中考数学试题分类尺规作图
2020年中考数学必考考点 专题32 尺规作图(含解析)
专题32 尺规作图问题专题知识回顾1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。
2.尺规作图的五种基本情况:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知线段的垂直平分线;(4)作已知角的角平分线;(5)过一点作已知直线的垂线。
3.对尺规作图题解法:写出已知,求作,作法(不要求写出证明过程)并能给出合情推理。
4.中考要求:(1)能完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.(2)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形.(3)能过一点、两点和不在同一直线上的三点作圆.(4)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明).专题典型题考法及解析【例题1】(2019•湖南长沙)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是()A.20°B.30°C.45°D.60°【答案】B【解析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B=30°,从而得出答案.在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°﹣∠B﹣∠C=60°,由作图可知MN为AB的中垂线,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC﹣∠DAB=30°。
【例题2】(2019山东枣庄)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【答案】见解析。
湖南中考数学真题分类汇总之尺规作图训练题
湖南中考数学真题分类汇总之尺规作图训练题一.选择题(共11小题)1.如图,在Rt △ABC 中,∠C =90°,以B 为圆心,任意长为半径画弧,分别交AB ,BC 于点M ,N ,再分别以M ,N 为圆心,大于12MN 的定长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D ,作DE ⊥AB ,垂足为E ,则下列结论不正确的是( )A .BC =BEB .CD =DEC .BD =ADD .BD 一定经过△ABC 的内心2.如图,在△ABC 中,BD 平分∠ABC ,以点A 为圆心,以任意长为半径画弧交射线AB ,AC 于两点,分别以这两点为圆心,以适当的定长为半径画弧,两弧交于点E ,作射线AE ,交BD 于点I ,连接CI ,以下说法错误的是( )A .I 到AB ,AC 边的距离相等 B .CI 平分∠ACBC .I 是△ABC 的内心D .I 到A ,B ,C 三点的距离相等3.如图,在△ABC 中,AC >BC ,分别以点A ,B 为圆心,以大于12AB 的长为半径画弧,两弧交于D ,E ,经过D ,E 作直线分别交AB ,AC 于点M ,N ,连接BN ,下列结论正确的是( )A .AN =NCB .AN =BNC .MN =12BCD .BN 平分∠ABC4.如图,在△ABC 中,AB =AC ,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M 和点N ,作直线MN 分别交BC 、AB 于点D 和点E ,若∠B =50°,则∠CAD 的度数是( )A .30°B .40°C .50°D .60°5.下列命题正确的是( )A .正方形的对角线相等且互相平分B .对角互补的四边形是平行四边形C .矩形的对角线互相垂直D .一组邻边相等的四边形是菱形 6.下列命题是真命题的是( ) A .同位角相等B .菱形的四条边相等C .正五边形是中心对称图形D .单项式5ab 2的次数是47.我们可以用以下推理来证明“在一个三角形中,至少有一个内角小于或等于60°”.假设三角形没有一个内角小于或等于60°,即三个内角都大于60°.”,则三角形的三个内角的和大于180°.这与“三角形的内角和等于180°”这个定理矛盾,所以在一个三角形中,至少有一个内角小于或等于60°.上述推理使用的证明方法是( ) A .反证法B .比较法C .综合法D .分析法8.下列命题是真命题的是( ) A .对顶角相等B .平行四边形的对角线互相垂直C .三角形的内心是它的三条边的垂直平分线的交点D .三角分别相等的两个三角形是全等三角形 9.下列命题为假命题的是( )A .对角线相等的平行四边形是矩形B .对角线互相垂直的平行四边形是菱形C .有一个内角是直角的平行四边形是正方形D .有一组邻边相等的矩形是正方形10.下列命题是真命题的是( )A .正六边形的外角和大于正五边形的外角和B .正六边形的每一个内角为120°C .有一个角是60°的三角形是等边三角形D .对角线相等的四边形是矩形11.下列命题是真命题的是( )A .五边形的内角和是720°B .三角形的任意两边之和大于第三边C .内错角相等D .三角形的重心是这个三角形的三条角平分线的交点 二.填空题(共9小题)12.如图,在▱ABCD 中,AB =6,AD =4,以A 为圆心,AD 的长为半径画弧交AB 于点E ,连接DE ,分别以D ,E 为圆心,以大于12DE 的长为半径画弧,两弧交于点F ,作射线AF ,交DE 于点M ,过点M 作MN ∥AB 交BC 于点N .则MN 的长为 .13.如图,在Rt △ABC 中,∠C =90°,按以下步骤作图:①以点A 为圆心,以小于AC 长为半径作弧,分别交AC ,AB 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,在∠BAC 内两弧交于点O ;③作射线AO ,交BC 于点D .若点D 到AB 的距离为1,则CD 的长为 .14.如图,①在OA ,OB 上分别截取线段OD ,OE ,使OD =OE ;②分别以D ,E 为圆心,以大于12DE 的长为半径画弧,在∠AOB 内两弧交于点C ;③作射线OC .若∠AOB =60°,则∠AOC = °.15.如图,在△ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径作圆弧,两弧相交于点M 和点N ,作直线MN 交CB 于点D ,连接AD .若AC =8,BC =15,则△ACD 的周长为 .16.如图,在△ABC 中,∠C =90°,AC =BC .以点A 为圆心,以任意长为半径作弧交AB ,AC 于D ,E 两点;分别以点D ,E 为圆心,以大于12DE 长为半径作弧,在∠BAC 内两弧相交于点P ;作射线AP 交BC 于点F ,过点F 作FG ⊥AB ,垂足为G .若AB =8cm ,则△BFG 的周长等于 cm .17.如图,已知线段AB 长为4.现按照以下步骤作图:①分别以点A ,B 为圆心,大于12AB 长为半径画弧,两弧分别相交于点E ,F ;②过E ,F 两点作直线,与线段AB 相交于点O . 则AO 的长为 .18.天干地支纪年法是上古文明的产物,又称节气历或中国阳历.有十天干与十二地支,如下表:天干甲乙丙丁戊己庚辛壬癸4567890123地支子丑寅卯辰巳午未申酉戌亥456789*********算法如下:先用年份的尾数查出天干,再用年份除以12的余数查出地支.如2008年,尾数8为戊,2008除以12余数为4,4为子,那么2008年就是戊子年.2021年是伟大、光荣、正确的中国共产党成立100周年,则2021年是年.(用天干地支纪年法表示)19.命题:“如果m是整数,那么它是有理数”,则它的逆命题为:.20.请用“如果…,那么…”的形式写一个命题:.三.解答题(共2小题)21.如图,四边形ABCD是平行四边形.(1)尺规作图;作对角线AC的垂直平分线MN(保留作图痕迹);(2)若直线MN分别交AD,BC于E,F两点,求证:四边形AFCE是菱形.22.人教版初中数学教科书八年级上册第35﹣36页告诉我们作一个三角形与已知三角形全等的方法:已知:△ABC .求作:△A ′B ′C ′,使得△A ′B ′C ′≌△ABC .作法:如图. (1)画B 'C ′=BC ;(2)分别以点B ′,C ′为圆心,线段AB ,AC 长为半径画弧,两弧相交于点A ′;(3)连接线段A ′B ′,A ′C ′,则△A ′B ′C ′即为所求作的三角形.请你根据以上材料完成下列问题:(1)完成下面证明过程(将正确答案填在相应的空上): 证明:由作图可知,在△A ′B ′C ′和△ABC 中, {B ′C ′=BC A′B′=(ㅤㅤ)A′C′=(ㅤㅤ)∴△A 'B 'C ′≌ .(2)这种作一个三角形与已知三角形全等的方法的依据是 .(填序号) ①AAS ②ASA ③SAS ④SSS。
中考数学试题分类尺规作图.doc
(第8题图)第38章 尺规作图一、选择题1. (2011浙江绍兴,8,4分)如图,在ABC ∆中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点,M N ,作直线MN ,交BC 于点D ,连接AD .若ADC∆的周长为10,7AB =,则ABC ∆的周长为( )A.7B.14C.17D.20 DMNC A B【答案】C二、填空题三、解答题1. (2011江苏扬州,26,10分)已知,如图,在Rt △ABC 中,∠C=90º,∠BAC 的角平分线AD 交BC 边于D 。
(1)以AB 边上一点O 为圆心,过A ,D 两点作⊙O (不写作法,保留作图痕迹),再判断直线BC 与⊙O的位置关系,并说明理由;(2)若(1)中的⊙O 与AB 边的另一个交点为E ,AB=6,BD=32,求线段BD 、BE 与劣弧DE 所围成的图形面积。
(结果保留根号和π)【答案】(1)如图,作AD 的垂直平分线交AB 于点O ,O 为圆心,OA 为半径作圆。
判断结果:BC 是⊙O 的切线。
连结OD 。
∵AD 平分∠BAC ∴∠DAC=∠DAB∵OA=OD ∴∠ODA=∠DAB∴∠DAC=∠ODA ∴OD ∥AC ∴∠ODB=∠C∵∠C=90º ∴∠ODB=90º 即:OD ⊥BC∵OD 是⊙O 的半径 ∴ BC 是⊙O 的切线。
(2) 如图,连结DE 。
设⊙O 的半径为r ,则OB=6-r ,在Rt △ODB 中,∠ODB=90º,∴ 0B 2=OD 2+BD 2 即:(6-r)2= r 2+(32)2∴r=2 ∴OB=4 ∴∠OBD=30º,∠DOB=60º ∵△ODB 的面积为3223221=⨯⨯,扇形ODE 的面积为ππ322360602=⨯⨯ ∴阴影部分的面积为32—π32。
2. (2011山东滨州,23,9分)根据给出的下列两种情况,请用直尺和圆规找到一条直线,把△ABC 恰好分割成两个等腰三角形(不写做法,但需保留作图痕迹);并根据每种情况分别猜想:∠A 与∠B 有怎样的数量关系时才能完成以上作图?并举例验证猜想所得结论。
备战中考数学分点透练真题尺规作图与无刻度直尺作图(解析版)
第二十三讲尺规作图与无刻度直尺作图命题点1 五种基本尺规作图类型一判定作图结果1.(2021•广元)观察下列作图痕迹,所作线段CD为△ABC的角平分线的是()A.B.C.D.【答案】C【解答】解:根据基本作图,A、D选项中为过C点作AB的垂线,B选项作AB的垂直平分线得到AB边上的中线CD,C选项作CD平分∠ACB.故选:C.2.(2021•长春)在△ABC中,∠BAC=90°,AB≠AC.用无刻度的直尺和圆规在BC边上找一点D,使△ACD为等腰三角形.下列作法不正确的是()A.B.C.D.【答案】A【解答】解:A、由作图可知AD是△ABC的角平分线,推不出△ADC是等腰三角形,本选项符合题意.B、由作图可知CA=CD,△ADC是等腰三角形,本选项不符合题意.C、由作图可知DA=CD,△ADC是等腰三角形,本选项不符合题意.D、由作图可知DA=CD,△ADC是等腰三角形,本选项不符合题意.故选:A.类型二根据作图步骤进行计算、证明或结论判断3.(2021•贵阳)如图,已知线段AB=6,利用尺规作AB的垂直平分线,步骤如下:①分别以点A,B为圆心,以b的长为半径作弧,两弧相交于点C和D.②作直线CD.直线CD就是线段AB的垂直平分线.则b的长可能是()A.1B.2C.3D.4【答案】D【解答】解:根据题意得b>AB,即b>3,故选:D.4.(2021•杭州)已知线段AB,按如下步骤作图:①作射线AC,使AC⊥AB;②作∠BAC 的平分线AD;③以点A为圆心,AB长为半径作弧,交AD于点E;④过点E作EP⊥AB 于点P,则AP:AB=()A.1:B.1:2C.1:D.1:【答案】D【解答】解:∵AC⊥AB,∴∠CAB=90°,∵AD平分∠BAC,∴∠EAB=×90°=45°,∵EP⊥AB,∴∠APE=90°,∴∠EAP=∠AEP=45°,∴AP=PE,∴设AP=PE=x,故AE=AB=x,∴AP:AB=x:x=1:.故选:D.5.(2021秋•广州期中)如图,在△ABC中,以A为圆心,任意长为半径画弧,分别交AB、AC于点M、N;再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P;连结AP并延长交BC于点D.则下列说法正确的是()A.AD+BD<AB B.AD一定经过△ABC的重心C.∠BAD=∠CAD D.AD是三角形的高【答案】C【解答】解:由题可知AD是∠BAC的角平分线,∴∠BAD=∠CAD.故选:C.6.(2021•怀化)如图,在△ABC中,以A为圆心,任意长为半径画弧,分别交AB、AC于点M、N;再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P;连结AP 并延长交BC于点D.则下列说法正确的是()A.AD+BD<AB B.AD一定经过△ABC的重心C.∠BAD=∠CAD D.AD一定经过△ABC的外心【解答】解:由题可知AD是∠BAC的角平分线,A、在△ABD中,AD+BD>AB,故选项A错误,不符合题意;B、△ABC的重心是三条中线的交点,故选项B错误,不符合题意;C、∵AD是∠BAC的角平分线,∴∠BAD=∠CAD,故选项C正确,符合题意;D、△ABC的外心是三边中垂线的交点,故选项D错误,不符合题意;故选:C.7.(2021•济宁)如图,已知△ABC.(1)以点A为圆心,以适当长为半径画弧,交AC于点M,交AB于点N.(2)分别以M,N为圆心,以大于MN的长为半径画弧,两弧在∠BAC的内部相交于点P.(3)作射线AP交BC于点D.(4)分别以A,D为圆心,以大于AD的长为半径画弧,两弧相交于G,H两点.(5)作直线GH,交AC,AB分别于点E,F.依据以上作图,若AF=2,CE=3,BD=,则CD的长是()A.B.1C.D.4【答案】C【解答】解:由作法得AD平分∠BAC,EF垂直平分AD,∴∠EAD=∠F AD,EA=ED,F A=FD,∵EA=ED,∴∠EAD=∠EDA,∴∠F AD=∠EDA,∴DE∥AF,同理可得AE∥DF,∴四边形AEDF为平行四边形,∴四边形AEDF为菱形,∴AE=AF=2,∵DE∥AB,∴=,即=,∴CD=.故选:C.8.(2021•河北)如图,等腰△AOB中,顶角∠AOB=40°,用尺规按①到④的步骤操作:①以O为圆心,OA为半径画圆;②在⊙O上任取一点P(不与点A,B重合),连接AP;③作AB的垂直平分线与⊙O交于M,N;④作AP的垂直平分线与⊙O交于E,F.结论Ⅰ:顺次连接M,E,N,F四点必能得到矩形;结论Ⅱ:⊙O上只有唯一的点P,使得S扇形FOM=S扇形AOB.对于结论Ⅰ和Ⅱ,下列判断正确的是()A.Ⅰ和Ⅱ都对B.Ⅰ和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对【答案】D【解答】解:如图,连接EM,EN,MF.NF.∵MN垂直平分AB,EF垂直平分AP,由“垂径定理的逆定理”可知,MN和EF都是⊙O 的直径,∴OM=ON,OE=OF,∴四边形MENF是平行四边形,∵EF=MN,∴四边形MENF是矩形,故(Ⅰ)正确,观察图形可知当∠MOF=∠AOB,∴S扇形FOM=S扇形AOB,观察图形可知,这样的点P不唯一(如下图所示),故(Ⅱ)错误,故选:D.9.(2021•鄂州)已知锐角∠AOB=40°,如图,按下列步骤作图:①在OA边取一点D,以O为圆心,OD长为半径画,交OB于点C,连接CD.②以D为圆心,DO长为半径画,交OB于点E,连接DE.则∠CDE的度数为()A.20°B.30°C.40°D.50°【答案】B【解答】解:由作法得OD=OC,DO=DE,∵OD=OC,∴∠OCD=∠ODC=(180°﹣∠COD)=×(180°﹣40°)=70°,∵DO=DE,∴∠DEO=∠DOE=40°,∵∠OCD=∠CDE+∠DEC,∴∠CDE=70°﹣40°=30°.故选:B.10.(2021•本溪)如图,在△ABC中,AB=BC,由图中的尺规作图痕迹得到的射线BD与AC交于点E,点F为BC的中点,连接EF,若BE=AC=2,则△CEF的周长为()A.+1B.+3C.+1D.4【答案】C【解答】解:由图中的尺规作图得:BE是∠ABC的平分线,∵AB=BC,∴BE⊥AC,AE=CE=AC=1,∴∠BEC=90°,∴BC===,∵点F为BC的中点,∴EF=BC=BF=CF,∴△CEF的周长=CF+EF+CE=CF+BF+CE=BC+CE=+1,故选:C.11.(2021•新疆)如图,在△ABC中,AB=AC,∠C=70°,分别以点A,B为圆心,大于AB的长为半径作弧,两弧相交于M,N两点,作直线MN交AC于点D,连接BD,则∠BDC=°.【答案】80【解答】解:∵AB=AC,∠C=70°,∴∠ABC=∠C=70°,∵∠A+∠ABC+∠C=180°,∴∠A=180°﹣∠ABC﹣∠C=40°,由作图过程可知:DM是AB的垂直平分线,∴AD=BD,∴∠ABD=∠A=40°,∴∠BDC=∠A+∠ABD=40°+40°=80°,故答案为:80.12.(2021•长沙)人教版初中数学教科书八年级上册第35﹣36页告诉我们作一个三角形与已知三角形全等的方法:已知:△ABC.求作:△A′B′C′,使得△A′B′C′≌△ABC.作法:如图.(1)画B'C′=BC;(2)分别以点B′,C′为圆心,线段AB,AC长为半径画弧,两弧相交于点A′;(3)连接线段A′B′,A′C′,则△A′B′C′即为所求作的三角形.请你根据以上材料完成下列问题:(1)完成下面证明过程(将正确答案填在相应的空上):证明:由作图可知,在△A′B′C′和△ABC中,∴△A'B'C′≌.(2)这种作一个三角形与已知三角形全等的方法的依据是.(填序号)①AAS②ASA③SAS④SSS【答案】(1)AB,AC,△ABC(SSS).(2)④【解答】解:(1)由作图可知,在△A′B′C′和△ABC中,,∴△A'B'C′≌△ABC(SSS).故答案为:AB,AC,△ABC(SSS).(2)这种作一个三角形与已知三角形全等的方法的依据是SSS,故答案为:④.13.(2021•北京)《淮南子・天文训》中记载了一种确定东西方向的方法,大意是:日出时,在地面上点A处立一根杆,在地面上沿着杆的影子的方向取一点B,使B,A两点间的距离为10步(步是古代的一种长度单位),在点B处立一根杆;日落时,在地面上沿着点B处的杆的影子的方向取一点C,使C,B两点间的距离为10步,在点C处立一根杆.取CA的中点D,那么直线DB表示的方向为东西方向.(1)上述方法中,杆在地面上的影子所在直线及点A,B,C的位置如图所示.使用直尺和圆规,在图中作CA的中点D(保留作图痕迹);(2)在如图中,确定了直线DB表示的方向为东西方向.根据南北方向与东西方向互相垂直,可以判断直线CA表示的方向为南北方向,完成如下证明.证明:在△ABC中,BA=,D是CA的中点,∴CA⊥DB()(填推理的依据).∵直线DB表示的方向为东西方向,∴直线CA表示的方向为南北方向.【答案】BC,三线合一【解答】解:(1)如图,点D即为所求.(2)在△ABC中,BA=BC,D是CA的中点,∴CA⊥DB(三线合一),∵直线DB表示的方向为东西方向,∴直线CA表示的方向为南北方向.故答案为:BC,三线合一.类型三依据要求直接作图14.(2021•重庆)如图,四边形ABCD为平行四边形,连接AC,且AC=2AB.请用尺规完成基本作图:作出∠BAC的角平分线与BC交于点E.连接BD交AE于点F,交AC 于点O,猜想线段BF和线段DF的数量关系,并证明你的猜想.(尺规作图保留作图痕迹,不写作法)【答案】略【解答】解:如图:猜想:DF=3BF,证明:∵四边形ABCD为平行四边形,∴OA=OC,OD=OB,∵AC=2AB,∴AO=AB.∵∠BAC的角平分线与BO交于点F,∴点F是BO的中点,即BF=FO,∴OB=OD=2BF,∴DF=DO+OF=3BF,即DF=3BF.15.(2021•嘉峪关)在《阿基米德全集》中的《引理集》中记录了古希腊数学家阿基米德提出的有关圆的一个引理.如图,已知,C是弦AB上一点,请你根据以下步骤完成这个引理的作图过程.(1)尺规作图(保留作图痕迹,不写作法);①作线段AC的垂直平分线DE,分别交于点D,AC于点E,连接AD,CD;②以点D为圆心,DA长为半径作弧,交于点F(F,A两点不重合),连接DF,BD,BF.(2)直接写出引理的结论:线段BC,BF的数量关系.【答案】(1)略(2)BF=BC.【解答】解:(1)①如图,直线DE,线段AD,线段CD即为所求.②如图,点F,线段CD,BD,BF即为所求作.(2)结论:BF=BC.理由:∵DE垂直平分线段AC,∴DA=DC,∴∠DAC=∠DCA,∵AD=DF,∴DF=DC,=,∴∠DBC=∠DBF,∵∠DFB+∠DAC=180°.∠DCB+∠DCA=180°,∴∠DFB=∠DCB,在△DFB和△DCB中,,∴△DFB≌△DCB(AAS),∴BF=BC.16.(2021•烟台)如图,已知Rt△ABC中,∠C=90°.(1)请按如下要求完成尺规作图(不写作法,保留作图痕迹).①作∠BAC的角平分线AD,交BC于点D;②作线段AD的垂直平分线EF与AB相交于点O;③以点O为圆心,以OD长为半径画圆,交边AB于点M.(2)在(1)的条件下,求证:BC是⊙O的切线;(3)若AM=4BM,AC=10,求⊙O的半径.【答案】略【解答】解:(1)如图所示,①以A为圆心,以任意长度为半径画弧,与AC、AB相交,再以两个交点为圆心,以大于两点之间距离的一半为半径画弧相交于∠BAC内部一点,将点A与它连接并延长,与BC交于点D,则AD为∠BAC的平分线;②分别以点A、点D为圆心,以大于AD长度为半径画圆,将两圆交点连接,则EF为AD的垂直平分线,EF与AB交于点O;③如图,⊙O与AB交于点M;(2)证明:∵EF是AD的垂直平分线,且点O在EF上,∴OA=OD,∴∠OAD=∠ODA,∵AD是∠BAC的平分线,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵AC⊥BC,∴OD⊥BC,故BC是⊙O的切线.(3)根据题意可知OM=OA=OD=AM,AM=4BM,∴OM=2BM,BO=3BM,AB=5BM,∴==,由(2)可知Rt△BOD与Rt△BAC有公共角∠B,∴Rt△BOD∽Rt△BAC,∴=,即=,解得DO=6,故⊙O的半径为6.类型四转化类作图17.(2021•陕西)如图,已知直线l1∥l2,直线l3分别与l1、l2交于点A、B.请用尺规作图法,在线段AB上求作一点P,使点P到l1、l2的距离相等.(保留作图痕迹,不写作法)【答案】略【解答】解:如图,点P为所作.18.(2021•南京)如图,已知P是⊙O外一点.用两种不同的方法过点P作⊙O的一条切线.要求:(1)用直尺和圆规作图;(2)保留作图的痕迹,写出必要的文字说明.【答案】(1)略(2)略【解答】解:方法一:如图1中,连接OP,以OP为直径作圆交⊙O于D,作直线PD,直线PD即为所求.方法二:作P点关于点O的对称点P′,以PO为半径作圆O,连接PP′,设原来的圆O半径为r,以AB(即2r)的长度为半径,P′为圆心画圆,交弧PP′于点Q,连接PQ,交于原来的圆O于点D,点D即为切点(中位线能证明OD是半径且垂直PQ).19.(2021•福建)如图,已知线段MN=a,AR⊥AK,垂足为A.(1)求作四边形ABCD,使得点B,D分别在射线AK,AR上,且AB=BC=a,∠ABC =60°,CD∥AB;(要求:尺规作图,不写作法,保留作图痕迹)(2)设P,Q分别为(1)中四边形ABCD的边AB,CD的中点,求证:直线AD,BC,PQ相交于同一点.【答案】略【解答】(1)解:如图,四边形ABCD为所作;(2)证明:设PQ交AD于G,BC交AD于G′,∵DQ∥AP,∴=,∵DC∥AB,∴=,∵P,Q分别为边AB,CD的中点,∴DC=2DQ,AB=2AP,∴===,∴=,∴点G与点G′重合,∴直线AD,BC,PQ相交于同一点.命题点2无刻度直尺作图20.(2021•天津)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B在网格线上.(Ⅰ)线段AC的长等于;(Ⅱ)以AB为直径的半圆的圆心为O,在线段AB上有一点P,满足AP=AC.请用无刻度的直尺,在如图所示的网格中,画出点P,并简要说明点P的位置是如何找到的(不要求证明).【答案】如图,取BC与网格线的交点D,则点D为BC中点,连接OD并延长OD交⊙O 于点E,连接AE交BC于点G,连接BE,延长AC交BE的延长线于F,则OE为△BF A 的中位线,则AB=AF,连接FG延长FG交AB于点P,则BG=FG,∠AFG=∠ABG,即△F AP≌△BAC,则点P即为所求.【解答】解:(Ⅰ)AC==.故答案为:.(Ⅱ)如图,点P即为所求.故答案为:如图,取BC与网格线的交点D,则点D为BC中点,连接OD并延长OD交⊙O于点E,连接AE交BC于点G,连接BE,延长AC交BE的延长线于F,则OE为△BF A的中位线,则AB=AF,连接FG延长FG交AB于点P,则BG=FG,∠AFG=∠ABG,即△F AP≌△BAC,则点P即为所求.类型一网格中作图21.(2021•吉林)图①、图②均是4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A,点B均在格点上,在给定的网格中按要求画图,所画图形的顶点均在格点上.(1)在图①中,以点A,B,C为顶点画一个等腰三角形;(2)在图②中,以点A,B,D,E为顶点画一个面积为3的平行四边形.【答案】(1)略(2)略【解答】解:(1)如图①中,△ABC即为所求(答案不唯一).(2)如图②中,四边形ABDE即为所求.22.(2021•武汉)如图是由小正方形组成的5×7网格,每个小正方形的顶点叫做格点,矩形ABCD的四个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,先在边AB上画点E,使AE=2BE,再过点E画直线EF,使EF平分矩形ABCD的面积;(2)在图(2)中,先画△BCD的高CG,再在边AB上画点H,使BH=DH.【答案】(1)略(2)略【解答】解:(1)如图,直线EF即为所求.(2)如图,线段CG,点H即为所求类型二根据图形性质作图23.(2021•湖北)已知△ABC和△CDE都为正三角形,点B,C,D在同一直线上,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)如图1,当BC=CD时,作△ABC的中线BF;(2)如图2,当BC≠CD时,作△ABC的中线BG.【答案】(1)略(2)略【解答】解:(1)如图1中,线段BF即为所求.(2)如图2中,线段BG即为所求.24.(2021•江西)已知正方形ABCD的边长为4个单位长度,点E是CD的中点,请仅用无刻度直尺按下列要求作图(保留作图痕迹).(1)在图1中,将直线AC绕着正方形ABCD的中心顺时针旋转45°;(2)在图2中,将直线AC向上平移1个单位长度.【答案】(1)略(2)略【解答】解:(1)如图1,直线l即为所求;(2)如图2中,直线a即为所求.。
中考数学真题分类汇编第一期专题5尺规作图试题含解析7
尺规作图一、选择题1.(2018年湖北省宜昌市3分)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A.B.C.D.【分析】根据过直线外一点向直线作垂线即可.【解答】已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK的长为半径作弧,交AB于点D和E.(3)分别以D和E为圆心,大于DE的长为半径作弧,两弧交于点F,(4)作直线CF.直线CF就是所求的垂线.故选:B.【点评】此题主要考查了过一点作直线的垂线,熟练掌握基本作图方法是解决问题的关键.2.(2018·山东潍坊·3分)如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是()A.∠CBD=30°B.S△BDC=AB2C.点C是△ABD的外心D.sin2A+cos2D=l【分析】根据等边三角形的判定方法,直角三角形的判定方法以及等边三角形的性质,直角三角形的性质一一判断即可;【解答】解:由作图可知:AC=AB=BC,∴△ABC是等边三角形,由作图可知:CB=CA=CD,∴点C是△ABD的外心,∠ABD=90°,BD=AB,∴S△ABD=AB2,∵AC=CD,∴S△BDC=AB2,故A、B、C正确,故选:D.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,三角形的外心等知识,直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3. (2018·台湾·分)如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P点,则P即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【分析】甲:根据作图可得AC=AP,利用等边对等角得:∠APC=∠ACP,由平角的定义可知:∠BPC+∠APC=180°,根据等量代换可作判断;乙:根据四边形的内角和可得:∠BPC+∠A=180°.【解答】解:甲:如图1,∵AC=AP,∴∠APC=∠ACP,∵∠BPC+∠APC=180°∴∠BPC+∠ACP=180°,∴甲错误;乙:如图2,∵AB⊥PB,AC⊥PC,∴∠ABP=∠ACP=90°,∴∠BPC+∠A=180°,∴乙正确,故选:D.【点评】本题考查了垂线的定义、四边形的内角和定理、等腰三角形的性质,正确的理解题意是解题的关键.4. (2018•河南•3分)如图,已知Y AOBC 的顶点O (0,0),A (-1,2),点B 在x 轴正半轴上按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于21DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为( )A.,2)B.2)C.(-2)D.-2,2)5.(2018·浙江舟山·3分)用尺规在一个平行四边形内作菱形ABCD ,下列作法中错误的是( )A.B.C.D.【考点】平行四边形的性质,菱形的判定,作图—尺规作图的定义【分析】首先要理解每个图的作法,作的辅助线所具有的性质,再根据平行四边形的性质和菱形的判定定理判定【解答】解:A、作的辅助线AC是BD的垂直平分线,由平行四边形中心对称图形的性质可得AC与BD互相平分且垂直,则四边形ABCD是菱形,故A不符合题意;B、由辅助线可得AD=AB=BC,由平行四边形的性质可得AD//BC,则四边形ABCD是菱形,故B不符合题意;C、辅助线AB、CD分别是原平行四边形一组对角的角平分线,只能说明四边形ABCD是平行四边形,故C符合题意;D、此题的作法是:连接AC,分别作两个角与已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD,由AD//BC,得∠BAD+∠ABC=180°,∠BAC=∠DAC=∠ACB=∠ACD,则AB=BC,AD =CD,∠BAD=∠BCD,则∠BCD+∠ABC=180°,则AB//CD,则四边形ABCD是菱形故D不符合题意;故答案为C【点评】本题考查了根据平行四边形的性质和菱形的判定定理判定尺规作图正确与否的能力6. (2018•河北•3分)尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.图3是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-Ⅲ B.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ二.1. (2018•安徽•分)如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【答案】(1)画图见解析;(2)CE=【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC的长,在Rt△EFC中,由勾股定理即可求得CE的长.【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.2. (2018•甘肃白银,定西,武威)如图,在中,.(1)作的平分线交边于点,再以点为圆心,的长为半径作;(要求:不写作法,保留作图痕迹)(2)判断(1)中与的位置关系,直接写出结果.【答案】(1)作图见解析;(2)AC与⊙O相切.【解析】【分析】(1)根据角平分线的作法求出角平分线CO;(2)过O作OD⊥AC交AC于点D,先根据角平分线的性质求出DO=BO,再根据切线的判定定理即可得出答案.【解答】(1)如图,作出角平分线CO;作出⊙O.(2)AC 与⊙O 相切.【点评】考查作图—复杂作图,直线与圆的位置关系,熟练掌握角平分线的作法是解题的关键.3.(2018•北京•5分) 下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点P .lP求作:PQ ,使得PQ l ∥. 作法:如图,BCA Pl①在直线上取一点A ,作射线PA ,以点A 为圆心,AP 长为半径画弧,交PA 的延长线于点B ;②在直线上取一点C (不与点A 重合),作射线BC ,以点C 为圆心,CB 长为半径画弧,交BC 的延长线于点Q ; ③作直线PQ .所以直线PQ 就是所求作的直线. 根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明:∵AB =_______,CB =_______,∴PQ l ∥(____________)(填推理的依据).【解析】(1)尺规作图如下图所示:QlPA CB(2)PA ,CQ ,三角形中位线平行于三角形的第三边.【考点】尺规作图,三角形中位线定理3. (2018·四川自贡·10分)如图,在△ABC 中,∠ACB=90°.(1)作出经过点B ,圆心O 在斜边AB 上且与边AC 相切于点E 的⊙O (要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)设(1)中所作的⊙O 与边AB 交于异于点B的另外一点D ,若⊙O 的直径为5,BC=4;求DE 的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)【分析】(1)作∠ABC 的角平分线交AC 于E ,作EO ⊥AC 交AB 于点O ,以O 为圆心,OB 为半径画圆即可解决问题;(2)作OH ⊥BC 于H .首先求出OH 、EC 、BE ,利用△BCE ∽△BED ,可得=,解决问题;【解答】解:(1)⊙O 如图所示;(2)作OH ⊥BC 于H .∵AC 是⊙O 的切线, ∴OE ⊥AC ,∴∠C=∠CEO=∠OHC=90°,∴四边形ECHO是矩形,∴OE=CH=,BH=BC﹣CH=,在Rt△OBH中,OH==2,∴EC=OH=2,BE==2,∵∠EBC=∠EBD,∠BED=∠C=90°,∴△BCE∽△BED,∴=,∴=,∴DE=.【点评】本题考查作图﹣复杂作图,切线的判定和性质,相似三角形的判定和性质、勾股定理、角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.(2018·浙江宁波·8分)在5×3的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出线段BD,使BD∥AC,其中D是格点;(2)在图2中画出线段BE,使BE⊥AC,其中E是格点.【分析】(1)将线段AC沿着AB方向平移2个单位,即可得到线段BD;(2)利用2×3的长方形的对角线,即可得到线段BE⊥AC.【考点】作图、平行四边形的性质【解答】解:(1)如图所示,线段BD即为所求;(2)如图所示,线段BE即为所求.【点评】本题主要考查了作图以及平行四边形的性质,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.5.(2018·广东广州·12分)如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法)(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值。
2023年九年级数学中考专题:尺规作图类训练题(含简单答案)
2023年九年级数学中考专题:尺规作图类训练题一、单选题1.如图,Rt ABC △中,由90ACB ∠=︒,30B ∠=︒,要求用圆规和直尺作图,分成两个三角形,其中至少有一个三角形是等腰三角形.其作法错误的是( )A .B .C .D .2.如图,在ABC 中,已知45B ∠=︒,30C ∠=︒,分别以点A 、C 为圆心,大于12AC长为半径画弧,两弧在AC 两侧分别交于P 、Q 两点,作直线PQ 交BC 于点D ,交AC 于点E .若3DE =,则AB 的长为( )A .B .5C .6D .3.如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N ,作直线MN ,交AC 于点D ,交BC 于点E ,连接BD ,则ABD △的周长为( )A .AB BC + B .BC AC + C .+AB ACD .AB AC BC ++4.请仔细观察用直尺和圆规作一个角等于已知角的示意图如图所示,请你根据所学的三角形全等有关的知识,说明画出D O C DOC '''∠=∠的依据是( )A .SASB .AASC .SSSD .SSA5.如图,已知AOB ∠,以点O 为圆心,以任意长为半径画弧①,分别交OA ,OB 于点 E ,F , 再以点 E 为圆心,以EF 长为半径画弧,交弧①于点 D ,画射线OD .若28AOB ∠︒=,则BOD ∠的补角的度数为( )A .124︒B .39︒C .56︒D .144︒6.王师傅用角尺平分一个角,如图①,学生小顾用三角尺平分一个角,如图①,他们都在AOB ∠两边上分别取OM ON =,前者使角尺两边相同刻度分别与M ,N 重合,角尺顶点为P ;后者分别过M ,N 作OA ,OB 的垂线,交点为P ,则射线OP 平分AOB ∠,均可由OMP ONP ≌△△得知,其依据分别是( )A .SSS ;SASB .SAS ;SSSC .SSS ;HLD .SAS ;HL7.如图,在Rt ABC △中,90B ,分别以A 、C 为圆心,大于AC 长的一半为半径画弧,两弧相交于点M 、N ,连接MN ,与AC 、BC 分别相交于点D 、E ,连接AE ,当3AB =,5AC =时,ABE 周长为( )A .7B .8C .9D .108.如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD .①分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .①连接OE 交CD 于点M .下列结论中不正确的是( )A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠D .12OCED S CD OE =⋅四边形二、填空题9.如图,在ABC 中,AC BC =,以点A 为圆心,AB 长为半径作弧交BC 于点D ,交AC 于点E ,再分别以点C ,D 为圆心,大于CD 的长为半径作弧,两弧相交于F ,G两点,作直线FG .若直线FG 经过点E ,则C ∠的度数为______︒,AEG ∠的度数为______︒.10.如图,Rt ABC △中,90C ∠=︒,13AB =,5BC =,利用尺规在AC ,AB 上分别截取AD ,AE ,使AD AE =,分别以D ,E 为圆心,以大于12DE 为长的半径作弧,两弧在BAC ∠内交于点F ,作射线AF 交边BC 于点G ,点P 为边AB 上的一动点,则GP的最小值为______.11.如图,在ABC 中,90C ∠=︒.按以下步骤作图:①以点A 为圆心,适当长为半径作圆弧,分别交边AB 、AC 于点M 、N ;①分别以点M 和点N 为圆心、大于MN 一半的长为半径作圆弧,在BAC ∠内,两弧交于点P ;①作射线AP 交边BC 于点D .若DAC ABC ∽△△,则B ∠的大小为______度.12.如图,在Rt ABC △中,90C ∠=︒,以顶点B 为圆心,BC 长为半径画弧,交AB 于点D ,再分别以点C ,D 为圆心,大于12CD 长为半径画弧,两弧交于点E ,作射线BE交AC 于点F .若12BC =,15AB =,若BCF △的面积为24,则ABC 的面积为__________.13.如图,在四边形ABCD 中,30A ∠=︒,AB AD =,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD .则EBD ∠的度数为______.14.如图,在t R ABC 中,90C ∠=︒,以点B 为圆心,以任意长为半径作弧,分别交,AB BC于点M ,N ;①分别以M ,N 为圆心12MN 的长为半径作弧,两弧在ABC ∠内交于点P ,交AC 于点D .若16,8ABDSAB ==,则线段CD 的长为 ___________.15.如图,在ABCD 中,以A 为圆心,AB 长为半径画弧交AD 于F ,分别以F 、B 为圆心,大于12BF 长为半径画弧,两弧交于点G ,作射线AG 交BC 于点E ,6BF =,5AB =,则AE 的长为 ___________.16.如图,四边形ABCD 是平行四边形,以点B 为圆心,BC 的长为半径作弧交AD 于点E ,分别以点C ,E 为圆心、大于12CE 的长为半径作弧,两弧交于点P ,作射线BP交AD 的延长线于点F ,60CBE ∠=︒,6BC =,则BF =___________.三、解答题17.如图,在ABC 中,50A ∠=︒,30C ∠=,请用尺规作图法,在AC 上求作一点D ,使得BDC ABC ∽.(保留作图痕迹,不写作法)18.(1)操作实践:ABC 中,90A ∠=︒,22.5B ∠=︒,请画出一条直线把ABC 分割成两个等腰三角形,并标出分割成两个等腰三角形底角的度数;(要求画出一种分割方法即可)(2)分类探究:ABC 中,最小内角24B ∠=︒,若ABC 被一直线分割成两个等腰三角形,请画出相应示意图并写出ABC 最大内角的所有可能值;(3)猜想发现:若一个三角形能被一直线分割成两个等腰三角形,需满足什么条件?(请你至少写出两个条件,无需证明)19.如图,在ABC 中,点P ,Q 分别在边BC 及CB 的延长线上,且BQ CP =.(1)实践与探索:利用尺规按下列要求作图(不写作法,保留作图痕迹). ①作PQM CBA ∠=∠,且点M 在QC 的上方; ①在QM 上截取QR BA =; ①连接PR .(2)猜想与验证:试猜想线段AC 和RP 的数量关系,并证明你的猜想.20.如图,点D 是等边ABC 内部一点,且DB DC =,请仅用无刻度的直尺......,分别按下列要求画图.(1)在图①中BC 上找一点E ,使12BE BC =; (2)若2BDC A ∠=∠,在图①中AB AC 、边上分别找点M 、N ,使12MN BC =.参考答案:1.B2.A3.C4.C5.A6.C7.A8.C9.3612610.12 511.30 12.54 13.45︒14.4 15.816.18.(2)ABC的最大内角可能值是117︒或108︒或90︒或84︒;19.(2)RP AC=,答案第1页,共1页。
中考数学试题分类汇总《尺规作图》练习题
中考数学试题分类汇总《尺规作图》练习题(含答案)作角平分线1.如图,在△ABC中,∠B=30°,∠C=50°,通过观察尺规作图的痕迹,∠DAE的度数是35°.【分析】由线段垂直平分线的性质和等腰三角形的性质求得∠BAD=30°,结合三角形内角和定理求出∠CAD,根据角平分线的定义即可求出∠DAE的度数.【解答】解:∵DF垂直平分线段AB,∴DA=DB,∴∠BAD=∠B=30°,∵∠B=30°,∠C=50°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣30°﹣50°=100°,∴∠CAD=∠BAC﹣∠BAD=100°﹣30°=70°,∵AE平分∠CAD,∴∠DAE=∠CAD=×70°=35°,2.如图,在△ABC中,∠ABC>∠ACB.(1)尺规作图:在∠ABC的内部作射线BD,交AC于E,使得∠ABE=∠ACB;(不写作法,保留作图痕迹)(2)若(1)中AB=7,AC=13,求AE的长.【解答】解:(1)如图,射线BE即为所求作.(2)∵∠A=∠A,∠ABE=∠C,∴△ABE∽△ACB,∴=,∴=,∴AE=.3.如图,在△ABC中,∠C=90°.(1)求作:射线AD,使它平分∠BAC交BC于点D(请用尺规作图,保留作图痕迹,不写作法);(2)若BD:DC=2:1,BC=7.8cm,求点D到AB的距离.【分析】(1)是基本作图,利用直尺和圆规即可作出;(2)过点D作DE⊥AB于E.根据BD:DC=2:1,BC=7.8cm,可得DC,进而即可求点D到边AB的距离.【解答】解:(1)如图所示:(2)过点D作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴CD=DE,∵BD:DC=2:1,BC=7.8cm,∴DC=7.8÷(2+1)=7.8÷3=2.6cm.∴DE=DC=2.6cm.∴点D到AB的距离为2.6cm.4.如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1)尺规作图:作∠CAD的平分线AF,交CD于点F,连接EF,BF(保留作图痕迹,不写作法);(2)在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,AC=2.判断△BEF的形状,并说明理由,再求出其面积.【解答】解:(1)如图所示:∠CAD的平分线AF即为所求;(2)△BEF是等边三角形;理由如下:∵∠BAD=45°,且∠CAD=2∠BAC,∴∠BAC=∠F AC=∠DAF=15°,∴∠BAF=30°,∵AC=AD,AF是∠CAD的平分线,∴AF⊥CD,∵点E是AC的中点,∴EF=AC=1,∵∠ABC=90°,∴BE=AC=1,∴BE=EF,∠BEC=∠BAE+∠ABE=2∠BAE=30°,∠FEC=∠F AE+∠AFE=2∠F AE=30°,∴∠BEF=60°,∴△BEF是等边三角形;S△BEF=×12=.5.如图,在Rt△ABC中,∠C=90°.(1)尺规作图:作∠A的角平分线AP交BC于点P;(保留作图痕迹,不写作法)(2)在(1)所作的图中,若AC=5,BC=12,求CP的长.【解答】解:(1)如图,AP即为所求;(2)在Rt△ABC中,∠C=90°.∵AC=5,BC=12,∴AB==13,过点P作PD⊥AB于点D,∵AP是∠CAB的平分线,PC⊥AC,PD⊥AB,∴PC=PD,在Rt△APC和Rt△APD中,,∴Rt△APC≌Rt△APD(HL),∴AC=AD=5,∴BD=AB﹣AD=13﹣5=8,∵BP=BC﹣CP=12﹣CP,在Rt△PBD中,根据勾股定理得PB2=PD2+BD2,∴(12﹣CP)2=CP2+82,∴CP=.作一个角等于另一个角6.如图,在△ABC中,∠ABC>∠C.(1)用直尺和圆规在∠ABC的内部作射线BM,使∠ABM=∠ACB(不要求写作法,保留作图痕迹);(2)若(1)中的射线BM交AC于D,AB=4,AC=6,求CD长.【分析】(1)利用基本作图(作一个角等于已知角)作∠ABM=∠ACB即可;(2)先证明△ABD∽△ACB,利用相似比求出AD,然后计算AC﹣AD即可.【解答】解:(1)如图,BM为所作;(2)∵∠ABD=∠C,∠BAD=∠CAB,∴△ABD∽△ACB,∴AB:AC=AD:AB,即4:6=AD:4,∴AD=,∴CD=AC﹣AD=6﹣=.7.观察用直尺和圆规作一个角等于已知角的示意图,能得出∠CPD=∠AOB的依据是()A.由“等边对等角”可得∠CPD=∠AOBB.由SSS可得△OGH≌△PMN,进而可证∠CPD=∠AOBC.由SAS可得△OGH≌△PMN,进而可证∠CPD=∠AOBD.由ASA可得△OGH≌△PMN,进而可证∠CPD=∠AOB【解答】解:由作法得OG=OH=PM=PN,GH=MN,根据“SSS”可判断△OGH≌△PMN,所以∠CPD=∠AOB.尺规作高、作垂线8.如图,已知钝角△ABC.(1)过钝角顶点B作BD⊥AC,交AC于点D(使用直尺和圆规,不写作法,保留作图痕迹);(2)若BC=8,∠C=30°,,求AB的长.【分析】(1)利用尺规作出BD⊥AC,垂足为D即可.(2)在Rt△BCD中求出BD,再在Rt△ABD中,求出AB即可.【解答】解:(1)如图,线段BD即为所求.(2)解:在Rt△BCD中,∵BC=8,∠C=30°∴BD=BC•sin30°=4,在Rt△ABD中,AB===10.作线段的垂直平分线9.如图,在▱ABCD中,AD>AB.(1)尺规作图:作DC边的中垂线MN,交AD边于点E(要求:保留作图痕迹,不写作法);(2)连接EC,若∠BAD=130°,求∠AEC的度数.【解答】解:(1)如图,直线MN,点E即为所求;(2)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A+∠D=180°,∵∠A=130°,∴∠D=50°∵MN垂直平分线段CD,∴ED=EC,∴∠D=∠ECD=50°,∴∠AEC=∠D+∠ECD=100°.10.(2022·广州从化区一摸)已知,如图,在Rt△ABC中,∠C=90°,AD平分∠CAB.(1)按要求尺规作图:作AD的垂直平分线(保留作图痕迹);【解答】解:(1)如图:分别以A、D为圆心,大于AD的长为半径作弧,两弧交于M、N,作直线MN,则直线MN即为AD的垂直平分线;11.如图,在△ABC中,AB=9,BC=6.(1)在AB上求作点E,使得EA=EC;(不写作法,保留作图痕迹)(2)若∠ACB=2∠A,求AE的长.【分析】(1)作线段AC的垂直平分线交AB于点E,连接EC即可;(2)证明△BCE∽△BAC,推出BC2=BE•BA,求出BE,可得结论.【解答】解:(1)如图,点E即为所求;(2)∵EA=EC,∴∠A=∠ECA,∵∠ACB=2∠A,∴∠BCE=∠A,∵∠B=∠B,∴△BCE∽△BAC,∴BC2=BE•BA,∴BE==4,∴AE=AB=EB=9﹣4=5.12.如图,在△ABC中,按以下步骤作图:①分别以点A,B为圆心,大于AB长为半径作弧,两弧交于M,N两点;②作直线MN交AC于点D,连接BD.若BD=BC,∠A=36°,则∠C的度数为()A.72°B.68°C.75°D.80°【解答】解:由作法可得MN垂直平分AB,∴DA=DB,∴∠DBA=∠A=36°,∵∠BDC=∠A+∠DBC,∴∠BDC=72°,∵BD=BC,∴∠C=∠BDC=72°,即∠C的度数为72°.13.如图,在△ABC中,分别以A、B为圆心,大于AB的长为半径画弧,两弧交于P、Q两点,直线PQ 交BC于点D,连接AD;再分别以A、C为圆心,大于AC的长为半径画弧,两弧交于M,N两点,直线MN交BC于点E,连接AE.若CD=11,△ADE的周长为17,则BD的长为6.【解答】解:由作法得PQ垂直平分AB,MN垂直平分AC,∴DA=DB,EA=EC,∵△ADE的周长为17,∴DA+EA+DE=17,∴DB+DE+EC=17,即BC=17,∴BD=BC﹣CD=17﹣11=6.14.如图,已知∠BAC=60°,AD是角平分线且AD=10,作AD的垂直平分线交AC于点F,作DE⊥AC,则△DEF周长为5+5.【解答】解:∵AD的垂直平分线交AC于点F,∴F A=FD,∵AD平分∠BAC,∠BAC=60°,∴∠DAE=30°,∴DE=AD=5,∴AE===5,∴△DEF周长=DE+DF+EF=DE+F A+EF=DE+AE=5+5,复杂作图15.如图,在△ABC中,AB=AC,点P在BC上.(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若∠APC=2∠ABC.求证:PD∥AB.【分析】(1)尺规作图作出∠APD=∠ABP,即可得到∠DPC=∠P AB,从而得到△PCD∽△ABP;(2)根据题意得到∠DPC=∠ABC,根据平行线的判定即可证得结论.【解答】解:(1)如图:作出∠APD=∠ABP,即可得到△PCD∽△ABP;(2)证明:如图,∵∠APC=2∠ABC,∠APD=∠ABC,∴∠DPC=∠ABC,∴PD∥AB.16.如图1,在△ABC中,D是AB边上的一点,小明用尺规作图,做法如下:如图2,①以B为圆心,任意长为半径作弧,交BA于F、交BC于G;②以D为圆心,BF为半径作弧,交DA于M;③以M为圆心,FG为半径作弧,两弧相交于N;④过点D作射线DN交AC于点E.若∠ADE=52°,∠C=78°,则∠A 的度数是50度.【解答】解:由作图可知DE∥BC,∴∠AED=∠C=78°,∴∠A=180°﹣∠ADE﹣∠AED=180°﹣52°﹣78°=50°,。
2020年全国中考数学试卷分类汇编(一)专题35 尺规作图(含解析)
尺规作图一.选择题1.(2020年内蒙古通辽市3分)6.根据圆规作图的痕迹,可用直尺成功地找到三角形内心的是()A. B.C. D.【答案】B【解析】【分析】根据三角形内心的定义,三角形内心为三边的垂直平分线的交点,然后利用基本作图和选项进行判断.【详解】解:三角形内心为三个角的角平分线的交点,由基本作图得到B选项作了两个角的角平分线,而三角形三条角平分线交于一点,从而可用直尺成功找到三角形内心.故选:B.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的内心.2. (2020•湖北襄阳•3分)如图,Rt△ABC中,∠ABC=90°,根据尺规作图的痕迹判断以下结论错误的是()A.DB=DE B.AB=AE C.∠EDC=∠BAC D.∠DAC=∠C 【分析】证明△ADE≌△ADB即可判断A,B正确,再根据同角的补角相等,证明∠EDC =∠BAC即可.【解答】解:由作图可知,∠DAE=∠DAB,∠DEA=∠B=90°,∵AD=AD,∴△ADE≌△ADB(AAS),∴DB=DE,AB=AE,∵∠AED+∠B=180°∴∠BAC+∠BDE=180°,∵∠EDC+∠BDE=180°,∴∠EDC=∠BAC,故A,B,C正确,故选:D.【点评】本题考查作图﹣基本作图,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3(2020•贵州省贵阳市•3分)如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为()A.无法确定B.C.1 D.2【分析】如图,过点G作GH⊥AB于H.根据角平分线的性质定理证明GH=GC=1,利用垂线段最短即可解决问题.【解答】解:如图,过点G作GH⊥AB于H.由作图可知,GB平分∠ABC,∵GH⊥BA,GC⊥BC,∴GH=GC=1,根据垂线段最短可知,GP的最小值为1,故选:C.【点评】本题考查作图﹣基本作图,垂线段最短,角平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4(2020•河北省•3分)如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.a,b均无限制B.a>0,b>DE的长C.a有最小限制,b无限制D.a≥0,b<DE的长【分析】根据角平分线的画法判断即可.【解答】解:以B 为圆心画弧时,半径a 必须大于0,分别以D ,E 为圆心,以b 为半径画弧时,b 必须大于DE ,否则没有交点,故选:B .【点评】本题考查作图﹣基本作图,解题的关键是熟练掌握五种基本作图,属于中考常考题型.5.6.7.8.9.10.二.填空题1. (2020•江苏省苏州市•3分)如图,已知MON ∠是一个锐角,以点O 为圆心,任意长为半径画弧,分别交OM 、ON 于点A 、B ,再分别以点A 、B 为圆心,大于12AB 长为半径画弧,两弧交于点C ,画射线OC .过点A 作AD ON ,交射线OC 于点D ,过点D 作DE OC ⊥,交ON 于点E .设10OA =,12DE =,则sin MON ∠=________.【答案】2425【解析】【分析】 连接AB 交OD 于点H ,过点A 作AG ⊥ON 于点G ,根据等腰三角形的性质得OH ⊥AB ,AH =BH ,从而得四边形ABED 是平行四边形,利用勾股定理和三角形的面积法,求得AG 的值,进而即可求解.【详解】连接AB 交OD 于点H ,过点A 作AG ⊥ON 于点G ,由尺规作图步骤,可得:OD 是∠MON 的平分线,OA =OB ,∴OH ⊥AB ,AH =BH ,∵DE OC ⊥,∴DE ∥AB ,∵AD ON ,∴四边形ABED 是平行四边形,∴AB =DE =12,∴AH =6,∴OH =22221068AO AH -=-=,∵OB ∙AG =AB ∙OH ,∴AG =AB OH OB ⋅=12810⨯=485, ∴sin MON ∠=AG OA =2425. 故答案是:2425.【点睛】本题主要考查等腰三角形的性质,平行四边形的判定和性质定理,勾股定理,锐角三角函数的定义,添加合适的辅助线,构造直角三角形是解题的关键.2.(2020•湖南省郴州•3分)如图,在矩形ABCD 中,4,8AD AB ==.分别以点,B D 为圆心,以大于12BD 的长为半径画弧,两弧相交于点E 和F .作直线EF 分别与,,DC DB AB 交于点,,M O N ,则MN =__________.【答案】25.【解析】【分析】连接DN,在矩形ABCD中,AD=4,AB=8,根据勾股定理可得BD的长,根据作图过程可得,MN是BD的垂直平分线,所以DN=BN,在Rt△ADN中,根据勾股定理得DN的长,在Rt△DON中,根据勾股定理得ON的长,进而可得MN的长.【详解】如图,连接DN,在矩形ABCD中,AD=4,AB=8,∴BD2245+=,AB AD根据作图过程可知:MN是BD的垂直平分线,∴DN=BN,OB=OD5∴AN=AB-BN=AB-DN=8-DN,在Rt△ADN中,根据勾股定理,得DN2=AN2+AD2,∴DN2=(8-DN)2+42,解得DN=5,在Rt△DON中,根据勾股定理,得ON225DN OD-=,∵CD∥AB,∴∠MDO=∠NBO,∠DMO=∠BNO,∵OD=OB,∴△DMO≌△BNO(AAS),∴OM=ON=5,∴MN=25.故答案为:25.【点睛】本题考查了作图-基本作图、线段垂直平分线的性质、勾股定理、矩形的性质,解决本题的关键是掌握线段垂直平分线的性质.3(2020•江苏省扬州市•3分)如图,在△ABC中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB,BC于点D,E.②分别以点D,E为圆心,大于DE的同样长为半径作弧,两弧交于点F.③作射线BF交AC于点G.如果AB=8,BC=12,△ABG的面积为18,则△CBG的面积为27.【分析】过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可得AG是∠ABC的平分线,根据角平分线的性质可得GM=GN,再根据△ABG的面积为18,求出GM的长,进而可得△CBG的面积.【解答】解:如图,过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可知:BG是∠ABC的平分线,∴GM=GN,∵△ABG的面积为18,∴AB×GM=18,∴4GM=18,∴GM=,∴△CBG的面积为:BC×GN=12×=27.故答案为27.【点评】本题考查了作图-基本作图、角平分线的性质,解决本题的关键是掌握角平分线的性质.4(2020年辽宁省辽阳市)16.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=2BC,分别以点A和B为圆心,以大于AB的长为半径作弧,两弧相交于点M和N,作直线MN,交AC于点E,连接BE,若CE=3,则BE的长为5.【分析】设BE=AE=x,在Rt△BEC中,利用勾股定理构建方程即可解决问题.【解答】解:由作图可知,MN垂直平分线段AB,∴AE=EB,设AE=EB=x,∵EC=3,AC=2BC,∴BC=(x+3),在Rt△BCE中,∵BE2=BC2+EC2,∴x2=32+[(x+3)]2,解得,x=5或﹣3(舍弃),∴BE=5,故答案为5.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.5.6.7.8.9.10.三.解答题1.(2020•黑龙江省哈尔滨市•7分)如图,方格纸中每个小正方形的边长均为1,线段AB和线段CD的端点均在小正方形的顶点上.(1)在图中画出以AB为边的正方形ABEF,点E和点F均在小正方形的顶点上;(2)在图中画出以CD为边的等腰三角形CDG,点G在小正方形的顶点上,且△CDG 的周长为10+.连接EG,请直接写出线段EG的长.【分析】(1)画出边长为的正方形即可.(2)画出两腰为10,底为的等腰三角形即可.【解答】解:(1)如图,正方形ABEF即为所求.(2)如图,△CDG即为所求.【点评】本题考查作图﹣应用与设计,等腰三角形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型.2. (2020•湖北武汉•8分)在8×5的网格中建立如图的平面直角坐标系,四边形OABC的顶点坐标分别为O(0,0),A(3,4),B(8,4),C(5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB绕点C逆时针旋转90°,画出对应线段CD;(2)在线段AB上画点E,使∠BCE=45°(保留画图过程的痕迹);(3)连接AC,画点E关于直线AC的对称点F,并简要说明画法.【分析】(1)利用网格特点和旋转的性质画出B点的对称点D即可;(2)作出BC为边的正方形,找到以C点为一个顶点的对角线与AB的交点E即为所求;(3)利用网格特点,作出E点关于直线AC的对称点F即可.【解答】解:(1)如图所示:线段CD即为所求;(2)如图所示:∠BCE即为所求;(3)连接(5,0),(0,5),可得与AC的交点F,点F即为所求,如图所示:【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.3 (2020•湖南省长沙市·6分)人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:已知:∠AO B.求作:∠AOB的平分线.作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC,射线OC即为所求(如图).请你根据提供的材料完成下面问题.(1)这种作已知角的平分线的方法的依据是①.(填序号)①SSS②SAS③AAS④ASA(2)请你证明OC为∠AOB的平分线.【分析】(1)直接利用角平分线的作法得出基本依据;(2)直接利用全等三角形的判定与与性质得出答案.【解答】解:(1)这种作已知角的平分线的方法的依据是①SSS.故答案为:①(2)由基本作图方法可得:OM=ON,OC=OC,MC=NC,则在△OMC和△ONC中,,∴△OMC≌△ONC(SSS),∴∠AOC=∠BOC,即OC为∠AOB的平分线.【点评】此题主要考查了应用设计与作图,正确掌握全等三角形的判定方法是解题关键.4.(2020•湖北孝感•8分)如图,在平面直角坐标系中,已知点A(﹣1,5),B(﹣3,1)和C(4,0),请按下列要求画图并填空.(1)平移线段AB,使点A平移到点C,画出平移后所得的线段CD,并写出点D的坐标为(2,﹣4);(2)将线段AB绕点A逆时针旋转90°,画出旋转后所得的线段AE,并直接写出cos ∠BCE的值为;(3)在y轴上找出点F,使△ABF的周长最小,并直接写出点F的坐标为(0,4).【分析】(1)根据点A平移到点C,即可得到平移的方向和距离,进而画出平移后所得的线段CD;(2)根据线段AB绕点A逆时针旋转90°,即可画出旋转后所得的线段AE;(3)先作出点A关于y轴的对称点A',连接A'B交y轴于点F,依据两点之间,线段最短,即可得到此时△ABF的周长最小,根据待定系数法即可得出直线A'B的解析式,令x =0,进而得到点F的坐标.【解答】解:(1)如图所示,线段CD即为所求,点D的坐标为(2,﹣4);(2)如图所示,线段AE即为所求,cos∠BCE===;(3)如图所示,点F即为所求,点F的坐标为(0,4).故答案为:(2,﹣4);;(0,4).【点评】本题主要考查了利用平移变换和旋转变换作图,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.5 (2020•江苏省泰州市•10分)如图,已知线段a,点A在平面直角坐标系xOy内.(1)用直尺和圆规在第一象限内作出点P,使点P到两坐标轴的距离相等,且与点A的距离等于a.(保留作图痕迹,不写作法)(2)在(1)的条件下,若a≈2,A点的坐标为(3,1),求P点的坐标.【分析】(1)根据角平分线的性质即可用直尺和圆规在第一象限内作出点P,使点P到两坐标轴的距离相等,且与点A的距离等于a;(2)在(1)的条件下,根据a≈2,A点的坐标为(3,1),利用勾股定理即可求P点的坐标.【解答】解:(1)如图,点P即为所求;(2)由(1)可得OP是角平分线,设点P(x,x),过点P作PE⊥x轴于点E,过点A作AF⊥x 轴于点F,AD⊥PE于点D,∵P A=a≈2,A点的坐标为(3,1),∴PD=x-1,AD=x-3,根据勾股定理,得P A2=PD2+AD2,∴(2)2=(x-1)2+(x-3)2,解得x1=5,x2=-1(舍去).所以P点的坐标为(5,5).【点评】本题考查了作图-复杂作图、坐标与图形的性质、角平分线的性质、勾股定理,解决本题的关键是掌握角平分线的性质.6(2020•江苏省无锡市•8分)如图,已知△ABC是锐角三角形(AC<AB).(1)请在图1中用无刻度的直尺和圆规作图:作直线l,使l上的各点到B.C两点的距离相等;设直线l与A B.BC分别交于点M、N,作一个圆,使得圆心O在线段MN上,且与边A B.BC相切;(不写作法,保留作图痕迹)(2)在(1)的条件下,若BM=,BC=2,则⊙O的半径为.【分析】(1)作线段BC的垂直平分线交AB于M,交BC于N,作∠ABC的角平分线交MN 于点O,以O为圆心,ON为半径作⊙O即可.(2)过点O作OE⊥AB于E.设OE=ON=r,利用面积法构建方程求解即可.【解答】解:(1)如图直线l,⊙O即为所求.(2)过点O作OE⊥AB于E.设OE=ON=r,∵BM=,BC=2,MN垂直平分线段BC,∴BN=CN=1,∴MN===,∵S△BNM=S△BNO+S△BOM,∴×1×=×1×r+××r,解得r=.故答案为.【点评】本题考查作图-复杂作图,角平分线的性质,线段的垂直平分线的性质,切线的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.7(2020•江苏省盐城市•8分)如图,点O是正方形ABCD的中心.(1)用直尺和圆规在正方形内部作一点E(异于点O),使得EB=EC;(保留作图痕迹,不写作法)(2)连接E B.E C.EO,求证:∠BEO=∠CEO.【分析】(1)作BC的垂直平分线,在BC的垂直平分线上(正方形内部异于点O)的点E即为所求;(2)根据等腰三角形的性质和角的和差关系即可求解.【解答】解:(1)如图所示,点E即为所求(2)证明:连结OB,OC,∵点O是正方形ABCD的中心,∴OB=OC,∴∠OBC=∠OCB,∵EB=EC,∴∠EBC=∠ECB,∴∠BEO=∠CEO.【点评】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.8.9.10.。
2024中考备考热点09 尺规作图(7大题型+满分技巧+限时分层检测)(原卷版)
热点09 尺规作图中考数学中《尺规作图》部分主要考向分为三类:一、尺规作图的痕迹(每年1道,3~8分)二、尺规作图画图(每年1道,3~12分)三、网格问题中的作图设计(每年1题,6~8分)尺规作图指的是只用无刻度的直尺和圆规,作已知线段的中垂线、已知角的角平分线;部分题型则考察由作图痕迹逆向推导是什么线,然后利用中垂线或者角平分线的性质继续解题。
最近几年又出现一类不用“尺规”,只用无刻度的直尺在网格图中按要求画图或找点。
当考察作图痕迹时,基本以选择题为主,实际画图题或者网格类问题则是简单题,虽然难度中等,但是对应考点的综合性已经越来越强,需要在做题时更加全面的分析。
考向一:尺规作图的痕迹【题型1 线段中垂线的尺规作图痕迹】满分技巧1、线段垂直平分线的画图痕迹:2、线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等1.(2023•凉山州)如图,在等腰△ABC中,∠A=40°,分别以点A、点B为圆心,大于AB为半径画弧,两弧分别交于点M和点N,连接MN,直线MN与AC交于点D,连接BD,则∠DBC的度数是()A.20°B.30°C.40°D.50°2.(2023•西宁)如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于P,Q两点,作直线PQ交AB,AC于点D,E,连接CD.下列说法错误的是()A.直线PQ是AC的垂直平分线B.CD=ABC.DE=BCD.S△ADE:S四边形DBCE=1:43.(2023•随州)如图,在▱ABCD中,分别以B,D为圆心,大于BD的长为半径画弧,两弧相交于点M,N,过M,N两点作直线交BD于点O,交AD,BC于点E,F,下列结论不正确的是()A.AE=CF B.DE=BF C.OE=OF D.DE=DC4.如图,在△ABC中,∠C=40°,分别以点B和点C为圆心,大于BC的长为半径画弧,两弧相交于M,N两点,作直线MN,交边AC于点D,连接BD,则∠ADB的度数为()A.40°B.50°C.80°D.100°5.(2023•西藏)如图,在△ABC中,∠A=90°,分别以点B和点C为圆心,大于的长为半径画弧,两弧相交于M,N两点;作直线MN交AB于点E.若线段AE=5,AC=12,则BE长为.6.(2023•广元)如图,a∥b,直线l与直线a,b分别交于B,A两点,分别以点A,B为圆心,大于AB 的长为半径画弧,两弧相交于点E,F,作直线EF,分别交直线a,b于点C,D,连接AC,若∠CDA =34°,则∠CAB的度数为.【题型2 角平分线的尺规作图痕迹】满分技巧1、角平分线的画法:2、角平分线的性质:角平分线上的点到角两边的距离相等1.(2023•衢州)如图,在△ABC中,以点A为圆心,适当长为半径画弧,分别交AB,AC于点D,E.分别以点D,E为圆心,大于长为半径画弧,交于∠BAC内一点F.连结AF并延长,交BC于点G.连结DG,EG.添加下列条件,不能使BG=CG成立的是()A.AB=AC B.AG⊥BC C.∠DGB=∠EGC D.AG=AC2.(2023•辽宁)如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,以点A为圆心,适当长为半径作弧,分别交AB,AC于点E,F,分别以点E,F为圆心,大于EF的长为半径作弧,两弧在∠BAC的内部相交于点G,作射线AG,交BC于点D,则BD的长为()A.B.C.D.3.阅读以下作图步骤:①在OA和OB上分别截取OC,OD,使OC=OD;②分别以C,D为圆心,以大于CD的长为半径作弧,两弧在∠AOB内交于点M;③作射线OM,连接CM,DM,如图所示.根据以上作图,一定可以推得的结论是()A.∠1=∠2且CM=DM B.∠1=∠3且CM=DMC.∠1=∠2且OD=DM D.∠2=∠3且OD=DM4.(2023•湖北)如图,矩形ABCD中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E,F,再分别以点E,F为圆心,大于长为半径画弧交于点P,作射线BP,过点C作BP 的垂线分别交BD,AD于点M,N,则CN的长为()A.B.C.D.45.(2023•丹东)如图,在四边形ABCD中,AB∥CD,以点B为圆心,以任意长为半径作弧,分别交AB,BC于点E,F,分别以E,F为圆心,以大于长为半径作弧,两弧在∠ABC内交于点P,作射线BP,交AD于点G,交CD的延长线于点H.若AB=AG=4,GD=5,则CH的长为()A.6B.8C.9D.106.(2023•内蒙古)如图,在△ABC中,∠ABC=90°,∠BAC=60°,以点A为圆心,以AB的长为半径画弧交AC于点D,连接BD,再分别以点B,D为圆心,大于BD的长为半径画弧,两弧交于点P,作射线AP交BD于点M,交BC于点E,连接DE,则S△BDE:S△CDE是()A.1:2B.1:C.2:5D.3:87.如图,在▱ABCD中,∠D=60°.以点B为圆心,以BA的长为半径作弧交边BC于点E,连接AE.分别以点A,E为圆心,以大于AE的长为半径作弧,两弧交于点P,作射线BP交AE于点O,交边AD 于点F,则的值为.8.(2023•鞍山)如图,△ABC中,在CA,CB上分别截取CD,CE,使CD=CE,分别以D,E为圆心,以大于的长为半径作弧,两弧在∠ACB内交于点F,作射线CF,交AB于点M,过点M作MN⊥BC,垂足为点N.若BN=CN,AM=4,BM=5,则AC的长为.9.(2023•甘孜州)如图,在平行四边形ABCD(AB<AD)中,按如下步骤作图:①以点A为圆心,以适当长为半径画弧,分别交AB,AD于点M,N;②分别以点M,N为圆心,以大于的长为半径画弧,两弧在∠BAD内交于点P;③作射线AP交BC于点E.若∠B=120°,则∠EAD为°.10.(2023•阜新)如图,在矩形ABCD中,AB=6,AD=8.连接AC,在AC和AD上分别截取AE,AF,使AE=AF,分别以点E和点F为圆心,以大于EF的长为半径作弧,两弧交于点G,作射线AG交CD 于点H,则线段DH的长是.考向二:尺规作图画图【题型3 作一条线段的垂直平分线】满分技巧线段垂直平分线的画图步骤:1、分别以线段两端点为圆心,相同适当长(大于线段的一半)为半径画圆弧,上下各得两个弧的一个交点;2、过两个弧的交点作一条直线,则该直线即为所求作的线段中垂线。
2024年中考数学微专题复习+尺规作图+课件
+ +
= , = +
10.[原创新题]如图,一次函数 y = 3x 与反比例函数
y=
k
x
x > 0 的图象交于点 A 1, a ,点 B 在 x 轴正半轴
上.
(1)求反比例函数的表达式.
[答案] 将 , 代入 = ,得 = , ∴ , . 将 , 代入 =
[答案] ∵ 四边形 是菱形, ∴ = , // ,
∴△ ∼△ , ∴
=
.
设 = ,则 = − ,
∴
−
=
,解得
= ,
∴ 中所作菱形 的边长为6.
5.[2023洛阳二模] 如图,在 △ ABC 中,
∴ = , ∴ ∠ = ∠ , ∴ ∠ = ∠ , ∴ // , ∴ △ =
△ = .
8.[原创新题]如图,点 A , B 在反比例函数
y=
k
x
x > 0 的图象上, AC ⊥ x 轴于点 C , BD ⊥ x
轴于点 D .已知 OC =
=
.
4.如图,已知 △ ABC .
(1)请用无刻度的直尺和圆规在边 BC , CA , AB 上
分别确定点 D , E , F ,使四边形 BDEF 是菱形,并画
出菱形 BDEF (要求:不写作法,保留作图痕迹).
[答案] 如图所示,菱形 即为所求.
(2)若 AB = 10 , BC = 15 ,求(1)中所作菱形 BDEF 的边长.
中考数学尺规作图真题汇编
中考数学之尺规作图真题汇编一、网格纸作图【2019·武汉】如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使AF∥DC,且AF=DC.(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.【解答】解:(1)如图所示,线段AF即为所求;(2)如图所示,点G即为所求;(3)如图所示,线段EM即为所求.【2019·无锡】按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A为⊙O上一点,请用直尺(不带刻度)和圆规作出⊙O的内接正方形;(2)我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点.请运用上述性质,只用直尺(不带刻度)作图.①如图2,在▱ABCD中,E为CD的中点,作BC的中点F.②如图3,在由小正方形组成的4×3的网格中,△ABC的顶点都在小正方形的顶点上,作△ABC的高AH.【解答】解:(1)如图1,连结AO并延长交圆O于点C,作AC的中垂线交圆于点B,D,四边形ABCD即为所求.(2)①如图2,连结AC,BD交于点O,连结EB交AC于点G,连结DG并延长交CB 于点F,F即为所求②如图3所示,AH即为所求.【2020·安徽】如图1,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网M N在网格线上,格线的交点)为端点的线段AB,线段,()1画出线段AB关于线段MN所在直线对称的线段11A B(点A B分别为,A B的对应点);11()2将线段11B A ,绕点1B ,顺时针旋转90︒得到线段12B A ,画出线段12B A .【答案】(1)见解析;(2)见解析.【解析】【分析】(1)先找出A ,B 两点关于MN 对称的点A 1,B 1,然后连接A 1B 1即可; (2)根据旋转的定义作图可得线段B 1A 2.【详解】(1)如图所示,11A B 即为所作;(2)如图所示,12B A 即为所作.【点睛】本题主要考查作图-旋转与轴对称,解题的关键是掌握旋转变换和轴对称的定义与性质.【2021·荆州】如图,在5×5的正方形网格图形中,小正方形的边长都为1,线段ED 与AD 的端点都在网格小正方形的顶点(称为格点)上.请在网格图形中画图:(1)以线段AD 为边画正方形ABCD ,再以线段DE 为斜边画等腰直角三角形DEF ,其中顶点F在正方形ABCD外;(2)在(1)中所画图形基础上,以点B为其中一个顶点画一个新正方形,使新正方形的面积为正方形ABCD和△DEF面积之和,其它顶点也在格点上.【分析】(1)根据正方形,等腰直角三角形的定义画出图形即可.(2)画出边长为的正方形即可.【解答】解:(1)如图,正方形ABCD,△DEF即为所求.(2)如图,正方形BKFG即为所求.二、角平分线【2021·铜仁】.如图,在Rt△ABC中,∠C=90°,AB=10,BC=8,按下列步骤作图:步骤1:以点A为圆心,小于AC的长为半径作弧分别交AC、AB于点D、E.步骤2:分别以点D、E为圆心,大于DE的长为半径作弧,两弧交于点M.步骤3:作射线AM交BC于点F.则AF的长为()A.6B.3C.4D.6【分析】利用基本作图得到AF平分∠BAC,过F点作FH⊥AB于H,如图,根据角平分线的性质得到FH=FC,再根据勾股定理计算出AC=6,设CF=x,则FH=x,然后利用面积法得到×10•x+×6•x=×6×8,解得x=3,最后利用勾股定理计算AF的长.【解答】解:由作法得AF平分∠BAC,过F点作FH⊥AB于H,如图,∵AF平分∠BAC,FH⊥AB,FC⊥AC,∴FH=FC,在△ABC中,∵∠C=90°,AB=10,BC=8,∴AC==6,设CF=x,则FH=x,∵S△ABF+S△ACF=S△ABC,∴×10•x+×6•x=×6×8,解得x=3,在Rt△ACF中,AF===3.故选:B.三、垂直平分线【2019·泰州】如图,△ABC中,∠C=90°,AC=4,BC=8.(1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交BC于点D,求BD的长.【解答】解:(1)如图直线MN即为所求.(2)∵MN垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∵AD2=AC2+CD2,∴x2=42+(8﹣x)2,解得x=5,∴BD=5.【2021·北部湾】如图,四边形ABCD中,AB//CD,∠B=∠D,连接AC.(1)求证:△ABC≌△CDA;(2)尺规作图:过点C作AB的垂线,垂足为E(不要求写作法,保留作图痕迹);(3)在(2)的条件下,已知四边形ABCD的面积为20,AB=5,求CE的长.【答案】(1)证明:∵AB//CD,∴∠ACD=∠CAB,在△ABC和△CDA中,{∠B=∠D∠CAB=∠ACD AC=CA,∴△ABC≌△CDA(AAS);(2)解:过点C作AB的垂线,垂足为E,如图:(3)解:由(1)知:△ABC≌△CDA,∵四边形ABCD的面积为20,∴S△ABC=S△CDA=10,∴12AB⋅CE=10,∵AB=5,∴CE=4.【2019·盐城】如图,AD是△ABC的角平分线.(1)作线段AD的垂直平分线EF,分别交AB、AC于点E、F;(用直尺和圆规作图,标明字母,保留作图痕迹,不写作法.)(2)连接DE、DF,四边形AEDF是形.(直接写出答案)【解答】解:(1)如图,直线EF即为所求.(2)∵AD平分∠ABC,∴∠BAD=∠CAD,∴∠BAD=∠CAD,∵∠AOE=∠AOF=90°,AO=AO,∴△AOE≌△AOF(ASA),∴AE=AF,∵EF垂直平分线段AD,∴EA=ED,F A=FD,∴EA=ED=DF=AF,∴四边形AEDF是菱形.故答案为菱形.四、全等或相似【2019·福建】如图,已知△ABC为和点A'.(1)以点A'为顶点求作△A'B'C',使△A'B'C'∽△ABC,S△A'B'C'=4S△ABC;(尺规作图,保留作图痕迹,不写作法)(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、A'C'的中点,求证:△DEF∽△D'E'F'.(2)证明(略)【答案】见解析【解析】【2021·贵港】尺规作图(只保留作图痕迹,不要求写出作法).如图,已知△ABC,且AB >AC.(1)在AB边上求作点D,使DB=DC;(2)在AC边上求作点E,使△ADE∽△ACB.CBACBA【分析】(1)作线段BC的垂直平分线交AB于点D,连接CD即可.(2)作∠ADT=∠ACB,射线DT交AC于点E,点E即为所求.【解答】解:(1)如图,点D即为所求.(2)如图,点E即为所求.五、三角形四心(内心、外心、重心、垂心)【2019·陇南】已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=______.【答案】25π【解析】解:(1)如图⊙O即为所求.(2)设线段BC的垂直平分线交BC于点E.由题意OE=4,BE=EC=3,在Rt△OBE中,OB=√32+42=5,∴S圆O=π•52=25π.故答案为25π.(1)作线段AB,BC的垂直平分线,两线交于点O,以O为圆心,OB为半径作⊙O,⊙O即为所求.(2)在Rt△OBE中,利用勾股定理求出OB即可解决问题.本题考查作图-复杂作图,等腰三角形的性质,三角形的外接圆与外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.五、其他类型【2021·山西】已知正方形ABCD的边长为4个单位长度,点E是CD的中点,请仅用无刻度直尺按下列要求作图(保留作图痕迹).(1)在图1中,将直线AC绕着正方形ABCD的中心顺时针旋转45°;(2)在图2中,将直线AC向上平移1个单位长度.【分析】(1)根据正方形的性质和旋转的性质即可作出图形;(2)根据平移的性质即可作出图形.【解答】解:(1)如图1,直线l即为所求;(2)如图2中,直线a即为所求.。
14.1尺规作图(分类精讲)·数学中考分类精粹
是 ( ). A.平 行 四 边 形
B.矩 形
C.菱 形
D.梯 形
(第 3 题 )
(第 4 题 )
4.(2012������台湾)如图,直角三角形 ABC 有一外接圆,其中∠B
=90°,AB>BC,今欲 在B︵C上 找 一 点P,使 得B︵P=C︵P,以
下 是 甲 、乙 两 人 的 作 法 :
和证明.
保 留 作 图 的 痕 迹 ,不 要 求 写 出 作 法 .
一 、选 择 题
1.(2012������河北)如图,点C 在∠AOB 的OB 边上,用尺规作出
了 CN∥OA,作图痕迹中,F︵G是( ).
A.以点 C 为圆心,OD 为半径的弧 B.以点 C 为圆心,DM 为半径的弧 C.以点 E 为圆心,OD 为半径的弧 D.以点 E 为圆心,DM 为半径的弧
可以作角平分线. 根 据 以 上 情 境 ,解 决 下 列 问 题 :
(1)李老师用尺规作角 平 分 线 时,用 到 的 三 角 形 全 等 的 判 定方法是 .
(2)小聪的作法正确吗? 请说明理由. (3)请你帮小颖设计用 刻 度 尺 作 角 平 分 线 的 方 法.(要 求:
作 出 图 形 ,写 出 作 图 步 骤 ,不 予 证 明 )
第十四章 尺规作图与网格中画图
§14.1 尺 规 作 图
������������������������������������
1.掌握尺规作图的工具———直尺和圆规的使用. 3.能说出作图的根据,并能根据所作图形进行计算
2.懂得作图的 道 理,能 够 按 照 要 求 进 行 尺 规 作 图,
A.甲 、乙 均 正 确
B.甲 、乙 均 错 误
C.甲 正 确 、乙 错 误
人教版2023中考数学专题复习:尺规作图
尺规作图命题点1 五种基本尺规作图类型一判定作图结果1.(2022•德州)在△ABC中,根据下列尺规作图的痕迹,不能判断AB与AC 大小关系的是()A.B.C.D.2.(2022•益阳)如图,在△ABC中,BD平分∠ABC,以点A为圆心,以任意长为半径画弧交射线AB,AC于两点,分别以这两点为圆心,以适当的定长为半径画弧,两弧交于点E,作射线AE,交BD于点I,连接CI,以下说法错误的是()A.I到AB,AC边的距离相等B.CI平分∠ACBC.I是△ABC的内心D.I到A,B,C三点的距离相等3.(2022•盘锦)如图,线段AB是半圆O的直径.分别以点A和点O为圆心,大于的长为半径作弧,两弧交于M,N两点,作直线MN,交半圆O于点C,交AB于点E,连接AC,BC,若AE=1,则BC的长是()A.B.4C.6D.4.(2022•长春)如图,在△ABC中,根据尺规作图痕迹,下列说法不一定正确的是()A.AF=BF B.AE=ACC.∠DBF+∠DFB=90°D.∠BAF=∠EBC 5.(2022•威海)过直线l外一点P作直线l的垂线PQ.下列尺规作图错误的是()A.B.C.D.6.(2022•舟山)用尺规作一个角的角平分线,下列作法中错误的是()A.B.C.D.类型二根据作图步骤进行计算、证明或结论判断7.(2022•淄博)如图,在△ABC中,AB=AC,∠A=120°.分别以点A和C 为圆心,以大于AC的长度为半径作弧,两弧相交于点P和点Q,作直线PQ 分别交BC,AC于点D和点E.若CD=3,则BD的长为()A.4B.5C.6D.7 8.(2022•黄石)如图,在△ABC中,分别以A,C为圆心,大于AC长为半径作弧,两弧分别相交于M,N两点,作直线MN,分别交线段BC,AC于点D,E,若AE=2cm,△ABD的周长为11cm,则△ABC的周长为()A.13cm B.14cm C.15cm D.16cm 9.(2022•资阳)如图所示,在△ABC中,按下列步骤作图:第一步:在AB、AC上分别截取AD、AE,使AD=AE;第二步:分别以点D和点E为圆心、适当长(大于DE的一半)为半径作圆弧,两弧交于点F;第三步:作射线AF交BC于点M;第四步:过点M作MN⊥AB于点N.下列结论一定成立的是()A.CM=MN B.AC=AN C.∠CAM=∠BAM D.∠CMA=∠NMA 10.(2022•锦州)如图,在矩形ABCD中,AB=6,BC=8,分别以点A和C为圆心,以大于的长为半径作弧,两弧相交于点M和N,作直线MN分别交AD,BC于点E,F,则AE的长为()A.B.C.D.11.(2022•聊城)如图,△ABC中,若∠BAC=80°,∠ACB=70°,根据图中尺规作图的痕迹推断,以下结论错误的是()A.∠BAQ=40°B.DE=BD C.AF=AC D.∠EQF=25°12.(2022•百色)如图,是求作线段AB中点的作图痕迹,则下列结论不一定成立的是()A.∠B=45°B.AE=EB C.AC=BC D.AB⊥CD 13.(2022•营口)如图,在△ABC中,AB=AC,∠A=36°,由图中的尺规作图得到的射线与AC交于点D,则以下推断错误的是()A.BD=BC B.AD=BD C.∠ADB=108°D.CD=AD 14.(2022•鄂州)如图,直线l1∥l2,点C、A分别在l1、l2上,以点C为圆心,CA长为半径画弧,交l1于点B,连接AB.若∠BCA=150°,则∠1的度数为()A.10°B.15°C.20°D.30°15.(2022•枣庄)如图,在矩形ABCD中,按以下步骤作图:①分别以点B和D 为圆心,以大于BD的长为半径作弧,两弧相交于点E和F;②作直线EF 分别与DC,DB,AB交于点M,O,N.若DM=5,CM=3,则MN=.16.(2022•辽宁)如图,在△ABC中,AB=AC,∠B=54°,以点C为圆心,CA长为半径作弧交AB于点D,分别以点A和点D为圆心,大于AD长为半径作弧,两弧相交于点E,作直线CE,交AB于点F,则∠ACF的度数是.类型三依据要求直接作图17.(2022•淮安)如图,已知线段AC和线段a.(1)用直尺和圆规按下列要求作图.(请保留作图痕迹,并标明相应的字母,不写作法)①作线段AC的垂直平分线l,交线段AC于点O;②以线段AC为对角线,作矩形ABCD,使得AB=a,并且点B在线段AC的上方.(2)当AC=4,a=2时,求(1)中所作矩形ABCD的面积.18.(2022•襄阳)如图,在△ABC中,AB=AC,BD是△ABC的角平分线.(1)作∠ACB的角平分线,交AB于点E(尺规作图,不写作法,保留作图痕迹);(2)求证:AD=AE.19.(2022•宁夏)如图,四边形ABCD中,AB∥DC,AB=BC,AD⊥DC于点D.(1)用尺规作∠ABC的角平分线,交CD于点E;(不写作法,保留作图痕迹)(2)连接AE.求证:四边形ABCE是菱形.20.(2022•赤峰)如图,已知Rt△ABC中,∠ACB=90°,AB=8,BC=5.(1)作BC的垂直平分线,分别交AB、BC于点D、H;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接CD,求△BCD的周长.类型四转化类作图21.(2022•陕西)如图,已知△ABC,CA=CB,∠ACD是△ABC的一个外角.请用尺规作图法,求作射线CP,使CP∥AB.(保留作图痕迹,不写作法)命题点2无刻度直尺作图类型一网格中作图22.(2022•长春)图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1:2.23.(2022•江西)如图是4×4的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作∠ABC的角平分线;(2)在图2中过点C作一条直线l,使点A,B到直线l的距离相等.类型二根据图形性质作图24.(2022•湖北)已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.25.(2022•无锡)如图,△ABC为锐角三角形.(1)请在图1中用无刻度的直尺和圆规作图:在AC右上方确定点D,使∠DAC=∠ACB,且CD⊥AD;(不写作法,保留作图痕迹)(2)在(1)的条件下,若∠B=60°,AB=2,BC=3,则四边形ABCD的面积为.26.(2022•绥化)已知:△ABC.(1)尺规作图:用直尺和圆规作出△ABC内切圆的圆心O.(只保留作图痕迹,不写作法和证明)(2)如果△ABC的周长为14cm,内切圆的半径为1.3cm,求△ABC的面积.27.(2022•扬州)【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O 作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)11。
中考数学真题分类汇编及解析(五十三)尺规作图
(2022•舟山中考)用尺规作一个角的角平分线,下列作法中错误的是()A.B.C.D.【解析】选D.由图可知,选项A、B、C中的线都可以作为角平分线;选项D中的图作出的是平行四边形,不能保证角中间的线是角平分线.(2022•威海中考)过直线l外一点P作直线l的垂线PQ.下列尺规作图错误的是()A.B.C.D.【解析】选C.选项A,连接P A,PB,QA,QB,因为P A=PB,所以点P在线段AB的垂直平分线上,因为QA=QB,所以点Q在线段AB的垂直平分线上,所以PQ⊥l,故此选项不符合题意;选项B,连接P A,PB,QA,QB,因为P A=QA,所以点A在线段PQ的垂直平分线上,因为PB=QB,所以点B在线段PQ的垂直平分线上,所以PQ⊥l,故此选项不符合题意;选项C,无法证明PQ⊥l,故此选项符合题意;选项D,连接P A,PB,QA,QB,因为P A=QA,所以点A在线段PQ的垂直平分线上,因为PB=QB,所以点B在线段PQ的垂直平分线上,所以PQ⊥l,故此选项不符合题意.(2022•天津中考)如图,在每个小正方形的边长为1的网格中,圆上的点A,B,C及∠DPF的一边上的点E,F均在格点上.(Ⅰ)线段EF的长等于√10;(Ⅱ)若点M,N分别在射线PD,PF上,满足∠MBN=90°且BM=BN.请用无刻度的直尺,在如图所示的网格中,画出点M,N,并简要说明点M,N的位置是如何找到的(不要求【解析】)连接AC,与网格线交于点O,取格点Q,连接EQ交PD于点M,连接BM交⊙O于点⊙,连接GO,延长GO交⊙O于点H,连接BH,延长BH交PF于点N,则点M,N即为所求.【解析】(Ⅰ)EF=√12+32=√10.答案:√10;(Ⅱ)如图,点M,N即为所求.步骤:连接AC,与网格线交于点O,取格点Q,连接EQ交PD于点M,连接BM交⊙O于点⊙,连接GO,延长GO 交⊙O于点H,连接BH,延长BH交PF于点N,则点M,N即为所求.答案:连接AC,与网格线交于点O,取格点Q,连接EQ交PD于点M,连接BM交⊙O于点⊙,连接GO,延长GO 交⊙O于点H,连接BH,延长BH交PF于点N,则点M,N即为所求甲乙丙为定直角.以乙为圆心,以任何半径作丁戊弧;以丁为圆心,以乙丁为半径画弧得交点己;再以戊为圆心,仍以原半径画弧得交点庚;乙与己及庚相连作线.如图2,∠ABC为直角,以点B为圆心,以任意长为半径画弧,交射线BA,BC分别于点D,E;以点D为圆心,以BD长为半径画弧与DÊ交于点F;再以点E为圆心,仍以BD长为半径画弧与DÊ交于点G;作射线BF,BG.(1)根据以上信息,请你用不带刻度的直尺和圆规,在图2中完成这道作图题(保留作图痕迹,不写作法);(2)根据(1)完成的图,直接写出∠DBG,∠GBF,∠FBE的大小关系.【解析】(1)如图,射线BG,BF即为所求.(2)∠DBG=∠GBF=∠FBE.理由:连接DF,EG,则BD=BF=DF,BE=BG=EG,即△BDF和△BEG均为等边三角形,所以∠DBF=∠EBG=60°,因为∠ABC=90°,所以∠DBG=∠GBF=∠FBE=30°.【解析】(1)如图1中,射线BP即为所求;(2)如图2中,直线l即为所求.(2022•扬州中考)【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)【解析】【初步尝试】如图1,直线OP即为所求;【问题联想】如图2,三角形MNP即为所求;̂即为所求.【问题再解】如图3中,CD【解析】(1)如图,(2)AE =CF ,证明如下:因为四边形ABCD 是矩形,所以AD ∥BC ,所以∠EAO =∠FCO ,∠AEO =∠CFO ,因为EF 是AC 的垂直平分线,所以AO =CO ,在△AOE 和△COF 中,{∠AEO =∠CFO∠EAO =∠FCO AO =CO,所以△AOE ≌△COF (AAS ),所以AE =CF.(2022•陕西中考)如图,已知△ABC ,CA =CB ,∠ACD 是△ABC 的一个外角.请用尺规作图法,求作射线CP ,使CP ∥AB .(保留作图痕迹,不写作法)【解析】如图,射线CP 即为所求.(2022•无锡中考)如图,△ABC 为锐角三角形.(1)请在图1中用无刻度的直尺和圆规作图:在AC 右上方确定点D ,使∠DAC =∠ACB ,且CD ⊥AD ;(不写作法,保留作图痕迹)(2)在(1)的条件下,若∠B =60°,AB =2,BC =3,则四边形ABCD 的面积为 5 .【解析】(1)如图1中,点D 即为所求;(2)过点A作AH⊥BC于点H.在Rt△ABH中,AB=2,∠B=60°,所以BH=AB•cos60°=1,AH=AB•sin60°=√3,所以CH=BC﹣BH=2,因为∠DAC=∠ACB,所以AD∥BC,因为AH⊥CB,CD⊥AD,所以∠AHC=∠ADC=∠DCH=90°,所以四边形AHCD是矩形,所以AD=CH=2,所以S四边形ABCD=12×(2+3)×2=5,答案:5(2022•仙桃中考)已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.【解析】(1)如图1中,直线m即为所求;(2)如图2中,直线n即为所求;(1)尺规作图:用直尺和圆规作出△ABC内切圆的圆心O.(只保留作图痕迹,不写作法和证明)(2)如果△ABC的周长为14cm,内切圆的半径为1.3cm,求△ABC的面积.【解析】(1)如图,点O即为所求;(2)由题意,△ABC的面积=12×14×1.3=9.1(cm2).。
完整版)中考数学尺规作图专题复习(含答案)
完整版)中考数学尺规作图专题复习(含答案)尺规作图是用无刻度的直尺和圆规画图的方法,常见的作图包括线段的垂线、垂直平分线、角平分线、等长线段和等角。
以下是各种作图的具体方法:1.直线垂线的画法:以点C为圆心,任意长为半径画弧交直线与A、B两点,再以点A、B为圆心,大于AB的长为半径画圆弧,分别交直线l两侧于点M、N,连接MN,即可得到所求的垂线。
2.线段垂直平分线的画法:以点A、B为圆心,大于AB的长为半径画圆弧,分别交直线AB两侧于点C、D,连接CD,即可得到线段AB的垂直平分线。
3.角平分线的画法:以角顶点O为圆心,任意长为半径画圆,分别交角两边A、B点,再以A、B为圆心,大于AB的长为半径画圆弧,交点为H,连接OH并延长,即可得到所求的角平分线。
4.等长的线段的画法:直接用圆规量取即可。
5.等角的画法:以O为圆心,任意长为半径画圆,交原角的两边为A、B两点,连接AB;画一条射线l,以上面的半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求。
需要注意的是,直尺主要用于画直线和射线,圆规主要用于截取相等线段和画弧。
在作图时,如果有多个要求,应逐个满足并取公共部分。
例如,对于要求作一个三角形的问题,可以根据三角形全等的基本事实或判定定理来进行作图。
以下是例题解析:例题1:已知线段a,求作△ABC,使AB=BC=AC=a。
作法如下:1.作线段BC=a;2.分别以B、C为圆心,以a半径画弧,两弧交于点A;3.连接AB、AC。
例题2:已知线段a和∠α,求作△ABC,使AB=AC=a,∠A=∠α。
作法如下:1.作∠XXX∠α;2.以点A为圆心,a为半径画弧,分别交射线AM、AN 于点B、C;3.连接B、C。
例题3:已知△ABC,AB<BC,用尺规作图的方法在BC 上取一点P,使得PA+PC=BC。
作法如下:作出AB的垂直平分线,与BC交于点P。
中考数学总复习《尺规作图》专项测试卷带答案
中考数学总复习《尺规作图》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(2024·深圳中考)在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是( )A.①②B.①③C.②③D.只有①2.(2024·呼伦贝尔、兴安盟中考)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,适当长为半径画弧分别交AB,AC于点M和点N,再分别以点M,N为圆心,大于1MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D.若△ACD的面2积为8,则△ABD的面积是( )A.8B.16C.12D.243.(2024·广西中考)如图,在△ABC中,∠A=45°,AC>BC.(1)尺规作图:作线段AB的垂直平分线l,分别交AB,AC于点D,E;(要求:保留作图痕迹,不写作法,标明字母)(2)在(1)所作的图中,连接BE,若AB=8,求BE的长.4.(2024·浙江中考)尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦…我明白了!(1)证明:AF∥CE;(2)指出小丽作法中存在的问题.B层·能力提升AC的5.(2024·济南莱芜区模拟)如图,在矩形ABCD中,分别以点A,C为圆心,大于12长为半径画弧,两弧相交于M,N两点;作直线MN,分别交AD,BC于点E,F,连接AF 和CE.已知DE=3,AB=4,则以下四个结论中正确的是( )AC·EF;②AE=5;①S四边形AFCE=12③∠F AC=∠ACF=30°;④EF=2√5.A.①②③B.①②④C.②③④D.①②6.(2024·武汉中考)如图是由小正方形组成的3×4网格,每个小正方形的顶点叫格点.△ABC三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD交BC于点D,使AD平分△ABC的面积;(2)在(1)的基础上,在射线AD上画点E,使∠ECB=∠ACB;(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90°到点C,再画射线AF交BC 于点G;(4)在(3)的基础上,将线段AB绕点G旋转180°,画对应线段MN(点A与点M对应,点B与点N对应).7.(2024·绥化中考)已知:△ABC.(1)尺规作图:画出△ABC的重心G.(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,连接AG,BG.已知△ABG的面积等于5 cm2,则△ABC的面积是_________cm2.C层·素养挑战8.(2024·淄博淄川区二模)如图,在四边形ABCD中,AB=AD,AB⊥AD,顶点(k>0,x>0)的图象经过C(4,n),D两A(0,2),B(1,0)分别在y轴、x轴上反比例函数y=kx点.(1)求反比例函数的解析式;(2)请用无刻度的直尺和圆规作出线段BC的垂直平分线;(要求:不写作法,保留作图痕迹)(3)线段BC与(2)中所作的垂直平分线分别与BC,AD交于点M,N两点.求点M的坐标.参考答案A层·基础过关1.(2024·深圳中考)在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是(B)A.①②B.①③C.②③D.只有①2.(2024·呼伦贝尔、兴安盟中考)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,适当长为半径画弧分别交AB,AC于点M和点N,再分别以点M,N为圆心,大于1MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D.若△ACD的面2积为8,则△ABD的面积是(B)A.8B.16C.12D.243.(2024·广西中考)如图,在△ABC中,∠A=45°,AC>BC.(1)尺规作图:作线段AB的垂直平分线l,分别交AB,AC于点D,E;(要求:保留作图痕迹,不写作法,标明字母)【解析】(1)图形如图所示:(2)在(1)所作的图中,连接BE,若AB=8,求BE的长.【解析】(2)∵DE垂直平分线段AB,∴EB=EA∴∠EBA=∠A=45°,∴∠BEA=90°AB=4∵BD=DA,∴DE=DB=DA=12∴BE=√2BD=4√2.4.(2024·浙江中考)尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦…我明白了!(1)证明:AF∥CE;【解析】(1)根据小明的作法知,CF=AE∵四边形ABCD是平行四边形∴AD∥BC,又∵CF=AE∴四边形AFCE是平行四边形∴AF∥CE;(2)指出小丽作法中存在的问题.【解析】(2)以A为圆心,EC为半径画弧,交BC于点F,此时可能会有两个交点,只有其中之一符合题意.故小丽的作法有问题.B层·能力提升AC的5.(2024·济南莱芜区模拟)如图,在矩形ABCD中,分别以点A,C为圆心,大于12长为半径画弧,两弧相交于M,N两点;作直线MN,分别交AD,BC于点E,F,连接AF 和CE.已知DE=3,AB=4,则以下四个结论中正确的是(B)AC·EF;②AE=5;①S四边形AFCE=12③∠F AC=∠ACF=30°;④EF=2√5.A.①②③B.①②④C.②③④D.①②6.(2024·武汉中考)如图是由小正方形组成的3×4网格,每个小正方形的顶点叫格点.△ABC三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD交BC于点D,使AD平分△ABC的面积;(2)在(1)的基础上,在射线AD上画点E,使∠ECB=∠ACB;(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90°到点C,再画射线AF交BC 于点G;(4)在(3)的基础上,将线段AB绕点G旋转180°,画对应线段MN(点A与点M对应,点B与点N对应).【解析】(1)如图(1)中,线段AD即为所求;(2)如图(1)中,点E即为所求;(3)如图(2)中,点C,射线AF,点G即为所求;(4)如图(2)中,线段MN即为所求.7.(2024·绥化中考)已知:△ABC.(1)尺规作图:画出△ABC的重心G.(保留作图痕迹,不要求写作法和证明)【解析】(1)分别作出AB边和BC边的垂直平分线,与AB和BC边分别交于点N 和点M连接AM和CN如图所示,点G即为所求作的点.(2)在(1)的条件下,连接AG,BG.已知△ABG的面积等于5 cm2,则△ABC的面积是_________cm2.答案:15【解析】(2)∵点G是△ABC的重心∴AG=2MG∵△ABG的面积等于5 cm2∴△BMG的面积等于2.5 cm2∴△ABM的面积等于7.5 cm2.又∵AM是△ABC的中线∴△ABC的面积等于15 cm2.C层·素养挑战8.(2024·淄博淄川区二模)如图,在四边形ABCD中,AB=AD,AB⊥AD,顶点A(0,2),B(1,0)分别在y轴、x轴上反比例函数y=k(k>0,x>0)的图象经过C(4,n),D两x点.(1)求反比例函数的解析式;【解析】(1)过点D作DT⊥OA于点T.∵A(0,2),B(1,0)∴OA=2,OB=1∵AB⊥AD,DT⊥OT∴∠DTA=∠DAB=∠AOB=90°∵∠DAT+∠OAB=90°,∠OAB+∠ABO=90°,∴∠DAT=∠ABO ∵AD=AB∴△DTA≌△AOB(AAS)∴AT=OB=1,DT=AO=2∴OT=OA+AT=3∴D(2,3)∵反比例函数y=kx (k>0,x>0)的图象经过D点,∴3=k2,∴k=6∴反比例函数解析式为y=6x;(2)请用无刻度的直尺和圆规作出线段BC的垂直平分线;(要求:不写作法,保留作图痕迹)【解析】(2)如图,直线MN即为所求;(3)线段BC与(2)中所作的垂直平分线分别与BC,AD交于点M,N两点.求点M的坐标.【解析】(3)∵C(4,n)在y=6x的图象上∴n=32∴C(4,32)∵BM=CM,B(1,0)∴M(4+12,32+02)即M(52,34).第11页共11页。
中考数学复习专题25:尺规作图(含中考真题解析)
专题25 尺规作图☞解读考点知识点名师点晴尺规作图尺规作图概念了解什么是尺规作图五种基本作图1.画一条线段等于已知线段会用尺规作图法完成五种基本作图,了解五种基本作图的理由,会使用精练、准确的作图语言叙述画图过程.2.画一个角等于已知角3.画线段的垂直平分线4.过已知点画已知直线的垂线5.画角平分线会利用基本作图画较简单的图形.1.画三角形会利用基本作图画三角形较简单的图形.2.画圆会利用基本作图画圆.☞2年中考【2015年题组】1.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.【答案】D.第1 页共32 页考点:作图—复杂作图.考点:作图—复杂作图.2.如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于12AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是(下列结论错误的是( )A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC 【答案】D.【解析】【解析】试题分析:∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°;∵∠ACB=90°,∴CD=BD;∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED;∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.故选D.考点:1.作图—基本作图;2.线段垂直平分线的性质;3.直角三角形斜边上的中线..直角三角形斜边上的中线. 3.如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为(的度数,结果为( )A.80°B.90°C.100°D.105°【答案】B.【解析】【解析】试题分析:如图,试题分析:如图,AB是以点C为圆心,BC长为半径的圆的直径,因为直径对的圆周角是90°,所以∠AMB=90°,所以测量∠AMB的度数,结果为90°.故选B.考点:1.等腰三角形的性质;2.作图—基本作图.基本作图.4.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:,按如下步骤作图:第一步,分别以点A、D为圆心,以大于12AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.的长是( )若BD=6,AF=4,CD=3,则BE的长是(A.2 B.4 C.6 D.8 【答案】D.基本作图.考点:1.平行线分线段成比例;2.菱形的判定与性质;3.作图—基本作图.5.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆分别作出了下列四个图形.其中作法错误的是( )规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是(A.B.C.D.【答案】A.考点:作图—基本作图.考点:作图—基本作图.6.数学课上,老师让学生尺规作图画Rt △ABC ,使其斜边AB=c ,一条直角边BC=a .小明的作法如图所示,你认为这种作法中判断∠ACB 是直角的依据是(是直角的依据是( )A .勾股定理.勾股定理B .直径所对的圆心角是直角.直径所对的圆心角是直角C .勾股定理的逆定理.勾股定理的逆定理D .90°的圆周角所对的弦是直径的圆周角所对的弦是直径 【答案】B . 【解析】【解析】试题分析:由作图痕迹可以看出O 为AB 的中点,以O 为圆心,AB 为半径作圆,然后以B 为圆心BC=a 为半径花弧与圆O 交于一点C ,故∠ACB 是直径所对的圆周角,所以这种作法中判断∠ACB 是直角的依据是:直径所对的圆心角是直角.故选B . 考点:1.作图—复杂作图;2.勾股定理的逆定理;3.圆周 角定理.角定理.7.如图,将线段AB 放在边长为1的小正方形网格,点A 点B 均落在格点上,请用无刻度直尺在线段AB 上画出点P ,使AP=3172,并保留作图痕迹.(备注:本题只是找点不是证明,∴只需连接一对角线就行)证明,∴只需连接一对角线就行)【答案】作图见试题解析.【答案】作图见试题解析.考点:作图—应用与设计作图.考点:作图—应用与设计作图.8.)阅读下面材料:在数学课上,老师提出如下问题:)阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是 .请回答:小芸的作图依据是【答案】到线段两个端点距离相等的点在线段的垂直平分线上;两点确定一条直线..作图题.考点:1.作图—基本作图;2.作图题.9.已知⊙O为△ABC的外接圆,圆心O在AB上.上.(1)在图1中,用尺规作图作∠BAC的平分线AD交⊙O于D(保留作图痕迹,不写作法与证明);(2)如图2,设∠BAC 的平分线AD 交BC 于E ,⊙O 半径为5,AC=4,连接OD 交BC 于F .①求证:OD ⊥BC ; ②求EF 的长.的长.【答案】(1)作图见试题解析;(2)①证明见试题解析;②3217.【解析】【解析】 试题分析:(1)按照作角平分线的方法作出即可;)按照作角平分线的方法作出即可;(2)①由AD 是∠BAC 的平分线,得到CD BD =,再由垂径定理推论可得到结论;,再由垂径定理推论可得到结论;②由勾股定理求得CF 的长,然后根据平行线分线段成比例定理求得34EFFD CEAC==,即可求得37EF CF =,继而求得EF 的长.的长.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.勾股定理;4.圆周.压轴题.角定理;5.作图—复杂作图;6.压轴题.10.如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)【答案】答案见试题解析.【答案】答案见试题解析.【解析】【解析】试题分析:①以A为圆心,以3为半径作弧,交AD、AB两点,连接即可;②连接AC,在AC上,以A为端点,截取1.5个单位,过这个点作AC的垂线,交AD、AB两点,连接即可;③以A为端点在AB上截取试题解析:满足条件的所有图形如图所示:试题解析:满足条件的所有图形如图所示:考点:1.作图—应用与设计作图;2.等腰三角形的判定;3.勾股定理;4.正方形的性质;5.综合题;6.压轴题..压轴题.11.图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD ,已知OA=5,若扇形OAD (∠AOD <180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于的侧面,则这个圆锥底面圆的半径等于 .【答案】(1)作图见试题解析;(2)158.【解析】【解析】 试题分析:(1)作AE 的垂直平分线交⊙O 于C ,G ,作∠AOG ,∠EOG 的角平分线,分别交⊙O 于H ,F ,反向延长,反向延长 FO ,HO ,分别交⊙O 于D ,B 顺次连接A ,B ,C ,D ,E ,F ,G ,H ,八边形ABCDEFGH 即为所求;即为所求; (2)由八边形ABCDEFGH 是正八边形,求得∠AOD 的度数,得到AD 的长,设这个圆锥底面圆的半径为R ,根据圆的周长的公式即可求得结论.,根据圆的周长的公式即可求得结论. 试题解析:(1)如图所示,八边形ABCDEFGH 即为所求;即为所求;(2)∵八边形ABCDEFGH 是正八边形,∴∠AOD=3608×3=135°,∵OA=5,∴AD 的长=1355180p ´=154p ,设这个圆锥底面圆的半径为R ,∴2πR=154p,∴R=158,即这个圆锥底面圆的半径为158.故答案为:158.考点:1.正多边形和圆;2.圆锥的计算;3.作图—复杂作图.复杂作图.12.手工课上,老师要求同学们将边长为4cm 的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)等腰直角三角形面积(注:不同的分法,面积可以相等)【答案】答案见试题解析.【答案】答案见试题解析.(2)正方形ABCD中,E、F分别是AB、BC的中点,O是AC、BD的交点,连接OE、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可;分割后得到的最小等腰直角三角形面积即可;(3)正方形ABCD中,F、H分别是BC、DA的中点,O是AC、BD的交点,连接HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可;得到的最小等腰直角三角形面积即可;(4)正方形ABCD中,E、F分别是AB、BC的中点,O是AC的中点,I是AO的中点,连接OE、OB、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.面积公式,求出分割后得到的最小等腰直角三角形面积即可.试题解析:根据分析,可得:试题解析:根据分析,可得:..操作型.考点:1.作图—应用与设计作图;2.操作型.13.如图,一条公路的转弯处是一段圆弧(AB).(要求保留作图痕迹,不写作法)(1)用直尺和圆规作出AB所在圆的圆心O;(要求保留作图痕迹,不写作法)所在圆的半径.(2)若AB的中点C到弦AB的距离为20m,AB=80m,求AB所在圆的半径.【答案】(1)作图见试题解析;(2)50m.试题解析:(1)如图1,点O为所求;为所求;(2)连接OA,OC,OC交AB于D,如图2,∵C为AB的中点,∴OC⊥AB,∴AD=BD=12AB=40,设⊙O的半径为r,则OA=r,OD=OD﹣CD=r﹣20,在Rt△OAD中,∵222OA OD BD=+,∴222(20)40r r=-+,解得r=50,即AB所在圆的半径是50m.考点:1.作图—复杂作图;2.勾股定理;3.垂径定理的应用;4.作图题..作图题.14.如图,一块余料ABCD,AD∥BC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于12GH的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.(1)求证:AB=AE;(2)若∠A=100°,求∠EBC的度数.的度数.【答案】(1)证明见试题解析;(2)40°.°.考点:1.作图—基本作图;2.等腰三角形的判定与性质..等腰三角形的判定与性质.15.如图,射线P A切⊙O于点A,连接PO.(1)在PO的上方作射线PC,使∠OPC=∠OP A(用尺规在原图中作,保留痕迹,不写作法),并证明PC是⊙O的切线;的切线;(2)在(1)的条件下,若PC切⊙O于点B,AB=AP=4,求AB的长.的长.【答案】(1)作图见试题解析,证明见试题解析;(2)839p.【解析】【解析】试题分析:(1)按照作一个角等于已知角的作图方法作图即可,连接OA,作OB⊥PC,由角平分线的性质证明OA=OB即可证明PC是⊙O的切线;的切线;(2)先证明△P AB是等边三角形,则∠APB=60°,进而∠POA=60°,在Rt△AOP中求出OA,用弧长公式计算即可.,用弧长公式计算即可.试题解析:(1)作图如右图,作图如右图,连接连接OA,过O作OB⊥PC,∵P A切⊙O于点A,∴OA⊥P A,又∵∠OPC=∠OP A ,OB ⊥PC ,∴OA=OB ,即d=r ,∴PC 是⊙O 的切线;的切线;(2)∵P A 、PC 是⊙O 的切线,∴PA=PB ,又∵AB=AP=4,∴△P AB 是等边三角形,∴∠APB=60°,∴∠AOB=120°,∠POA=60°,在Rt △AOP 中,tan60°tan60°==4OA ,∴OA=433,∴431203180AB l p ´´==839p .考点:1.切线的判定与性质;2.弧长的计算;3.作图—基本作图.基本作图.16.如图,AC 是⊙O 的直径,点B 在⊙O 上,∠ACB=30°.(1)利用尺规作∠ABC 的平分线BD ,交AC 于点E ,交⊙O 于点D ,连接CD (保留作图痕迹,不写作法);(2)在(1)所作的图形中,求△ABE 与△CDE 的面积之比.的面积之比.【答案】(1)作图见试题解析;(2)12.试题解析:(1)如图所示;)如图所示;考点:1.作图—复杂作图;2.圆周角定理..圆周角定理.17.)图①,图②,图③都是4×4×44的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:图:为一边画一个等腰三角形;(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;为一边画一个正方形;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.)作图见试题解析.【答案】(1)作图见试题解析;(2)作图见试题解析;(3)作图见试题解析.【解析】【解析】的等腰三角形即可; 试题分析:(1)根据勾股定理,结合网格结构,作出两边分别为5的等腰三角形即可;的正方形;(2)根据勾股定理逆定理,结合网格结构,作出边长为5的正方形;(3)根据勾股定理逆定理,结合网格结构,作出最长的线段作为正方形的边长即可.个:试题解析:(1)如图①,符合条件的C点有5个:;的面积最大.(3)如图③,边长为10的正方形ABCD的面积最大..考点:作图—应用与设计作图.考点:作图—应用与设计作图.18.)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均,每个小正方形的顶点叫做格点.为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).【答案】(1)答案见试题解析;(2)答案见试题解析.)答案见试题解析.所示;试题解析:(1)如图1所示;(2)如图2、3所示;所示;考点:作图—应用与设计作图.考点:作图—应用与设计作图. 19.)如图,已知Rt △ACB 中,∠C =90°,∠BAC =45°. (1)(4分)用尺规作图,在CA 的延长线上截取AD =AB ,并连接BD (不写作法,保留作图痕迹); (2)(4分)求∠BDC 的度数;的度数; (3)(4分)定义:在直角三角形中,一个锐角A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即的对边的邻边A A A ÐÐ=cot ,根据定义,利用图形求cot22.5°的值.的值.【答案】(1)答案见试题解析;(2)22.5°;(3)21+.试题解析:(1)如图,)如图,(2)∵AD=AB ,∴∠ADB=∠ABD ,而∠BAC=∠ADB+∠ABD ,∴∠ADB=12∠BAC=12×45°45°=22.5°=22.5°,即∠BDC 的度数为22.5°;(3)设AC=x ,∵∠C=90°,∠BAC=45°,∴△ACB 为等腰直角三角形,∴BC=AC=x ,AB=2AC=2x ,∴AD=AB=2x ,∴CD=2x x +=(21)x +,在Rt △BCD 中,cot∠BDC=DC BC =(21)xx+=21+,即cot22.5°cot22.5°==21+. 考点:1.作图—复杂作图;2.解直角三角形;3.新定义;4.综合题..综合题.20.)如图,△ABC 是直角三角形,∠ACB=90°.(1)尺规作图:作⊙C ,使它与AB 相切于点D ,与AC 相交于点E ,保留作图痕迹,不写作法,请标明字母;作法,请标明字母;(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,求DE 的长.的长.【答案】(1)作图见试题解析;(2)32p .试题解析:(1)如图,)如图,⊙C 为所求;为所求;(2)∵⊙C 切AB 于D ,∴CD ⊥AB ,∴∠ADC=90°,∴∠DCE=90°﹣∠A=90°﹣30°30°=60°=60°,∴∠BCD=90°﹣∠ACD=30°,在Rt △BCD 中,∵cos ∠BCD=CD BC ,∴CD=3cos30°CD=3cos30°==332,∴DE 的长=33602180p ×=32p. 考点:1.作图—复杂作图;2.切线的性质;3.弧长的计算;4.作图题..作图题.21.如图,在△ABC 中,AB=AC ,∠DAC 是△ABC 的一个外角.的一个外角. 实验与操作:实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法) (1)作∠DAC 的平分线AM ;(2)作线段AC 的垂直平分线,与AM 交于点F ,与BC 边交于点E ,连接AE ,CF . 猜想并判断四边形AECF 的形状并加以证明.的形状并加以证明.【答案】(1)作图见试题解析;(2)作图见试题解析,四边形AECF 的形状为菱形.的形状为菱形. 【解析】【解析】考点:1.作图—复杂作图;2.角平分线的性质;3.线段垂直平分线的性质;4.作图题;5.探究型;6.菱形的判定..菱形的判定.22.在边长为1的小正方形组成的方格纸中,的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点若多边形的各顶点都在方格纸的格点若多边形的各顶点都在方格纸的格点(横竖格(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a ,边界上的格点数为b ,则格点多边形的面积可表示为1-+=nb ma S ,其中m ,n 为常数.为常数. (1)在下面的方格中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;、菱形;(2)利用(1)中的格点多边形确定m ,n 的值.的值.【答案】(1)答案见试题解析;(2)112m n =ìïí=ïî.(2)∵格点多边形内的格点数为a ,边界上的格点数为b ,则格点多边形的面积可表示为:1-+=nb ma S ,其中m , n 为常数,为常数,∴三角形:3816S m n =+-=,平行四边形:3816S m n =+-=,菱形:5416S m n =+-=,则38165416m n m n +-=ìí+-=î,解得:112m n =ìïí=ïî. 考点:作图—应用与设计作图.考点:作图—应用与设计作图.23.“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a ,b ,c ,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.的整数个单位长度. (1)用记号(a ,b ,c )(a≤b≤c )表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a <b <c 的三角形(用给定的单位长度,不写作法,保留作图痕迹).【答案】(1)共9种:(2,2,2),(2,2,3),(2,3,3),(2,3,4),(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4);(2)答案见试题解析.)答案见试题解析. 【解析】【解析】 试题分析:(1)应用列举法,根据三角形三边关系列举出所有满足条件的三角形;)应用列举法,根据三角形三边关系列举出所有满足条件的三角形;(2)首先判断满足条件的三角形只有一个:a=2,b=3,c=4,再作图:①作射线AB ,且取AB=4;②以点A 为圆心,3为半径画弧;以点B 为圆心,2为半径画弧,两弧交于点C ; ③连接AC 、BC .则△ABC 即为满足条件的三角形.即为满足条件的三角形.考点:1.作图—应用与设计作图;2.三角形三边关系..三角形三边关系.24.各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形..各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形.如何计算如何计算它的面积?奥地利数学家皮克(G•Pick ,1859~1942年)证明了格点多边形的面积公式121-+=b a S ,其中a 表示多边形内部的格点数,b 表示多边形边界上的格点数,S 表示多边形的面积.如图,4=a ,6=b ,616214=-´+=S .(1)请在图中画一个格点正方形,使它的内部只含有4个格点,并写出它的面积.个格点,并写出它的面积.(2)请在图乙中画一个格点三角形,使它的面积为27,且每条边上除顶点外无其它格点.(注:图甲、图乙在答题纸上)(注:图甲、图乙在答题纸上)【答案】. 【解析】【解析】 试题分析:(1)根据皮克公式画图计算即可;)根据皮克公式画图计算即可;(2)根据题意可知a=3,b=3,画出满足题意的图形即可.,画出满足题意的图形即可. 试题解析:(1)方法不唯一,如图①或图②所示:)方法不唯一,如图①或图②所示:(2)方法不唯一,如图③或图④所示:)方法不唯一,如图③或图④所示:考点:作图—应用与设计作图.考点:作图—应用与设计作图. 25.【问题提出】【问题提出】用n 根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?,能搭成多少种不同的等腰三角形? 【问题探究】【问题探究】不妨假设能搭成m 种不同的等腰三角形,为探究m 与n 之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.手,通过试验、观察、类比、最后归纳、猜测得出结论. 【探究一】【探究一】(1)用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形? 此时,显然能搭成一种等腰三角形.此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1.(2)用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形? 只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形.根木棒这一种情况,不能搭成三角形. 所以,当n=4时,m=0.(3)用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形? 若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形.根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形.根木棒,则能搭成一种等腰三角形. 所以,当n=5时,m=1.(4)用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形? 若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形.根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形.根木棒,则能搭成一种等腰三角形.所以,当n=6时,m=1. 综上所述,可得:表①综上所述,可得:表①n 3 4 5 6 m 1 0 1 1 【探究二】【探究二】(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?根相同的木棒搭一个三角形,能搭成多少种不同的三角形? (仿照上述探究方法,写出解答过程,并将结果填在表②中)(仿照上述探究方法,写出解答过程,并将结果填在表②中)(2)用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形? (只需把结果填在表②中)(只需把结果填在表②中) 表②表②n 7 8 9 10 m 你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…【问题解决】:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n是正整数,把结果填在表③中)分别等于4k﹣1,4k,4k+1,4k+2,其中k是正整数,把结果填在表③中)表③表③n 4k﹣1 4k 4k+1 4k+2 m 【问题应用】:(写能搭成多少种不同的等腰三角形?(写用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形(木棒无剩余)(只填结果)出解答过程),其中面积最大的等腰三角形每腰用了,其中面积最大的等腰三角形每腰用了 根木棒.(只填结果)【答案】【探究二】:2;1;2;2;【问题解决】:k;k﹣1;k;k;【问题应用】:672.根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?试题解析:(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,能搭成二种等腰三角形,即分成2根木棒、2根木棒和3根木棒,则能搭成一种等腰三角形三角形根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?用10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根木棒,则能搭成一种等腰三角形分成3根木棒、3根木棒和4根木棒,则能搭成一种等腰三角形根木棒,则能搭成一种等腰三角形分成4根木棒、4根木棒和2根木棒,则能搭成一种等腰三角形所以,当n=10时,m=2.故答案为:2;1;2;2.问题解决:由规律可知,答案为:k;k﹣1;k;k.问题应用:2016÷2016÷4=5044=504,504﹣1=503,当三角形是等边三角形时,面积最大,2016÷2016÷3=6723=672,∴用2016根相同的木棒搭一个三角形,能搭成503种不同的等腰三角形,其中面积最大的等腰三角形每腰用672根木棒.根木棒.考点:1.作图—应用与设计作图;2.三角形三边关系;3.等腰三角形的判定与性质;4.探究型;5.综合题;6.压轴题..压轴题.【2014年题组】年题组】1.)用直尺和圆规作一个角等于已知角,如图,能得出∠A ′O ′B ′=∠AOB 的依据是( )A .SASB .SSSC .ASAD .AAS 【答案】B .考点:作图—基本作图;全等三角形的判定与性质.考点:作图—基本作图;全等三角形的判定与性质.2.模)如图,AD 为⊙O 的直径,作⊙O 的内接正三角形ABC ,甲、乙两人的作法分别如下:下:甲:①作OD 的垂直平分线,交⊙O 于B ,C 两点.两点. ②连接AB ,AC .△ABC 即为所求作的三角形.即为所求作的三角形.乙:①以D为圆心,OD的长为半径作圆弧,交⊙O于B,C两点.两点.即为所求作的三角形.②连接AB,BC,CA.△ABC即为所求作的三角形.对于甲、乙两人的作法,可判断( )对于甲、乙两人的作法,可判断(A.甲、乙均正确.甲、乙均错误.甲、乙均正确 B.甲、乙均错误C.甲正确,乙错误.甲错误,乙正确.甲正确,乙错误 D.甲错误,乙正确【答案】A.【解析】【解析】试题分析:根据甲的思路,作出图形如下:试题分析:根据甲的思路,作出图形如下:连接OB,BD,∵OD=BD,OD=OB,∴OD=BD=OB,∴△BOD为等边三角形,∴∠OBD=∠BOD=60°,又BC垂直平分OD,∴OM=DM,∴BM为∠OBD的平分线,∴∠OBM=∠DBM=30°,又OA=OB,且∠BOD为△AOB的外角,∴∠BAO=∠ABO=30°,∴∠ABC=∠ABO+∠OBM=60°,同理∠ACB=60°,∴∠BAC=60°,∴∠ABC=∠ACB=∠BAC,∴△ABC 为等边三角形,故乙作法正确,故选A 考点:垂径定理;等边三角形的判定与性质;含30度角的直角三角形.度角的直角三角形.3.)如图,BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是,并直接写出旋转角度是 .【答案】90°.°.【解析】【解析】试题分析:如图所示:旋转角度是90°.°.考点:作图-旋转变换.旋转变换.4.)如图,在△ABC中,按以下步骤作图:中,按以下步骤作图:①分别以B,C为圆心,以大于12BC的长为半径作弧,两弧相交于M,N两点;两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为的度数为 【答案】105°.°.考点:作图—基本作图;线段垂直平分线的性质.考点:作图—基本作图;线段垂直平分线的性质.5.)如图,在Rt△ABC中,∠B=90°,分别以A、C为圆心,大于12AC长为半径画弧,。
2019全国中考数学真题分类汇编之37:尺规作图(含答案)
2019年全国中考数学真题分类汇编:尺规作图一、选择题1. (2019年北京市)已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作弧PQ ,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交弧PQ 于点M ,N ; (3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( ) A.∠COM=∠COD B.若OM=MN ,则∠AOB=20°C.MN ∥CDD.MN=3CD【考点】尺规作图【解答】连接ON ,由作图可知△COM ≌△DON.A. 由△COM ≌△DON.,可得∠COM=∠COD ,故A 正确.B. 若OM=MN ,则△OMN 为等边三角形,由全等可知∠COM=∠COD=∠DON=20°,故B 正确C.由题意,OC=OD ,∴∠OCD=2COD180∠-︒.设OC与OD 与MN 分别交于R ,S ,易证△MOR ≌△NOS ,则OR=OS ,∴∠ORS=2COD180∠-︒,∴∠OCD=∠ORS.∴MN ∥CD ,故C 正确.D.由题意,易证MC=CD=DN ,∴MC+CD+DN=3CD.∵两点之间线段最短.∴MN <MC+CD+DN=3CD ,故选D2. (2019年河南省)如图,在四边形ABCD 中,AD ∥BC ,∠D =90°,AD =4,BC =3.分 别以点A ,C 为圆心,大于AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( ) A .2B .4C .3D .【考点】尺规作图、线段垂直平分线的判定与性质、勾股定理、全等三角形的判定与性质【解答】解:如图,连接FC ,则AF =FC . ∵AD ∥BC , ∴∠F AO =∠BCO . 在△FOA 与△BOC 中,N MD OBCPA,∴△FOA≌△BOC(ASA),∴AF=BC=3,∴FC=AF=3,FD=AD﹣AF=4﹣3=1.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+12=32,∴CD=2.故选:A.3.(2019年湖北省襄阳市)如图,分别以线段AB的两个端点为圆心,大于AB的一半的长为半径画弧,两弧分别交于C,D两点,连接AC,BC,AD,BD,则四边形ADBC一定是()A.正方形B.矩形C.梯形D.菱形【考点】尺规作图、菱形的判定【解答】解:由作图可知:AC=AD=BC=BD,∴四边形ACBD是菱形,故选:D.4.(2019年湖北省宜昌市)通过如下尺规作图,能确定点D是BC边中点的是()A.B.C.D.【考点】尺规作图【解答】解:作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选:A.5.(2019年内蒙古包头市)如图,在Rt△ABC中,∠B=90°,以点A为圆心,适当长为半径画弧,分别交AB、AC于点D,E,再分别以点D、E为圆心,大于DE为半径画弧,两弧交于点F,作射线AF交边BC于点G,若BG=1,AC=4,则△ACG的面积是()A.1 B.C.2 D.【考点】尺规作图-角的平分线【解答】解:由作法得AG平分∠BAC,∴G点到AC的距离等于BG的长,即G点到AC的距离为1,所以△ACG的面积=×4×1=2.故选:C.6.(2019年新疆)如图,在△ABC中,∠C=90°,∠A=30°,以点B为圆心,适当长为半径画弧,分别交BA,BC于点M,N;再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.则下列说法中不正确的是()A.BP是∠ABC的平分线B.AD=BDC.S△CBD:S△ABD=1:3D.CD=BD【考点】尺规作图-角的平分线【解答】解:由作法得BD平分∠ABC,所以A选项的结论正确;∵∠C=90°,∠A=30°,∴∠ABC=60°,∴∠ABD=30°=∠A,∴AD=BD,所以B选项的结论正确;∵∠CBD=∠ABC=30°,∴BD=2CD,所以D选项的结论正确;∴AD=2CD,∴S△ABD=2S△CBD,所以C选项的结论错误.故选:C.二、填空题1.(2019年辽宁省本溪市)如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE=BF;分别以E,F为圆心,以大于EF的长为半径作弧,两弧在∠ABD 内交于点G,作射线BG交AD于点P,若AP=3,则点P到BD的距离为.【考点】尺规作图【解答】解:结合作图的过程知:BP平分∠ABD,∵∠A=90°,AP=3,∴点P到BD的距离等于AP的长,为3,故答案为:3.三、解答题1.(2019年山东省菏泽市)如图,四边形ABCD是矩形.(1)用尺规作线段AC的垂直平分线,交AB于点E,交CD于点F(不写作法,保留作图痕迹);(2)若BC=4,∠BAC=30°,求BE的长.【考点】尺规作图、垂直平分线【解答】解:(1)如图所示:(2)∵四边形ABCD是矩形,EF是线段AC的垂直平分线,∴AE=EC,∠CAB=∠ACE=30°,∴∠ECB=60°,∴∠ECB=30°,∵BC=4,∴BE=.2.(2019年山东省济宁市)如图,点M和点N在∠AOB内部.(1)请你作出点P,使点P到点M和点N的距离相等,且到∠AOB两边的距离也相等(保留作图痕迹,不写作法);(2)请说明作图理由.【考点】作角平分线、作线段垂直平分线【解答】解:(1)如图,点P到点M和点N的距离相等,且到∠AOB两边的距离也相等;(2)理由:角的平分线上的点到角的两边的距离相等、直平分线上的点到线段两端点的距离相等.3.(2019年山东省青岛市)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.【考点】尺规作图【解答】解:如图,△ABC为所作.4.(2019年山东省枣庄市)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【考点】尺规作图-线段的垂直平分线、菱形的性质【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.5.(2019年四川省达州市)如图,在Rt△ABC中,∠ACB=90°,AC=2,BC=3.(1)尺规作图:不写作法,保留作图痕迹.①作∠ACB的平分线,交斜边AB于点D;②过点D作BC的垂线,垂足为点E.(2)在(1)作出的图形中,求DE的长.【考点】尺规作图-角的平分线、相似三角形【解答】解:(1)如图,DE为所作;(2)∵CD平分∠ACB,∴∠BCD=∠ACB=45°,∵DE⊥BC,∴△CDE为等腰直角三角形,∴DE =CE , ∵DE ∥AC , ∴△BDE ∽△BAC , ∴=,即=,∴DE =.6. (2019年广西贵港市)尺规作图(只保留作图痕迹,不要求写出作法): 如图,已知△ABC ,请根据“SAS ”基本事实作出△DEF ,使△DEF ≌△ABC .【考点】尺规作图、全等三角形的判定 【解答】解:如图,△DEF 即为所求.7. (2019年江苏省泰州市)如图, △ABC 中,∠C =900, AC=4, BC=8, (1)用直尺和圆规作AB 的垂直平分线;(保留作图痕迹,不要求写作法) (2)若(1)中所作的垂直平分线交BC 于点D,求BD 的长.【考点】尺规作图-线段的垂直平分线、勾股定理 【解答】解:(1)略;(2)由作图可知 AD =BD ,设BD= , ∵∠C =900, AC=4, BC=8, 则CD =(8−), ∴由勾股定理可得:AC 2+CD 2=AD 2; ∴42+2=(8−)2;解得:=5.∴BD=5.8.(2019年陕西省)如图,在△ABC中,AB=AC,AD是BC边上的高,请用尺规作图法,求作△ABC的外接圆.(保留作图痕迹,不写作法)【考点】尺规作图-线段的垂直平分线【解答】9.(2019年甘肃省)如图,在△ABC中,点P是AC上一点,连接BP,求作一点M,使得点M到AB和AC两边的距离相等,并且到点B和点P的距离相等.(不写作法,保留作图痕迹)【考点】尺规作图-角平分线【解答】解:如图,点M即为所求,10.(2019年甘肃省武威市)已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=.【考点】尺规作图-角平分线、等腰三角形的性质、三角形的外接圆与外心【解答】解:(1)如图⊙O即为所求.(2)设线段BC的垂直平分线交BC于点E.由题意OE=4,BE=EC=3,在Rt△OBE中,OB==5,∴S圆O=π•52=25π.故答案为25π.11.(2019年内蒙古赤峰市)已知:AC是▱ABCD的对角线.(1)用直尺和圆规作出线段AC的垂直平分线,与AD相交于点E,连接CE.(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB=3,BC=5,求△DCE的周长.【考点】尺规作图-垂直平分线、平行四边形的性质【解答】解:(1)如图,CE为所作;(2)∵四边形ABCD为平行四边形,∴AD=BC=5,CD=AB=3,∵点E在线段AC的垂直平分线上,∴EA=EC,∴△DCE的周长=CE+DE+CD=EA+DE+CD=AD+CD=5+3=8.。
中考数学必考考点专题32尺规作图含解析
专题32 尺规作图问题专题知识回顾1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。
2.尺规作图的五种基本情况:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知线段的垂直平分线;(4)作已知角的角平分线;(5)过一点作已知直线的垂线。
3.对尺规作图题解法:写出已知,求作,作法(不要求写出证明过程)并能给出合情推理。
4.中考要求:(1)能完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.(2)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形.(3)能过一点、两点和不在同一直线上的三点作圆.(4)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明).专题典型题考法及解析【例题1】(2019•湖南长沙)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是()A.20°B.30°C.45°D.60°【答案】B【解析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B=30°,从而得出答案.在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°﹣∠B﹣∠C=60°,由作图可知MN为AB的中垂线,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC﹣∠DAB=30°。
【例题2】(2019山东枣庄)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【答案】见解析。
中考数学复习综合性试题精选之尺规作图
中考数学复习综合性试题精选之尺规作图1.如图,方格纸中每个小正方形的边长均为1.线段AB的两个端点在小正方形的顶点上.(1)在图中画一个以AB为腰的等腰三角形△ABC,点C在小正方形的顶点上,且tan B =3;(2)在图中画一个以AB为底的等腰三角形△ABD,点D在小正方形的顶点上,且△ABD 是锐角三角形.连接CD,请直接写出线段CD的长.2.如图,已知∠AOB,点M为OB上一点.(1)画MC⊥OA,垂足为C;(2)画∠AOB的平分线,交MC于D;(3)过点D画DE∥OB,交OA于点E.(注:不需要写出作法,只需保留作图痕迹)3.如图,在每个小正方形的边长均为1的方格纸中有线段AC和EF,点A、C、E、F均在小正方形的顶点上.(1)在方格纸中画出一个以AC为对角线的菱形ABCD,点D在直线AC的下方,且点B、D都在小正方形的顶点上;(2)在方格纸中画出以EF为底边,面积为6的等腰三角形EFG,且点G在小正方形的顶点上;(3)在(1)、(2)的条件下,连接DG,请直接写出线段DG的长.4.如图,在△ABC中,AB=BC,∠ABC=90°,动点E在∠ABC外部,且∠ABC=2∠AEC.(1)利用尺规作图在图1中作出一个符合题意的点E;(不写作法,保留作图痕迹)(2)如图2,若F是AC的中点,线段BE与线段EF的长度存在怎样的等量关系?请说明理由.5.(1)如图(1),在△ABC,AB=AC,O为△ABC内一点,且OB=OC,求证:直线AO 垂直平分BC.以下是小明的证题思路,请补全框图中的分析过程.(2)如图(2),在△ABC中,AB=AC,点D、E分别在AB、AC上,且BD=CE.请你只用无刻度的直尺画出BC边的垂直平分线(不写画法,保留画图痕迹).(3)如图(3),在五边形ABCDE中,AB=AE,BC=DE,∠B=∠E,请你只用无刻度的直尺画出CD边的垂直平分线,并说明理由.6.如图1,已知直线EF与直线AB交于点E,直线EF与直线CD交于点F,EM平分∠AEF 交直线CD于点M,且∠FEM=∠FME.点G是射线MD上的一个动点(不与点M、F 重合),EH平分∠FEG交直线CD于点H,过点H作HN∥EM交直线AB于点N,设∠EHN=α,∠EGF=β.(1)求证:AB∥CD;(2)当点G在点F的右侧时,①依据题意在图1中补全图形;②若β=80°,则α=度;(3)当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.7.【认识】(1)如图①,∠1、∠2是四边形ABCD的两个外角,求证:∠1+∠2=∠A+∠C.【操作】(2)如图②,已知∠α和∠AOB,点M、N分别在∠AOB的边OA、OB上.请利用无刻度直尺和圆规在∠AOB的内部求作一点P,使得∠AOB+∠MPN=∠α.(保留作图痕迹,不写作法)8.定义:如图,E,F,G,H四点分别在四边形ABCD的四条边上,若四边形EFGH为菱形,我们称菱形EFGH为四边形ABCD的内接菱形.(1)如图,矩形ABCD,AB=5,点E在线段AB上且EB=2,四边形EFGH是矩形ABCD 的内接菱形,求GC的长度;(2)如图,平行四边形ABCD,AB=5,∠B=60°,点E在线段AB上且EB=2,请你在图中画出平行四边形ABCD的内接菱形EFGH,点F在边BC上;(尺规作图,保留痕迹)当BF最短时,请求出BC的长.9.已知HD∥GE,点A、C分别在直线上.(1)如图1,请直接写出∠BCE、∠ABC、∠BAD三个角满足的数量关系.(2)如图2,分别作∠BAH与∠BCG的角平分线,交于点F,探索∠B与∠F的数量关系并予以证明.(3)在图3中完成作图并填空:分别作∠ABC与∠BCE的角平分线,交于点M,过点B 作BN∥CM,设∠BAD=m°,请直接写出∠NBM的度数(用含m的式子表示).10.已知三角形ABC和同一平面内的点D.(1)如图1,点D在边BC上,过点D作DE∥BA,交AC于点E,DF∥CA,交AB于点F.①依题意,在图1中补全图形;②若∠EDF=89°,求∠A的度数;③通过图形说明∠A+∠B+∠C=180°(三角形的内角和为180°);(2)如图2,若点D在BC的延长线上,DE∥CA,DE在BC上方,且∠EDF=∠A,判断DE与BA的位置关系,并证明;(3)若D是三角形ABC外部的一个动点(不在三角形三条边所在的直线上),过点D作DE∥BA交直线AC于点E,DF∥CA交直线AB于点F,直接写出∠EDF与∠A的数量关系.11.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:根据以上情境,解决下列问题:①老师用尺规作角平分线时,用到的三角形全等的判定方法是.②小聪的作法正确吗?请说明理由.12.如图1,由于保管不善,长为40米的拔河比赛专用绳AB左右两端各有一段(AC和BD)磨损了,磨损后的麻绳不再符合比赛要求.已知磨损的麻绳总长度不足20米.只利用麻绳AB和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳EF.请你按照要求完成下列任务:(1)在图1中标出点E、点F的位置,并简述画图方法;(2)说明(1)中所标EF符合要求.13.如图,在边长为1的正方形网格中,点A、C为格点,点B在网格线上,以AB为直径作半圆,点D在半圆上,连接AC、BC.请用无刻度直尺完成下列作图,不写画法,保留画图痕迹(用虚线表示画图过程,实线表示画图结果)(1)分别在AB、AC取点E、F,使EF∥BC,EF=12BC;(2)作△ABC的角平分线BM;(3)在△ABC的角平分线BM取一点N,使CN+DN最小.14.图1、图2分别是7×6的网格,网格中的每个小正方形的边长均为1,点A、B在小正方形的顶点上.(1)在图1中确定点C(点C在小正方形的顶点上),要求以A、B、C为顶点的三角形为锐角等腰三角形,画出此三角形(画出一个即可);(2)在图2中确定点D(点D在小正方形的顶点上),要求以A、B、D为顶点的三角形是以AB为斜边的直角三角形,画出此三角形(画出一个即可),并直接写出此三角形的周长15.最短路径问题:例:如图1所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的点.应用:已知:如图2,A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(1)借助直角三角板在下图中找出符合条件的点B和C.(2)若∠MON=30°,OA=10,求三角形的最小周长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第8题图)第38章 尺规作图一、选择题1. (2011浙江绍兴,8,4分)如图,在ABC ∆中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点,M N ,作直线MN ,交BC 于点D ,连接AD .若ADC ∆的周长为10,7AB =,则ABC ∆的周长为( )A.7B.14C.17D.20DMN CA B【答案】C 二、填空题 三、解答题1. (2011江苏扬州,26,10分)已知,如图,在Rt △ABC 中,∠C=90º,∠BAC 的角平分线AD 交BC 边于D 。
(1)以AB 边上一点O 为圆心,过A ,D 两点作⊙O (不写作法,保留作图痕迹),再判断直线BC 与⊙O 的位置关系,并说明理由;(2)若(1)中的⊙O 与AB 边的另一个交点为E ,AB=6,BD=32, 求线段BD 、BE 与劣弧DE 所围成的图形面积。
(结果保留根号和π)【答案】(1)如图,作AD 的垂直平分线交AB 于点O ,O 为圆心,OA 为半径作圆。
判断结果:BC 是⊙O 的切线。
连结OD 。
∵AD 平分∠BAC ∴∠DAC=∠DAB ∵OA=OD ∴∠ODA=∠DAB∴∠DAC=∠ODA ∴OD ∥AC ∴∠ODB=∠C ∵∠C=90º ∴∠ODB=90º 即:OD ⊥BC ∵OD 是⊙O 的半径 ∴ BC 是⊙O 的切线。
(2) 如图,连结DE 。
设⊙O 的半径为r ,则OB=6-r , 在Rt △ODB 中,∠ODB=90º,∴ 0B 2=OD 2+BD 2 即:(6-r)2= r 2+(32)2 ∴r=2 ∴OB=4 ∴∠OBD=30º,∠DOB=60º∵△ODB 的面积为3223221=⨯⨯,扇形ODE 的面积为ππ322360602=⨯⨯ ∴阴影部分的面积为32—π32。
2. (2011山东滨州,23,9分)根据给出的下列两种情况,请用直尺和圆规找到一条直线,把△ABC 恰好分割成两个等腰三角形(不写做法,但需保留作图痕迹);并根据每种情况分别猜想:∠A 与∠B 有怎样的数量关系时才能完成以上作图?并举例验证猜想所得结论。
(1)如图①△ABC 中,∠C=90°,∠A =24°CB A(第23题图①)①作图:②猜想:③验证:(2)如图②△ABC中,∠C=84°,∠A=24°.CB A(第23题图②)①作图:②猜想:③验证:【答案】(1)①作图:痕迹能体现作线段AB(或AC、或BC)的垂直平分线,或作∠ACD=∠A(或∠BCD=∠B)两类方法均可,在边AB上找出所需要的点D,则直线CD即为所求………………2分②猜想:∠A+∠B=90°,………………4分③验证:如在△ABC中,∠A=30°,∠B=60°时,有∠A+∠B=90°,此时就能找到一条把△ABC恰好分割成两个等腰三角形的直线。
………………5分(2)答:①作图:痕迹能体现作线段AB(或AC、或BC)的垂直平分线,或作∠ACD=∠A或在线段CA上截取CD=CB三种方法均可。
在边AB上找出所需要的点D,则直线CD即为所求………………6分②猜想:∠B=3∠A………………8分③验证:如在△ABC中,∠A=32°,∠B=96,有∠B=3∠A,此时就能找到一条把△ABC恰好分割成两个等腰三角形的直线。
………………9分3. (2011山东威海,20,8分)我们学习过:在平面内,将一个图形绕一个定点沿着某一个方向转动一个角度,这样的图形运动叫做旋转,这个定点叫旋转中心.(1)如图①,△ABC≌△DEF,△DEF能否由△ABC通过一次旋转得到?若能,请用直尺和圆规画出旋转中心,若不能,试简要说明理由.图①(2)如图②,△ABC≌△MNK,△MNK能否由△ABC通过一次旋转得到?若能,请用直尺和圆规画出旋转中心,若不能,试简要说明理由.(保留必要的作图痕迹)图①图②【答案】解:(1)能,点1O就是所求作的旋转中心.图①图②(1)能,点2O就是所求作的旋转中心.4. (2011浙江杭州,18,6)四条线段a,b,c,d如图,a:b:c:d=1:2:3:4.(1)选择其中的三条线段为边作一个三角形(尺规作图,要求保留作图痕迹,不必写出作法);(2)任取三条线段,求以它们为边能作出三角形的概率.【答案】(1)只能取b,c,d三条线段,作图略(2) 四条线段中任取三条共有四种等可性结果:(a,b,c),(a,b,d),(a,c,d),(b,c,d),其中能组成三角形的只有(b,c,d),所以以它们为边能作出三角形的概率是14.5. (2011四川重庆,20,6分)为进一步打造“宜居重庆”,某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示.请在答题卷的原图上利用尺规作出音乐喷泉M、位置.(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)【答案】6. (2011甘肃兰州,25,9分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C。
(1)请完成如下操作:①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连结AD、CD。
(2)请在(1)的基础上,完成下列问题:①写出点的坐标:C 、D ;②⊙D的半径= (结果保留根号);③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面面积为(结果保留π);④若E(7,0),试判断直线EC与⊙D的位置关系并说明你的理由。
【答案】(1)(2)① C (6,2),D (2,0) ②25③54④相切。
理由:∵CD=255DE=5 ∴CD 2+CE 2=25=DE 2 ∴∠DCE=90°即CE ⊥CD ∴CE 与⊙D 相切。
7. ( 2011重庆江津, 23,10分)A 、B 两所学校在一条东西走向公路的同旁,以公路所在直线为x 轴建立如图所示的平面直角坐标系,且点A 的坐标是(2,2),点B 的坐标是(7,3).(1)一辆汽车由西向行驶,在行驶过程中是否存在一点C,使C 点到A 、B 两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P,使游乐场到两校距离之各最小,通过作图在图中找出建游乐场的位置,并求出它的坐标.A BCOA BCO x yD E .A(2, 2).B(7, 3)yOx第23题图【答案】(1)存在满足条件的点C: 作出图形,如图所示,作图略;(2)作出点A 关于x 轴的对称点A /(2,-2), 连接A /B ,与x 轴的交点即为所求的点P. 设A /B 所在的直线的解析式为: y=kx+b, 把A /(2,-2), B(7,3)分别代入得: ⎩⎨⎧-=+=+2237b k b k 解得:⎩⎨⎧-==41b k ·所以: y=x-4·当y=0时,x=4,所以交点P 为(4,0)·8. (2011重庆綦江,19,6分)为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P ,使P 到该镇所属A 村、B 村、C 村的村委会所在地的距离都相等(A 、B 、C 不在同一直线上,地理位置如下图),请你用尺规作图的方法确定点P 的位置.要求: 写出已知、求作;不写作法,保留作图痕迹. 解:已知: 求作:【答案】:解:已知:A 、B 、C 三点不在同一直线上.求作:一点P ,使PA =PB =PC. (或经过A 、B 、C 三点的外接圆圆心P )正确作出任意两条线段的垂直平分线,并标出交点P9. (2011江苏南京,27,9分)如图①,P 为△ABC 内一点,连接PA 、PB 、PC ,在△PAB 、△PBC 和△PAC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点.⑴如图②,已知Rt △ABC 中,∠ACB=90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点.⑵在△ABC 中,∠A <∠B <∠C .①如图③,利用尺规作出△ABC 的自相似点P (写出作法并保留作图痕迹); ②若△ABC 的内心P 是该三角形的自相似点,求该三角形三个内角的度数.【答案】解:⑴在Rt △ABC 中,∠ACB =90°,CD 是AB 上的中线, ∴12CD AB =,∴CD=BD . ∴∠BCE =∠ABC .∵BE ⊥CD ,∴∠BEC =90°, ∴∠BEC =∠ACB .∴△BCE ∽△ABC . ∴E 是△ABC 的自相似点. ⑵①作图略.作法如下:(i )在∠ABC 内,作∠CBD =∠A ;(ii )在∠ACB 内,作∠BCE =∠ABC ;BD 交CE 于点P . 则P 为△ABC 的自相似点.②连接PB 、PC .∵P 为△ABC 的内心,∴12PBC ABC ∠=∠,12PCB ACB ∠=∠. ∵P 为△ABC 的自相似点,∴△BCP ∽△ABC . ∴∠PBC =∠A ,∠BCP =∠ABC=2∠PBC =2∠A , ∠ACB =2∠BCP=4∠A .∵∠A+∠ABC+∠ACB =180°. ∴∠A+2∠A+4∠A =180°.∴1807A ∠=o .∴该三角形三个内角的度数分别为1807o 、3607o 、7207o.10.(2011江苏无锡,26,6分)(本题满分6分)如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个底角为60°。
正方形ABCD 的边长为1,它的一边AD 在MN 上,且顶点A 与M 重合。
现将正方形ABCD 在梯形的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶点与Q 重合即停止滚动。
(1)请在所给的图中,用尺规画出点A 在正方形整个翻滚过程中所经过的路线图; (2)求正方形在整个翻滚过程中点A 所经过的路线与梯形MNPQ 的三边MN 、NP 、PQ所围成图形的面积S 。
BBB CC CAAADPE①②③(第27题)【答案】解:(1)如右图所示.……………………(3分)(2)S = 2[14π·12 + 14π·(2)2 + 1 + 150360π·12]=7π3+ 2.………………………(6分)11. (2011重庆市潼南,19,6分)画△ABC,使其两边为已知线段a 、b ,夹角为β.(要求:用尺规作图,写出已知、求作;保留作图痕迹;不在已知的线、角上作图;不 写作法). 已知:求作:【答案】已知:线段a 、b 、角β -------------1分 求作:△ABC 使边BC=a ,AC= b ,∠C=β ------------2分 画图(保留作图痕迹图略) --------------6分12. (2011湖北宜昌,23,10分)如图1,Rt △ABC 两直角边的边长为AC = 1,BC =2.(1) 如图2, ⊙O 与Rt △ABC 的边AB 相切于点X ,与边CB 相切于点Y.请你在图2 中作出并标明⊙O 的圆心0;(用尺规作图,保留作图痕迹,不写作法和证明)(2) P 是这个Rt △ABC 上和其内部的动点,以P 为圆心的⊙P 与Rt △ABC 的两条边相切.设⊙P 的面积为S ,你认为能否确定S 的最大值? 若能,请你求出S 的最大值;若不能,请你说明不能确定S 的最大值的理由.BA (M )D C NPQBA (M )D C NPQ19题图abβ(第23题图1) (第23题图2)【答案】解:(1)共2分.(标出了圆心,没有作图痕迹的评1分)看见垂足为Y (X )的一 条 垂 线 (或 者∠ABC 的平分线)即评1分,(2)①当⊙P 与Rt △ABC 的边 AB 和BC 相切时,由角平分线的性质,动点P 是∠ABC 的平分线BM 上的点,如图1,在∠ABC 的平分线BM 上任意确定点P 1 (不为∠ABC 的顶点),∵ OX =BOsin ∠ABM ,P 1Z =BP 1sin ∠ABM .当 BP 1>BO 时 ,P 1Z >OX,即P 与B 的距离越大,⊙P 的面积越大.这时,BM 与AC 的交点P 是符合题意的BP 长度最大的点.(3分.此处没有证明和结论不影响后续评分)如图2,∵∠BPA >90°,过点P 作PE ⊥AB ,垂足为E ,则E 在边AB 上.∴以P 为圆心、PC 为半径作圆,则⊙P 与边CB 相切于C ,与边AB 相切于E ,即这时的⊙P 是符合题意的圆.(4分.此处没有证明和结论不影响后续评分)这时⊙P 的面积就是S 的最大值.∵∠A =∠A ,∠BCA =∠AEP =90°,∴ Rt △ABC ∽Rt △APE ,(5分) ∴AB PA =BCPE.∵AC =1,BC =2,∴AB = 5 . 设PC =x ,则PA =AC -PC =1-x,PC =PE , ∴51x - =2x,∴x =522+.(6分) ② 如图3,同理可得:当⊙P 与Rt △ABC 的边AB 和AC 相切时, 设PC =y ,则52y - =1y,∴y= 512+(7分) ③ 如图4,同理可得:当⊙P 与Rt △ABC 的边BC 和AC 相切时,设PF =z ,则22z -=1z ,∴z=32(8分)由①,②,③可知:∵ 5 >2,∴ 5 +2>5+1>3,∵当分子、分母都为正数时,若分子相同,则分母越小,这个分数越大,(或者:∵x =522+=25 -4, y=512+=215-, ∴y-x=24549->0,∴y>x.∵z-y=32- 215-=6457->0,∴232> 512+> 522+,(9分,没有过程直接得出酌情扣1分)∴ z >y >x.∴⊙P 的面积S 的最大值为94π.(10分) (第23题答图1)(第23题答图1) (第23题答图3) (第23题答图4)Z X MC B P OA CPA CPA C B。