投资比例优化组合.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从掷硬币打赌看投资组合问题
什么是投资组合?首先我们从掷硬币打赌谈起。
假设有一种可以不断重复的投资或打赌,其收益由掷硬币确定,硬币两面出现的可能性相同;出A面你投一亏一,出B面你投一赚二;假设你开始只有100元,输了没法再借。现在问怎样重复下注可以使你尽快地由百元户变为百万元户?
我们可以象小孩子玩登山棋那样,几个人下不同的赌注,然后重复掷硬币,看谁最先变成百万富翁。你可能为了尽快地变为百万富翁而全部押上你的资金。可是只要有一次你输了,你就变成穷光蛋,并且永远失去发财机会。你可能每次下注10 元。但是,如果连输10次,你就完了。再说,如果你已经是万元户了,下10元是不是太少了? 每次将你的所有资金的10%用来下注,这也许是个不错的主意。首先,你永远不会亏完假设下注的资金可以无限小;第二,长此以往,赢亏的次数大致相等时,你总是赚的。假设平均两次,你输一次赢一次,则你的资金会变为原来的(1+0.2) ×(1-0.1)=1.08倍。可是,以这样的速度变为百万富翁是不是太慢了,太急人了? 有没有更快的方法? 有! 理论研究表明,每次将你所有资金的25%或0.25倍用来下注,你变为百万富翁的平均速度将最快。
几个不同下注比例带来的资金变化如图 1所示(掷币结果分别是A, B, A, B, ...)。实验表明,张大胆每次投100%,嬴时嬴得多,可亏时亏得惨,一次亏损就永远被淘汰出局。李糊涂每次下50%,收益大起大落,到头来白忙。王保守每次下10%,稳赚但少赚;“你”每次下25%,长期看结果最好。
前面的打赌中,硬币只有一个。如果同时有两个、三个或更多,各个硬币盈亏幅度不同,两面出现的概率(频率或可能性)也可能不同;怎样确定在不同硬币上的最优下注比例?如果不同硬币出现A面B面是不同程度相关的(比如一个出A面,另一个十有八九相同--正相关,或相反--反相关),又如何确定最优下注比例?股票、期货、期权、放贷、房地产、高科技等投资象掷硬币打赌一样,收益是不确定的且相互关联的。如何确定不同证券或资产上的投资比例,以使资金稳定快速增长并控制投资风险,这就是投资组合理论要解决的问题。
投资组合也就是英文说的 portfolio。当今世界上著名的投资组合理论是美国的马科维茨(H. Markowitz)理论。笔者则从自己建立的一个广义信息理论(参见专著《广义信息论》,中国科技大学出版社,1993)和自己的投资实践出发,得到了投资组合的几何增值理论,或者叫熵(shang)理论(因为其中采用了同物理学和信息论中的熵函数相似的熵函数作为优化标准),并完成了专著《投资组合的熵理论和信息价值--兼析股票期货等风险控制》(中国科技大学出版社,1997)。现在笔者知道美国的H. A. Latane 和D. L. Tuttle最早提出了用几何平均产出比--即1+几何平均收益或平均复利--作为优化证券组合的准则;后来T. E. Cover等人研究了用几何平均产出比的对数作为优化准则. 最近有人提出也是信息论研究者Kelly曾提出过这一准则。不同的是,笔者的研究更注重应用。具体说来:1)结合打赌模型讨论了分散和相关问题;提供了各种复杂情况下(考虑手续费,卖空,透支,银行利率等)的最优投资比例公式;2)提出一些适用结论:比如分散投资极限定理,投资容量,新的风险测度.
几何级数增值的魅力
1988-1989年,日本股市从21564点上涨了80%,到达38921点;然后开始大跌,1992年8月跌到14194点,跌幅达63%。虽然80%大于63%,算术平均大于0,可是总的来说是跌的,跌了约1/3,因为累积产出比是
(1+0.8)(1-0.63)=0.666,累积收益是0.666-1= -0.334=-33.4%.
炒过股票的人都知道,如果你总是将所有的资金买入股票,则先赚 50% 再亏50%;或者先亏后赚,虽然算术平均收益是0,可是你的资金会变少(变成0.5×1.5=0.75倍)。可见算术平均收益不能反映实际增值情况。
能反映实际增值的收益是什么呢?是几何平均收益。设每一元资金投资 N 年后变为M元,则累计产出比是M/1=M。累计产出比的N次开方M1/N被称为几何平均产出比,我们记为Rg, 即Rg=M1/N。投资的平均复利又叫几何平均收益,我们记为rg,则有rg=Rg-1. 可见几何平均产出比或几何平均收益才能反映长期投资业绩。因为
N年累积产出比M=Rg N =(1+rg)N.
投资组合的几何增值理论 (或者说熵理论)就是用几何平均产出比作为优化投资组合的标准,根据这一标准,使几何平均收益达最大的投资比例就是最好的投资比例。
稳定的几何增长具有无比的魅力。几何平均收益的微小优势,在长期累计后可能导致惊人的成功。下表显示了几何平均收益对 20年累积产出比的影响。
其中 23.8%就是巴费特管理的伯克希尔公司32年里的几何平均收益。在过去的32年里,伯克希尔公司每股资产从19美元增长到19011美元,算术平均年收益大约是1000/32=3125%,可是几何平均年收益只有23.8%(税后). 美国的基金管理大师彼得·林奇之所以有成功,是因为他十年里使基金的几何平均收益达到30%。据说李家诚的几何平均收益是28%,索罗斯的量子基金几何平均收益也是28%(早期是35%)。有人做过计算说明,虽然两百年前美国政府从印地安人手里以极便宜的价格买了大片土地,但是如果印地安人把钱存入银行每年得到现在美国长期国债的收益,则利滚利后,印地安人现在将极其富有,足以买回更大面积的土地。可见稳定的几何平均收益的威力。
有人炒期货看到可能的盈利幅度大于亏损幅度就大量投入;有人炒期货还要透支。中国人在期货市场上破产的比例极大,原因就是因为许多人看不到稳定增值的重要性。
许多股民类似,他们对收益波动极大的亏损垃圾股、庄股、新股、权证等倍加追捧;而对收益较为稳定的年收益达 20%-30%的投资(比如认购新股)不以为然。这不能不说是中国股市不成熟的表现。
笔者特别羡慕那些有稳定收入的年轻人。只要他们有耐心,采取稳健的策略 (比如每年认购新股,如果认购新股效益不变的话),一、二十年后成为百万富翁将极其容易。当然,对于包括笔者在内的许多人--既不年轻又有生活压力,要成为百万富翁,我们当采取更加进取的投资策略,即选择多种投资方式,优化投资组合,赢得更高的几何平均收益。
掷硬币打赌问题的数学解答
掷硬币打赌问题是:有一种可以不断重复的投资或打赌,其收益由掷硬币确定,硬币两面出现的可能性相同;出A面你投一亏一,出B面你投一赚二;假设你开始只有100元,输了没法再借。现在问怎样重复下注可以使你尽快地由百元户变为百万元户?
不知读者是否记得中学学过的抛物线公式y=ax2+bx+c。抛物线可以用来描述炮弹飞行轨迹,它有一个最高点, 当水平距离x= - b/(2a) 时,高度y达最大。下面我们说明中学数学知识如何能帮助我们尽快成为百万富翁。
对于上面的掷硬币打赌,几何平均产出比Rg随下注比例q的变化是
要使 Rg达最大,只需使上式右边括号中的内容达最大。根据中学数学知识,q= -1/[2×(-2)]=1/4=0.25=25%时,括号中的内容和几何平均收益Rg达最大。这就是说,对于上面的掷硬币打赌,25%是最优投资比例。