建筑力学:静定结构的内力分析
建筑力学第三章静定结构内力计算
01
02
03
04
排架是由两个单层刚架组成的 结构,其内力可以通过整体法
和分离法进行计算。
整体法是将两个单层刚架作为 一个整体进行分析,从而求得
整个排架的内力。
分离法是将排架拆分成两个单 层刚架进行分析,然后分别求
得每个单层刚架的内力。
在计算过程中,需要考虑到排 架的自重、外力以及支座反力
的影响。
组合结构的内力计算实例
03 静定结构的内力计算方法
截面法
总结词
通过在指定截面上截取隔离体,然后对隔离体进行受力分析,计算出内力的方法。
详细描述
截面法是静定结构内力计算的基本方法之一。在截面法中,我们首先在结构中选择一个或多个截面, 然后将这些截面处的杆件暂时断开,并分析这些杆件的内力。通过这种方法,我们可以确定每个杆件 的内力大小和方向。
组合结构是由两种或多种结构组成的 结构,其内力可以通过叠加法进行计 算。
在计算过程中,需要考虑到组合结构 是将每种结构的内力分别计算 出来,然后根据结构的特点进行叠加, 从而求得整个组合结构的内力。
05 静定结构内力计算的注意 事项
材料强度的考虑
材料强度
在计算静定结构内力时,必须考虑材 料的强度。不同的材料有不同的抗拉 、抗压、抗剪强度,应确保结构中的 应力不超过材料的容许应力。
节点法
总结词
通过分析节点处的平衡状态,计算出节点所受内力的方法。
详细描述
节点法是一种基于力的平衡原理的计算方法。在节点法中,我们首先确定节点 的位置和数量,然后分析每个节点处的平衡状态。通过这种方法,我们可以计 算出每个节点所受的内力大小和方向。
弯矩图法
总结词
通过绘制弯矩图,直观地表示出结构的弯矩 分布情况,进而计算出结构的内力。
建筑力学第08章+1静定结构内力计算
10kN
2 kN m
D
C
E
再取左半部分为隔离体, 由∑MC =0,得: FAx 1 4.25 4 3.4kN 5 10kN 最后再考虑整体平衡, 由∑Fx =0得:
FAx
A
5m
D
C
E
12.25
FS 图(kN)
A
D
6.6
B
FAx
A
B
4m 4m
FBx
⑷ 作轴力图
4.25
C
6.6
E 12.25
FAy
FBy
⑸ 校核
10kN
D
3.4kN
4.25kN
C
E
6.6kN 33kN m 12.25kN
2m
2m
4m
F Fx 0, SBA 0 F Fy 0, NBA 0
M C 0, 20 10 2 M CB 0 M CB 0
Fy 0, 10 FSCB 0 F Fx 0, NCB 0
FSCB 10kN
例8-3 试计算图示的悬臂刚架, 画内力图。
FCy 10kN
FAx 0 5kN A B FSB M A 30kN m FAy 25kN
Fy 0, FAy 25kN M B 0, M A 30kN m 上拉
例8-1 试计算图示多跨静定梁。
10 kN m
A
3m
10kN 15kN m
E
FSEC
M EC
2m 2m
FNEC
4m
例8-3 试计算图示的悬臂刚架, 画内力图。
建筑力学之 静定结构的内力分析知识详解
第二个脚标表示该截面所属杆件的另一端。例如 则表M示BA AB杆B端截面的弯矩。
表M示AB AB杆A端截面的弯矩,
❖ (3)内力图绘制
❖ 静定刚架内力图有弯矩图、剪力图、轴力图。刚架的内力图由各杆的内力图组合 而成,而各杆的内力图,只需求出杆端截面的内力后,即可按照梁内力图的绘制 方法画出。
❖ 6.平面刚架计算步骤
第十一章 静定结构的内力分析
❖ 第一节 楼梯斜梁和多跨静定梁 ❖ 1. 楼梯斜梁 ❖ 楼梯斜梁承受的荷载主要有两种,一种是沿
斜梁水平投影长度分布的荷载,如楼梯上人群 的重量等;另一种是沿倾斜的梁轴方向分布的 竖向荷载,如梁的自重等。 ❖ 一般在计算时,为计算简便可将沿梁轴方 向分布的竖向荷载按等值转换为沿水平方向分 布的竖向荷载,如图11-1 (a),沿梁轴线方向分 布 则的 由荷 于载 是等′值转转换换为,沿所水q 以平有方:向分布的荷q 载 ,
❖ (2)杆端内力的表示:如:FNAB 、 、 、 FNBA FQAB FQBA 、M AB 、M BA 等。 ❖ 注意:刚结点处不同方向有不同的杆端内力。
❖ 为了明确表示刚架上不同截面的内力,特别是为了区别汇交于同一结点的不同杆
端截面的内力,在内力符号右下角采用两个脚标;第一个脚标表示内力所属截面,
❖ 详解见教材
图11-21
❖ (6)结点法与截面法的联合应用 ❖ 欲求图11-23所示a杆的内力,如果只用结点法计算,不论取哪个结
点为隔离体,都有三个以上的未知力无法直接求解;如果只用截面法 计算,也需要解联立方程。 ❖ 为简化计算,可以先作Ⅰ-Ⅰ截面,如图所示,取右半部分为隔离 体,由于被截的四杆中,有三杆平行,故可先求1B杆的内力,然后以 B结点为隔离体,可较方便地求出3B杆的内力,再以3结点为隔离体, 即可求得a杆的内力。
建筑力学静定结构内力计算
上弦杆 斜杆 竖杆
节间距离
下弦杆 跨度
桁架的计算简图常常采用下列假定: (1) 联结杆件的各结点,是无任何摩擦的理想铰。 (2) 各杆件的轴线都是直线,都在同一平面内,并且 都通过铰的中心。 (3) 荷载和支座反力都作用在结点上,并位于桁架平 面内。
Nc=33.3 kN (拉力)
求Nb:取Na与Nc的交点O为矩心, 如图 (c)所示,并将Nb在1结点处分 解为Vb、Hb,则: ∑MO=0: ∑MO=VAx+Vb(x+4)-10x-
20(x+2)=0 根据相似三角形的比例关系有: x=6m 将x=6代入∑MO 40×6+Vb×10-60-20×(6+2)=0 Vb=-2 kN 根据力Nb与其竖向分量Vb的比
也就是说,当杆件变形达到一定限度,点之间出 现开裂现象。当截面上的内力都达到了极限,所有点 之间都出现了裂缝,则意味着杆件发生断裂破坏了。
具体的定量表达将在后面介绍的强度条件中描述。
2、截面法
确定杆件某一截面中的内力,假想将杆件沿需求内力的 截面截开,使杆件分为两部分,取其中任一部分作为研究对 象。用作用于截面上的内力,代替舍去部分对留下部分的作 用力。 再由静力平衡条件求出此内力的方法,称为截面法。 截面法可归纳为两个步骤:
在桁架中,有时会出现轴力为零的杆件,它 们被称为零杆。在计算之前先断定出哪些杆件为 零杆,哪些杆件内力相等,可以使后续的计算大 大简化。在判别时,可以依照下列规律进行。
(1) 对于两杆结点,当没有外力作 用于该结点上时,则两杆均为零杆, 如图 (a)所示;当外力沿其中一杆的 方向作用时,该杆内力与外力相等, 另一杆为零杆,如图 (b)所示。 (2) 对于三杆结点,若其中两杆共 线,当无外力作用时,则第三杆为零 杆,其余两杆内力相等,且内力性质 相同(均为拉力或压力)。如图 (c) 所示。 (3) 对于四杆结点,当杆件两两共 线,且无外力作用时,则共线的各杆 内力相等,且性质相同。如图 (d)所
建筑力学与结构第三章
M /l
V
Mb / l
M
Ma / l
讨论:集中力偶M作用点C处:
M V ( x) RB l a x l CB段 : M ( x) RB l x M l x a x l l
4、判断各段V、M图形状:
3.8 2.2 CA和DB段:
q=0,V图为水平线, M图为斜直线。
AD段:q<0, V 图为向下斜直线,
1.41
M图为下凸抛物线。
按叠加原理作弯矩图(AB=2a,力P作用在梁AB的中点处)。 P A P A V B + M B x
Pa qa2 + 2 2
+ x
= +
V B
V=12KN/m
根据2-2截面右侧的外力计算V2 、 M2 V2 =+(V· 1.5)-RB =12· 1.5-29 =-11KN M2 =-(V· 1.5)· 1.5/2+RB· 1.5 =-(12· 1.5)· 1.5/2+29· 1.5 = +30 KN· m
M2 V2Βιβλιοθήκη RB第三章 静定结构的内力
MDC=30×2=-60KNM(左拉)
NDE=30KN(压力) VDE=40KN MDE= 30×2=-60KNM(上拉)
VBE=30KN
MBE= 0
60
180
30
40
30 80
M图(KNM)
30 40
V图(KN)
80
N图(KN)
三、三铰刚架弯矩图
建筑力学 第九章(最终)
图9-7
② 求各杆杆端的内力。 考虑结点 D 的平衡: 由
求得
由 求得
由
求得 考虑结点 E 的平衡: 由
求得
由 求得
由 求得
M D 0, M DE 18 0
M DE 18 kN m
Fx 0, FNDE 3 0
FNDE 3 kN
Fy 0, FQDE 4.5 0
FQDE 4.5 kN
截取横梁 CF 为研究对象,根据 FN 图、FQ 图 和 M 图,画出其受力图如图9-6e 所示。
MC 24 20 20 2 12 5 36 4 0 Fx 10 10 0
Fy 36 4 20 12 0
可见横梁 CF 满足平衡条件,表明所求作的内 力图正确。
图9-6
【例9-4】试作出图9-7a 所示三铰刚架的内力图。 解:① 计算支座反力。
图9-3
由本例可见,求作多跨静定梁内力图的关键是 要分清梁的组成层次,作出层次图,以及如何将梁 拆开来计算其支座反力。梁的支座反力一旦求出, 求作多跨静定梁内力图的问题就归结为求作各单跨 静定梁内力图的问题,而单跨静定梁的内力图绘制 已是熟悉的求作问题。所以,求作多跨静定梁内力 图只不过是在单跨静定梁的内力图绘制基础上所做 的一种引伸,而并非新的计算问题。
12 110
2
4
kN
由
Fy 0, FBy FAy 20 12 0
求得
FBy 20 12 FAy 20 12 4 36 kN
② 求各杆的杆端弯矩,作 M 图。
杆AC: M AC 0, MCA 22 4 8 4 2 24kN m
用区段叠加法绘出杆 AC 段弯矩图。应用虚线连接杆端弯 矩 MAC 和 MCA,再叠加该杆段为简支梁在均布荷载作用下的弯 矩图。
第五章 静定结构的内力分析
MB
2 2
MC
C
解:1.计算外力偶矩
M A 9549
m T 1592N· 637N· m
b) T c)
M B 9549
x
637N· m
x
2.求各段扭矩 AB段:T1= MA=1592N· m BC段:T2= MA- MB=1592-955=637N· m
30 955N m 300 20 M C 9549 637N m 300
压缩与弯曲的组合
弯曲与扭转的组合
在进行结构设计时,为保证结构安全正常工
作,要求各构件必须具有足够的强度和刚度。解
决构件的强度和刚度问题,首先需要确定危险截
面的内力,内力计算是结构设计的基础。
5—1 轴向拉压杆
沿杆件轴线作用一对相反的外力,杆件将发生沿轴线方向
的伸长或缩短,这种变形称为轴向拉伸或压缩。
建筑力学
第5章 静定结构的内力分析
杆件结构——由杆件组成的结构。
杆件——长度远大于其横截面的宽度和高度的构件。
几何特点:横截面是与杆件长度方向垂直的截面,而轴线 是各横截面形心的连线。细而长,即l>>h,l>>b。
杆件结构
杆又可分为直杆和曲杆。
受外力作用后,其几何形状和尺寸一般都要发生改 变,这种改变称为变形。作用在构件上的荷载是各种 各样的,因此,杆件的变形形式就呈现出多样性,并 且有时比较复杂,但分解来看,变形的基本形式却只 有四种:
3.求截面2-2的内力
Fy 0 : FAy F FQ 2 0, 5 1 得FQ 2 FAy F F F F 4 4 M 2 0 : 2Fl M 2 0,
建筑力学10-静定结构内力三
由上述各式可以得出: VA=V0A VB=V0B HA=HB=M0C/f 支座水平推力与拱轴曲线形状无关,而只与荷载 及三个铰的位置有关;当荷载与跨度确定时,M0C为定 值,水平推力与矢高成反比关系,f愈大,拱愈高,则 推力愈小;f愈小,拱愈扁平,则推力愈大。
图8.37
(2) 内力的计算 拱的内力计算时,仍按截面法计算,且截面应与 拱轴垂直,该截面的位置由截面形心的坐标x、y及该 截面处拱轴切线的倾角φ来确定。 如图8.38(a)所示,设计算截面K的三个参数分别为 xK、yK、φK,该截面上的内力有MK(内侧受拉为正)、 QK(绕隔离体顺时针转动者为正)和NK(以压力为正)。 下面分别讨论三种内力的计算方法。
BE段:取结点B为隔离体,如图8.33(b)所示,
∑MB=0:MBE+MBC-MBD=0 MBE=0 以竖向为y坐标轴,向上为正,以水平向为x坐标轴,向右为 正,以B为原点,则: ∑X=0:QBE+NBDcosα-NBCcosα+QBDsinα-QBCsinα=0 QBE=0
① 弯矩的计算
取K截面以左为隔离体,如图8.38(c)所示,对K截 面取矩:
∑MK=0: HAyK-VAxK+P1(xK-a1)+MK=)]-HAyK
相应简支梁在相应位置处的弯矩也可由静力平衡 条件求出,如图8.38(b)、(d)所示:
图8.34
8.7.3 刚架的内力求解
1,内力求解的方法——与梁有相似之处,内力有弯矩、剪力还有轴力; 2,刚架结构内力计算的步骤:
1)支坐反力; 2)用简易法画各段的受力图; 3)分段画出内力图(M、Q、N)。
静定结构的内力—静定平面桁架(建筑力学)
截断的五根杆件中,除杆ED外,其余 四杆均汇交于结点C,由力矩方程 ΣMC=0即可求得FNED。
静定平面桁架的内力计算
(2)欲求图复杂桁架中杆CB的轴力 可用Ⅰ-Ⅰ截面将桁架截开,在
被截断的四根杆件中,除杆CB外,
其余三杆互相平行,选取y轴与此三
静定平面桁架的工程实例和计算简图
1 静定平面桁架的工程实例
桁架是由直杆组成,全部由铰结点连接而成的结构。
屋架
桥梁
静定平面桁架的工程实例和计算简图
纵梁
横梁 主桁架
工业厂房
静定平面桁架的工程实例和计算简图
2 静定平面桁架的计算简图
(1)桁架各部分名称
斜杆 Diagonal chard
弦杆
上弦杆 Top chard
静定平面桁架的内力计算
MD 0 Fx 0
FNc 4 FAy 3 20 3 0 FNc 52.5kN FNbx FNa FNc 0
FNbx FNa FNc 15kN
由比例关系可得
FNb
lb lbxy
FNbx
3.61m 3m
15kN
18.05kN
静定平面桁架的内力计算
主内力:按理想桁架算出的内力,各杆只有轴力。 次内力:实际桁架与理想桁架之间的差异引起的杆件弯曲,由此引起的内力。
实际桁架不完全符合上述假定, 但次内力的影响是次要的。
静定平面桁架的工程实例和计算简图
3 静定平面桁架的分类
(1)按几何组成规律分类 简单桁架 由基础或一个铰接三角形开始,依
次增加二元体而组成的桁架 联合桁架 由几个简单桁架按照几何不变体系
建筑力学第11章静定结构的内力计算
11.4.2 静定平面桁架的内力计算 (1)结点法 结点法是以桁架的结点为研究对象,适用于计 算简单桁架。当截取桁架中某一结点为隔离体后, 得到一平面汇交力系,根据平面汇交力系的平衡条 件可求得各杆内力。又因为根据平面汇交力系的平 衡条件,对于每一结点只能列出两个平衡方程,因 此每次所选研究对象(结点)上未知力的个数不应 多于两个。
13
图 11.9
14
图 11.10
15
图 11.11 静定多跨梁与简支梁的受力比较
16
11.2 静定平面刚架 11.2.1 刚架的特征 刚架是由若干根梁和柱主要用刚结点组成的结 构。当刚架各杆轴线和外力作用线都处于同一平面 内时称为平面刚架,如图 11.12(b)所示。 在刚架中,它的几何不变性主要依靠结点 刚性来维持,无需斜向支撑联系,因而可使结构内 部具有较大的净空便于使用。如图 11.12(a)所 示桁架是一几何不变体系,如果把 C 结点改为刚 结点,并去掉斜杆,则该结构即为静定平面刚架, 如图 11.12( b)所示。
6
图 11.3
7
图 11.4
8
(3)斜梁的内力图 在建筑工程中,常会遇到杆轴倾斜的斜梁,如 图11.5所示的楼梯梁等。 当斜梁承受竖向均布荷载时,按荷载分布情况 的不同,可有两种表示方式。一种如图 11.6 所示 ,斜梁上的均布荷载 q按照沿水平方向分布的方式 表示,如楼梯受到的人群荷载的情况就是这样。另 一种如图 11.7所示,斜梁上的均布荷载 q′按照沿 杆轴线方向分布的方式表示,如楼梯梁的自重就是 这种情况。
《建筑力学与结构(上册)》电子教案 项目四 静定结构的内力与位移计算
任务一 静定结构的内力计算
• (4 )刚性连接.如图 4-3 ( d )所示,刚片 Ⅰ 、 Ⅱ 在 A 处刚性连接成 一个整体,原来两个刚片在平面内具有 6 个自由度,现在刚性连接成整 体后减少到 3 3.虚铰 • 两刚片用两根不共线的链杆连接,两链杆的延长线相交于 O 点,如图 4
下一页 返回
任务一 静定结构的内力计算
• 对体系进行几何组成分析的目的如下: • (1 )判别体系是否为几何不变体系,从而决定它能否作为结构. • (2 )研究几何不变体系的组成规则,以保证结构设计的合理性. • (3 )区分静定结构和超静定结构,以便在计算时采取不同的方法.
• 二、 平面体系自由度和约束的概念
• 一个刚片的位置,可由其上任一点 A 的坐标 x 、 y ,和过 A 点的任一 线段 AB 的倾角 α来确定,如图 4-2 (c )所示.所以,一个刚片在平面内 的自由度是 3 .
• 2.约束 • 凡是能减少体系自由度的装置,都称为约束.能减少一个自由度,就相当
于一个约束. • (1 )链杆———两端以铰与别的物体相连的刚性杆.如图 4-3 ( a )所
( a )中的铰 B 用两根链杆代替,也组成“无多不变”体系,如图 4-7 ( b )所示.甚至将铰 B 变为虚铰,也不改变结果,如图 4-7 (c )所示. • 因此,两刚片规则又可叙述为:两个刚片用三根不全平行也不全交于一 点的链杆相连,组成几何不变体系且无多余约束.
• (3 )复 铰———连 接 三 个 或 三 个 以 上 刚 片 的 铰.复 铰 的 作 用 可 以 通 过 单 铰 来 分 析.如图 4-3 (c )所示的复铰连接三个刚片,它 的连接过程为:首先有刚片 Ⅰ ,然后用单铰将刚片 Ⅱ 连接于刚片 Ⅰ , 再以单铰将刚片 Ⅲ 连接于刚片 Ⅰ .这样,连接三个刚片的复铰相当于 两个单铰.同理,连接 n 个刚片的复铰相当于 n -1 个单铰,也就相当 于 2 (n -1 )个约束.
建筑力学11静定结构内力分析
d
q=20KN/m 10KN
FNae= F = – 35KN
Nea
Fax
a
b
4m
FNec= FNce= – 35KN
FNcd=FNdc=0
FN图 KN
35
Fay
Fay
45
31
2m
e
2m
5.作FN图
c
d
6、验算
20
c
35
35
c c
45
20
20 50
10
45 FQ图
M图
c 20 35
KNm
20 35
q=20KN/m
c
d
10KN
Fby=45KN
2.分析各段杆的 内力图形。
F ax
a
b
4m Fay FBy
28
2m
Fay=35KN
e
2m
Fax= – 10KN
q=20KN/m
10KN
Mae=0
Mea=Mec=10×2=20KNM
Fax
a
b
4m
Mce=10×4 – 10×2=20KNM Mcd=10×4 – 10×2=20KNM Mdb=0 Mbd=0
38
11.3 静定平面桁架的内力分析 11.3.1 概述 三点假定: 1、桁架的节点都是光滑的理想饺。 2、各杆的轴线都是直线,且在同一平面内,并 通过饺的中心。 3、荷载和支座反力都作用于节点上,并位于桁 架的平面内。杆自重忽略不计。 特点——按理想桁架计算的各杆的内力只 有轴力
39
11.3.2 简单平面桁架内力求解 1、内力计算方法 (1)节点法—以节点为隔离体,从只有二个未 知力的节点开始,逐个节点进行。利用节点的 静力平衡方程计算节点上截断杆的内力。 (2)截面法—用以截面(平面或曲面)截取桁 架的某一部分为隔离体,利用该部分的静力 平衡方程计算截断杆的轴力。
静定结构的内力—静定平面刚架(建筑力学)
对于比较复杂的情况,可取结点为隔离体,根据已知FS ,利用投影方程,求杆件轴力值。
【说明2】绘图规定:
1、M图约定绘在刚架的杆件受拉一侧,不标注正负号; 2、FS图和N图可绘在杆件的任一侧,但必须标注正负 号,一般杆左或杆上为正,杆右
【例1】试求作图示刚架的内力图。
FP
A
B
FP
FP
4
C
l
l
l/2
l/2 D
FP 4
FP
A
B
FPl
A
4
l/2
FP
FP
4
C
l/2 D
l
l
FP
4
B
C
D
FPl
4
M图
解: (1) 求支反力 (2)求作M图
MCB(求)
FPl
C
4
FPl
B
4
MBC(求)
A
B
FP FP/4
C FP/4
D
FS图
A
B
FP/4
FP
C
D
或杆下为负;其符号正负规定与梁相同。
【说明3】关于简单刚结点的概念,节点平衡
只有两杆相交组成的刚结点,称为简单刚结点。当无外力偶作用时,汇交于该处两杆的 杆端弯矩坐标 应绘在结点的同一侧(同在内侧或同在外侧),且数值相等。作M图时,可 充分利用这一特性。
【说明4】脱离体法是求内力的最基本方法,不要忘记。
绘制刚架内力图的要点总结如下:
(4)绘制杆件的轴力图,在只有横向垂直于杆件轴线荷载的情况下,只需 求出杆件一端的轴力,轴力图即可画出。 (5)必须进行内力图的校核。通常取刚架的一部分或一结点为分离体,按 已绘制的内力图画出分离体的受力图,验算该受力图上各内力是否满足 平衡方程
建筑力学
第十章静定结构的内力分析本章主要讨论静定结构的内力计算。
它不仅是静定结构位移计算的基础,而且也是超静定结构计算的基础。
第一节静定梁的内力一、单跨静定梁单跨静定梁的力学简图有简支梁、悬臂梁和外伸梁三种形式,如图11-1所示。
图11-1梁内任意截面的内力的计算方法、内力图及弯矩图的做法在本书第六章中已有详细介绍,在此不再详述。
二、多跨静定梁若干根梁用铰相连,并和若干支座与基础相连而组成的静定梁,称为多跨静定梁。
在实际的建筑工程中,多跨静定梁常用来跨越几个相连的跨度。
图10-2(a)所示为一公路或城市桥梁中,常采用的多跨静定梁结构形式之一,其计算简图如图10-2(b)所示。
在房屋建筑结构中的木檩条,也是多跨静定梁的结构形式,如图10-3(a)所示为木檩条的构造图,其计算简图如图10-3(b)所示。
连接单跨梁的一些中间铰,在钢筋混凝土结构中其主要形式常采用企口结合(图10-2a),而在木结构中常采用斜搭接并用螺栓连接(图10-3a)。
图10-2 图10-3从几何组成分析可知,图10-2(b)中AB梁是直接由链杆支座与地基相连,是几何不变的。
且梁AB本身不依赖梁BC和CD就可以独立承受荷载,称之为基本部分。
如果仅受竖向荷载作用,CD梁也能独立承受荷载维持平衡,同样可视为基本部分。
短梁BC是依靠基本部分的支承才能承受荷载并保持平衡,所以,称为附属部分。
同样道理在图10-3(b)中梁AB、CD和EF均为基本部分,梁BC和梁DE为附属部分。
为了更清楚地表示各部分之间的支承关系,把基本部分画在下层,将附属部分画在上层,如图10-2(c)和图10-3(c)所示,我们称它为关系图或层叠图。
计算多跨静定梁时,必须先从附属部分计算,再计算基本部分,按组成顺序的逆过程进行。
例如图10-2(c),应先从附属梁BC计算,再依次考虑AB、CD梁。
这样便把多跨梁化为单跨梁,分别进行计算,从而可避免解算联立方程。
再将各单跨梁的内力图连在一起,便得到多跨静定梁的内力图。
静定结构的内力分析—静定平面刚架(建筑力学)
1.刚架的概念及特点
(1)概念:多个杆件组成,包含刚结点 (2)特点:通过刚结点,不同杆件之间不但可以传递力 还可以传递弯矩
①力学计算复杂; ②结构内力分布均匀,节省材料; ③杆件数目较少,节省空间。
静定平面刚架的类型
2.刚架的类型
悬臂刚架(图a):部分杆件一端刚结点,一端悬臂 简支刚架(图b):其支座类似于简支梁
分别绘制BE的轴力图、剪力图及弯矩图如图所示。 (4)DE杆件内力图
取DE为隔离体,受力分析如图所示。 直接绘制DE的轴力图、剪力图及弯矩图如图所示。
YD’ MD’
XD’
YE’ DE受力图 ME’ XE’
ME XE
YE
3.5kN
—
1.5kN
+
XB
YB BE受力图
轴力图
1.5kN
—
剪力图 轴力图
8.5kN +
例题分析
求作图示刚架内力图。
解:(1)求约束反力(略) (2)AD杆件内力图 取AD为隔离体,受力分析如图所示。
X 0, X A X D 0, 得 X D 1.5kN() Y 0, YA YD 0, 得 YD 8.5kN() MD 0, X A 5 M D 0, 得 M D 7.5kNm(左)
分别绘制AD的轴力图、剪力图及弯矩图如图所示。
MD XD
YD
XA
YA AD受力图
8.5kN
—
1.5kN
—
7.5kNm
轴力图
剪力图
弯矩图
例题分析
(3)BE杆件内力图 取BE为隔离体,受力分析如图所示。
X 0, X B X E 0,得 X E 1.5kN() Y 0, YB YE 0, 得 YE 3.5kN() MD 0, X B 5 M E 0, 得 M E 4.5kNm(右)
静定结构的内力分析—静定结构的特性(建筑力学)
静定结构的特性
4)荷载等效变换的影响。 具有同一合力的各种荷载,称为静力等效荷载。 所谓荷载的等效变换,就是将一种荷载变换为另一种与 其静力等效的荷载。
对作用于静定结构某一几何不变部分上的荷载进行等效变 换时,只有该部分的内力发生变化,其余部分的反力和内力 均保持不变,
静定结构的特性
5)结构等效替换的影响。静定结构某一几何不变部分 用其他的几何不变部分替换时,仅被替换部分内力发生变化, 其他部分的约束力和内力均不变。
6)静定结构的内力与结构的材料性质和构件的截面尺 寸无关。因为静定结构内力由静力平衡方程唯一确定,未使 用到结构材料性质及截面尺寸。
静定结的特性
第六节 静定结构的特性
几种静定结构的共同特性如下: 1)静力解答的唯一性 2)在静定结构中,除荷载外,任何 其它外因如温度改 变、支座 位移、材料收缩、制造误差等均不产生任何反力 和内力。
静定结构的特性
3)当平衡力系作用在静定结构的某一本身为几何不变的 部分上时,则只有此部分受力,其余部分的约束力和内力均 为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静定结构的内力分析第一节多跨静定梁、斜梁一、多跨静定梁若干根梁用中间铰连接在一起,并以若干支座与基础相连,或者搁置于其他构件上而组成的静定梁,称为多跨静定梁。
在实际的建筑工程中,多跨静定梁常用来跨越几个相连的跨度。
图13—1a所示为一公路或城市桥梁中,常采用的多跨静定梁结构形式之一,其计算简图如图13—1b所示。
在房屋建筑结构中的木檩条,也是多跨静定梁的结构形式,如图13—2a所示为木檩条的构造图,其计算简图如图13—2b所示。
连接单跨梁的一些中间铰,在钢筋混凝土结构中其主要形式常采用企口结合(图13—1a),而在木结构中常采用斜搭接或并用螺栓连接(图13—2a)。
从几何组成分析可知,图13—1b中AB梁是直接由链杆支座与地基相连,是几何不变的。
且梁AB本身不依赖梁B C和CD就可以独立承受荷载,所以,称为基本部分。
如果仅受竖向荷载作用,CD梁也能独立承受荷载维持平衡,同样可视为基本部分。
短梁BC是依靠基本部分的支承才能承受荷载并保持平衡,所以,称为附属部分。
同样道理在图13—2b 中梁AB,CD和EF均为基本部分,梁BC和梁DE为附属部分。
为了更清楚地表示各部分之间的支承关系,把基本部分画在下层,将附属部分画在上层,分别如图13—1c和图13—跨梁的内力图连在一起,便得到多跨静定梁的内力图。
要依靠AC 梁才能保证其几何不变性,所以CE 梁为附属部分。
(2)计算支座反力从层叠图看出,应先从附属部分CE 开始取隔离体,如图13-3c 所示。
∑=0CM 04680=⨯-⨯D V kN V D 120=(↑) ∑=0DM04280=⨯-⨯C V kN V C 40=(↓)将C V 反向,作用于梁AC 上,计算基本部分∑=0X 0=AH∑=0AM -40×10+V B ×8+10×8×4-64=0 ∑=0BM-40×2-10×8×4-64+V A ×8=0V A =58kN (↑) V B =18kN (↓) 校核:由整体平衡条件得∑Y =—80十120—18十58—10×8=0, 无误。
(3)作内力图除分别作出单跨梁的内力图,然后拼合在同一水平基线上这一方法外,多跨静定梁的内力图也可根据其整体受力图(图13—3a)直接绘出。
将整个梁分为AB 、BD 、DE 三段,由于中间铰C 处是外力的连续点,故不必将它选为分段点。
由内力计算法则,各分段点的剪力为kN Q A 58=右 左B Q =58-10×8=-22kN 右B Q =58-10×8-18=-40 kN 左D Q =80-120=-40 kN 右D Q =80 kN 左E Q =80 kN据此绘得剪力图如图13—3d 所示。
其中AB 段剪力为零的截面F 距A 点为5.8m 。
M AB=-64 kN·mM BA=-64+58×8-10×8×4=80 kN·mM DE=-80×2=-160 kN·mM ED=0M F=-64+58×5.8-10×5.8×5.8/2=104.2 kN·m据此作弯矩图如图13-3e所示。
其中AB段内有均布荷载,故需在直线弯矩图(图中虚线)的基础上叠加相应简支梁在跨中间(简称跨中)荷载作用的弯距图。
多跨静定梁比相同跨度的简支梁的弯矩要小,且弯矩的分布比较均匀,此即多跨静定梁的受力特征。
多跨静定梁虽然比相应的多跨简支梁要经济些,但构造要复杂些。
一个具体工程,是采用单跨静定梁,还是多跨静定梁或其它型式的结构,需要作技术经济比较后,从中选出最佳方案。
二、斜梁1、斜梁的荷载梁式结构的特点是,在竖直荷载作用下只产生竖向支座反力。
梁不一定是水平放置的,由楼梯简化成的斜梁,也是梁式结构,如图13—4所示。
斜梁通常承受两种形式的均布荷载:q式(13-1)表明:沿斜梁轴线分布的荷载q′除以cosα就可化为沿水平分布的荷载q。
这样换算以后,对斜梁的一切计算都可按图13-5c的简图进行。
例13—2 斜梁如图13—6a所示。
已知其倾角为α,水平跨度为l,承受沿水平方向集度为q的均布载荷作用。
试作该斜梁的内力图,并与相应水平梁的内力图作比较。
解:(1)求支座反力;以全梁为分离体,由静力平衡条件求得支座反力为:qlH A=0,V A=2(2)求内力可得弯矩方程为:2222x q x ql x qxx V M A -=-= 故知弯矩图为一抛物线,如图13—6c 所示,跨中弯矩为281ql 。
可见斜梁中最大弯矩的位置(梁跨中)和大小(82ql )与直梁是相同的。
求剪力和轴力时,将反力V A 和荷载qx 沿截面方向(v 方向)和杆轴方向(u 方向)分解(图13—6b),由∑v = 0,得αααcos 2cos cos ⎪⎭⎫⎝⎛-=-=qx ql qx V Q A 由∑=0u ,得:αααsin 2sin sin ⎪⎭⎫⎝⎛--=+-=qx ql qx V N A 根据以上二式分别作出剪力图和轴力图,如图13—6d 、e 所示。
图13—6f 所示,为与上述斜梁的水平跨度相等并承受相同载荷的简支梁。
由截面法可求得任一截面K 的弯矩0M 、剪力0Q 和轴力0N 的方程为 2022x q x ql M -=, qx qlQ -=20, 00=N 作得内力图如图13—6g 、h 、i 所示。
将斜梁与水平梁的内力加以比较,可知二者有如下关系:0M M =, αcos 0Q Q =,刚架中的所谓刚结点,就是在任何荷载作用下,梁、柱在该结点处的夹角保持不变。
如图13—7a、b、c、d所示刚架在荷载作用下均产生变形,刚结点因而有线位移和转动,但原来结点处梁、柱轴线的夹角大小保持不变。
2.在受力方面,由于刚架具有刚结点,梁和柱能作为一个整体共同承担荷载的作用,结构整体性好,刚度大,内力分布较均匀。
在大跨度、重荷载的情况下,是一种较好的承重结构,所以刚架结构在工业与民用建筑中,被广泛地采用。
(二)静定刚架的内力计算及内力图其杆件=0,荷载作用产生三种内力:弯矩、剪力和轴力。
要求出静定刚架中任一截面的内力(M、Q、N)也如同计算梁的内力一样,用截面法将刚架从指定截面处截开,考虑其中一部分隔离体的平衡,建立平衡方程,解方程从而求出它的内力。
因此,关于静定梁的弯矩和剪力计算的一般法则,对于刚架来说同样是适用的。
现将计算法则重复说明如下(注意与前面的提法内容是一致的):“任一截面的弯矩数值等于该截面任一侧所有外力(包括支座反力)对该截面形心的力矩的代数和”。
“任一截面的剪力数值等于该截面任一侧所有外力(包括支座反力)沿该截面平面投影或称切向投影的代数和”。
“任一截面的轴力数值等于该截面任—侧面所有外力(包括支座反力)在该截面法线方向投影(或称法向投影)的代数和”。
2.内力图的绘制 在作内力图时,先根据荷载等情况确定各段杆件内力图的形状,之后再计算出控制截面的内力值,这样即可作出整个刚架的内力图。
对于弯矩图通常不标明正负号,而把它画在杆件受拉一侧,而剪力图和轴力图则应标出正负号。
在运算过程中,内力的正负号规定如下:使刚架内侧受拉的弯矩为正,反之为负;轴力以拉力为正、压力为负;剪力正负号的规定与梁相同。
为了明确的表示各杆端的内力,规定内力字母下方用两个脚标,第一个脚标表示该内力所属杆端,第二个脚标表示杆的另—端。
如AB 杆A 端的弯矩记为M AB ,B 端的弯矩记为M BA括A 的内力。
对C 1A 隔离体(图13—9b),则 ∑=0X , 08=-CAQ , kN Q CA 8= ∑=0Y , 06=-CAN, kN N CA 6=∑=0CM,038=⨯-CA M , m kN M CA ∙=24 (AC 杆内侧即右侧受拉) 对C 2B 隔离体(图13—9c),有∑=0X , 0=CBN∑=0Y , 06=+CBQ ,kN Q CB 6-=∑=0CM,046=⨯+-CB M , m kN M CB ∙=24(CB 杆内侧即下侧受拉) (3)取结点C 为隔离体校核(图13—9d)。
校核时画出分离体的受力图应注意:a )必须包括作用在此分离体上的所有外力,以及计算所得的内力M 、Q 和N ;b )图中的M 、Q 和N 都应按求得的实际方向画出并不再加注正负号。
∑=0X , 8-8=0 ∑=0Y , 6-6=0CA∑=0X , 04312=⨯-=CAQ∑=0CM, 24243412=⨯⨯-⨯=CA M kN ·m (AC 杆内侧即右侧受拉。
)取AC 2杆(相当取AC 2为研究对象,包括支座A),得 ∑=0X , 04312=⨯-=CDN∑=0Y , 4-=CDQkN∑=0CM, 24243412=⨯⨯-⨯=CD M kN ·m (CD 杆内侧即下侧受拉)(3)计算刚结点D 处杆端截面内力。
取BD l 杆(相当取BD 1为研究对象,包括支座B),得∑=0Y , 4-=DBN kN ∑=0X , 0=DBQkN∑=0DM, 0=DB M取BD 2杆(相当取D 2DB 为研究对象,包括刚结点D 和支座B),得 ∑=0X , 0=DCN kN∑=0Y , 4-=DCQkN∑=0DM, 0=DC M(4)取结点C 或D 为分离体进行校核。
(2)计算各杆端内力 取CD 杆:0=CD M414=⨯=DC M kN ·m (左侧受拉) 4==DC CD Q Q kN 0==DC CD N N取DB 杆:0=BD M2847=⨯=DB M kN ·m (下侧受拉) 7-==DB BD Q Q kN 0==DB BD N N取AD 杆:0=AD M2424148=⨯⨯-⨯=DA M kN ·m (右侧受拉) 8=AD Q kN4418=⨯-=DA Q kN 7==DA AD N N Kn(3)作M 、Q 、N 内力图弯矩图画在杆的受拉侧。
杆CD 和BD 上无荷载,将杆的两端杆端弯矩的纵坐标以直线相连,即得杆CD 和BD 的弯矩图。
杆AD 上有均布荷载作用,将杆AD 两端杆端弯矩值以虚直线相连,以此虚直线为基线,叠加以杆AD 的长度为跨度的简支梁受均布荷载作用下的弯矩图,即得杆AD 的弯矩图。
叠加后,AD 杆中点截面E 的弯矩值为 ()144181240212=⨯⨯++=E M kN ·m(右侧受拉) 刚架的M 图如图13—11b 所示。
剪力图的纵坐标可画在杆的任一侧,但需标注正负号。
将各杆杆端剪力纵坐标用直线相连(各杆跨中均无集中力作用),即得各杆的剪力图。
刚架的剪力图如图13—11c 所示。