典型信号的拉普拉斯变换和拉普拉斯逆变换

合集下载

常用拉普拉斯变换及反变换

常用拉普拉斯变换及反变换

419附录A 拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质 齐次性)()]([s aF t af L =1线性定理叠加性)()()]()([2121s F s F t f t f L ±=±一般形式=−=][′−ٛ−=−=−−−−=−∑11)1()1(1222)()()0()()(0)0()(])([)0()(])([k k k k nk k n n n n dt t f d t f f s s F s dt t f d L f sf s F s dt t f d L f s sF dt t df L M )( 2微分定理初始条件为0时)(])([s F s dtt f d L n nn =一般形式 }}∑∫∫∫∫∫∫∫∫∫∫∫==+−===+=++=+=nk t n n k n n n n t t t dt t f ss s F dt t f L sdt t f s dt t f s s F dt t f L sdt t f s s F dt t f L 101022022]))(([1)(])()([]))(([])([)(]))(([])([)(])([个共个共L L M3积分定理初始条件为0时}nnn s s F dt t f L )(]))(([=∫∫个共L4 延迟定理(或称t 域平移定理))()](1)([s F e T t T t f L Ts−=−− 5 衰减定理(或称s 域平移定理))(])([a s F e t f L at +=−6 终值定理 )(lim )(lim 0s sF t f st →∞→=7 初值定理 )(lim )(lim 0s sF t f s t ∞→→=8 卷积定理)()(])()([])()([21021021s F s F d t f t f L d f t f L tt =−=−∫∫τττττ4202.表A-2 常用函数的拉氏变换和z 变换表 序号 拉氏变换E(s)时间函数e(t) Z 变换E(z)1 1δ(t)12 Ts e −−11∑∞=−=0)()(n T nT tt δδ 1−z z3 s1 )(1t 1−z z 421s t2)1(−z Tz5 31s 22t32)1(2)1(−+z z z T6 11+n s!n t n )(!)1(lim 0aTn n n a e z z a n −→−∂∂− 7 as +1ate −aTe z z−− 8 2)(1a s + atte− 2)(aT aT e z Tze −−−9 )(a s s a +ate−−1 ))(1()1(aT aT e z z z e −−−−− 10 ))((b s a s ab ++− btate e−−−bTaT e z z e z z −−−−− 11 22ωω+st ωsin 1cos 2sin 2+−T z z Tz ωω12 22ω+s st ωcos1cos 2)cos (2+−−T z z T z z ωω 13 22)(ωω++a s t eatωsin −aTaT aT eT ze z T ze 22cos 2sin −−−+−ωω 14 22)(ω+++a s a st e at ωcos −aTaT aTe T ze z T ze z 222cos 2cos −−−+−−ωω15aT s ln )/1(1−T t a/az z −4213. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

信号与系统第四章-连续信号复频域分析

信号与系统第四章-连续信号复频域分析

j
0
(可以用复平面虚轴上的连续频谱表示) 实际上是把非周期信号分解为无穷多等幅振荡的正
弦分量 d cost 之和。 《信号与系统》SIGNALS AND SYSTEMS
F ( )




f (t )e jt dt
ZB
3. 拉普拉斯变换
2 j f (t ) F ( s)
称 为衰减因子; e- t 为收敛因子。 返回《信号与系统》SIGNALS AND SYSTEMS
ZB
取 f(t)e- t 的傅里叶变换:
F [ f (t )e
t
]



f (t )e
t jt
e
f (t )e ( j )t dt dt


它是 j的函数,可以表示成
拉普拉斯变换(复频域)分析法 – 在连续、线性、时不变系统的分析方面十分有效 – 可以看作广义的傅里叶变换 – 变换式简单 – 扩大了变换的范围 – 为分析系统响应提供了规范的方法
返回《信号与系统》SIGNALS AND SYSTEMS
ZB
4.1 拉普拉斯变换
4.1.1 从傅里叶变换到拉普拉斯变换
单边拉氏变换的优点: (1) 不仅可以求解零状态响应,而且可以求解零输入响应 或全响应。 (2) 单边拉氏变换自动将初始条件包含在其中,而且只需 要了解 t=0- 时的情况就可以了。 (3) 时间变量 t 的取值范围为 0 ~ ,复频域变量 s 的取 值范围为复平面( S 平面)的一部分。 j S 平面 当 >0 时, f(t)e- t 绝对收敛。
ZB
按指数规律增长的信号:如 e t ,0 =
比指数信号增长的更快的信号:如 e 或t t 找不到0 , 则此类信号不存在拉氏变换。

函数的拉普拉斯变换与逆变换

函数的拉普拉斯变换与逆变换

函数的拉普拉斯变换与逆变换定义函数f(t)的拉普拉斯变换定义为:F(s)=∫e−st∞f(t)dt其中s是一个复数变量。

性质拉普拉斯变换具有以下性质:1.线性性:对于任意常数a和b,以及函数f(t)和g(t),有:L[af(t)+bg(t)]=aL[f(t)]+bL[g(t)]2.时移性:对于任意常数a,有:L[f(t−a)u(t−a)]=e−as F(s)其中u(t)是单位阶跃函数。

3.微分性:对于任意可导函数f(t),有:L[f′(t)]=sF(s)−f(0)L[f″(t)]=s2F(s)−sf(0)−f′(0)4.积分性:对于任意可积函数f(t),有:L[∫ft0(τ)dτ]=F(s)s5.卷积定理:对于任意两个函数f(t)和g(t),有:L[f(t)∗g(t)]=F(s)G(s)其中∗表示卷积运算。

应用拉普拉斯变换在许多领域都有应用,包括:1.微分方程的求解:拉普拉斯变换可以将微分方程转化为代数方程,从而更容易求解。

2.信号处理:拉普拉斯变换可以用于分析和处理信号。

3. 控制理论:拉普拉斯变换可以用于分析和设计控制系统。

4. 电路分析:拉普拉斯变换可以用于分析和设计电路。

逆拉普拉斯变换拉普拉斯变换的逆变换定义为:f (t )=12πi ∫e st γ+i∞γ−i∞F (s )ds 其中 γ 是一个大于所有 F (s ) 的奇点实部的常数。

性质逆拉普拉斯变换具有以下性质:1. 线性性:对于任意常数 a 和 b ,以及函数 f (t ) 和 g (t ),有:L −1[aF (s )+bG (s )]=aL −1[F (s )]+bL −1[G (s )]2. 时移性:对于任意常数 a ,有:L −1[e as F (s )]=f (t −a )u (t −a )3. 微分性:对于任意可导函数 F (s ),有:L −1[sF (s )]=f′(t )L −1[s 2F (s )]=f″(t )4. 积分性:对于任意可积函数 F (s ),有:L −1[F (s )s ]=∫f t 0(τ)dτ 5. 卷积定理:对于任意两个函数 F (s ) 和 G (s ),有:L −1[F (s )G (s )]=f (t )∗g (t )应用逆拉普拉斯变换在许多领域都有应用,包括:1. 微分方程的求解:逆拉普拉斯变换可以将代数方程转化为微分方程,从而更容易求解。

Laplace变换和逆变换

Laplace变换和逆变换
1 1
2) 含有共轭复数极点的情况
a3 an a1 s a 2 M ( s) F ( s) N ( s) ( s j )( s j ) s p 3 s pn
将上式两端同乘(s+2s 5 3 a3 ( s 2) 5 3 ( s 2) s 2
d s 2 2s 5 3 a2 ( s 2) 2 3 ds ( s 2) s 2
d 2 s 2 2s 5 3 a1 ( s 2) 1 2 3 2!ds ( s 2) s 2
pn t
)
s3 例2-19 求 F ( s) 2 的Laplace逆变换 s 3s 2
解 F ( s)
a1 a2 s3 s3 2 s 3s 2 ( s 1)( s 2) s 1 s 2
其中
s3 a1 ( s 1) 2 ( s 1)( s 2) s 1
M (s) b0 s b1s bm1s bm F ( s) n (n m) n 1 N (s) s a1s an1s an
m
m 1
使分母为零的s值称为极点,
使分子为零的点称为零点。
根据实系数多项式分解定理,分母有n 次多项式,则必然有 n个根,因此F(s)可分解为
1 a j st f (t ) F ( s)e ds 2j a j
简写
f (t ) L [ F (s)]
直接通过积分求 Laplace 逆变换通常很繁锁,对于一般问 题都可以避免这样的积分,利用Laplace 变换表,查表求 原函数。
1
对于一般的控制系统,可以用通用有理分式表示

常见的拉普拉斯变换公式

常见的拉普拉斯变换公式

常见的拉普拉斯变换公式拉普拉斯变换公式是数学中的一种重要工具,它在信号与系统、电路分析、控制理论等领域有着广泛的应用。

通过将一个函数或信号从时间域转换到复频域,拉普拉斯变换可以简化复杂的微分方程求解和系统分析问题。

以下是常见的拉普拉斯变换公式及其应用。

1. 原函数定义公式:拉普拉斯变换的第一个公式是原函数定义公式,用于将一个函数从时间域表示转换为复频域表示。

假设函数为f(t),其拉普拉斯变换为F(s),则原函数定义公式为:F(s) = L{f(t)} = ∫[0,∞] f(t)e^(-st) dt其中,s为复变量,表示函数在复频域的频率。

2. 常见的拉普拉斯变换公式:拉普拉斯变换公式包括了一系列常见函数的变换结果,以下是其中的几个常见公式及其应用:- 常数函数:L{1} = 1/s,常数函数在拉普拉斯变换后变为1除以复变量s。

- 单位阶跃函数:L{u(t)} = 1/s,单位阶跃函数在拉普拉斯变换后变为1除以复变量s。

- 指数函数:L{e^(at)} = 1/(s-a),指数函数在拉普拉斯变换后变为1除以复变量s减去常数a。

- 正弦函数:L{sin(at)} = a/(s^2 + a^2),正弦函数在拉普拉斯变换后变为常数a除以复变量s的平方加上a的平方。

- 余弦函数:L{cos(at)} = s/(s^2 + a^2),余弦函数在拉普拉斯变换后变为复变量s除以复变量s的平方加上a的平方。

3. 拉普拉斯变换的性质:拉普拉斯变换具有一系列的性质,这些性质可以方便地应用于信号处理和系统分析中。

以下是常见的拉普拉斯变换性质:- 线性性质:L{af(t) + bg(t)} = aF(s) + bG(s),其中a和b为常数,f(t)和g(t)为函数,F(s)和G(s)为它们的拉普拉斯变换。

- 平移性质:L{f(t-a)u(t-a)} = e^(-as)F(s),其中a为常数,f(t)为函数,u(t)为单位阶跃函数,F(s)为f(t)的拉普拉斯变换。

常用拉普拉斯变换及反变换

常用拉普拉斯变换及反变换

附录A 拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质4192.表A-2 常用函数的拉氏变换和z变换表4204213. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==−−−−L L (m n >) 式中系数n n a a a a ,,...,,110−,m m b b b b ,,,110−L 都是实常数;n m ,是正整数。

按代数定理可将)(s F 展开为部分分式。

分以下两种情况讨论。

① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=−=−++−++−+−=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)(L L (F-1)式中,n s s s ,,,21L 是特征方程A(s)=0的根。

i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算:)()(lim s F s s c i s s i i−=→ (F-2)或iss i s A s B c =′=)()( (F-3)式中,)(s A ′为)(s A 对s 的一阶导数。

根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡−==∑=−−n i i i s s c L s F L t f 111)()(=ts n i i ie c −=∑1(F-4)②0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r rs s s s s s s B s F −−−=+L =nn i i r r r r r r s s c s s c s s c s s c s s c s s c −++−++−+−++−+−++−−L L L 11111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;422其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1−r c ,…, 1c 则按下式计算:)()(lim 11s F s s c r s s r −=→)]()([lim111s F s s dsdc r s s r −=→− M)()(lim !11)()(1s F s s dsd j c r j j s s jr −=→− (F-5) M)()(lim )!1(11)1()1(11s F s s dsd r c r r r s s −−=−−→原函数)(t f 为[])()(1s F Lt f −=⎥⎦⎤⎢⎣⎡−++−++−+−++−+−=++−−−n n i i r r r r r r s s c s s c s s c s s c s s c s s c L L L L 111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=−−−+⎥⎦⎤⎢⎣⎡+++−+−=1122111)!2()!1(L (F-6)。

常用拉普拉斯变换及反变换

常用拉普拉斯变换及反变换

常用拉普拉斯变换及反变换拉普拉斯变换,听起来像是高深莫测的数学术语,但其实它在我们生活中无处不在。

想想电路、信号处理,甚至金融模型,拉普拉斯变换就是那把钥匙,打开了我们理解动态系统的大门。

咱们今天就来深入探讨一下这个神奇的工具。

首先,什么是拉普拉斯变换?简单来说,它能把时间域的信号变成频域的形式。

就像把复杂的乐曲简化成谱表,便于分析。

具体公式是这样的:L{f(t)} = F(s) = ∫₀^∞ e^(-st)f(t) dt。

乍一看可能让人头晕,但其实没那么可怕。

关键在于理解它的意义和应用。

接下来,咱们聊聊常用的拉普拉斯变换。

比如,单位阶跃函数U(t)的变换,大家可能会觉得它平淡无奇,但它在控制系统中的作用可大了。

它的变换结果是1/s,这意味着在系统响应分析中,你能轻松得到稳态值。

又如,单位冲激函数δ(t)的变换,结果是1。

就这么简单,迅速地提供了系统的即时反应。

再来说说反变换,这可是拉普拉斯变换的“绝配”。

要把频域的信号再变回时间域,就得用反变换。

公式听起来复杂,其实只需掌握几个技巧。

首先,理解F(s)的极点位置,再通过留数定理计算,最终实现从F(s)到f(t)的转变。

这种技巧在信号分析中非常常用。

掌握这些,你就能在众多系统中游刃有余。

具体应用方面,拉普拉斯变换的用途广泛到令人咋舌。

工程师用它分析电路,金融分析师用它评估风险,甚至生物学家也能借助它理解生态系统的动态变化。

这就像是一把万能钥匙,无论你处于哪个领域,都能找到它的身影。

最后,拉普拉斯变换不仅是工具,还是一种思维方式。

它教会我们如何从复杂中提炼出简单,如何从表象中洞察本质。

就像是海洋中的一条鱼,游得再深也得懂得水的流动。

掌握了拉普拉斯变换,分析任何动态系统都不再是难事。

总之,拉普拉斯变换是数学和工程结合的典范。

它不仅实用,更是开启了许多科学领域的大门。

若你想在相关领域发光发热,理解和应用拉普拉斯变换绝对是个明智之举。

希望今天的分享能让你对这个话题有新的认识,真心希望你在未来的学习和工作中,能充分利用这一强大的工具。

常用拉普拉斯变换及反变换

常用拉普拉斯变换及反变换

常用拉普拉斯变换及反变换在数学和工程领域中,拉普拉斯变换是一种非常有用的工具,它能够将时域中的函数转换到复频域中,从而使许多问题的分析和求解变得更加简单。

接下来,让我们一起深入了解一下常用的拉普拉斯变换及反变换。

拉普拉斯变换的定义是对于一个实变量 t 的函数 f(t),其拉普拉斯变换 F(s) 定义为:\F(s) =\int_{0}^{\infty} f(t) e^{st} dt\其中,s 是一个复变量,通常表示为 s =σ +jω,σ 是实部,ω 是虚部,j 是虚数单位。

常用的函数拉普拉斯变换有很多,下面列举一些常见的例子。

单位阶跃函数 u(t),其定义为 t < 0 时,u(t) = 0;t ≥ 0 时,u(t) =1。

它的拉普拉斯变换为 1 / s 。

指数函数 e^at (a 为常数),其拉普拉斯变换为 1 /(s a) 。

正弦函数sin(ωt) 的拉普拉斯变换为ω /(s^2 +ω^2) 。

余弦函数cos(ωt) 的拉普拉斯变换为 s /(s^2 +ω^2) 。

单位脉冲函数δ(t),其拉普拉斯变换为 1 。

这些常见函数的拉普拉斯变换在解决各种问题时经常会用到。

那么,为什么要进行拉普拉斯变换呢?这是因为在时域中分析一些问题可能会比较复杂,而通过拉普拉斯变换将其转换到复频域后,可以利用复频域中的一些特性和方法来简化问题的处理。

例如,在求解线性常系数微分方程时,通过对方程两边进行拉普拉斯变换,可以将微分方程转化为代数方程,从而更容易求解。

接下来,我们再看看拉普拉斯反变换。

拉普拉斯反变换是将复频域中的函数 F(s) 转换回时域中的函数 f(t) 。

拉普拉斯反变换的计算方法通常有部分分式展开法和留数法等。

部分分式展开法是将 F(s) 分解为几个简单分式的和,然后根据已知的常见函数的拉普拉斯变换,直接写出对应的时域函数。

例如,如果 F(s) =(s + 1) /((s + 2)(s + 3) ),可以通过部分分式展开为 A /(s + 2) + B /(s + 3) 的形式,然后求出 A 和 B 的值,再根据常见函数的拉普拉斯变换反求出时域函数。

常用拉普拉斯变换及反变换

常用拉普拉斯变换及反变换

常用拉普拉斯变换及反变换拉普拉斯变换在工程和数学中是个非常实用的工具。

它不仅能帮助我们解决微分方程,还能简化许多复杂的问题。

今天我们就来聊聊常用的拉普拉斯变换和反变换,看看它们是如何发挥作用的。

一、拉普拉斯变换的基本概念1.1 定义拉普拉斯变换是一个积分变换,它将时间域的函数转换为复频域的函数。

简单来说,它把一个函数从“时间的世界”带到了“频率的世界”。

公式上,拉普拉斯变换可以表示为:\[ \mathcal{L}\{f(t)\} = F(s) = \int_0^{\infty} e^{-st} f(t) dt \]这里的 \( s \) 是复数变量,\( f(t) \) 是我们要变换的时间域函数,\( F(s) \) 则是变换后的结果。

1.2 性质拉普拉斯变换有几个重要的性质,比如线性性、时间延迟和微分等。

这些性质使得在实际应用中,可以灵活地对待不同类型的函数。

例如,线性性让我们可以把两个函数的变换简单相加,这对于解决复杂问题很有帮助。

二、常用的拉普拉斯变换2.1 单位阶跃函数单位阶跃函数 \( u(t) \) 是拉普拉斯变换中最常用的函数之一。

它的变换结果是:\[ \mathcal{L}\{u(t)\} = \frac{1}{s} \]这个简单的公式为很多工程应用奠定了基础,因为很多信号和系统可以用阶跃函数来描述。

2.2 指数函数另一个常见的函数是指数函数 \( e^{at} \)。

它的拉普拉斯变换结果为:\[ \mathcal{L}\{e^{at}\} = \frac{1}{s - a} \]这在处理自然衰减或增长的过程时特别有用,比如在电子电路中,我们经常会遇到这种情况。

2.3 正弦和余弦函数正弦和余弦函数的拉普拉斯变换也很重要。

它们分别为:\[ \mathcal{L}\{\sin(\omega t)\} = \frac{\omega}{s^2 + \omega^2} \] \[ \mathcal{L}\{\cos(\omega t)\} = \frac{s}{s^2 + \omega^2} \]这些变换结果在振动分析和控制系统中应用广泛,帮助我们理解系统的频率响应。

拉普拉斯变换

拉普拉斯变换
0
2、单位阶跃函数
0 r (t ) 1
t 0 t0
拉普拉斯变换为
R( s) Lr (t ) r (t )e dt
st 0

0
1 1 e dt S
st
3、单位斜坡函数
0 r (t ) t
拉普拉斯变换为

t 0 t0

R( s) Lr (t ) r (t )e dt


0
n! t e dt n 1 s
n st
其余函数的拉氏变换查附录B
三、拉普拉斯变换的基本定律 1、 线性定律
设 F1 (s) L f1 (t ) F2 (s) L f 2 (t ) ,a、b为 常(t ) aF1 (s) bF2 (s)
st 0
0
1 t e dt 2 s
st
4、正弦函数
0 r (t ) sin t
拉普拉斯变换为
0
,式中为常数 t0
st st
t 0
R(s) Lr (t ) r (t )e dt sin t e dt
0
由欧拉公式:
1 jt jt sin t (e e ) 2j
待定系数Ki F (s)( s pi )s pi
Kn K1 K2 F ( s) s p1 s p2 s pn
…… ④
…… ⑤
2、 有重极点的情况 设F(s)只有r 个重极点而无其它单极点 Kr K r 1 K1 F ( s) …… ⑥ r r 1 ( s p0 ) ( s p0 ) s p0
此时r=n,Ki为待定系数,由下式确定:

拉普拉斯变换及反变换

拉普拉斯变换及反变换

例3 I(s) ℒ [1 e-t ] 1 1 s s1
11
i(t)
t
lim s(
s0
s
s
) 1
1
机械工程控制基础
拉普拉斯变换及反变换
例4:已知F(s)=
1 sa
,求f(0)和f(∞)
解:由初值定理和终值定理可得
f
(0)
limsF (s) s
lims s
s
1
a
1
f
()
limsF (s) s0
2
机械工程控制基础
拉普拉斯变换及反变换
六、初值(initial-value)定理和终值(final-value)定理
初值定理 若ℒ [f(t)]=F(s),且 f(t)在t = 0处无冲激,
则 f (0 ) lim f (t) lim sF (s)
t 0
s
终值定理 f(t)及其导数f (t)可进行拉氏变换,且
lim f (t)存在时 ,则
t
f () lim f (t) lim sF(s)
t
s0
机械工程控制基础
拉普拉斯变换及反变换
例1
1
u(t)
t 0
lim s
s
s
1
例2 I(s) 5 2 s1 s2
i(0 ) lim s( 5 2 ) lim( 5 2 ) 3 s s 1 s 2 s 1 1/ s 1 2 / s
L
i
(t)
L1[
I
(s) ]
L1
s
1
a
1 L
• 拉氏变换是将时间函数f(t)变换为复变函数F(s),或作相 反变换。
• 时域f(t)变量t是实数,复频域F(s)变量s是复数。变量s又 称“复频率”。

(完整word版)典型信号的拉普拉斯变换和拉普拉斯逆变换

(完整word版)典型信号的拉普拉斯变换和拉普拉斯逆变换

成绩评定表课程设计任务书目录1.Matlab介绍............... 错误!未定义书签。

2.利用Matlab实现信号的复频域分析—拉普拉斯变化和拉普拉斯逆变换的设计 (5)2.1.拉普拉斯变换曲面图的绘制 (5)2.2.拉普拉斯变化编程设计及实现 (7)2.3.拉普拉斯逆变化编程设计及实现 (8)3.总结 (14)4.参考文献 (15)1.Matlab介绍MATLAB语言是当今国际上在科学界和教育界中最具影响力、也最具活力的软件;它起源于矩阵运算,现已发展成一种高度集成的计算机语言;它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面设计、丰富的交互式仿真集成环境,以及与其他程序和语言便捷接口的功能。

经过多年的开发运用和改进,MATLAB已成为国内外高校在科学计算、自动控制及其他领域的高级研究工具。

典型的用途包括以下几个方面:1)数学计算;2)新算法研究开发;3)建模、仿真及样机开发;4)数据分析、探索及可视化;5)科技与工程的图形功能;6)友好图形界面的应用程序开发。

1.1Matlab入门Matlab7.0介绍Matlab7.0比Matlab的老版本提供了更多更强的新功能和更全面、更方便的联机帮助信息。

当然也比以前的版本对于软件、硬件提出了更高的要求。

在国内外Matlab已经经受了多年的考验。

Matlab7.0功能强大,适用范围很广。

其可以用来线性代数里的向量、数组、矩阵运算,复数运算,高次方程求根,插值与数值微商运算,数值积分运算,常微分方程的数值积分运算、数值逼近、最优化方法等,即差不多所有科学研究与工程技术应用需要的各方面的计算,均可用Matlab来解决。

MATLAB7.0提供了丰富的库函数(称为M文件),既有常用的基本库函数,又有种类齐全、功能丰富多样的的专用工具箱Toolbox函数。

函数即是预先编制好的子程序。

在编制程序时,这些库函数都可以被直接调用。

无疑,这会大大提高编程效率。

数学基础-拉普拉斯变换PPT课件

数学基础-拉普拉斯变换PPT课件

es F (s)
f (t )
t
拉氏变换性质
(d)微分定理
L[df (t)] L[ f '(t)] sF (s) f (0) dt
d 2 f (t) L[ dt 2 ]
L[
f
''(t )]
s2F(s)
sf
(0)
f
'(0)
f (0)
其中:
f (t)
t 0
f '(0) f '(t) t0
1
(t)dt 1(t 0)
f(t)
0 L[ (t)]
(t )estdt
lim 1estdt (t)0(t 0)
0
0 0
t
eL[e ] lim 1 (1 S) lijmt(1
0 S
0
(2)单位阶跃函数u(t)
e( S)'
S
)'
s
11 j
f(t)
L[u(t)]
0
10
21 [
e
0
[
( s j
e(s
)t dt
j )t dt
2 j 0
e ( s j )t dt ]
0
e( s j )t dt ]
21j[ 01
1
0
]
21 s j1 s j1
L[cost]
2 j [ss
s2 2
j
s
]
j
L[sint]
s2
2
拉普拉斯变换
(5)et sint,et sint,et cost,et cost
欧拉 e jt cost j sint
公式

拉普拉斯变换及反变换

拉普拉斯变换及反变换

路漫漫其修远兮, 吾将上下而求索
路漫漫其修远兮, 吾将上下而求索
路漫漫其修远兮, 吾将上下而求索
路漫漫其修远兮, 吾将上下而求索
• 作业
1 写出拉普拉斯变换定义式 、 2 、
路漫漫其修远兮, 吾将上下而求索
路漫漫其修远兮, 吾将上下而求索
__
1
(s-1)2
路漫漫其修远兮, 吾将上下而求索
F(s)= ℒ ℒ
路漫漫其修远兮, 吾将上下而求索
(单位脉冲函数) δ(t)
0
t

=1
路漫漫其修远兮, 吾将上下而求索
(单位斜坡函数) f(t) t
0
F(s)=L[f(t)]=
路漫漫其修远兮, 吾将上下而求索
(幂函数)


路漫漫其修远兮, 吾将上下而求索


ℒ ℒ

路漫漫其修远兮, 吾将上下而求索
路漫漫其修远兮, 吾将上下而求索
三、积分定理



路漫漫其修远兮, 吾将上下而求索
四、时域平移

平移
f(t)
f(t-t0)
路漫漫其修远兮, 吾将上下而求索
五、 复频域平移
ℒ ℒ 例1 ℒ
例2 ℒ 例3 ℒ
路漫漫其修远兮, 吾将上下而求索
六、初值定理和终值定理 初值定理 若ℒ [f(t)]=F(s),且 f(t)在t = 0处无冲激,
f1(t)
f2(t)
1 e-t
1 e-t
0
t 0
t
解 由于定义的拉氏变换积分上限是0-,两个函数的 拉氏变换式相同
当取上式的反变换时,只能表示出 区间的函数式
ℒ -1

拉普拉斯变换及反变换ppt课件

拉普拉斯变换及反变换ppt课件
补充 拉普拉斯变换及反变换 重点 知识
一、拉氏变换及其特性 1、 拉氏变换定义
如果有一个以时间 t为自变量的实变函数 f t ,它的定义域是 t 0 ,那么 f t 的拉普
拉斯变换定义为
F
s
L
f
t
0
f
t estdt
式中,s是复变数,s j( 、
均为实数), est 称为拉普拉斯积分;F s 0
>> p=[1 -120 25 126
用num和den分别表示F(s)的分子和分母多项式, 即:num = [b0 b1 … bm]
den = [a0 a1 … an] MATLAB提供函数residue用于实现部分分式展 开,其句法为:
[r, p, k] = residue(num, den)
f (t) L1(F (s)) 1
c
j
F
(s)e
st
ds
2j c j
式中 L1 表示拉普拉斯反变换的符号
2、拉氏反变换的计算方法 由象函数求原函数的方法:
方法一:利用拉氏反变换定义求 ——不常用解
方法二:查拉氏变换表求解——对简单的象函数适用 方法三:部分分式法——象函数为有理分式函数时适用
p1)r ]}s p1
br j
1 dj
{ j!
ds
j
[F
s
(s
p1)r ]}s p1
b1
1
d r1
(r
{ 1)!
ds
r
1
[
F
s
(s
p1)r ]}s p1

F(s)
(s
s 1 2)3 ( s
3)
解:F (s)

拉普拉斯变换及逆变换

拉普拉斯变换及逆变换

第十二章 拉普拉斯变换及逆变换拉普拉斯(Laplace)变换是分析和求解常系数线性微分方程的一种简便的方法,而且在自动控制系统的分析和综合中也起着重要的作用。

我们经常应用拉普拉斯变换进行电路的复频域分析。

本章将扼要地介绍拉普拉斯变换(以下简称拉氏变换)的基本概念、主要性质、逆变换以及它在解常系数线性微分方程中的应用。

第一节 拉普拉斯变换在代数中,直接计算328.957812028.6⨯⨯=N 53)164.1(⨯是很复杂的,而引用对数后,可先把上式变换为164.1lg 53)20lg 28.9lg 5781(lg 3128.6lg lg ++-+=N然后通过查常用对数表和反对数表,就可算得原来要求的数N 。

这是一种把复杂运算转化为简单运算的做法,而拉氏变换则是另一种化繁为简的做法。

一、拉氏变换的基本概念定义12.1 设函数()f t 当0t ≥时有定义,若广义积分()pt f t e dt +∞-⎰在P 的某一区域内收敛,则此积分就确定了一个参量为P 的函数,记作()F P ,即dte tf P F pt ⎰∞+-=0)()( (12.1)称(12.1)式为函数()f t 的拉氏变换式,用记号[()]()L f t F P =表示。

函数()F P 称为()f t 的拉氏变换(Laplace) (或称为()f t 的象函数)。

函数()f t 称为()F P 的拉氏逆变换(或称为()F P 象原函数),记作 )()]([1t f P F L =-,即)]([)(1P F L t f -=。

关于拉氏变换的定义,在这里做两点说明:(1)在定义中,只要求()f t 在0t ≥时有定义。

为了研究拉氏变换性质的方便,以后总假定在0t <时,()0f t =。

(2)在较为深入的讨论中,拉氏变换式中的参数P 是在复数范围内取值。

为了方便起见,本章我们把P 作为实数来讨论,这并不影响对拉氏变换性质的研究和应用。

拉普拉斯变换及反变换.ppt

拉普拉斯变换及反变换.ppt
s s
1 s 1 sa
由终值定理得
f () lim sF ( s) lim
s 0 s 0
1 s 0 sa
机械工程控制基础
七、时域卷积性 8时域卷积性:
L 若f1 (t ) F1 ( s ), f 2 (t ) F2 ( s ) L 则f1 (t ) f 2 (t ) F1 ( s ) F2 ( s )

例3
1 1 I ( s ) ℒ [1 e ] s s1 1 1 i ( t ) t lims( )1 s0 s s1
-t
机械工程控制基础
1 例4:已知F(s)= ,求f(0)和f(∞) sa
拉普拉斯变换及反变换
解:由初值定理得
f (0) lim sF ( s) lim
st

机械工程控制基础
拉普拉斯变换及反变换
5. f (t ) t
ℒ [t ]
n
n
n


(幂函数)

0
t e dt 0
n st



t n st de s

t st e s
tn 0 st lim t e
0
e st n n n1 st dt t e dt 0 s 0 s
I (s) R LsI (s) Ui (s)
Ui(s)
H(s)
I(s)
系统方框图
机械工程控制基础
(3)求系统传递函数 H(s)
(4)应用时域卷积定理
拉普拉斯变换及反变换
I ( s) 1 U i (s) R Ls
h(t) Ui(s) H(s) I(s)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成绩评定表课程设计任务书目录1.Matlab介绍.............. 错误!未定义书签。

2.利用Matlab实现信号的复频域分析—拉普拉斯变化和拉普拉斯逆变换的设计 (5)2.1.拉普拉斯变换曲面图的绘制 (5)2.2.拉普拉斯变化编程设计及实现 (7)2.3.拉普拉斯逆变化编程设计及实现 (8)3.总结 (14)4.参考文献 (15)1.Matlab介绍MATLAB语言是当今国际上在科学界和教育界中最具影响力、也最具活力的软件;它起源于矩阵运算,现已发展成一种高度集成的计算机语言;它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面设计、丰富的交互式仿真集成环境,以及与其他程序和语言便捷接口的功能。

经过多年的开发运用和改进,MATLAB已成为国内外高校在科学计算、自动控制及其他领域的高级研究工具。

典型的用途包括以下几个方面:1)数学计算;2)新算法研究开发;3)建模、仿真及样机开发;4)数据分析、探索及可视化;5)科技与工程的图形功能;6)友好图形界面的应用程序开发。

1.1Matlab入门Matlab7.0介绍Matlab7.0比Matlab的老版本提供了更多更强的新功能和更全面、更方便的联机帮助信息。

当然也比以前的版本对于软件、硬件提出了更高的要求。

在国内外Matlab已经经受了多年的考验。

Matlab7.0功能强大,适用范围很广。

其可以用来线性代数里的向量、数组、矩阵运算,复数运算,高次方程求根,插值与数值微商运算,数值积分运算,常微分方程的数值积分运算、数值逼近、最优化方法等,即差不多所有科学研究与工程技术应用需要的各方面的计算,均可用Matlab来解决。

MATLAB7.0提供了丰富的库函数(称为M文件),既有常用的基本库函数,又有种类齐全、功能丰富多样的的专用工具箱Toolbox函数。

函数即是预先编制好的子程序。

在编制程序时,这些库函数都可以被直接调用。

无疑,这会大大提高编程效率。

MATLAB7.0的基本数据编程单元是不需要指定维数的复数矩阵,所以在MATLAB环境下,数组的操作都如数的操作一样简单方便。

而且,MATLAB7.0界面友好,用户使用方便。

首先,MATLAB具有友好的用户界面与易学易用的帮助系统。

用户在命令窗里通过help 命令可以查询某个函数的功能及用法,命令的格式极为简单。

其次,MATLAB 程序设计语言把编辑、编译、连接、执行、调试等多个步骤融为一体,操作极为简单。

除此之外,MATLAB7.0还具有强大的图形功能,可以用来绘制多姿多彩的图形,直观而形象。

综上,在进行信号的分析与仿真时,MATLAB7.0无疑是一个强大而实用的工具。

尤其对于信号的分析起到了直观而形象的作用,非常适合与相关课题的研究与分析2 利用Matlab 实现信号的复频域分析—拉普拉斯变化和拉普拉斯逆变换的设计2.1 拉普拉斯变换曲面图的绘制连续时间信号)(t f 的拉普拉斯变换定义为:⎰+∞-=0)()(dt e t f s F st(6-1)其中ωσj s +=,若以σ为横坐标(实轴),ωj 为纵坐标(虚轴),复变量s 就构成了一个复平面,称为s 平面。

显然,)(s F 是复变量s 的复函数,为了便于理解和分析)(s F 随s 的变化规律,可以将)(s F 写成:)()()(s j es F s F ϕ= (6-2)其中,)(s F 称为复信号)(s F 的模,而)(s ϕ则为)(s F 的幅角。

从三维几何空间的角度来看,)(s F 和)(s ϕ对应着复平面上的两个平面,如果能绘出它们的三维曲面图,就可以直观地分析连续信号的拉普拉斯变换)(s F 随复变量s 的变化规律。

上述过程可以利用MATLAB 的三维绘图功能实现。

现在考虑如何利用MATLAB 来绘制s 平面的有限区域上连续信号)(t f 的拉普拉斯变换)(s F 的曲面图,现以简单的阶跃信号)(t u 为例说明实现过程。

我们知道,对于阶跃信号)()(t u t f =,其拉普拉斯变换为ss F 1)(=。

首先,利用两个向量来确定绘制曲面图的s 平面的横、纵坐标的范围。

例如可定义绘制曲面图的横坐标范围向量x1和纵坐标范围向量y1分别为:x1=-0.2:0.03:0.2; y1=-0.2:0.03:0.2;然后再调用meshgrid()函数产生矩阵s ,并用该矩阵来表示绘制曲面图的复平面区域,对应的MATLAB 命令如下:[x,y]=meshgrid(x1,y1); s=x+i*y;上述命令产生的矩阵s 包含了复平面2.02.0<<-σ, 2.02.0<<-ωj 范围内以时间间隔0.03取样的所有样点。

最后再计算出信号拉普拉斯变换在复平面的这些样点上的值,即可用函数mesh()绘出其曲面图,对应命令为:fs=abs(1./s); mesh(x,y,fs); surf(x,y,fs);title('单位阶跃信号拉氏变换曲面图'); colormap(hsv);axis([-0.2,0.2,-0.2,0.2,0.2,60]); rotate3d;执行上述命令后,绘制的单位阶跃信号拉普拉斯变换曲面图如图1所示。

2.2 拉普拉斯变化编程设计及实现已知连续时间信号)()sin()(t u t t f =,求出该信号的拉普拉斯变换,并利用MATLAB 绘制拉普拉斯变换的曲面图。

解:该信号的拉普拉斯变换为:11)(2+=s s F利用上面介绍的方法来绘制单边正弦信号拉普拉斯变换的曲面图,实现过程如下:绘制单边正弦信号拉普拉斯变换曲面图程序图2 单边正弦信号拉氏变换曲面图clf;a=-0.5:0.08:0.5; b=-1.99:0.08:1.99; [a,b]=meshgrid(a,b);d=ones(size(a)); c=a+i*b;%确定绘制曲面图的复平面区域c=c.*c; c=c+d; c=1./c; c=abs(c);%计算拉普拉斯变换的样值 mesh(a,b,c);%绘制曲面图surf(a,b,c);axis([-0.5,0.5,-2,2,0,15]);title('单边正弦信号拉氏变换曲面图'); colormap(hsv);上述程序运行结果如图2所示。

2.3 拉普拉斯逆变化编程设计及实现连续信号)(t f 的拉普拉斯变换具有如下一般形式:∑∑====Li iiKj jjsd s c s D s C s F 11)()()(若L K ≥,则)(s F 可以分解为有理多项式与真分式之和,即∑∑==+=+=+=Ni i iMj jjs a sb s P s A s B s P s R s P s F 11)()()()()()()(其中,)(s P 是关于s 的多项式,其逆变换可直接求得(冲激信号及其各阶导数),)(s R 为关于s 的有理真分式,即满足N M <。

以下进讨论N M <的情况。

设连续信号)(t f 的拉普拉斯变换为)(s F ,则∏=-==Ni ip s s B s A s B s F 1)()()()()(在满足N M <情况下,有以下几种情况(1)极点均为单重情况下,可对其直接进行部分分式展开得:NNp s r p s r p s r s F -++-+-= 2211)(其中,),,2,1()()(N i s F p s r ip s i i =-==称为有理函数)(s F 的留数。

则)(s F 的拉普拉斯逆变换为:)()(1t u e r t f Ni ti p i ∑==(2)有k 重极点,设为1p ,则部分分式展开为)()()()()()(111112111s D s E p s K p s K p s K s F k k k +-++-+-=-i K 1可用下式求得[]11111)()()!1(1p s ki i i s F p s ds d i K =----= 则)(s F 的拉普拉斯逆变换为:)()()!()(211t u e r t u e t j k K t f N i ti p i kj ti p j k j ∑∑==-+-= (3)有共轭极点N Nt f p s r p s r p s r p s r s F -++-+-+-=32)(22211)(设)(s F 有一对共轭极点βαj p ±-=2,1,则θj p s er s F p s r 1111)()(=-==*12r r =由共轭极点所决定的两项复指数信号可以合并成一项,故有)()cos(2)(12t u t e r t f tθβα+=-从以上分析可以看出,只要求出)(s F 部分分式展开的系数(留数)i r ,就可直接求出)(s F 的逆变换)(t f 。

上述求解过程,可以利用MATLAB 的residue()函数来实现。

令A 和B 分别为)(s F 的分子和分母多项式构成的系数向量,则函数:[r,p,k]=residue(B,A)将产生三个向量r 、p 和k ,其中p 为包含)(s F 所有极点的列向量,r 为包含)(s F 部分分式展开系数i r 的列向量,k 为包含)(s F 部分分式展开的多项式的系数行向量,若N M <,则k 为空。

例:已知连续信号的拉普拉斯变换为:ss s s F 442)(3++=试用MATLAB 求其拉普拉斯逆变换)(t f 。

解:MATLAB 命令如下:a=[1 0 4 0];b=[2 4];[r,p,k]=residue(b,a)运行结果:r =-0.5000 - 0.5000i-0.5000 + 0.5000i1.0000p =0 + 2.0000i0 - 2.0000ik =[] 由上述结果可以看出,)(s F 有三个极点22,1j p ±=,03=p ,为了求得共轭极点对应的信号分量,可用abs()和angle()分别求出部分分式展开系数的模和幅角,命令如下:abs(r)ans =0.70710.70711.0000angle(r)/pians =-0.75000.75000 由上述结果可得)()]432cos(21[)(t u t t f π-+=。

例:求下式函数的逆变换3)1(2)(+-=s s s s F解:MATLAB 程序如下:a=[1 3 3 1 0];b=[1 -2];[r,p,k]=residue(b,a)运行结果:r =2.00002.00003.0000-2.0000p =-1.0000-1.0000-1.0000k =[] 则ss s s s F 2)1(3)1(2)1(2)(32-+++++=,对应的逆变换为)(]2)2223[()(2t u e t t t f t -++=-3. 总结通过本次综合实践让我们在学习“信号与系统”课程的同时,掌握MATLAB 的应用,对MATLAB 语言在中的推广应用起到促进作用。

相关文档
最新文档