第2章静力学
力使物体形状发生改变的效应称为力的内效应或变形效应;
力的单位,在采用国际单位为:
牛顿(N)、或千牛顿 (KN)
2.力的三要素
力对物体的作用效果取决于力的 大小、方向 与作用点
力的大小反映了物体间相互作用的强弱程度。
力的方向指的是静止质点在该力作用下开始运 动的方向。 力的作用点是物体相互作用位置的抽象化。
该定律是受力分析必须遵循的原则。
作用力与反作用力
2.4 力对点之矩
力对物体除了移动效应以外,还有对物体的转动效应。 观察扳手拧紧螺母的过程,说明拧紧程度与什么有关?
拧紧螺母时,其拧紧程度不仅与力 F 的大小有关,而 且与转动中心(O点)到力的作用线的垂直距离d有关 。
2.4.1 力对点之矩 —— 力矩
E
B
C
B
C
FNB
FNC
练习3
球W1、W2置于墙和板AB间,BC为绳索。 画受力图。
(b)
FNK
W2 FNK W2 FNH FNE
AF
Ay
FT FND W 1
AF
C
W2 FAx
B (d)
FT FD
D
FND W1
B
FNH
W1
A
K
W2
E FAx H (a)
FNE
FND W1
(c)
Ay
FNE
FNH
FT
2.2.1 公理1 力的平行四边形法则 作用于物体上同一点的两个力,可以合成为一个合 力。合力的作用点仍在该点,合力的大小和方向由以这 两个力为边构成的平行四边形的对角线确定,如图。
静力学的基本概念和公理
F1 r r r
F1 + F2 = FR
F1
4、推论,平面三力平衡时的汇交定理:当刚体受到同平面 内作用线不平行的三个力作用而平衡时,这
三个力的作用点必定汇交于同一点。简称三力汇交定理。
F1 F1
F2
F3
F3
F R1 F2
4、公理四,作用力和反作用力定律:任何两个 物体间相互作用的一对力总是大小相等,作用线 相同,而指向相反,同时并分别作用在这两个物 体上。这两个力互为作用力和反作用力。 公理四是普遍适用原理。 5、公理五,刚化原理:当变形体在已知力系作 用下处于平衡时,如果把变形后的变形体换成刚 体(刚化),则平衡状态保持不变。
力系的分解:把合力换成各个分力的过程,称为力系的分解。
荷 载 的 概 念
集 中 荷 载
汽车通过轮胎作用在桥面上的力
5、平衡力系:如果物体在某力系的作用下保持平衡状态,则称该力系为平衡力系。
静力学的基本概念和公理
或者说,其中一个力系是另一个力系的等效力系。
静力学的基本概念和公理
3、力的三要素:力的大小、方向、作用点。
这两个力必定沿作用点的连线。
力的外效应:力使物体运动状态发生改变的效应。 合力的大小和方向由原两个力的力矢为邻边组 汽车通过轮胎作用在桥面上的力
分
4、力系:作用在物体上的一组力,或作为特定研究对象的一组力。
而力系中的各个力都是其合力的分力。
布 3、公理三,力平行四边形定律:作用在物体上同一点的两个力可以合成一个力,合力也作用在该点,
件是:这两个力大小相等,方向相反,并且作用在同一 直线上(等值、反向、共线)。
条件:只适用于刚体,对刚体系统、变形体不适用。 细长杆两端受压可能产生失稳
工程力学02静力学基本概念与物体受力分析2
合 力——在特殊情况下,能和一个力系等效的一个力。
2019年11月26日星期二 江苏工业学院机械系力学教研室
理论力学
Theoretical Mechanics
静力学基本概念与物体受力分析
平衡——平衡是物体机械运动的特殊形式,是指物体相对地
球处于静止或匀速直线运动状态。
平衡力系——能使物体维持平衡的力系。
下处于平衡,因而三个力的作用
B 线必然汇交于一点C。
FB
2019年11月26日星期二
理论力学
Theoretical Mechanics
C
FAx A
FAy
B
F
FB
方法1
A处为固定铰链支座,解除约 束后,有一个方向未知的约束力, 这一约束力可以分解为水平和铅 垂方向的两个分力FAx FAy ;
B处为辊轴支座,其约束力FB 的作用线垂直于支承面。
C
G
2019年11月26日星期二
FC
C
理论力学
Theoretical Mechanics
A
60
D
30
C
3. 滑轮B ( 不带销钉) 4. 滑轮B ( 带销 B 和销钉的受力图。 钉)的受力图。
FA A
G
FBC
B
FBA
B
FC
C
F1
F1 F1
B FB
F2
BⅠ Ⅱ
G
AFA
FCy
FCx
C
FB2x
B
FB2 y
2019年11月26日星期二
理论力学
Theoretical Mechanics
静力学(第二章)
A FC
C
B
W
①选研究对象; ②去约束,取分离体;③画上主动力;④画出约束反力。
例3 图示结构中各杆重力均不计,所有接触处均为光滑 接触。试画出:构件AO、AB和CD的受力图。
①选研究对象; ②去约束,取分离体;③画上主动力;④画出约束反力。
例4 画出下列各构件的受力图
说明:三力平衡必汇交 当三力平行时,在无限 远处汇交,它是一种特 殊情况。
改变原力系对刚体的作用。
只适于刚体!
静力学基本公理
推理1
力的可传性
作用在刚体上某点的力,可沿其作用线移动, 而不改变它对刚体的作用。
力对刚体的作用决定于:力的大小、方向和作用线。 力是有固定作用线的滑动矢量。
静力学基本公理
根据力的可传性,作D 的受力图, 此受力图是否正确?
分析整个系统平衡时,作用力 是否可沿其作用线移动?
刚体静力学模型
1.3 接触和连接方式的抽象和理想化
自由体:
-约束
其运动没有受到其它物体预加 的直接制约的物体
刚体静力学模型
约束:对非自由体运动起制约作用的周围物体 约束反力:约束作用于被约束物体的力
非自由体:
其运动受到其它物体预加的直接制约的物体
刚体静力学模型 约束反力的特点:
大小:常常是未知的 作用点:接触点 方向:总是与约束所能阻止的物体运动方向相反 F G
工程常见约束与约束反力
2.1 柔性约束
柔性约束只能承受拉力 约束反力: 沿柔索而背离被约束物体,作 用于连接点。
工程常见约束与约束反力
2.1 柔性约束
柔性约束只能承受拉力
约束反力: 沿柔索而背离被约束物体,作用于连接点。
链条约束与约束力
理论力学课件-02第二章静力学(2)
例:起重机的挂钩。
3
第二章 平面汇交力系与平面力偶系
§2–1 平面汇交力系合成与平衡的几何法 §2–2 平面汇交力系合成与平衡的解析法 §2–3 平面力对点之矩的概念及计算 §2–4 平面力偶
4
§2-1 平面汇交力系合成与平衡的几何法
一、平面汇交力系的合成
1.两个共点力的合成
力偶矩矢量有关.
45
力偶在任何轴上的投影为零,本身又不平衡。
y
F
d
F'
x
力偶不能合成为一个力,不能用一个力来等效 替换;力偶也不能用一个力来平衡,只能由力偶来 平衡。力和力偶是静力学的两个基本要素。
46
力偶对平面内任意一点的矩: MO (F , F ) MO(F ) MO(F) F(x d) F x
力对刚体可以产生 移动效应—用力矢度量 转动效应—用力对点的矩度量
F
O—矩心
h —力臂
o
h
MO(F) F h
+-
37
B
F o rA
h
MO(F) F h
2AOB
说明:① M O (F )是代数量,逆时针为正
②单位N·m,工程单位kgf·m。
38
二、合力矩定理
定理:平面汇交力系的合力对平面内任一点的矩, 等于所有各分力对同一点的矩的代数和
力的平行四边形法则或力三角形
5
2. 任意个汇交力的合成
F1 F2
A F3
F4
R F1 F2 F3 F4 即:R Fi
结论: 平面汇交力系的合力等于各分力的矢量和,合力
的作用线通过各力的汇交点。
6
F2
F3
R1
刚体静力分析基础
=-75.2Nm
2.3 力偶的概念及性质
2.3.1 力偶的概念
两个大小相等、方向相反且不共线的平行力组成的 力系称为力偶,记为(F,F′)。
整理ppt
力偶的作用面——力偶所在的平面。 力偶臂——组成力偶的两力之间的距离。
整理ppt
2.3.2 力偶矩的计算 1.力偶的两个力对作用平面内任一点O之矩的
整理ppt
定向支座的支座 反力为垂直于支承面 的反力FN和反力偶矩 M。当支承面与构件 轴线垂直时,定向支 座的反力为水平方向。
图(b)、图(c) 为定向支座的简化表示和约束反力表 示
整理ppt
7. 固定端
如果静止的物体与 构件的一端紧密相连,使 构件既不能移动,又不能 转动,则构件所受的约束 称为固定端约束。
(3)只要保持力偶矩的大小和力偶的转向不变, 可以任意改变力偶中力的大小和力偶臂的长短,而不改 变力偶对刚体的效应。
整理ppt
●根据力偶的性质,可在力偶的作用面内用M 或M 表示力偶,其中箭头表示力偶的转向,M表 示力偶矩的大小。
整理ppt
2.3.4 平面力偶系的合成
作用面都位于同一平面内的若干个力偶,称为 平面力偶系。
整理ppt
整理ppt
这种支座只限制构件沿支承面法线方向的移动,不 限制构件沿支承面的移动和绕销定轴线的转动。因此, 活动铰支座的约束反力垂直于支承面,通过铰链中心, 指向待定。
图(b~d)为活动整铰理支pp座t 的简化表示
6. 定向支座
定向支座能限制构件的转动和垂直于支承面方向 的移动,但允许构件沿平行于支承面的方向移动。
整理ppt
3.力的平行四边形法则
作用于物体上同一点的两个力,可以合成一个合力。
工程力学第二章基本理论
力在任一轴上的投影可求,力
沿一轴上的分量不可定。
8
合力投影定理:合力在任一轴上的投影等于各分 力在该轴上之投影的代数和。
由合力投影定理有:
ac-bc=ab FRx=F1x+F2x+…+Fnx=Fx
FRy=F1y+F2y+…+Fny=Fy
正交坐标系有: FRx = FRx ; FRy = FRy
FR
非自由体: 运动受到限制的物体。
吊重、火车、传动轴等
FT
。
W
约束:
限制物体运动的周围物体。如绳索、铁轨、轴承。
约束力: 约束作用于被约束物体的力。
是被动力,大小取决于作用于物体的主动力。
作用位置在约束与被约束物体的接触面上。
作用方向与约束所能限制的物体运动方向相反。
20
返回主目录
约束力方向与所能限制的物体运动方向相反。
1
一般问题
(复杂问题)
抽象与简化 分析求解
验证
基本问题:
(1)受力分析—分析作用在物体上的各种力 弄清被研究对象的受力情况。
(2)平衡条件—建立物体处于平衡状态时, 作用在其上各力组成的力系 所应满足的条件。
(3)应用平衡条件解决工程中的各种问题。
2
返回主目录
第二章 刚体静力学基本概念与理论
2.1 力 2.2 力偶 2.3 约束与约束反力 2.4 受力图 2.5 平面力系的平衡条件
G
返回3主0目录
3)可确定作用点的约束
固定铰链: 约束反力FRA,过铰链中心。
大小和方向待定,用FAx、FAy表示
y
FAy
FA FAy
A
FAx
建筑力学第2章静力学基本概念
第二节 力矩与力偶
第二节 力 矩与力偶
第二章 静力学基本概念
第二节 力矩与力偶
(一)力对点之矩
l
A
(1)用扳手拧螺母;
(2)开门,关门。
d
F
o
由上图知,力 F 使物体绕 o 点转动的效应,不仅与力的大小, 而且与 o 点到力的作用线的垂直距离 d 有关,故用乘积 Fd 来
度量力的转动效应。该乘积根据转动效应的转向取适当的正
有的则在某些处受到限制而使其沿某些方 向的运动成为不可能,称为非自由体。
对非自由体运动的限制条件(物体)称为 约束。
在静力学里,约束是以物体相互接触的方 式构成的。
第二章 静力学基本概念
第四节 约束与约束反力
物体受到的力一般可以分为两类: 主动力——是使物体运动或使物体有运动趋势的力。 如重力、水压力、土压力、风压力等。 在工程中通常称主动力为荷载。 被动力——是约束对于物体的约束反力。
AB施加两个拉力(图1-3a)或压力(图1-3b )F1
及F2,使F1=-F2 ,刚杆将保持静止。
F1 A
B F2 F1 A
B F2
(a)
(b)
二力平衡杆件
第二章 静力学基本概念
第一节 力 的 概 念
该公理指出了作用在刚体上最简单力系的平衡条件。但应 该注意对刚体而言,这条件既必要又充分,但对变形体而 言,这条件并不充分。以绳为例,如图所示。
负号称为力 F 对点 o 之矩,简称力矩,以符号M o (F) 表示。
第二章 静力学基本概念
第二节 力矩与力偶
即
M o (F ) Fd
o 点称为力矩的中心,简称矩心;o 点到力 F 作用 线的垂直距离 d ,称为力臂。
工程力学基础第2章 静力学的基本概念和受力分析
(二)常见约束的约束力性质
图2-33
(二)常见约束的约束力性质
几个构件固连在一起的连接处称为刚接点,构件之间的夹角保 持不变,如曲杆的拐角处。刚接点处的约束与固定端相似。 固定端与光滑铰链都是刚性铰,可以看做是柔性铰的两种极限 情况。在通常情况下,将构件的连接简化为刚性铰进行分析计 算,得到的结果就可以满足工程的要求。更精确的分析则要求 采用复杂的柔性铰模型,如机器人的柔性关节(图2-34
(二)常见约束的约束力性质 1 柔索 柔索指不计自重的、不可伸长且无限柔软的细长物 体。
图2-15
(二)常见约束的约束力性质
图2-16
(二)常见约束的约束力性质 2 光滑接触面 光滑接触面指摩擦阻力可以忽略不计的两物 体的刚性接触面。
图2-17
(二)常见约束的约束力性质
图2-18
(二)常见约束的约束力性质
(二)分离体和受力图
在进行受力分析时,为了清晰和便于计算,需要把研究对象从 其周围物体中分离出来,画出其简图,单独地考察它,这种被 解除了约束的物体就称为分离体或自由体;然后,将分离体所 受的全部力,包括主动力和约束力,以力矢的形式画在简图上, 这种图形称为分离体的受力图或自由体图。受力图形象地表示 了研究对象的受力情况。 解除约束原理:受约束的物体在某些主动力和约束的作用下处 于平衡状态,若将其部分或全部约束除去,代之以相应的约束 力,则物体的平衡不受影响。
图2-29
(二)常见约束的约束力性质 6 固定端和转动约束 固定端是一种常见的约束类型,其结 构特点为被约束体的一部分固嵌于约束体内,如车床上固定工 件的卡盘和固定刀具的刀架,固定电线杆和建筑物立柱的混凝 土地基,固定雨篷的墙壁等,如图2-30所示。
图2-30
静力学基本概念与受力分析(第二版)
非自由体(nonfree body) :位移受到限制的物体。
约束(constraint) :对非自由体的某些位移起限制作用的 周围物体。
约束力(constraint reaction) : 约束对被约束的物体的作用力。
主动力(active forces): 能够引起物体运动或运动趋势的力
平衡力系: 物体在力系作用下处于平衡,这个力系为 平衡力系。
力系的平衡条件: 力系平衡时所满足的条件。
1.2 静力学公理
公理:是人们在生活和生产实践中长期积累的经验总结, 又经过实践反复检验,被确认是符合客观实际的最 普遍、最一般的规律。
公理1 力的平行四边形法则
作用在物体上同一点的两个力 可合成一个合力,此合力也作用于 该点,合力的大小和方向由以原两 力矢为邻边所构成的平行四边形的 对角线来力表的示三。角形法则 合力矢等于这两个力矢的几何和,即
合力: 若一个力与某力系等效,则称此力为该力系的 合力。
二、刚体的概念: 刚体: 在力的作用下,其内部任意两点之间的距离
始终保持不变的物体。 刚体是一个理想化的力学模型。 在静力学中把研究的物体都视为刚体,因此也称 为刚体静力学。
三、平衡的概念: 平衡:物体相对于地面保持静止或作匀速直线运动的
状态。
用方向,这种分析过程称为物体的受力分析。
作用在物体上的力可分为两类: 一类是主动力,例如:重力、风力、气体压力等。
另一类是约束力,即被动力。 为了清晰地表示物体的受力情况,把需要研究的物 体从周围的物体中分离出来,单独画出它的简图,这个 步骤叫做取研究对象或取分离体。 把施力物体对研究对象的作用力全部画出来,这种 表示物体受力的简明图形,称为受力图。
理论力学教案2
本次讲稿第二章刚体静力学基础第一节静力学基本概念静力学是研究物体的平衡问题的科学。
主要讨论作用在物体上的力系的简化和平衡两大问题。
所谓平衡,在工程上是指物体相对于地球保持静止或匀速直线运动状态,它是物体机械运动的一种特殊形式。
一、刚体的概念工程实际中的许多物体,在力的作用下,它们的变形一般很微小,对平衡问题影响也很小,为了简化分析,我们把物体视为刚体。
所谓刚体,是指在任何外力的作用下,物体的大小和形状始终保持不变的物体。
静力学的研究对象仅限于刚体,所以又称之为刚体静力学。
二、力的概念力的概念是人们在长期的生产劳动和生活实践中逐步形成的,通过归纳、概括和科学的抽象而建立的。
力是物体之间相互的机械作用,这种作用使物体的机械运动状态发生改变,或使物体产生变形。
力使物体的运动状态发生改变的效应称为外效应,而使物体发生变形的效应称为内效应。
刚体只考虑外效应;变形固体还要研究内效应。
经验表明力对物体作用的效应完全决定于以下力的三要素:(1)力的大小是物体相互作用的强弱程度。
在国际单位制中,力的单位用牛顿(N)或千牛顿(kN),1kN=103N。
(2)力的方向包含力的方位和指向两方面的涵义。
如重力的方向是“竖直向下”。
“竖直”是力作用线的方位,“向下”是力的指向。
(3)力的作用位置是指物体上承受力的部位。
一般来说是一块面积或体积,称为分布力;而有些分布力分布的面积很小,可以近似看作一个点时,这样的力称为集中力。
如果改变了力的三要素中的任一要素,也就改变了力对物体的作用效应。
既然力是有大小和方向的量,所以力是矢量。
可以用一带箭头的线段来表示,如图2-1所示,线段AB长度按一定的比例尺表示力F的大小,线段的方位和箭头的指向表示力的方向。
线段的起点A或终点B表示力的作用点。
线段AB的延长线(图中虚线)表示力的作用线。
图2-1本教材中,用黑体字母表示矢量,用对应字母表示矢量的大小。
黑龙江水利专科学校建工系力学教研室一般来说,作用在刚体上的力不止一个,我们把作用于物体上的一群力称为力系。
第二章 静力学基础知识与物体的受力分析
[例4]
FTB FNE FND F’ND FAy
FAx
[例5] 画出下列各构件的受力图
F’ND
F’NB FNB FNE FND FNA
FNC
说明:三力平衡必汇交 当三力平行时,在无限
远处汇交,它是一种特
殊情况。
[例6] 尖点问题
例7:梁AC和CD用圆柱铰链C连接,并支承在三个支座 上,A处是固定铰支座,B和D处是可动铰支座,如图所 示。试画梁AC、CD及整梁AD的受力图。梁的自重不计。
三、平衡的概念 平衡状态——物体相对于地球处于静止或作匀速直线运动的 状态。 力系——作用在同一物体上的一群力或一组力。 按各力作用线是否位于同一平面内,可分为平面力系和空间 力系,本章主要研究平面力系的平衡问题。
平面汇交力系
平面力系
平面力偶系 平面平行力系 平面任意力系
等效力系:对物体的作用效果相同的两个力系。 平衡力系:能使物体保持平衡状态的力系。 若一个力与一个力系等效,则这个力称为该力系的合力,而 力系中的各个力称为该合力的一个分力。
A A
固定铰支座 (物A固定) 圆柱铰链 (物A不固定)
A A
A
计算简图
A
受力图
A
A
FA
FAx A FAy
5.活动铰支座(辊轴支座) 在固定铰支座的底部安装几个辊轴(圆柱形滚轮),支承 于支承面上,这种约束称为可动铰支座,又称为活动铰支 座。
只能限制物体在 垂直于支承面方 向的运动
A
3.力的三要素:
力的大小:物体间相互机械作用的强弱程度。 力的方向:物体间相互机械作用具有方向性。 F
A
力的作用点:力作用在物体上的位置,是力的
机械设计基础掌握刚体静力学的基本概念
机械设计基础掌握刚体静力学的基本概念机械设计基础:刚体静力学的基本概念刚体静力学是机械设计中非常重要的基础知识之一,它是研究刚体在静力平衡条件下的力学性质和力学行为的学科。
刚体是指在外力作用下,形状和大小都不会发生变化的物体。
在本文中,将介绍刚体静力学的基本概念,包括力、力矩、受力平衡、支反力等。
1. 力的概念力是推动物体改变其状态或形状的物理量。
其大小用牛顿(N)表示,方向及作用点共同确定一力。
力有大小和方向,常用箭头表示力的方向。
2. 力矩的概念力矩是力在某一点上的力矩,也称为力的偶力矩。
力矩是刚体平衡的重要条件之一,它是通过作用在物体上的力来产生旋转力矩。
力矩可以通过以下公式来计算:M = F * d * sinθ其中,M表示力矩,F表示作用力的大小,d表示作用力和旋转轴的距离,θ表示作用力与旋转轴之间的夹角。
3. 受力平衡的条件刚体在静力学平衡的条件下,受力平衡是必须满足的。
受力平衡的条件有两个:(1) 力的平衡条件:刚体受作用力的合力为零。
(2) 力矩的平衡条件:刚体受力矩的合力矩为零。
当力和力矩都平衡时,刚体才能达到静力平衡。
4. 支反力的概念支反力是支持物体的力,即物体受到其他物体或支撑物的约束而产生的反作用力。
在刚体静力学中,常常需要计算和确定支反力的大小和方向,以保证刚体的平衡。
支反力的计算需要根据具体情况进行分析,可以利用受力平衡和力矩平衡条件进行计算。
通过平衡性条件,可以解算出支反力的大小和方向,以保证刚体在给定约束下的平衡稳定。
5. 刚体静力学的应用刚体静力学的基本概念在机械设计中应用广泛。
通过对刚体平衡条件的研究和应用,可以解决很多实际工程问题,如梁的设计、支撑结构的分析、机械零件的受力分析等。
例如,在设计桥梁时,需要考虑桥梁的受力情况,通过刚体静力学的原理,可以计算出桥梁各个部分的受力情况,从而保证桥梁的结构稳定和安全。
总结:刚体静力学是机械设计基础中重要的学科,它研究刚体在静力平衡条件下的力学性质和力学行为。
工程力学习题 及最终答案
第一章 绪论思 考 题1) 现代力学有哪些重要的特征?2) 力是物体间的相互作用。
按其是否直接接触如何分类?试举例说明。
3) 工程静力学的基本研究内容和主线是什么? 4) 试述工程力学研究问题的一般方法。
第二章刚体静力学基本概念与理论习题2-1 求图中作用在托架上的合力F R 。
2-2 已知F 1=7kN ,F 2=5kN, 求图中作用在耳环上的合力F R 。
2-3 求图中汇交力系的合力F R 。
习题2-1图12030200N F4560F 习题2-2图2-4 求图中力F 2的大小和其方向角α。
使 a )合力F R =1.5kN, 方向沿x 轴。
b)合力为零。
2-5二力作用如图,F 1=500N 。
为提起木桩,欲使垂直向上的合力为F R =750N ,且F 2力尽量小,试求力F 2的大小和α角。
2-6 画出图中各物体的受力图。
(b)x453=30N =20N=40N A x45600N 2=700N0N 习题2-3图 (a )F 1习题2-4图F 12习题2-5图(b)(a )2-7 画出图中各物体的受力图。
(c)(d)(e)(f) (g) 习题2-6图(a)ACD2-8 试计算图中各种情况下F 力对o 点之矩。
(b)(d)习题2-7图P(d)(c)(a ) CA2-9 求图中力系的合力F R 及其作用位置。
2-10 求图中作用在梁上的分布载荷的合力F R 及其作用位置。
习题2-8图习题2-9图( a )1F 3 ( b )F 3F 2( c)1F /m( d )F 32-11 图示悬臂梁AB 上作用着分布载荷,q 1=400N/m ,q 2=900N/m, 若欲使作用在梁上的合力为零,求尺寸a 、b的大小。
第三章 静力平衡问题习 题3-1 图示液压夹紧装置中,油缸活塞直径D=120mm ,压力p =6N/mm 2,若α=30︒, 求工件D 所受到的夹紧力F D 。
( b )q ( c )习题2-10图B习题2-11图3-2 图中为利用绳索拔桩的简易方法。
(完整版)力学基本概念
(4)在力偶三要素不改变的条件下,可以任意选定 组成力偶的两个等值、反向、平行力的大小或力偶 臂的长短。 由大小相等、方向相反,作用线平行但不共线的两
个力所组成的力系,称为力偶。同时作用在物体上 的一群力偶,称为力偶系。
在力偶系中,所有力偶的作用面均在同一平面内
的力偶系,称为平面力偶系;所有力偶的作用面不 全部在同一平面内的力偶系,称为空间力偶系。
即,合力为原两力的矢量和。 矢量表达式:FR= F1+F2
F2
FR
A
F1
§1–3 静力学公理
公理三(力平行四边形公理) 作用于物体上任一点的两个力可合成为作用于同一点的
一个力,即合力。合力的矢由原两力的矢为邻边而作出的力 平行四边形的对角矢来表示。
力三角形法
F2
FR
FR
F2
F1
F2
FR
A
F1
A
A F1
2、力的概念 力是力学中一个基本量。
1) 力的含义: (1)力是物体间的相互作用; (2)力是物体运动状态发生变化的原因; (3)力是物体形状发生变化的原因。 2) 力的效应:力使物体的运动状态发生改变以及 力使物体发生变形,称为力的效应。其中,力使物体
的运动状态发生改变的效应,称为力的外效应;而力 使物体发生变形的效应,则称为力的内效应。
个力,称为力偶。 在力偶作用面内,力偶使物体产生纯转动的效应。
2)力偶的三要素: (1)力偶矩的大
小; (2)力偶的转向; (3)力偶的作用
平面。
力偶的作用面:力偶中两反向平行力的作用线所在的 平面,称为力偶的作用面。
力偶臂:力偶中两反向平行力的作用线的垂直距离 称为力偶臂。
力偶矩:力偶中力的大小与力偶臂的乘积,称为力 偶矩。国际制单位中,力偶矩的单位是牛顿·米(N·m) 或千牛顿·米(kN·m)。在平面内,力偶矩是代数量。
《刚体静力学》
第一篇刚体静力学静力学研究物体在力系作用下平衡的普遍规律,即研究物体平衡时作用在物体上的力应该满足的条件。
在本篇的静力学分析中,我们将物体视为刚体。
刚体静力学主要研究三方面的问题:(1)刚体的受力分析;(2)力系的等效与简化;(3)力系的平衡条件与应用。
刚体静力学的理论和方法在工程中有着广泛的应用,许多机器零件和结构件,如机器的机架、传动轴、起重机的起重臂、车间天车的横梁等,正常工作时处于平衡状态或可以近似地看作平衡状态。
为了合理地设计这些零件或构件的形状、尺寸,选用合理的材料,往往需要首先进行静力学分析计算,然后对它们进行强度、刚度和稳定性计算。
所以静力学的理论和计算方法是机器零件和结构件静力设计的基础。
第一章刚体的受力分析第一节基本概念一、力的概念人用手拉悬挂着的静止弹簧,人手和弹簧之间有了相互作用,这种作用引起弹簧运动和变形。
运动员踢球,脚对足球的力使足球的运动状态和形状都发生变化。
太阳对地球的引力使地球不断改变运动方向而绕着太阳运转。
锻锤对工件的冲击力使工件改变形状等。
人们在长期的生产实践中,通过观察分析,逐步形成和建立了力的科学概念:力是物体之间的相互机械作用,这种作用使物体的运动状态发生变化或使物体形状发生改变。
物体运动状态的改变是力的外效应,物体形状的改变是力的效应。
实践证明,力对物体的外效应决定于三个要素:(1)力的大小;(2)力的方向;(3)力的作用点。
力的作用点表示力对物体作用的位置。
力的作用位置,实际中一般不是一个点,而往往是物体的某一部分面积或体积。
例如人脚踩地,脚与地之间的相互压力分布在接触面上;物体的重力则分布在整个物体的体积上。
这种分布作用的力称为分布力。
但有时力的作用面积不大,例如钢索吊起机器设备,当忽略钢索的粗细时,可以认为二者连接处是一个点,这时钢索拉力可以简化为集中作用在这个点上的一个力。
这样的力称为集中力。
由此可见,力的作用点是力的作用位置的抽象化。
为了度量力的大小必须首先确定力的单位,本书采用国际单位制,力的大小以牛顿为单位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 4 受力图
(b)
例 2.4 球G1、G2置于墙和板AB间,BC为绳索。画受力图。
FK
C
G2
FK G2 FH FD
A
FT
FT FD
K
FD
B
G1 FE
G1
FAy
G2
FAx
B (d)
G2
H
D
G1
FD
G1
FH …间作用力与反作用力关系。 E FAx 注意FK 与 FK、 FE与 F E (c) A FE FAy 还要注意,部分受力图中约束力必须与整体受力图一致。 FAx (e) (a) A FAy 未解除约束处的系统内力,不画出。
FE
FH
FT
B
2. 4 受力图
例 2.5 连杆滑块机构如图,受力偶 M和力F作用, 试画出其各构件和整体的受力图。 解: 研究系统整体、杆AB、BC及滑块C。
B
FBC
C B F
B
FAy
M
A
FAy
M
FCB
FAx
FBC
C
F
C
FC
A FAx
FCB
FC
注意,若将个体受力图组装到一起,应当得到与整体受力图相 同的结果。力不可移出研究对象之外。
My
A Mx
A
FAz FAz A
Mz
FBz
一对轴承
固定端
空间球铰: 反力是过球铰中心的FAx、FAy、FAz 3个分力。 一对轴承: 共5个反力。允许绕 x 轴转动;x方向有间隙。 固定端: 限制所有运动,有6个反力。
4. 几种常见的约束
空间:
FBy FAy M Ay Ay 约束力方向与所能限制的物体运动方向相反。 y A Mz 指向不能确定的约束反力,可以任意假设。 FAx FAx Mx B F F A FAz 若求解的结果为正,所设指向正确;为负则指向与假 Az A Az FBz 设相反。 一对轴承 球铰 固定端 F F
力偶矩矢是自由矢量。
2. 力偶的等效与合成
力偶等效定理:同一平面内的二个力偶,只 要其力偶矩相等,则二力偶等效。
40N
0.4m
0.4m
0.6m
60N
60N
M=24N· m
2. 力偶的等效与合成
平面力偶系的合成
h1 h2
M=Mi
h1
F2h2 F1+ h1
F1 F2
M=F1h1+F2h2
合力偶定理:若干个力偶组成的力偶系,可 以合成为一个合力偶。平面力偶系的合力偶 之矩等于力偶系中各力偶之矩的代数和。
O
三铰拱
FC 二力杆
棘轮
二力构件
2. 2 力偶
力
使物体沿力的方 向移动或变形
物体的转动或者扭曲变形?
1.基本概念
2. 2 力偶
y
F h
M
F'
o
x
1.基本概念
定义:作用在同一平面内,大小 相等、方向相反、作用线相互平 行的两个力。 作用效应:使刚体的转动状态发 生改变或使物体扭曲变形。 力偶三要素:力偶的作用平面、 转向和力偶矩的大小,可以用一 个矢量(力偶矩矢M)来描述。 力偶矩: M F h 单位:N﹒m 或 kN﹒m
垂直于支承面,指向待定。
FA A FB B FC C
A
滚动(铰)支承
滚动(铰)支承的力学模型
结论:滚动铰约束的约束力作用线过铰链中心且垂 直于支承面,指向待定。
2. 可确定约束力作用线的约束
滑道、导轨: 约束力垂直于滑道、导轨,指向亦待定。
滑道 滑块
FN A FA 二力杆
FN
导轨 滑套
FC
B G
C
用平行四边形法则进行合成和 分解。
FR=F1+F2+…+Fn=
2.1 力
几何法:
FR
F2
O
FR
F1
O
F5 F1
F3
F4
O
F2 F1
F5
F3
F4 F2
FR
O
F1
d) 力多边形
a) 平行四边形法则
b) 力三角形
c) 汇交力系
用几何法求汇交力系合力时,应注意分力首尾相接, 合力是从第一力的箭尾指向最后一力的箭头。
2. 1 力
若刚体在二个力的作用下处于平 衡,则此二力必大小相等、方向 相反、且作用在两受力点的连线 上。 推论:在力系中加上或减去一平 衡力系并不改变原力系对刚体的 作用效果。
3.二力平衡
3.二力平衡
二力杆或二力构件: 只在二点受力而处于平衡的无重杆或无重构件。
F
A B
FB
C
B
棘爪
A
A B
B
C
定义:力是物体间的相互作用, 作用效应是使物体移动状态发生 变化(外)或使物体变形(內)。 力是矢量: 力的作用效果,取 决于大小、方向、作用点。
1.基本概念
刚体--力是滑移矢。 单位:N 或 kN
2. 1 力
力的合成满足矢量加法规则。 若干个共点力,可以合成为一个 合力。
几何法: 2.共点力的合成
2.2 力偶
力偶在工程中的应用:
力偶能否用一个力来等效?
2.2 力偶
力偶的性质 (1)保持力偶矩矢量不变,分别改变力和力偶臂大 小,其作用效果不变。
2.2 力偶
力偶的性质 (2)只要保持力偶矩矢量不变,力偶可在作用面内 任意移动,其对刚体的作用效果不变。
F
F´
F F´
2.2 力偶
力偶的性质 (3)只要保持力偶矩矢量大小和方向不变,力偶可在 与其作用面平行的平面内移动。
FR
F2 F1
正交坐标系有: FRx = FRx ; FRy = FRy
合力:
FR
2 2 FR x F Ry
a
2
c x b 合力的投影
F F
2 x y
y
FRx
a
tana
FRy FRx
Fy Fx
FRy
FR
x
2.共点力的合成
例2.1 图中固定环上作用着二个力F1和F2,若希望得到 垂直向下的合力FR=1kN,又要求力F2尽量小,试确定 q角和F1、F2的大小。 解:力三角形如图。有 F2 F1/sinq=F/sin(180-20-q) q FR 20 F2 q F2/sin20=F/sin(180-20-q) F1 20 F1 FR 由F2最小的条件,还有 dF2/dq=-Fsin20cos(160-q)/sin2(160-q)=0 故可求得:q=70时, F2最小; F1=940N, F2=342N 。
2. 5 平面力系的平衡条件
回顾:
y
y
力
汇交力系 x
力偶
M2 M1 M
M3 M5 M4 x
力偶系
使物体沿力的作用线移动。 力是矢量(滑移矢) 共点力系可合成为一个合 力。
合力投影定理有: FRx=F1x+F2x+…+Fnx=Fx FRy=F1y+F2y+…+Fny=Fy
使物体在其作用平面内转动。 力偶是矢量(自由矢) 平面力偶系可合成为一个合 力偶。 y
2.共点力的合成
例2.3 求图示作用在O点之共点力系的合力。 y 解:取坐标如图。 F4=200N F3=500N 合力在坐标轴上的投影为: F2=250N 5 FRx=Fx=-400+250cos45-200×4/5 3 45 F1=400N 4 a =-383.2 N O x FR FRy=Fy=250cos45-500+200×3/5 y =-203.2N F2 合力为: FR FR2x FR2y=433.7N; F1 a O a=arctan(203.2/383.2)=27.9 x FR a在第三象限,如图所示。 F4 F3
2. 4 受力图
例 2.6 试画出图示梁AB及BC的受力图。 解: 研究系统整体、杆AB、BC。
FAy
MA A FAx B FC q F
FAy C
MA
q FBx FAx FBx FBy
F C
FBy
FC
注意,若将个体受力图组装到一起,应当得到与整体受力图相 同的结果。力不可移出研究对象之外。
2. 4 受力图
归纳:力和力偶是力学中表征物体相互机械作用的二个基本要素
力
使物体沿力的作用线移动。 力是矢量(滑移矢) 共点力系可合成为一个合 力。 合力投影定理有: FRx=F1x+F2x+…+Fnx=Fx FRy=F1y+F2y+…+Fny=Fy
力偶
使物体在其作用平面内转动。 力偶是矢量(自由矢) 平面力偶系可合成为一个合 力偶。 合力偶定理: M=Mi
O
G1 FN1 FN2
G2
FN3 FN
光滑约束(接触面法向压力)
结论:光滑约束的约束力通过接触点,沿公法线 指向物体的压力。
1. 可确定约束力方向的约束 光滑约束: 约束力是沿接触处的公法线且指向物体
的压力。
节圆
20° FN
FN
压力角 20°
齿轮约束
2. 可确定约束力作用线的约束 滚动支承(滚动铰):约束力作用线过铰链中心且
讨论: 试画出下图各构件和整体的受力图。
FAy
FAy
FAC
FAx FABx
A
FAx
FAC
A C
FCA
FDy
FABy
C
FAy A F Dx FB
?
FAx F Dy B
FAy A F Dx FB