柑橘采摘机机械臂结构设计及论文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要
在当今大规模制造业中,企业为提高生产效率,保障产品质量,普遍重视生产过程的自动化程度,工业柑橘采摘机器人作为自动化生产线上的重要成员,逐渐被企业所认同并采用。
工业柑橘采摘机器人的技术水平和应用程度在一定程度上反映了一个国家工业自动化的水平,目前,工业柑橘采摘机器人主要承担着焊接、喷涂、搬运以及堆垛等重复性并且劳动强度极大的工作,工作方式一般采取示教再现的方式。
本文将设计一台五自由度的工业柑橘采摘机器人,用于给采摘水果。
首先,本文将设计柑橘采摘机器人的底座、大臂、小臂和机械手的结构,然后选择合适的传动方式、驱动方式,搭建柑橘采摘机器人的结构平台;在此基础上,本文将设计该柑橘采摘机器人的控制系统,包括数据采集卡和伺服放大器的选择、反馈方式和反馈元件的选择、端子板电路的设计以及控制软件的设计,重点加强控制软件的可靠性和柑橘采摘机器人运行过程的安全性,最终实现的目标包括:关节的伺服控制和制动问题、实时监测柑橘采摘机器人的各个关节的运动情况、柑橘采摘机器人的示教编程和在线修改程序、设置参考点和回参考点。
关键词:柑橘采摘机器人,示教编程,伺服,制动
ABSTRACT
In the modern large-scale manufacturing industry, enterprises pay more attention on the automation degree of the production process in order to enhance the production efficiency, and guarantee the product quality. As an important part of the
automation production line, industrial robots are gradually approved and adopted by
enterprises. The technique level and the application degree of industrial robots reflect the national level of the industrial automation to some extent, currently, industrial robots mainly undertake the jops of welding, spraying, transporting and stowing etc. , which are usually done repeatedly and take high work strength, and most of these robots work in playback way.
In this paper I will design an industrial robot with four DOFs, which is used to carry material for a punch. First I will design the structure of the base, the big arm, the small arm and the end manipulator of the robot, then choose proper drive method and transmission method, building the mechanical structure of the robot. On this foundation, I will design the control system of the robot, including choosing DAQ card, servo control, feedback method and designing electric circuit of the terminal card and control software. Great attention will be paid on the reliability of the control software and the robot safety during running. The aims to realize finally include: servocontrol and brake of the joint, monitoring the movement of each joint in realtime, playback programming and modifying the program online, setting reference point and returning to reference point.
KEY WORDS: robot, playback, servocontrol, brake
目录
第1章绪论 (1)
1.1 柑橘采摘机器人概述 (3)
1.2 柑橘采摘机器人的历史、现状 (4)
1.3 柑橘采摘机器人的发展趋势 (5)
第2章柑橘采摘机器人机械手的设计 (5)
2.1自由度及关节 (6)
2.2 基座及连杆 (7)
2.2.1 基座 (8)
2.2.2 大臂 (9)
2.2.3 小臂 (10)
2.3 机械手的设计 (12)
2.4 驱动方式 (13)
2.5 传动方式 (14)
2.6 制动器 (15)
第3章控制系统硬件 (16)
3.1 控制系统模式的选择 (17)
3.2 控制系统的搭建 (18)
3.2.1 工控机 (19)
3.2.2 数据采集卡 (20)
3.2.3 伺服放大器 (21)
3.2.4 端子板 (22)
3.2.5电位器及其标定 (22)
3.2.6电源 (23)
第4章控制系统软件 (24)
4.1预期的功能 (25)
4.2 实现方法 (26)
4.2.1实时显示各个关节角及运动范围控制 (26)
4.2.2直流电机的伺服控制 (27)
4.2.3电机的自锁 (28)
4.2.4示教编程及在线修改程序 (29)
4.2.5设置参考点及回参考点 (30)
第5章总结 (32)
5.1 所完成的工作 (33)
5.2 设计经验 (35)
5.3 误差分析 (36)
5.4 可以继续探索的方向 (38)
致谢 (39)
参考文献 (40)
第1章绪论
1.1 柑橘采摘机器人概述
在现代工业中,生产过程的机械化、自动化已成为突出的主题。
化工等连续性生产过程的自动化已基本得到解决。
但在机械工业中,加工、装配等生产是不连续的。
专用机床是大批量生产自动化的有效办法;程控机床、数控机床、加工中心等自动化机械是有效地解决多品种小批量生产自动化的重要办法。
但除切削加工本身外,还有大量的装卸、搬运、装配等作业,有待于进一步实现机械化。
柑橘采摘机器人的出现并得到应用,为这些作业的机械化奠定了良好的基础。
“工业柑橘采摘机器人”(Industrial Robot):多数是指程序可变(编)的独立的自动抓取、搬运工件、操作工具的装置(国内称作工业柑橘采摘机器人或通用柑橘采摘机器人)。
柑橘采摘机器人是一种具有人体上肢的部分功能,工作程序固定的自动化装置。
柑橘采摘机器人具有结构简单、成本低廉、维修容易的优势,但功能较少,适应性较差。
目前我国常把具有上述特点的柑橘采摘机器人称为专用柑橘采摘机器人,而把工业机械人称为通用柑橘采摘机器人。
简而言之,柑橘采摘机器人就是用机器代替人手,把工件由某个地方移向指定的工作位置,或按照工作要求以操纵工件进行加工。
柑橘采摘机器人一般分为三类。
第一类是不需要人工操作的通用柑橘采摘机器人,也即本文所研究的对象。
它是一种独立的、不附属于某一主机的装置,可以根据任务的需要编制程序,以完成各项规定操作。
它是除具备普通机械的物理性能之外,还具备通用机械、记忆智能的三元机械。
第二类是需要人工操作的,称为操作机(Manipulator)。
它起源于原子、军事工业,先是通过操作机来完成特定的作业,后来发展到用无线电讯号操作柑橘采摘机器人来进行探测月球等。
工业中采用的锻造操作机也属于这一范畴。
第三类是专业柑橘采摘机器人,主要附属于自动机床或自动生产线上,用以解决机床上下料和工件传送。
这种柑橘采摘机器人在国外通常被称之为“Mechanical Hand”,它是为主机服务的,由主机驱动。
除少数外,工作程序一般是固定的,因此是专用的。
柑橘采摘机器人按照结构形式的不同又可分为多种类型,其中关节型柑橘采摘机器人以其结构紧凑,所占空间体积小,相对工作空间最大,甚至能绕过基座周围的一些障碍物等这样一些特点,成为柑橘采摘机器人中使用最多的一种结构形式,世界一些著名柑橘采摘机器人的本体部分都采用这种机构形式的柑橘采摘机器人。
要柑橘采摘机器人像人一样拿取东西,最简单的基本条件是要有一套类似于指、腕、臂、关节等部分组成的抓取和移动机构——执行机构;像肌肉那样使手
臂运动的驱动-传动系统;像大脑那样指挥手动作的控制系统。
这些系统的性能就决定了柑橘采摘机器人的性能。
一般而言,柑橘采摘机器人通常就是由执行机构、驱动-传动系统和控制系统这三部分组成,如图 1-1 所示。
图1-1 柑橘采摘机器人的一般组成
对于现代智能柑橘采摘机器人而言,还具有智能系统,主要是感觉装置、视觉装置和语言识别装置等。
目前研究主要集中在赋予柑橘采摘机器人“眼睛”,使它能识别物体和躲避障碍物,以及柑橘采摘机器人的触觉装置。
柑橘采摘机器人的这些组成部分并不是各自独立的,
或者说并不是简单的叠加在一起,从而构成一个柑橘采摘机器人的。
要实现柑橘采摘机器人所期望实现的功能,柑橘采摘机器人的各部分之间必然还存在着相互关联、相互影响和相互制约。
它们之间的相互关系如图1-2 所示。
图1-2 柑橘采摘机器人各组成部分之间的关系
柑橘采摘机器人的机械系统主要由执行机构和驱动-传动系统组成。
执行机构是柑橘采摘机器人赖以完成工作任务的实体,通常由连杆和关节组成,由驱动-传动系统提供动力,按控制系统的要求完成工作任务。
驱动-传动系统主要包括驱动机构和传动系统。
驱动机构提供柑橘采摘机器人各关节所需要的动力,传动系统则将驱动力转换为满足柑橘采摘机器人各关节力矩和运动所要求的驱动力或力矩。
有的文献则把柑橘采摘机器人分为机械系统、驱动系统和控制系统三大部分。
其中的机械系统又叫操作机(Manipulator),相当于本文中的执行机构
部分。
1.2 柑橘采摘机器人的历史、现状
柑橘采摘机器人首先是从美国开始研制的。
1958年美国联合控制公司研制出第一台柑橘采摘机器人。
它的结构特点是机体上安装一回转长臂,端部装有电磁铁的工件抓放机构,控制系统是示教型的。
日本是工业柑橘采摘机器人发展最快、应用最多的国家。
自1969年从美国引进两种典型柑橘采摘机器人后,大力从事柑橘采摘机器人的研究。
目前工业柑橘采摘机器人大部分还属于第一代,主要依靠人工进行控制;控制方式则为开环式,没有识别能力;改进的方向主要是降低成本和提高精度。
第二代柑橘采摘机器人正在加紧研制。
它设有微型电子计算机控制系统,具有视觉、触觉能力,甚至听、想的能力。
研究安装各种传感器,把感觉到的信息进行反馈,使柑橘采摘机器人具有感觉机能。
第三代柑橘采摘机器人(柑橘采摘机器人)则能独立地完成工作过程中的任务。
它与电子计算机和电视设备保持联系,并逐步发展成为柔性制造系统FMS(Flexible Manufacturing System) 和柔性制造单元FMC(Flexible Manufacturing Cell) 中的重要一环。
随着工业柑橘采摘机器人研究制造和应用领域不断扩大,国际性学术交流活动十分活跃,欧美各国和其他国家学术交流活动开展很多。
国际工业柑橘采摘机器人会议ISIR决定每年召开一次会议,讨论和研究柑橘采摘机器人的发展及应用问题。
目前,工业柑橘采摘机器人主要用于装卸、搬运、焊接、铸锻和热处理等方面,无论数量、品种和性能方面还不能满足工业生产发展的需要。
使用工业柑橘采摘机器人代替人工操作的,主要是在危险作业(广义的)、多粉尘、高温、噪声、工作空间狭小等不适于人工作业的环境。
在国外机械制造业中,工业柑橘采摘机器人应用较多,发展较快。
目前主要应用于机床、模锻压力机的上下料,以及点焊、喷漆等作业,它可按照事先制订的作业程序完成规定的操作,但还不具备传感反馈能力,不能应付外界的变化。
如发生某些偏离时,就将引起零部件甚至柑橘采摘机器人本身的损坏。
随着现代化科学技术的飞速发展和社会的进步,针对于上述各个领域的柑橘采摘机器人系统的应用和研究对系统本身也提出越来越多的要求。
制造业要求柑橘采摘机器人系统具有更大的柔性和更强大的编程环境,适应不同的应用场合和多品种、小批量的生产过程。
计算机集成制造(CIM)要求柑橘采摘机器人系统能和车间中的其它自动化设备集成在一起。
研究人员为了提高柑橘采摘机器人系统的性能和智能水平,要求柑橘采摘机器人系统具有开放结构和集成各种外部传感器的能力。
然而,目前商品化的柑橘采摘机器人系统多采用封闭结构的专用控制器,一般采用专用计算机作为上层主控计算机,使用专用柑橘采摘机器人语言作为离线编程工具,采用专用微处理器,并将控制算法固化在EPROM中,这种专用系统很难(或不可能)集成外部硬件和软件。
修改封闭系统的代价是非常昂贵的,如果不进行重新设计,多数情况下技术上是不可能的。
解决这些问题的根本办法是研究和使用具有开放结构的柑橘采摘机器人系统。
美国工业柑橘采摘机器人技术的发展,大致经历了以下几个阶段:
(1)1963-1967年为试验定型阶段。
1963-1966年,万能自动化公司制造的
工业柑橘采摘机器人供用户做工艺试验。
1967年,该公司生产的工业柑橘采摘机器人定型为1900型。
(2)1968-1970年为实际应用阶段。
这一时期,工业柑橘采摘机器人在美国进入应用阶段,例如,美国通用汽车公司1968年订购了68台工业柑橘采摘机器人;1969年该公司又自行研制出SAM新工业柑橘采摘机器人,并用21组成电焊小汽车车身的焊接自动线;又如,美国克莱斯勒汽车公司32条冲压自动线上的448台冲床都用工业柑橘采摘机器人传递工件。
(3)1970年至今一直处于推广应用和技术发展阶段。
1970-1972年,工业柑橘采摘机器人处于技术发展阶段。
1970年4月美国在伊利斯工学院研究所召开了第一届全国工业柑橘采摘机器人会议。
据当时统计,美国大约200台工业柑橘采摘机器人,工作时间共达60万小时以上,与此同时,出现了所谓了高级柑橘采摘机器人,例如:森德斯兰德公司(Sundstrand)发明了用小型计算机控制50台柑橘采摘机器人的系统。
又如,万能自动公司制成了由25台柑橘采摘机器人组成的汽车车轮生产自动线。
麻省理工学院研制了具有有“手眼”系统的高识别能力微型柑橘采摘机器人。
其他国家,如日本、苏联、西欧,大多是从1967,1968年开始以美国的“Versatran”和“Unimate”型柑橘采摘机器人为蓝本开始进行研制的。
就日本来说,1967年,日本丰田织机公司引进美国的“Versatran”,川崎重工公司引进“Unimate”,并获得迅速发展。
通过引进技术、仿制、改造创新。
很快研制出国产化柑橘采摘机器人,技术水平很快赶上美国并超过其他国家。
经过大约10年的实用化时期以后,从1980年开始进入广泛的普及时代。
我国虽然开始研制工业柑橘采摘机器人仅比日本晚5-6年,但是由于种种原因,工业柑橘采摘机器人技术的发展比较慢。
目前我国已开始有计划地从国外引进工业柑橘采摘机器人技术,通过引进、仿制、改造、创新,工业柑橘采摘机器人将会获得快速的发展。
1.3柑橘采摘机器人发展趋势
随着现代化生产技术的提高,柑橘采摘机器人设计生产能力进一步得到加强,尤其当柑橘采摘机器人的生产与柔性化制造系统和柔性制造单元相结合,从而改变目前机械制造的人工操作状态,提高了生产效率。
就目前来看,总的来说现代工业柑橘采摘机器人有以下几个发展趋势:
a)提高运动速度和运动精度,减少重量和占用空间,加速柑橘采摘机器人功能部件的标准化和模块化,将柑橘采摘机器人的各个机械模块、控制模块、检测模块组成结构不同的柑橘采摘机器人;
b)开发各种新型结构用于不同类型的场合,如开发微动机构用以保证精度;开发多关节多自由度的手臂和手指;开发各类行走柑橘采摘机器人,以适应不同的场合;
c)研制各类传感器及检测元器件,如,触觉、视觉、听觉、味觉、和测距传感器等,用传感器获得工作对象周围的外界环境信息、位置信息、状态信息以完成模式识别、状态检测。
并采用专家系统进行问题求解、动作规划,同时,越来越多的系统采用微机进行控制。
第2章实验平台介绍及机械手的设计
该设计的目的是为了设计一台柑橘采摘柑橘采摘机器人,利用现有已经报废的焊接柑橘采摘机器人,本文的中结构设计主要偏向于对原有机构的改造和机械手的设计。
2.2基座及连杆
2.2.1 基座
基座是整个柑橘采摘机器人本体的支撑。
为保证柑橘采摘机器人运行的稳定性,采用两块“Z”字形实心铸铁作支撑。
基座上面是接线盒子,所有电机的驱动信号和反馈信号都从中出入。
接线盒子外面,有一个引入线出口和一个引出线出口。
2.2.2 大臂
大臂长度230mm,具体尺寸如图2.1所示:
图2.1 大臂外形
2.2.3 小臂
小臂长度240mm,具体尺寸如图2.2所示:
图2.2 小臂外形
2.3机械手的设计
工业柑橘采摘机器人的手又称为末端执行器,它使柑橘采摘机器人直接用于抓取和握紧(吸附)专用工具(如喷枪、扳手、焊具、喷头等)进行操作的部件。
它具有模仿人手动作的功能,并安装于柑橘采摘机器人手臂的前端。
由于被握工件的形状、尺寸、重量、材质及表面状态等不同,因此工业柑橘采摘机器人末端操作器是多种多样的,大致可分为以下几类:
(1)夹钳式取料手
(2)吸附式取料手
(3)专用操作器及转换器
(4)仿生多指灵巧手
本文设计对象为柑橘采摘柑橘采摘机器人,并不需要复杂的多指人工指,只需要设计能从不同角度抓取工件的钳形指。
手指是直接与工件接触的部件。
手指松开和夹紧工件,是通过手指的张开与闭合来实现的。
该设计采用两个手指,其外形如图2.3所示
图2.3 机械手手指形状
传动机构是向手指传递运动和动力,以实现夹紧和松开动作的机构。
根据手指开合的动作特点分为回转型和平移形。
本文采用回转型传动机构。
图2.4为初步设计的机械手机构简图(只画出了一半,另外一半关于中心线对称)。
图2.4 机械手机构简图
在图2.4中,O为电机输出轴,曲柄OA、连杆AB、滑块B和支架构成曲
柄滑块机构;滑块B、连杆BC、摇杆CE和支架构成滑块摇杆机构。
通过两个机构串联,使电机最终驱动DE的来回摆动,从而实现手指的开合运动。
图2.4中的黑线和蓝线表示机构运行的两个极限位置。
为便于手指的顺利合拢,可以在两个手指之间设置一个弹簧,这样还可以提供适当的夹紧力。
另外,在选用电机的时候,要使电机的功率足以克服弹簧的收缩和张开,并且提供足够加紧物体的力。
图2.5为采用虚拟样机软件ADAMS来分析所设计的机械手机构的工作状况。
图2.5 虚拟样机场景
下面更进一步计算出所需要的电机力矩。
图2.6 力矩变化情况
从图 2.6中看到,起始阶段须克服的弹簧力最大,电机转矩必须大于550N·mm,这为电机的挑选提供了一定的依据。
2.4驱动方式
该柑橘采摘机器人一共具有四个独立的转动关节,连同末端机械手的运动,一共需要五个动力源。
柑橘采摘机器人常用的驱动方式有液压驱动、气压驱动和电机驱动三种类型。
这三种方法各有所长,各种驱动方式的特点见表2.1:
表2.1三种驱动方式的特点对照
内容驱动方式
液压驱动气动驱动电机驱动
输出功率
很大,压力范围为
50~140Pa
大,压力范围为48~
60Pa,最大可达Pa
较大
利用液体的不可压缩
性,控制精度较高,
气体压缩性大,精度
低,阻尼效果差,低速
控制精度高,功率较大,
能精确定位,反应灵敏,
控制性能输出功率大,可无级
调速,反应灵敏,可
实现连续轨迹控制不易控制,难以实现高
速、高精度的连续轨迹
控制
可实现高速、高精度的连
续轨迹控制,伺服特性
好,控制系统复杂
响应速度很高较高很高
结构性能及体
积结构适当,执行机构
可标准化、模拟化,
易实现直接驱动。
功
率/质量比大,体积
小,结构紧凑,密封
问题较大
结构适当,执行机构可
标准化、模拟化,易实
现直接驱动。
功率/质
量比大,体积小,结构
紧凑,密封问题较小
伺服电动机易于标准化,
结构性能好,噪声低,电
动机一般需配置减速装
置,除DD电动机外,难
以直接驱动,结构紧凑,
无密封问题
安全性防爆性能较好,用液
压油作传动介质,在
一定条件下有火灾危
险
防爆性能好,高于
1000kPa(10个大气
压)时应注意设备的抗
压性
设备自身无爆炸和火灾
危险,直流有刷电动机换
向时有火花,对环境的防
爆性能较差
对环境的影响液压系统易漏油,对
环境有污染
排气时有噪声无
在工业柑橘采摘机器人中应用范围适用于重载、低速驱
动,电液伺服系统适
用于喷涂柑橘采摘机
器人、点焊柑橘采摘
机器人和托运柑橘采
摘机器人
适用于中小负载驱动、
精度要求较低的有限
点位程序控制柑橘采
摘机器人,如冲压柑橘
采摘机器人本体的气
动平衡及装配柑橘采
摘机器人气动夹具
适用于中小负载、要求具
有较高的位置控制精度
和轨迹控制精度、速度较
高的柑橘采摘机器人,如
AC伺服喷涂柑橘采摘机
器人、点焊柑橘采摘机器
人、弧焊柑橘采摘机器
人、装配柑橘采摘机器人
等
成本液压元件成本较高成本低成本高维修及使用方便,但油液对环
境温度有一定要求
方便较复杂
柑橘采摘机器人驱动系统各有其优缺点,通常对柑橘采摘机器人的驱动系统的要求有:
1).驱动系统的质量尽可能要轻,单位质量的输出功率要高,效率也要高;2).反应速度要快,即要求力矩质量比和力矩转动惯量比要大,能够进行频繁地起、制动,正、反转切换;
3).驱动尽可能灵活,位移偏差和速度偏差要小;
4).安全可靠;
5).操作和维护方便;
6).对环境无污染,噪声要小;
7).经济上合理,尤其要尽量减少占地面积。
基于上述驱动系统的特点和柑橘采摘机器人驱动系统的设计要求,本文选用直流伺服电机驱动的方式对柑橘采摘机器人进行驱动。
表2.2为选定的各个关节电机型号及其相关参数。
表2.2柑橘采摘机器人驱动电机参数
电机参数腰关节肩关节肘关节腕关节手爪
型号MAXON2332 MAXON2332 MAXON2332
MULTIPLEX
STELL-SERVO
MULTIPLEX STELL-SERVO
额定电压18v 18v 18v 6v 6v
额定转矩18.2 N·m18.2 N·m18.2 N·m10.3 N·m10.3 N·m 最大转矩67.4N·m67.4N·m67.4N·m
额定转速7980rpm 7980rpm 7980rpm 5460rpm 5460rpm
最高转速转子惯量
9200rpm
18.4gcm·cm
9200rpm
18.4gcm·cm
9200rpm
18.4gcm·cm
2.5传动方式
由于一般的电机驱动系统输出的力矩较小,需要通过传动机构来增加力矩,提高带负载能力。
对柑橘采摘机器人的传动机构的一般要求有:
(1)结构紧凑,即具有相同的传动功率和传动比时体积最小,重量最轻;
(2)传动刚度大,即由驱动器的输出轴到连杆关节的转轴在相同的扭矩时角度变形要小,这样可以提高整机的固有频率,并大大减轻整机的低频振动;
(3)回差要小,即由正转到反转时空行程要小,这样可以得到较高的位置控制精度;
(4)寿命长、价格低。
本文所选用的电机都采用了电机和齿轮轮系一体化的设计,结构紧凑,具有很强的带负载能力,但是不能通过电机直接驱动各个连杆的运动。
为减小机构运行过程的冲击和振动,并且不降低控制精度,采用了齿形带传动。
齿形带传动是同步带的一种,用来传递平行轴间的运动或将回转运动转换成直线运动,在本文中主要用于腰关节、肩关节和肘关节的传动。
齿形带传动原理如图2.7所示。
齿轮带的传动比计算公式为 2
1
12z z n n i ==
齿轮带的平均速度a v 为
2211n t z n t z v a ⋅⋅=⋅⋅=
图2.7 齿形带传动
2.6制动器
制动器及其作用:
制动器是将机械运动部分的能量变为热能释放,从而使运动的机械速度降低或者停止的装置,它大致可分为机械制动器和电气制动起两类。
在柑橘采摘机器人机构中,学要使用制动器的情况如下:
①特殊情况下的瞬间停止和需要采取安全措施
②停电时,防止运动部分下滑而破坏其他装置。
机械制动器:
机械制动器有螺旋式自动加载制动器、盘式制动器、闸瓦式制动器和电磁制动器等几种。
其中最典型的是电磁制动器。
在柑橘采摘机器人的驱动系统中常使用伺服电动机,伺服电机本身的特性决定了电磁制动器是不可缺少的部件。
从原理上讲,这种制动器就是用弹簧力制动的盘式制动器,只有励磁电流通过线圈时制动器打开,这时制动器不起制动作用,而当电源断开线圈中无励磁电流时,在弹簧力的作用下处于制动状态的常闭方
式。
因此
这种制动器被称为无励磁动作型电磁制动器。
又因为这种制动器常用于安全制动场合,所以也称为安全制动器。
电气制动器
电动机是将电能转换为机械能的装置,反之,他也具有将旋转机械能转换为电能的发电功能。
换言之,伺服电机是一种能量转换装置,可将电能转换为机械能,同时也能通过其反过程来达到制动的目的。
但对于直流电机、同步电机和感应电机等各种不同类型的电机,必须分别采用适当的制动电路。
本文中,该柑橘采摘机器人实验平台未安装机械制动器,因此柑橘采摘机器人的肩关节和轴关节在停止转动的时候,会因为重力因素而下落。
另外,由于各方面限制,不方便在原有机构上添加机械制动器,所以只能通过软件来实现肩关节和轴关节的电气制动。
采用电气制动器,其优点在于:在不增加驱动系统质量的同时又具有制动功能,这是非常理想的情况,而在柑橘采摘机器人上安装机械制动器会使质量有所增加,故应尽量避免。
缺点在于:这种方法不如机械制动器工作可靠,断电的时。