广东省揭阳市九年级文理科基础调研数学试卷(3月)
2024-2025学年九年级数学上学期第三次月考卷(广东省卷专用,人教版九上第21~24章)考试版
2024-2025学年九年级数学上学期第三次月考卷(广东省卷专用)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版,第21~24章。
5.难度系数:0.69。
第Ⅰ卷一、选择题:本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.第十九届亚运会于2023年9月23日至10月8日在杭州隆重举行,下列图标是亚运会上常见的运动图标,其中是轴对称图形的是( )A .B .C .D .2.如图,在O e 中,弦AB CD ∥,若40ABC Ð=°,则BOD Ð的度数是( )A .80°B .50°C .40°D .20°3.抛物线()278y x =-+-的顶点坐标是( )A .()7,8-B .()7,8-C .()7,8D .()7,8--4.把方程2470x x --=化成2()x m n -=的形式,则点(,)P m n 关于x 轴对称的点的坐标为( )A .(2,11)B .(2,11)-C .(2,11)-D .(2,11)--5.若点()10,A y ,()21,B y ,()32,C y -是抛物线22y x x c =-+上的三点,则( )A .321y y y >>B .123y y y >>C .132y y y >>D .312y y y >>6.已知12,x x 是方程2420x x -+=的两个根,则12x x +的值是( )A .4-B .2-C .4D .27.如图,PA 、PB 切⊙O 于点A 、B ,10PA =,CD 切O e 于点E ,交PA 、PB 于C 、D 两点,则PCD △的周长是( )A .10B .18C .20D .228.如图,P ,Q 分别是O e 的内接正五边形的边AB ,BC 上的点,BP CQ =,则POQ Ð=( )A .75°B .54°C .72°D .60°9.如图,在平面直角坐标系xOy 中,直线AB 经过点()6,0A 、()0,6B ,O e 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作O e 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为( )A .7B .3C .D 10.如图,二次函数y =﹣x 2+2x +m +1的图象交x 轴于点A (a ,0)和B (b ,0),交y 轴于点C ,图象的顶点为D .下列四个命题:①当x >0时,y >0;②若a =﹣1,则b =4;③点C 关于图象对称轴的对称点为E ,点M 为x 轴上的一个动点,当m =2时,△MCE 周长的最小值为;④图象上有两点P (x 1,y 1)和Q (x 2,y 2),若x 1<1<x 2,且x 1+x 2>2,则y 1>y 2,其中真命题的个数有( )A .1个B .2个C .3个D .4个第Ⅱ卷二、填空题:本大题共5小题,每小题3分,共15分。
广东省揭阳市2019-2020学年中考三诊数学试题含解析
广东省揭阳市2019-2020学年中考三诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y+-B .22y xC .3223y xD .222()y x y - 2.方程=的解为( )A .x =3B .x =4C .x =5D .x =﹣53.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( ) A .2(x -1)+3x=13 B .2(x+1)+3x=13 C .2x+3(x+1)=13D .2x+3(x -1)=134.下列计算正确的是( ) A .B .C .D .5.已知点P (a ,m ),Q (b ,n )都在反比例函数y=2x-的图象上,且a <0<b ,则下列结论一定正确的是( ) A .m+n <0B .m+n >0C .m <nD .m >n6.下列计算正确的是( ) A .a 4+a 5=a 9 B .(2a 2b 3)2=4a 4b 6C .﹣2a (a+3)=﹣2a 2+6aD .(2a ﹣b )2=4a 2﹣b 27.在平面直角坐标系中,已知点A (﹣4,2),B (﹣6,﹣4),以原点O 为位似中心,相似比为12,把△ABO 缩小,则点A 的对应点A′的坐标是( ) A .(﹣2,1)B .(﹣8,4)C .(﹣8,4)或(8,﹣4)D .(﹣2,1)或(2,﹣1)8.若分式方程1x aa x -=+无解,则a 的值为( ) A .0B .-1C .0或-1D .1或-19.“射击运动员射击一次,命中靶心”这个事件是( )A .确定事件B .必然事件C .不可能事件D .不确定事件10.如图,在平面直角坐标系中,以A (-1,0),B (2,0),C (0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是( )A .(3,1)B .(-4,1)C .(1,-1)D .(-3,1)11.某公司有11名员工,他们所在部门及相应每人所创年利润如下表所示,已知这11个数据的中位数为1. 部门人数 每人所创年利润(单位:万元) A1 19 B3 8C7 xD43这11名员工每人所创年利润的众数、平均数分别是( ) A .10,1B .7,8C .1,6.1D .1,612.已知二次函数y =﹣(x ﹣h)2+1(为常数),在自变量x 的值满足1≤x≤3的情况下,与其对应的函数值y 的最大值为﹣5,则h 的值为( ) A .36或6 B .36或6 C .6或16D .16或6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在平面直角坐标系中,如果点P 坐标为(m ,n ),向量OP uuu r 可以用点P 的坐标表示为OP uuu r=(m ,n ),已知:OA u u u r =(x 1,y 1),OB uuu r =(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么OA u u u r 与OB uuu r 互相垂直,下列四组向量:①OC u u u r =(2,1),OD uuu r =(﹣1,2);②OE uuu r =(cos30°,tan45°),OF uuu r =(﹣1,sin60°);③OG u u u r =3﹣2,﹣2),OH u u u r=32,12);④OC u u u r =(π0,2),u u u r ON =(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).14.Rt △ABC 的边AB=5,AC=4,BC=3,矩形DEFG 的四个顶点都在Rt △ABC 的边上,当矩形DEFG的面积最大时,其对角线的长为_______.15.因式分解:a3﹣2a2b+ab2=_____.16.如图,在△ABC中,DE∥BC,EF∥AB.若AD=2BD,则CFBF的值等于_____17.如图,是由一些大小相同的小正方体搭成的几何体分别从正面看和从上面看得到的平面图形,则搭成该几何体的小正方体最多是_______个.18.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2=_____°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC的长为0.60m,底座BC与支架AC所成的角∠ACB=75°,点A、H、F在同一条直线上,支架AH段的长为1m,HF段的长为1.50m,篮板底部支架HE的长为0.75m.求篮板底部支架HE与支架AF所成的角∠FHE的度数.求篮板顶端F 到地面的距离.(结果精确到0.1 m;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,3≈1.732,2≈1.414)20.(6分)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.求证:∠CBP=∠ADB.若OA=2,AB=1,求线段BP的长.21.(6分)如图,点D是AB上一点,E是AC的中点,连接DE并延长到F,使得DE=EF,连接CF.求证:FC∥AB.22.(8分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E求证:△ACD≌△AED;若∠B=30°,CD=1,求BD的长.23.(8分)菏泽市牡丹区中学生运动会即将举行,各个学校都在积极地做准备,某校为奖励在运动会上取得好成绩的学生,计划购买甲、乙两种奖品共100件,已知甲种奖品的单价是30元,乙种奖品的单价是20元.(1)若购买这批奖品共用2800元,求甲、乙两种奖品各购买了多少件?(2)若购买这批奖品的总费用不超过2900元,则最多购买甲种奖品多少件?24.(10分)如图,直角坐标系中,⊙M经过原点O(0,0),点A(3,0)与点B(0,﹣1),点D 在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.(1)请直接写出⊙M的直径,并求证BD平分∠ABO;(2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.25.(10分)在平面直角坐标系xOy中,函数ayx(x>0)的图象与直线l1:y=x+b交于点A(3,a-2).(1)求a,b的值;(2)直线l2:y=-x+m与x轴交于点B,与直线l1交于点C,若S△ABC≥6,求m的取值范围.26.(12分)定义:和三角形一边和另两边的延长线同时相切的圆叫做三角形这边上的旁切圆.如图所示,已知:⊙I是△ABC的BC边上的旁切圆,E、F分别是切点,AD⊥IC于点D.(1)试探究:D、E、F三点是否同在一条直线上?证明你的结论.(2)设AB=AC=5,BC=6,如果△DIE和△AEF的面积之比等于m,DEnEF=,试作出分别以mn,nm为两根且二次项系数为6的一个一元二次方程.27.(12分)如图,直线y=﹣x+2与反比例函数kyx=(k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.求a,b的值及反比例函数的解析式;若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案.【详解】根据分式的基本性质,可知若x ,y 的值均扩大为原来的3倍, A 、23233x xx y x y ++≠--,错误;B 、22629y yx x ≠,错误; C 、3322542273y y x x≠,错误; D 、()()22221829y y x y x y --=,正确;故选D . 【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心. 2.C 【解析】方程两边同乘(x-1)(x+3),得 x+3-2(x-1)=0, 解得:x=5,检验:当x=5时,(x-1)(x+3)≠0, 所以x=5是原方程的解, 故选C. 3.A 【解析】 【分析】要列方程,首先要根据题意找出题中存在的等量关系,由题意可得到:买A 饮料的钱+买B 饮料的钱=总印数1元,明确了等量关系再列方程就不那么难了. 【详解】设B 种饮料单价为x 元/瓶,则A 种饮料单价为(x-1)元/瓶, 根据小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了1元, 可得方程为:2(x-1)+3x=1. 故选A . 【点睛】列方程题的关键是找出题中存在的等量关系,此题的等量关系为买A 中饮料的钱+买B 中饮料的钱=一共花的钱1元.4.D【解析】分析:根据合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法的运算法则计算即可.解答:解:A、x+x=2x,选项错误;B、x?x=x2,选项错误;C、(x2)3=x6,选项错误;D、正确.故选D.5.D【解析】【分析】根据反比例函数的性质,可得答案.【详解】∵y=−2x的k=-2<1,图象位于二四象限,a<1,∴P(a,m)在第二象限,∴m>1;∵b>1,∴Q(b,n)在第四象限,∴n<1.∴n<1<m,即m>n,故D正确;故选D.【点睛】本题考查了反比例函数的性质,利用反比例函数的性质:k<1时,图象位于二四象限是解题关键.6.B【解析】分析:根据合并同类项、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式进行计算.详解:A、a4与a5不是同类项,不能合并,故本选项错误;B、(2a2b3)2=4a4b6,故本选项正确;C、-2a(a+3)=-2a2-6a,故本选项错误;D、(2a-b)2=4a2-4ab+b2,故本选项错误;故选:B.点睛:本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键.7.D【解析】【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案.【详解】∵点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为12,把△ABO缩小,∴点A的对应点A′的坐标是:(-2,1)或(2,-1).故选D.【点睛】此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.8.D【解析】试题分析:在方程两边同乘(x+1)得:x-a=a(x+1),整理得:x(1-a)=2a,当1-a=0时,即a=1,整式方程无解,当x+1=0,即x=-1时,分式方程无解,把x=-1代入x(1-a)=2a得:-(1-a)=2a,解得:a=-1,故选D.点睛:本题考查了分式方程的解,解决本题的关键是熟记分式方程无解的条件.9.D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D.考点:随机事件.10.B【解析】【分析】作出图形,结合图形进行分析可得.【详解】如图所示:①以AC为对角线,可以画出▱AFCB,F(-3,1);②以AB为对角线,可以画出▱ACBE,E(1,-1);③以BC为对角线,可以画出▱ACDB,D(3,1),故选B.11.D【解析】【分析】根据中位数的定义即可求出x的值,然后根据众数的定义和平均数公式计算即可.【详解】解:Q这11个数据的中位数是第8个数据,且中位数为1,5x∴=,则这11个数据为3、3、3、3、1、1、1、1、1、1、1、8、8、8、19,所以这组数据的众数为1万元,平均数为119387543615⨯+⨯+⨯+⨯=万元.故选:D.【点睛】此题考查的是中位数、众数和平均数,掌握中位数的定义、众数的定义和平均数公式是解决此题的关键.12.C【解析】【详解】∵当x<h时,y随x的增大而增大,当x>h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最大值-5,可得:-(1-h)2+1=-5,解得:6或6(舍);②若1≤x≤3<h,当x=3时,y取得最大值-5,可得:-(3-h )2+1=-5,解得:或(舍).综上,h 的值为或, 故选C .点睛:本题主要考查二次函数的性质和最值,根据二次函数的增减性和最值分两种情况讨论是解题的关键. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.①③④ 【解析】分析:根据两个向量垂直的判定方法一一判断即可; 详解:①∵2×(−1)+1×2=0, ∴OC u u u v 与OD u u u v垂直;②∵cos301tan45sin60⨯+⋅==o o o ∴OE uuu v 与OF u u u v不垂直.③∵()1202+-⨯=, ∴OG u u u v 与OH u u u v垂直. ④∵()02210π⨯+⨯-=, ∴OM u u u u v 与ON u u u v垂直. 故答案为:①③④.点睛:考查平面向量,解题的关键是掌握向量垂直的定义.14.52或10【解析】 【分析】分两种情形画出图形分别求解即可解决问题 【详解】情况1:如图1中,四边形DEFG 是△ABC 的内接矩形,设DE=CF=x ,则BF=3-x∵EF∥AC,∴EFAC=BFBC∴4EF=3x3-∴EF=43(3-x)∴S矩形DEFG=x•43(3-x)=﹣43(x-32)2+3∴x=32时,矩形的面积最大,最大值为3,此时对角线=52.情况2:如图2中,四边形DEFG是△ABC的内接矩形,设DE=GF=x,作CH⊥AB于H,交DG于T.则CH=125,CT=125﹣x,∵DG∥AB,∴△CDG∽△CAB,∴CT DGCH AB=∴12x DG51255-=∴DG=5﹣2512x,∴S矩形DEFG=x(5﹣2512x)=﹣2512(x﹣65)2+3,∴x=65时,矩形的面积最大为3,此时对角线226552()()+76910∴矩形面积的最大值为3,此时对角线的长为52或76910故答案为52或10【点睛】 本题考查相似三角形的应用、矩形的性质、二次函数的最值等知识,解题的关键是学会用分类讨论的思想思考问题15.a (a ﹣b )1.【解析】【分析】先提公因式a ,然后再利用完全平方公式进行分解即可.【详解】原式=a (a 1﹣1ab+b 1)=a (a ﹣b )1,故答案为a (a ﹣b )1.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.12【解析】【分析】根据平行线分线段成比例定理解答即可.【详解】解:∵DE ∥BC ,AD=2BD , ∴123CE CE BD AC AE BD BD ===+, ∵EF ∥AB , ∴132CF CE CE CE BF AE AC CE CE CE ====--, 故答案为12. 【点睛】 本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.17.7【解析】【分析】首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成,然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体,然后进一步计算即可得出答案.【详解】根据俯视图可得出第一层由5个小正方体组成;再结合主视图,该正方体第二层最多可放2个小正方体,∴527+=,∴最多是7个,故答案为:7.【点睛】本题主要考查了三视图的运用,熟练掌握三视图的特性是解题关键.18.40【解析】如图,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°,故答案为:40.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)∠FHE=60°;(2)篮板顶端F 到地面的距离是4.4 米.【解析】【分析】(1)直接利用锐角三角函数关系得出cos∠FHE=12HEHF=,进而得出答案;(2)延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.【详解】(1 )由题意可得:cos∠FHE=12HEHF=,则∠FHE=60°;(2)延长FE 交CB 的延长线于M,过 A 作AG⊥FM 于G,在Rt△ABC 中,tan∠ACB=AB BC,∴AB=BC•tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF 中,∵∠FAG=∠FHE=60°,sin∠FAG=FG AF,∴sin60°=2.5FG =3, ∴FG≈2.17(m ),∴FM =FG+GM≈4.4(米),答:篮板顶端 F 到地面的距离是 4.4 米.【点睛】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义.20.(1)证明见解析;(2)BP=1.【解析】分析:(1)连接OB ,如图,根据圆周角定理得到∠ABD=90°,再根据切线的性质得到∠OBC=90°,然后利用等量代换进行证明;(2)证明△AOP ∽△ABD ,然后利用相似比求BP 的长.详(1)证明:连接OB ,如图,∵AD 是⊙O 的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC 为切线,∴OB ⊥BC ,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB ,∴∠A=∠OBA ,∴∠CBP=∠ADB ;(2)解:∵OP ⊥AD ,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D ,∴△AOP∽△ABD,∴AP AOAD AB=,即1241BP+=,∴BP=1.点睛:本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和相似三角形的判定与性质.21.答案见解析【解析】【分析】利用已知条件容易证明△ADE≌△CFE,得出角相等,然后利用平行线的判定可以证明FC∥AB.【详解】解:∵E是AC的中点,∴AE=CE.在△ADE与△CFE中,∵AE=EC,∠AED=∠CEF,DE=EF,∴△ADE≌△CFE(SAS),∴∠EAD=∠ECF,∴FC∥AB.【点睛】本题主要考查了全等三角形的性质与判定,平行线的判定定理.通过全等得角相等,然后得到两线平行时一种常用的方法,应注意掌握运用.22.(1)见解析(2)BD=2【解析】解:(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°.∵在Rt△ACD和Rt△AED中,AD AD {CD DE==,∴Rt△ACD≌Rt△AED(HL).(2)∵Rt△ACD≌Rt△AED ,CD=1,∴DC=DE=1.∵DE⊥AB,∴∠DEB=90°.∵∠B=30°,∴BD=2DE=2.(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可.(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.23.(1)甲80件,乙20件;(2)x≤90【解析】【分析】(1)甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,利用共用2800元,列出方程后求解即可;(2) 设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据购买这批奖品的总费用不超过2900元列不等式求解即可.【详解】解:(1)设甲种奖品购买了x 件,乙种奖品购买了(100﹣x )件,根据题意得30x+20(100﹣x )=2800,解得x=80,则100﹣x=20,答:甲种奖品购买了80件,乙种奖品购买了20件;(2)设甲种奖品购买了x 件,乙种奖品购买了(100﹣x )件,根据题意得:30x+20(100﹣x )≤2900,解得:x≤90,【点睛】本题主要考查一元一次方程与一元一次不等式的应用,根据已知条件正确列出方程与不等式是解题的关键.24.(1)详见解析;(2),1). 【解析】【分析】(1)根据勾股定理可得AB 的长,即⊙M 的直径,根据同弧所对的圆周角可得BD 平分∠ABO ; (2)作辅助构建切线AE ,根据特殊的三角函数值可得∠OAB=30°,分别计算EF 和AF 的长,可得点E 的坐标.【详解】(1)∵点A ,0)与点B (0,﹣1),∴OB=1,∴,∵AB 是⊙M 的直径,∴⊙M 的直径为2,∵∠COD=∠CBO ,∠COD=∠CBA ,∴∠CBO=∠CBA ,即BD 平分∠ABO ;(2)如图,过点A 作AE ⊥AB 于E ,交BD 的延长线于点E ,过E 作EF ⊥OA 于F ,即AE 是切线,∵在Rt △ACB 中,tan ∠OAB=OB OA ==∴∠OAB=30°,∵∠ABO=90°,∴∠OBA=60°,∴∠ABC=∠OBC=12ABO∠=30°,∴OC=OB•tan30°=1×33 =,∴AC=OA﹣OC=23,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等边三角形,∴AE=AC=233,∴AF=12AE=3,EF=32AE=1,∴OF=OA﹣AF=23,∴点E的坐标为(23,1).【点睛】此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.25.(1)a=3,b=-2;(2) m≥8或m≤-2【解析】【分析】(1)把A点坐标代入反比例解析式确定出a的值,确定出A坐标,代入一次函数解析式求出b的值;(2)分别求出直线l1与x轴交于点D,再求出直线l2与x轴交于点B,从而得出直线l2与直线l1交于点C坐标,分两种情况进行讨论:①当S△ABC=S△BCD+S△ABD=6时,利用三角形的面积求出m的值,②当S△ABC=S△BCD−S△AB D=6时,利用三角形的面积求出m的值,从而得出m的取值范围.【详解】(1)∵点A在a yx=图象上∴23aa-=∴a=3∴A(3,1)∵点A在y=x+b图象上∴1=3+b∴b=-2∴解析式y=x-2(2)设直线y=x-2与x轴的交点为D∴D(2,0)①当点C在点A的上方如图(1)∵直线y=-x+m与x轴交点为B∴B(m,0)(m>3)∵直线y=-x+m与直线y=x-2相交于点C ∴2y xy x m=-⎧⎨=-+⎩解得:2222mxmy+⎧=⎪⎪⎨-⎪=⎪⎩∴C22,22m m+-⎛⎫⎪⎝⎭∵S△ABC=S△BCD-S△ABD≥6∴()()1212216222m m m -⨯-⨯--⨯≥ ∴m≥8②若点C 在点A 下方如图2∵S △ABC =S △BCD +S △ABD ≥6∴()()1122126222m m m --⨯+-⨯≥ ∴m≤-2综上所述,m≥8或m≤-2【点睛】此题考查了一次函数与反比例函数的交点问题,三角形的面积,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.26. (1) D 、E 、F 三点是同在一条直线上.(2) 6x 2﹣13x+6=1.【解析】(1)利用切线长定理及梅氏定理即可求证;(2)利用相似和韦达定理即可求解.解:(1)结论:D 、E 、F 三点是同在一条直线上.证明:分别延长AD 、BC 交于点K ,由旁切圆的定义及题中已知条件得:AD=DK ,AC=CK ,再由切线长定理得:AC+CE=AF ,BE=BF ,∴KE=AF .∴1KD AF BE AD BF EK⨯⨯=, 由梅涅劳斯定理的逆定理可证,D 、E 、F 三点共线,即D 、E 、F 三点共线.(2)∵AB=AC=5,BC=6,∴A 、E 、I 三点共线,CE=BE=3,AE=4,连接IF ,则△ABE ∽△AIF ,△ADI ∽△CEI ,A 、F 、I 、D 四点共圆.设⊙I 的半径为r ,则:34,68r r ==, ∴310,6AD AI ID ==,即AD =ID =, ∴由△AEF ∽△DEI 得:25(,,84822DE IE m DE EF AE EF ======= ∴56n =. ∴1361m n n m m n n m⎧+=⎪⎪⎨⎪⋅=⎪⎩, 因此,由韦达定理可知:分别以n m 、m n 为两根且二次项系数为6的一个一元二次方程是6x 2﹣13x+6=1. 点睛:本是一道关于圆的综合题.正确分析图形并应用图形的性质是解题的关键.27.(1)y =3x -;(2)P (0,2)或(-3,5);(3)M(1-,0)或(3+0). 【解析】【分析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a ,b ,最后用待定系数法求出反比例函数解析式;(2)设出点P 坐标,用三角形的面积公式求出S △ACP =12×3×|n +1|,S △BDP =12×1×|3−n|,进而建立方程求解即可得出结论;(3)设出点M 坐标,表示出MA 2=(m +1)2+9,MB 2=(m−3)2+1,AB 2=32,再三种情况建立方程求解即可得出结论.【详解】(1)∵直线y =-x +2与反比例函数y =k x (k≠0)的图象交于A (a ,3),B (3,b )两点,∴-a +2=3,-3+2=b ,∴a =-1,b =-1,∴A(-1,3),B(3,-1),∵点A(-1,3)在反比例函数y=kx上,∴k=-1×3=-3,∴反比例函数解析式为y=3x ;(2)设点P(n,-n+2),∵A(-1,3),∴C(-1,0),∵B(3,-1),∴D(3,0),∴S△ACP=12AC×|x P−x A|=12×3×|n+1|,S△BDP=12BD×|x B−x P|=12×1×|3−n|,∵S△ACP=S△BDP,∴12×3×|n+1|=12×1×|3−n|,∴n=0或n=−3,∴P(0,2)或(−3,5);(3)设M(m,0)(m>0),∵A(−1,3),B(3,−1),∴MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=(3+1)2+(−1−3)2=32,∵△MAB是等腰三角形,∴①当MA=MB时,∴(m+1)2+9=(m−3)2+1,∴m=0,(舍)②当MA=AB时,∴(m+1)2+9=32,∴m=−1m=−1,∴M(−10)③当MB=AB时,(m−3)2+1=32,∴m=3m=,∴M(30)即:满足条件的M(−10)或(30).【点睛】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.。
广东省揭阳市2024-2025学年上学期九年级期中考数学模拟试题(解析版)
2024-2025学年度第一学期期中模拟试卷九年级数学试卷时间:90分钟 分数:120分一.选择题(每小题3分,共15分)1. 菱形ABCD 的对角线长分别为5和8,它的面积为( )A. 20B. 40C. 24D. 30【答案】A【解析】【分析】根据菱形的面积等于对角线乘积的一半,计算即可. 【详解】菱形的面积为:1 58202××=; 故选:A .【点睛】本题考查菱形的性质,掌握菱形的性质是解题的关键.2. 如果方程()27330mm x x −−−+=是关于x 的一元二次方程,那么m 的值为( ) A. 3±B. 3C. 3−D. 都不对【答案】C【解析】【分析】本题根据一元二次方程的定义解答,一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.根据题意得到272m −=,30m −≠,即可求得m 的范围.要特别注意二次项系数30m −≠这一条件,当30m −=时,方程就是一元一次方程了. 【详解】解:由一元二次方程的定义可知27230m m −= −≠, 解得:3m =−.故选:C .3. 在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有( )A. 5个B. 15个C. 20个D. 35个【答案】A【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:设袋中白球有x 个,根据题意得:1515x+=0.75, 解得:x =5,经检验:x =5是分式方程的解,故袋中白球有5个.故选A .【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n是解题关键. 4. 参加一次足球联赛的每两队之间都进行一场比赛,共比赛50场比赛,设参加比赛共有x 个队,根据题意,所列方程为( ).A. (1)50x x +=B. (1)502x x +=C. (1)50x x −=D. (1)502x x −= 【答案】D【解析】 【分析】设共有 x 个球队参赛,根据每两队之间都进行一场比赛,且共比赛 50 场,即可得出关于 x 的 一元二次方程,此题得解;【详解】设共有 x 个球队参赛,依题意, 得:(1)502x x −= 故选D【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程 是解题的关键5. 下列判断正确的是( )A. 对角线互相垂直的四边形是菱形B. 对角线相等的菱形是正方形C. 对角线相等的四边形是矩形D. 对角线互相垂直且相等的四边形是正方形【答案】B【解析】【分析】本题考查特殊平行四边形的判定,熟记判定定理是关键.根据菱形,矩形,正方形的判定逐项判【详解】对角线互相垂直平分的四边形是菱形,故A 错误;对角线相等的菱形是正方形,故B 正确;对角线相等的平行四边形是矩形,故C 错误;对角线互相平分垂直且相等的四边形是正方形,故D 错误.故选B .6. 如图,已知MON ∠,点A 在OM 边上,点B 在ON 边上,且OA OB =,点E 在OB 边上,小明,小红分别在图1,图2中作了矩形AEBF ,平行四边形AEBF ,并连接了对角线,两条对角线交于点C ,小明,小红都认为射线OC 是MON ∠的角平分线,你认为他们说法正确的是( )A. 小明,小红都对B. 小明,小红都错C. 小明错误,小红正确D. 小明正确,小红错误【答案】A【解析】 【分析】根据矩形的性质、平行四边形的性质都可以得到AC BC =,即可证得AOC BOC ≌△△,即可得出结论.【详解】解: 四边形AEBF 是矩形,AC BC ∴=,在AOC △和BOC 中,AC BC OA OB OC OC = = =,AOC BOCSSS ∴ ≌(), AOC BOC ∴∠=∠,∴射线OC 是MON ∠的角平分线,故小明的说法正确;四边形AEBF 是平行四边形,AC BC ∴=,在AOC △和BOC 中,AC BC OA OB OC OC = = =,AOC BOCSSS ∴ ≌(), AOC BOC ∴∠=∠,∴射线OC 是MON ∠的角平分线,故小红的说法正确.故选:A .【点睛】本题考查了矩形的性质、平行四边形的性质、三角形全等的判定和性质,角平分线的判定,解题的关键是熟练掌握矩形的性质和平行四边形的性质.7. 关于x 的方程2(1)(2)x x ρ−+=(ρ为常数)根的情况下,下列结论中正确的是( )A. 两个正根B. 两个负根C. 一个正根,一个负根D. 无实数根 【答案】C【解析】【分析】先将方程整理为一般形式,再根据根的判别式得出方程由两个不等的实数根,然后又根与系数的关系判断根的正负即可.【详解】解:2(1)(2)x x ρ−+=,整理得:2230x x ρ+−−=,∴()2221434130ρρ∆=−−−=+>,∴方程有两个不等的实数根,设方程两个根为1x 、2x , ∵121x x +=−,2123x x p =−− ∴两个异号,而且负根的绝对值大.故选:C .【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;△<0,方程没有实数根.也考查了一元二次方程根与系数的关系:12bx x a +=−,12c x x a= 8. 关于x 的一元二次方程2(1)20x k x k −−−+=有两个实数根12,x x ,()1212122(2)2x x x x x x −+−−+3=−,则k 的值( )A. 0或2B. -2或2C. -2D. 2【答案】D【解析】【详解】解:由根与系数的关系,得: 12x x +=k -1,122x x k +=-,由()1212122(2)23x x x x x x −+−−+=−,得: ()21212423x x x x −−+=−,即()21212124423x x x x x x +−+=−-,所以,()2142(2)3k k −−−−+=−,化简,得:24k =,解得:k =±2,因为关于x 的一元二次方程2(1)20x k x k −−−+=有两个实数根,所以,△=()214(2)k k −−−+=227k k +−>0,k =-2不符合,所以,k =2故选D .【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键.9. 如图1,在菱形ABCD 中,60A ∠=°,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为( )A. B. C. D. 【答案】B【解析】【分析】根据图1和图2判定三角形ABD 为等边三角形,它的面积为【详解】解:在菱形ABCD 中,∠A =60°,∴△ABD 为等边三角形,设AB =a ,由图2可知,△ABD 的面积为∴△ABD 的面积2解得:a =负值已舍)故选B【点睛】本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键.10. 如图,在正方形ABCD 中,E 为CD 边上一点,F 为 BC 延长线上一点,且CE CF =,连接EF .给出下列至个结论:①BE DF =;②BE DF ⊥;③EF =;④EDF EBF ∠=∠;⑤2ED EC =.其中正确结论的个数是( )A. 2个B. 3个C. 4个D. 5个【答案】C【解析】 【分析】本题考查了正方形的性质、三角形全等的判定定理与性质、勾股定理,①先根据正方形的性质可得,90BC DC BCE DCF =∠=∠=°,再根据三角形全等的判定定理与性质即可得;②先根据三角形全等的性质可得CBE CDF ∠=∠,再根据三角形的内角和定理、等量代换可得90DGE ∠=°,由此即可得;③根据勾股定理即可得;④根据①中所证的全等三角形的性质即可得;无法说明2ED EC =成立,从而得出与题意不符,由此即可得结论.【详解】解:如图,延长BE ,交DF 于点G ,四边形ABCD 正方形,,90BC DC BCE DCF ∴=∠=∠=°,在BCE 和DCF 中,BC DC BCE DCF CE CF = ∠=∠ =, (SAS)BCE DCF ∴ ≌,,BE DF CBE CDF ∴=∠=∠,则结论①正确;即EDF EBF ∠=∠,则结论④正确;由对顶角相等得:BEC DEG ∠=∠,180180CBE BEC CDF DEG ∴°−∠−∠=°−∠−∠,即90BCE DGE ∠=∠=°, BE DF ∴⊥,则结论②正确;是,90CE CF DCF =∠=° ,EF ∴=,则结论③正确;无法说明2ED EC =成立,结论⑤错误;综上,正确结论的个数是4个,故选:C .二.填空题(每小题3分,共15分)11. 如图,小球从A 入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等,则小球从E 出口落出概率是________.【答案】14##025 【解析】【分析】根据“在每个交叉口都有向左或向右两种可能,且可能性相等”可知在点B 、C 、D 处都是等可能情况,从而得到在四个出口E 、F 、H 也都是等可能情况,然后概率的意义列式即可得解.【详解】由图可知,在每个交叉口都有向左或向右两种可能,且可能性相等,小球最终落出的点共有E 、F 、G 、H 四个,所以小球从E 出口落出的概率是:14; 故填:14. 【点睛】本题考查了概率的求法,读懂题目信息,得出所给的图形的对称性以及可能性相等是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.12. 设12,x x 是一元二次方程220240x x +−=的两个根,则21122x x x ++=______. 【答案】2023【解析】【分析】根据方程解的定义、根与系数关系,得2112024x x +=,121x x +=−,对待求解代数式变形,用已知的代数式表示求解.的.【详解】解:由题意,得21120240x x +−=,121x x +=− ∴2112024x x +=. ∴2211211122202412023x x x x x x x ++=+++=−=.故答案为:2023【点睛】本题考查方程解的定义,一元二次方程根与系数关系;掌握根与系数关系是解题的关键. 13. 在“新冠”初期,有2人感染了“新冠”,经过两轮传染后共有288人感染了“新冠”(这两轮感染均未被发现未被隔离),则每轮传染中平均一个人传染了_______个人.【答案】11【解析】【分析】设每轮传染中平均一个人传染了x 个人,根据“有2人感染了“新冠”,经过两轮传染后共有288人感染了“新冠””,列出方程,即可求解.【详解】解:设每轮传染中平均一个人传染了x 个人,根据题意得: ()221288x +=解得:1211,13x x ==−,∵0x >且为整数∴213x =−不符合题意,舍去,答:每轮传染中平均一个人传染了11个人.故答案为:11【点睛】本题主要考查了一元二次方程的应用,明确题意,准确得到等量关系是解题的关键.14. 如图,数轴上点A 代表的数字为3+1x ,点B 代表的数字为22+x x ,已知=5AB ,且点A 在数轴的负半轴上,则x 的值为 _____.【答案】2−【解析】【分析】先利用数轴上两点之间的距离的求法得到()2+23+1=5x x x −,再把方程化为一般式26=0x x −−,接着再用因式分解法把方程转化为3=0x −或+2=0x ,然后再解两个一次方程.【详解】解:根据题意得2+2(3+1)=5x x x −,整理得26=0x x −−,()()3+2=0x x −,3=0x −或+2=0x ,所以1=3x ,2=2x −,将1=3x 代入3+1x 中,得出A 为9,因点A 在数轴的负半轴上,故1=3x (舍去); 将2=2x −,代入3+1x 中,得出A 为5−,点A 在数轴的负半轴上,故=2x −.故答案为:2−.【点睛】本题考查了一元二次方程的因式分解法,这种方法简便易用,是解一元二次方程最常用的方法,也考查了数轴.15. 在正方形ABCD 中,2AD =,E ,F 分别为边DC CB ,上的点,且始终保持DE CF =,连接AE 和DF 交于点P ,则线段CP 的最小值为 _________.1−##1−+【解析】【分析】根据“边角边”证明ADE 和DCF 全等,根据全等三角形对应角相等可得DAE CDF ∠=∠,然后求出90APD ∠=°,取AD 的中点O ,连接OP ,根据直角三角形斜边上的中线等于斜边的一半可得点P 到AD 的中点的距离不变,再根据两点之间线段最短可得C 、P 、O 三点共线时线段CP 的值最小,然后根据勾股定理列式求出CO ,再求解即可.【详解】解: 四边形ABCD 是正方形,AD CD ∴=,90ADE DCF ∠=∠=°, 在ADE 和DCF 中,AD CD ADE BCD DE CF = ∠=∠ =, ()SAS ADE DCF ∴ ≌,DAE CDF ∴∠=∠,90CDF ADF ADC ∠+∠=∠=° ,90ADF DAE ∴∠+∠=°,90APD ∴∠=°,取AD 的中点O ,连接OP CO ,,则1133222OP AD ==×=(不变), 根据两点之间线段最短得C 、P 、O 三点共线时线段CP 的值最小,在Rt COD中,根据勾股定理得,CO =,∴1CP CO OP =−−,∴CP1−,1−.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,确定出点P 到AD 的中点的距离是定值是解题的关键.三.解答题(每小题8分,共24分)16. 解方程:(1)2221x x x =+−;(2)()2231x x x −−=−. 【答案】(1)1222x x +(2)1x =,2x =【解析】【分析】(1)先将方程化为一般式,再用配方法求解即可;(2)先将方程化为一般式,再用公式法求解即可.小问1详解】解:2221x x x =+−,241x x −=,2445x x +=−,()225x −=,2x −,解得:1222x x +−;【小问2详解】解:()2231x x x −−=−, 22231x x x −−=−,22210x x +−=,2,2,1a b c ===−,∴()224242112b ac ∆=−=−××−=,x ,解得:1x =,2x =. 【点睛】本题主要考查了解一元二次方程,解题的关键是熟练掌握一元二次方程的法和步骤.17. 笼子里关着一只小松鼠(如图),笼子的主人决定把小松鼠放归大自然,将笼子所有的门都打开.松鼠要先经过第一道门(A ,B ,或C ),再经过第二道门(D 或E )才能出去.【(1)请用树状图或列表的方法,表示松鼠走出笼子的所有可能路线(经过的两道门).(2)求松鼠经过E门出去的概率.【答案】(1)见解析(2)1 2【解析】【分析】(1)根据题意画出树状图即可;(2)根据(1)所画的树状图确定松鼠走出笼子的所有可能路线结果数和松鼠经过E门出去的结果数,然后运用概率公式计算即可.【小问1详解】解:根据题意画出树状图如下:【小问2详解】解:根据(1)所得的树状图可知:松鼠走出笼子的所有可能路线结果数为6,松鼠经过E门出去的结果数为3,则松鼠经过E门出去的概率为31 62 =.【点睛】本题主要考查了画树状图、根据树状图求概率等知识点,正确画出树状图是解答本题的关键.18. 已知:平行四边形ABCD的两边AB,AD的长是关于x的方程210 24mx mx−+−=的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么平行四边形ABCD的周长是多少?【答案】(1)1 2(2)5【解析】【分析】本题考查了菱形的性质,平行四边形的性质,一元二次方程根的判别式以及根据系数的关系,解一元二次方程,综合运用各知识点是解答本题的关键.(1)根据菱形的性质可知方程210 24mx mx−+−=有两个相等的实数根,由根的判别式求出m,进而可求出方程的根;(2)由AB的长为2,可知2是方程的一个根,代入方程求出m,根据根与系数的关系可求出平行四边形ABCD的周长.【小问1详解】解:∵平行四边形ABCD 是菱形,∴AB AD =, ∴方程21024m x mx −+−=有两个相等的实数根, ∴()214024m m ∆=−−−=, 解得:121m m ==, 当1m =时,方程为2104x x −+=, 解得1212x x ==, 即菱形的边长为12; 【小问2详解】 解:∵AB ,AD 的长是方程21024m x mx −+−=的两个实数根,AB 的长为2, ∴AB AD m +=,2是方程的一个根, ∴2122024m m −+−=, ∴解得52m =, ∴52AB AD +=, ∴()25AB AD +=, ∴平行四边形ABCD 的周长为5.四.解答题(每小题9分,共27分)19. 阅读材料:我们知道20x ≥,()20a b ±≥这一性质在数学中有着广泛的应用,比如探求多项式2362x x +−的最小值时,我们可以这样处理:2362x x +−()2322x x +−()22232112x x =++−−()223112x =+−−()2315x =+−.因为()210x +≥,所以()231505x +−≥−,当1x =−时,()2315x +−取得最小值5−.(1)求多项式2283x x −+的最小值,并写出对应的x 的取值.(2)求多项式22247x x y y −+−+的最小值.【答案】(1)xx =2,最小值5−;(2)2【解析】【分析】此题考查的是完全平方公式,非负数的性质,解题的关键是把给出的式子化成完全平方的形式. (1)先把给出的式子化成完全平方的形式,再根据非负数的性质即可得出答案;(2)根据完全平方公式把给出的式子进行整理,即可得出答案.【小问1详解】解:2283x x −+ ()2243x x −+()224443x x =−++﹣()22243x =−−+ ()2225x =−−,∵()220x −≥,∴()222505x −−≥−,∴当xx =2时,()2225x −−取得最小值5−;【小问2详解】解:22247x x y y −+−+ ()()2221442x x y y =−++−++()()22122x y =−+−+,∵()210x −≥,()220y −≥,∴()()221222x y −+−+≥,∴当xx =1,2y =时,22247x x y y −+−+有最小值2.20. 如图,在ABCD 中,5AB =,4BC =,点F 是BC 上一点,若将DCF 沿DF 折叠,点C 恰好与AB 上的点E 重合,过点E 作EG BC ∥交DF 于点G ,连接CG .(1)求证:四边形EFCG 是菱形;(2)当A B ∠=∠时,求点B 到直线EF 的距离.【答案】(1)证明见解析(2)点B 到直线EF 的距离为65. 【解析】【分析】(1)由折叠的性质得出CFD EFD ∠=∠,CF EF =,CG EG =,再根据平行线的性质可得EGF EFD ∠=∠,进而可证四条边相等;(2)先由题意得出四边形ABCD AE ,CE 的长,最后利用等面积法即可求解.【小问1详解】证明:∵将DCF 沿DF 折叠,点C 恰好与AB 上的点E 重合,∴CFD EFD ∠=∠,CF EF =,CG EG =,∵EG BC ∥,∴EGF CFD ∠=∠,∴EGF EFD ∠=∠,∴EG EF =,∴EG EF CF CG ===,∴四边形EFCG 是菱形;【小问2详解】解:∵ABCD ,则AD BC ∥,∴180A B ∠+∠=°,∵A B ∠=∠,∴90A B ∠=∠=°,∴四边形ABCD 是矩形,∵5AB =,4BC =,∴5AB CD ED ===,4BC AD ==,∴3AE ,∴2BE =,在Rt BEF △中,222BE BF EF +=,4EF CF BF ==−,∴()22224BF BF +=−, 解得32BF =, ∴35422EF =−=, 设点B 到直线EF 的距离为h , ∴131522222h ××=×, 解得65h =, ∴点B 到直线EF 的距离为65. 【点睛】本题考查矩形的性质,菱形的判定,平行线的性质,勾股定理,折叠的性质等知识,熟练掌握以上知识是解题关键.21. 某商店准备销售一种多功能旅行背包,计划从厂家以每个30元的价格进货,经过市场发现当每个背包的售价为40元时,月均销量为1元,月均销量就相应减少10个.(1)若使这种背包的月均销量不低于130个,每个背包售价应不高于___________元?(2)在(1)的条件下,当该这种书包销售单价为多少元时,销售利润是3120元?(3)这种书包的销售利润有可能达到3700元吗?若能,请求出此时的销售单价;若不能,请说明理由.【答案】(1)每个背包售价应不高于55元.(2)当该这种书包销售单价为42元时,销售利润是3120元.(3)这种书包的销售利润不能达到3700元.【解析】【分析】(1)设每个背包的售价为x 元,则月均销量为()2804010x ⎡⎤--⨯⎣⎦个,根据月均销量不低于130个,即可得出关于x 的一元一次不等式,解之取其最大值即可得出结论;(2)根据总利润=每个的利润×月均销量,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(3)根据总利润=每个的利润×月均销量,即可得出关于x 的一元二次方程,由根的判别式Δ=-36<0,即可得出这种书包的销售利润不能达到3700元.【小问1详解】解:设每个背包的售价为x 元,则月均销量为()2804010x ⎡⎤--⨯⎣⎦个,依题意, 得:()2804010130x ⎡⎤--⨯≥⎣⎦, 解得:55x ≤.答:每个背包售价应不高于55元.【小问2详解】依题意,得:()()3028040103120x x ⎡⎤---⨯=⎣⎦, 整理,得:29823520x x −+=,解得:124256x x ==,(不合题意,舍去). 答:当该这种书包销售单价为42元时,销售利润是3120元.【小问3详解】依题意,得:()()3028040103700x x ⎡⎤---⨯=⎣⎦, 整理,得:29824100x x -+=.∵()298412410360=--⨯⨯=- <,∴该方程无解,∴这种书包的销售利润不能达到3700元.【点睛】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)(3)找准等量关系,正确列出一元二次方程.五.解答题(每小题12分,共24分)22. 如图所示,在Rt ABC △中,90B ∠=︒,100cm AC =,60A ∠=°,点D 从点C 出发沿CCCC 方向以4cm/s 的速度向点A 匀速运动,同时点E 从点A 出发沿CCAA 方向以2cm/s 的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D E 、运动的时间是t 秒(025t <≤),过点D 作DF BC ⊥于点F ,连接DE EF ,.(1)求证:四边形AEFD 是平行四边形;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由;(3)当t 为何值时,DEF 为直角三角形?请说明理由.【答案】(1)证明见解析(2)能,503t = (3)252或20,理由见解析 【解析】【分析】(1)根据时间和速度表示出AE 和CCCC 的长,利用30°所对的直角边等于斜边的一半求出DF 的长,可得AE DF =,再证明DF AE ∥即可求证; (2)由(1)知四边形AEFD 为平行四边形,如果四边形AEFD 能够成为菱形,则必有邻边相等,即AE AD =,据此列方程求解即可;(3)当DEF 为直角三角形时,有三种情况:①当90EDF ∠=°时,②当90DEF ∠=°时,③当90DFE ∠=°时,分别找出等量关系列方程即可求出t 的值即可.【小问1详解】证明:由题意得,2AE t =,4CD t =,∵DF BC ⊥,∴90CFD ∠=°,∵90B ∠=︒,60A ∠=°,∴30C ∠=°, ∴114222DF CD t t ==×=,∴AE DF =;∵90CFD B ∠=∠=°,∴DF AE ∥,∴四边形AEFD 是平行四边形;【小问2详解】解:四边形AEFD 能够成为菱形,理由如下: 由(1)得,四边形AEFD 为平行四边形,若AEFD 为菱形,则AE AD =,∵100AC =,4CD t =,∴1004AD t =−,∴21004t t =−, ∴503t =, ∴当503t =时,四边形AEFD 能够成为菱形; 【小问3详解】解:分三种情况:①当90EDF ∠=°时,如图1, ∵90CFD B EDF ∠=∠=∠=°, ∴四边形DFBE 为矩形, ∴2DF BE t ==, ∵1502AB AC ==,2AE t =, ∴2502t t =−,252t =;②当90DEF ∠=°时,如图2, ∵四边形AEFD 为平行四边形, ∴EF AD ∥,∴90ADE DEF ∠=∠=°, 在Rt ADE 中,60A ∠=°, ∴30AED ∠=°,∵2AE t =, ∴12AD AE t ==,∵AD CD AC +=,∴4100t t +=,∴20t =;③当90DFE ∠=°不成立;综上所述:当t 为252或20时,DEF 为直角三角形. 【点睛】本题考查了平行四边形的判定与性质,菱形的性质,矩形的判定与性质,,含30°角的直角三角形的性质,直角三角形两锐角互余,平行线的判定与性质,一元一次方程的应用,掌握以上知识点是解题的关键.23. 如图,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(3,4)−,点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H ,连接BM .(1)填空:菱形ABCO 的边长=______;(2)求直线AC 的解析式;(3)动点P 从点A 出发,沿折线A B C --方向以3个单位/秒的速度向终点C 匀速运动,设PMB △的面积为()0S S ≠,点P 的运动时间为t 秒, ①当503t <<时,求S 与t 之间的函数关系式; ②在点P 运动过程中,当2S =,请直接写出t 的值. 【答案】(1)5 (2)直线AC 的解析式为1522y x =−+ (3)①91544t S =−+;②79t =或115【解析】 【分析】(1)根据点A 的坐标,结合勾股定理可计算菱形边长AO 的长度;(2)先求出C 点坐标,设直线AC 解析式y kx b =+,将点A C ,坐标代入得到二元一次方程组,然后解方程组即可得到,k b 的值;(3)①当503t <<时,根据题意得到53BP BA AP t =−=−,53422HM OH OM =−=−=,然后利用三角形面积公式,即可表示出S 与t 之间的函数关系;②设M 到直线BC 的距离为h ,根据等面积方法列方程,求出h ,可得到当51033t <<时,S 与t 之间的函数关系,将2S =分别代入两个解析式中,分别解方程即可得解.【小问1详解】解:∵点A 的坐标为()3,4−,∴34AH HO ==,在Rt AOH △中,5AO,故答案为:5;【小问2详解】解:∵四边形ABCO 是菱形,∴5OC OA ==,即50C (,). 设直线AC 的解析式y kx b =+,函数图象过点A C ,, 则5034k b k b += −+=, 解得1252k b =− =, ∴直线AC 的解析式为:1522y x =−+; 【小问3详解】 解:由1522y x =−+,令0x =,52y =,则50,2M ,则52OM =, ①当503t <<时,如图所示, 的53BP BA AP t =−=−,53422HM OH OM =−=−=, ∴()113915·5322244S BP HM t t ==××−=−+, ∴91544t S =−+, ②设M 到直线BC 的距离为h , ∴ΔΔΔ111222ABC AMB BMCS S S AB OH AB HM BC h +⋅⋅+⋅ 则113154552222h ××=××+×, 解得52h =, 当51033t <<时,如图所示,35BP t =−,52h =, ()11515253522244t S BP h t ∴=×=×−×=−, 当2S =时,代入91544t S =−+, 解得79t =, 代入152544t S =−,解得115t=,综上所述79t=或115.【点睛】本题考查了菱形的性质、动点问题、求一次函数解析式、勾股定理等知识,采用数形结合并分情况分析是解题关键.。
2024-2025学年九年级数学上学期第三次月考卷(苏科版,九年级上册第1章-九下6.2)(全解全析
2024-2025学年九年级数学上学期第三次月考卷(苏科版)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答填空题和解答题时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:苏科版九年级第1章-九下6.2(分别占20%,20%,5%,5%,40%,10%)。
5.难度系数:0.7。
一、选择题:本题共6小题,每小题3分,共18分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知32(0,0)=¹¹a b a b ,下列变形正确的是( )A .23b a =B .23a b =C .32a b =D .32a b =2.若一元二次方程(4)(1)x x m +-=有实数根,则m 的值不可能是( )A .7-B .6-C .0D .1【答案】A3.下列函数关系中,y 是x 的二次函数的是( )A .24y x =B .53y x =+C .23y x =-D .322y x x =+4.如图,DE 与O e 相切于点D ,交直径AB 的延长线于点E ,C 为圆上一点,60ACD Ð=°.若DE 的长度为3,则BE 的长度为( ).A B C .32D .2【答案】B 【详解】连接OD ,如图,∵60ACD Ð=°,∴120AOD Ð=°,∴60EOD Ð=°,∵DE 与O e 相切于点D ,∴DE OD ^,∴90ODE Ð=°,5.对于抛物线()2213y x =--+,下列判断正确的是( )A .抛物线的开口向上B .抛物线的顶点坐标是()1,3-C .对称轴为直线1x =D .当3x =时,0y >【答案】C【详解】解:∵20a =-<,∴抛物线开口向下,故A 不正确,不符合题意;∵抛物线()2213y x =--+,∴抛物线的顶点坐标是()1,3,对称轴是直线1x =,故B 不正确,不符合题意;故C 正确,符合题意;当3x =时,()2231350y =--+=-<,故D 不正确,不符合题意,故选:C .6.如图,抛物线()20y ax bx c a =++¹的对称轴为直线2x =-,抛物线与x 轴的一个交点在()3,0-和()4,0-之间,其部分图象如图所示.有下列结论:①40a b -=;②0c >;③30a c -+>;④若19,2y æö-ç÷èø,25,2y æö-ç÷èø,31,2y æö-ç÷èø是该抛物线上的三点,则123y y y <<;⑤242a b at bt -³+(t 为实数).其中正确结论的序号有( )A .①②⑤B .①③④C .①③⑤D .②③⑤Q 抛物线与x 轴的另一个交点在(1,0)-和(0,0)之间,开口向下,\点(1,)a b c --+在第二象限,0a b c \-+>,由①40a b -=,4b a \=,40a a c \-+>,即:30a c -+>,故结论③正确;④Q 抛物线的开口向下,且对称轴为直线2x =-,观察函数的图象可知:在抛物线上离对称轴水平距离越小,函数的值就越大,231y y y \>>,故结论④不正确.⑤对于2y ax bx c =++,当2x =-时,42y a b c =-+,当(x t t =为实数)时,2y at bt c =++,Q 抛物线的对称轴为直线2x =-,\点(2,42)a b c --+为抛物线的顶点,又Q 抛物线的开口向下,42y a b c \=-+为抛物线的最大值,242a b c at bt c \-+³++,即:242a b at bt -³+,故结论⑤正确;综上所述:正确的结论是①③⑤.故选:C .二、填空题:本题共10小题,每小题4分,共40分。
2024-2025学年九年级数学上学期第三次月考卷(浙教版,九上全册+九下第1章)(全解全析)
2024-2025学年九年级数学上学期第三次月考卷(浙教版)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:浙教版九年级上册全册+下册第1章,其中二次函数20%,概率11.7%,圆32.5%,相似17.5%,解三角形18.3%。
5.难度系数:0.65。
第一部分(选择题共30分)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知⊙O的半径为5cm,PO=3cm,则点P与⊙O的位置关系是( )A.点P在圆外B.点P在圆上C.点P在圆内D.无法确定【答案】C【详解】解:∵⊙O的半径为5cm,PO=3cm,∴d<r,∴点P在圆内,故选:C.2.一个转盘白色扇形和红色扇形的圆心角分别为120°和240°,让转盘自由转动2次,一次落在白色,一次落在红色区域的概率是()A.19B.29C.13D.49【答案】D【详解】解:白色区域用A表示,红色区域分别用B1和B2,如图,画树状图如下:一共有9种等可能的结果,而转盘自由转动2次,一次落在白色,一次落在红色区域的结果数有4种,∴让转盘自由转动2次,一次落在白色,一次落在红色区域的概率是49,故选:D.3.将抛物线y=(m―1)x2+mx+m+3向左平移2个单位,再向上平移3个单位后经过(―2,3).则m的值是()A.―1B.2C.―3D.0【答案】C【详解】解:把点(―2,3)2个单位,再向下平移3个单位后所得对应点的坐标为(0,0),把(0,0)代入y=(m―1)x2+mx+m+3,得:m+3=0,解得:m=―3.故选:C.4.如图,在△ABC中,ADDC =BEEC=23,△CDE与四边形ABED的面积的比是()A.23B.49C.1625D.916【答案】D【详解】解:∵AD DC =BE EC =23,∴DC AC =EC BC =35,∵∠C =∠C ,∴△CDE ∽△CAB ,∴S △CDES △CAB ==925,∴S △CDE S 四边形ABED =S △CDE S△CAB ―S △CDE=925―9=916,故选:D .5.如图,在扇形OAB 中,点D 在OA 上,点C 在AB 上,∠AOB =∠BCD =90°.若CD =3,BC =4,则⊙O 的半径为( )A .4B .4.8C .D .【答案】C 【详解】解:过点O 作OE ⊥BC 与E ,连接BD 交OE 与点F ,连接CF ,∵∠BCD =90°,CD =3,BC =4,∴BD ==5,∵OE ⊥BC ,∴OE 垂直平分BC ,∴BF =CF ,∴∠FBC =∠FCB ,又∵∠BCD =90°,∴∠FBC +∠FDC =∠FCB +∠FCD =90°,∴∠FDC =∠FCD ,∴CF =DF =BF ,∴F 是BD 的中点,∴OF =12BD =52,又∵OE 垂直平分BC ,∴EF =12CD =32,BE =12BC =2∴OE =OF +EF =52+32=4,∴OB ===即⊙O 的半径为故选:C .6.中国体育代表团在巴黎奥运会上取得了优异的成绩,图1是2024年巴黎奥运会的一枚金牌,金牌正中间镶嵌了一块来自埃菲尔铁塔的正六边形铁块.这个正六边形铁块的示意图如图2所示,已知该正六边形ABCDEF 的周长约为,则AD 的长约为( )A .B .C .D .【答案】A 【详解】解:如图,连接CF 与AD 交于点O ,∵ABCDEF 为正六边形,∴∠COD =360°6=60°,CO =DO ,∴△COD 为等边三角形,∴CD =CO =DO ,∵正六边形ABCDEF 的周长约为,∴CD =,∴AD =2CD =,故选:A .7.如图,在平面直角坐标系中,已知点A ,B 的坐标分别为(―3,1),(―1,4),以点O 为位似中心,在原点的另一侧按2:1的相似比将△OAB 缩小,则点A 的对应点A ′的坐标是( )A .(―3,1)B .―32C .(3,―1)D 【答案】D 【详解】解:以点O 为位似中心,在原点的另一侧按2:1的相似比将△OAB 缩小,将A(―3,1)的横纵坐标先缩小为原来的12为―32故选:D .8.在边长相等的小正方形组成的网格中,点A ,B ,C 都在格点上,那么sin ∠ACB 的值为( )A B C D .13【答案】C【详解】解:过点B 作AC 的垂线,垂足为M ,设小正方形的边长为a ,∵在边长相等的小正方形组成的网格中,点A ,B ,C 都在格点上,∴AB ==,BC ==,AC ==,∴AB =BC ,∵BM ⊥AC ,∴点M 是AC 的中点,∴CM =12AC =12×=,在Rt △BCM 中,BM ===,∴sin∠ACB =BMBC ==∴sin ∠ACB 故选:C .9.如图,AB 是⊙O 的直径,AB =6,CD 是⊙O 的弦,连接AC ,BC ,OD .若∠ACD =2∠BCD ,则 BD的长为( )A . πB .π2C .π3D .π4【答案】A 【详解】解:∵AB 是直径,∴∠ACB =90°,∵∠ACD =2∠BCD ,∴∠BCD =13∠ACB =30°,∴∠BOD =2∠BCD =60°,∴ BD的长=60π×3180=π.故选:A10.如图,AB是⊙O的直径,OC为半径,过A点作AD∥OC交⊙O于点D,连接AC,BC,CD,连接BD交OC 于点E,交AC于点F,若图中阴影部分分别用S1和S2表示,则下列结论:①∠CAD+∠OBC=90°;②若F为AC,则∠ACO=30°;其中正中点,则CE=2OE;③作DP∥BC交AB于点P,则BC2=OB⋅BP;④若S1:S2=12确的个数为()A.4个B.3个C.2个D.1个【答案】B【详解】解:①∵AD∥CO,∴∠CAD=∠ACO,∵OA=OC,∴∠ACO=∠CAO,∴∠BOC=2∠ACO=2∠CAD,∵OC=OB,∴∠OBC=∠OCB,∵∠COB+∠OBC+∠BCO=180°,∴2∠CAD+2∠OBC=180°,∴∠CAD+∠OBC=90°,故①正确;②AD∥OC,F为AC中点,OA=OB,∴CE=AD,OE=1AD,2∴CE=2OE,故②正确;③∵AB为圆O直径,∴AC⊥BC,∵DP ∥BC ,∴DP ⊥AC ,由①知,∠CAD =∠CAB ,∴∠APD =∠ADP ,∴AD =AP ,在△ACD 和△APC 中,AC =AC ∠CAD =∠CAB AD =AP,∴△ACD≌△APC(SAS),∴∠ADC =∠APC ,∵四边形ABCD 为圆内接四边形,∴∠ADC +∠ABC =180°,∵∠APC +∠CPB =180°,∴∠ABC =∠CPB =∠OCB ,∴△OBC ∽△CBP ,∴ BC OB =PB BC ,∴BC 2=OB ⋅BP ,故③正确;④连接OD ,∵OC ∥AD ,∴S 1=S 扇形OAD ,∵ S 1:S 2=12∴∠AOD =12∠BOC,∴∠AOD=∠CAO=∠DAC=∠ACO,∵OA=OD,∴5∠ACO=180°,∴∠ACO=36°,故④错误;综上所述,正确的是①②③,共三个.故选:B.第二部分(非选择题共90分)二、填空题:本题共6小题,每小题3分,共18分。
2022年3月揭阳市揭西五校九年级数学第一次月考卷附答案解析
(2)若直线AC与y轴交于点D,求△BCD的面积.
25.如图所示,抛物线 经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).
(1)求抛物线的函数解析式;
(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,
点D为y轴上一点,且DC=DE,求出点D的坐标;
23.如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC与E,交BC与D.
(1)求证:D是BC的中点;
(2)求证:△BEC∽△ADC;
(3)若CE=5,BD=6.5,求AB的长.
五、解答题(三)(本大题共2小题,每小题10分,共20分)
24. 如图,一次函数 的图象与反比例函数 的图象在第二象限交于点A(m,2).与x轴交于点C(﹣1,0).过点A作AB⊥x轴于点B,△ABC的面积是3.
∴一次函数的解析式为y=﹣ x﹣ ;
(2)当x=0时,y=﹣ x﹣ =﹣ ,∴点D(0,﹣ ),
∴OD= ,∴S△BCD= BC•OD= ×3× =1.
25.解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(0,﹣3),
∴ ,解得 ,故抛物线的函数解析式为y=x2﹣2x﹣3;
(2)令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则点C的坐标为(3,0),
∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴点E坐标为(1,﹣4),
设点D的坐标为(0,m),作EF⊥y轴于点F(如右下图),
∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,
∵DC=DE, ∴m2+9=m2+8m+16+1,解得m=﹣1,
2024年广东省揭阳市真理中学中考三模数学试卷
2024年广东省揭阳市真理中学中考三模数学试卷一、单选题(★) 1. 下列四个数中,最大的负数是()A.-1B.-2020C.0D.2020(★★) 2. 如图的五个甲骨文中,既不是轴对称图形,也不是中心对称图形的有()A.1个B.2个C.3个D.4个(★★) 3. 如图所示的几何体的左视图为()A.B.C.D.(★★) 4. 下列整式运算正确的是()A.B.C.D.(★★) 5. 不等式组的解集在数轴上表示为()A.B.C.D.(★★★) 6. 如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O的光线相交于点P,点F为焦点,若,,则的度数为()A.B.C.D.(★★) 7. 我国的国球为乒乓球,乒乓球最早于19世纪末期起源于英国,1959年的世界乒乓球锦标赛,中国参赛运动员为中国获得了第一个世界冠军,国人非常振奋,从此乒乓球运动在中国风靡,成了事实上中国的国球的体育项目.下表是某校女子乒乓球队12名队员的年龄分布:则关于这12名队员的年龄的说法正确的是()A.中位数是14B.中位数是15C.众数是14D.众数是5(★★) 8. 如图,在中,,那么()A.B.C.D.与的大小关系无法比较(★★) 9. 一次函数与二次函数在同一坐标系中的大致图象可能是()A.B.C.D.(★★★) 10. 如图,在边长为的正方形中,分别是边的中点:连接分别是的中点,连接,则的长度为()A.1B.C.D.2二、填空题(★★)11. 方程的根是 _______ .(★★) 12. 已知函数,则自变量x的取值范围是 _______ .(★★★) 13. 如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径,扇形的圆心角,则该圆锥的母线长为 ___ .(★★★) 14. 若关于的分式方程无解,则 ______ .(★★★★) 15. 如图7,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标为(0,2),直线AC的解析式为,则tanA的值是 _________ .(★★★) 16. 如图,为矩形的边的延长线上的动点,于,点在边上,若,,,则线段的最大值为 _______ .三、解答题(★★) 17. 解方程:.(★★)18. 如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.(★★★) 19. 准备在一块长为30米,宽为24米的长方形花埔内修建四条宽度相等,且与各边垂直的小路,如图所示四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为多少米?(★★★) 20. 在物理课上,同学们学习了“电学”知识之后,便可以设计一些简单的电路图.(1)如图1所示的电路图中,三个开关并联成一个开关组A,其中只有开关不能正常闭合,若闭合其中任何一个开关,可以使灯泡发亮的概率是________;(2)如图2,在图1的电路图中,各元件运作情况与(1)相同,新增一个开关组B,该组三个元件均能正常使用,在A、B两个开关组中各闭合一个开关,用树状图或列表法求小灯泡发亮的概率;(★★★) 21. 如图是一个亭子的侧面示意图,它是一个轴对称图形,对称轴是亭子的高所在的直线.为了测量亭子的高度,在地面上点测得亭子顶端的仰角为,此时地面上点、亭檐上点、亭顶上点三点恰好共线,继续向亭子方向走到达点时,又测得亭檐点的仰角为,亭子的横梁,,交于点(点在同一水平线上).(1)求的长度;(2)求亭子的高(结果精确到).(参考数据:)(★★★) 22. 如图,反比例函数的图象与直线交于和,该函数关于x轴对称后的图象经过点.(1)求和的解析式及m值;(2)点M是x轴上一动点,求当取得最大值时M的坐标.(★★★★) 23. 考古学家在考古过程中发现一个圆盘,但是因为历史悠久,已经有一部分缺失,现希望复原圆盘,需要先找到圆盘的圆心,才能继续完成后续修复工作.在如图1所示的圆盘边缘上任意找三个点A,B,C.(1)请利用直尺(无刻度)和圆规,在图1中画出圆心O.(要求:不写作法,保留作图痕迹)(2)如图2,数学兴趣小组的同学在(1)的基础上,补全,连接,过点A作的切线交的延长线于点E,过点C作,交于点D,连接.①求证:;②连接,若为的直径,,求的半径.(★★★) 24. 【综合与实践】为响应国家“双减”政策号召,落实“五育并举”举措,我县各校开展了丰富多彩的社团活动.球类运动课上,甲乙两人打乒乓球,让乒乓球沿着球台的中轴线运动,从侧面看乒乓球台如图所示,为球台,为球网,点为中点,,,甲从正上方的处击中球完成发球,球沿直线撞击球台上的处再弹起到另一侧的处,从处再次弹起到,乙再接球.以所在直线为轴,为原点作平面直角坐标系,表示球与的水平距离,表示球到球台的高度,将乒乓球看成点,两次弹起的路径均为抛物线,段抛物线的表达式为,设段抛物线的表达式为.(1)①点的坐标为______;②用含的式子表示:点的坐标为______;点的坐标为______;(2)当球在球网正上方时到达最高点,求此时球与的距离;(3)若球第二次的落点在球网右侧处,球再次弹起最高为,乙的球拍在处正上方如线段,将球拍向前水平推出接球,如果接住了球,求的取值范围.(★★★★) 25. 综合与探究如图,正方形中,,为边上异于、的一动点,为边上一点,,为线段上的动点,于,于.(1)求证:;(2)若为中点,设为.①求的长(用含的代数式表示);②求四边形面积的最大值;(3)当点固定时,试证明四边形面积随着的增大而增大.。
2022-2023学年广东省揭阳市揭西县棉湖实验学校九年级(下)月考数学试卷(3月份)(含解析)
2022-2023学年广东省揭阳市揭西县棉湖实验学校九年级(下)月考数学试卷(3月份)一、单选题:本大题共10小题,每小题3分,共30分。
1.一元二次方程x2﹣2(3x﹣2)+(x+1)=0的一般形式是()A.x2﹣5x+5=0B.x2+5x﹣5=0C.x2+5x+5=0D.x2+5=02.方程x(x﹣1)=x的根是()A.x=2B.x=﹣2C.x1=﹣2,x2=0D.x1=2,x2=0 3.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A.米B.6米C.米D.3米4.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210B.x(x﹣1)=210C.2x(x﹣1)=210D.x(x﹣1)=2105.设一元二次方程x2﹣2x+3=0的两个实根为x1和x2,则x1x2=()A.﹣2B.2C.﹣3D.36.下列四条线段中,不能成比例的是()A.a=4,b=8,c=5,d=10B.a=2,b=2,c=,d=5C.a=1,b=2,c=3,d=4D.a=1,b=2,c=2,d=47.对于双曲线y=,当x>0时,y随x的增大而减小,则m的取值范围为()A.m>0B.m>1C.m<0D.m<18.如图的几何体是由五个同样大小的正方体搭成的,其主视图是()A.B.C.D.9.若点(4,6)是反比例函数图象上的一点,则此函数图象必经过点()A.(4,﹣6)B.(﹣4,﹣6)C.(2,﹣12)D.(12,﹣2)10.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.2,则估计盒子中大约有红球()A.16个B.20个C.25个D.30个二、填空题:本大题共7小题,每小题4分,共28分。
广东省揭阳市2021版九年级下学期数学3月月考试卷(II)卷
广东省揭阳市2021版九年级下学期数学3月月考试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2018七上·吴中月考) 绝对值为5的有理数是()A . 2.5B . ±5C . 5D . -52. (2分)(2018·苏州) 地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A . 3.84×103B . 3.84×104C . 3.84×105D . 3.8 4×1063. (2分) (2019七下·包河期中) 下列运算正确的是().A . (x2)3=x6B . (xy)2=xy2C . x·x2=x2D . x2+x2=x44. (2分)(2017·海南) 如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A . 45°B . 60°C . 90°D . 120°5. (2分) (2019九上·江岸月考) 一元二次方程x2-4x+4=0的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 无实数根D . 无法确定6. (2分)抛物线y=ax2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a的取值范围是()A . ≤a≤1B . ≤a≤2C . ≤a≤1D . ≤a≤2二、填空题 (共4题;共4分)7. (1分) (2019九上·哈尔滨月考) 因式分解: ________.8. (1分)(2014·韶关) 不等式组的解集是________.9. (1分)若代数式有意义,则字母x的取值范围是________ .10. (1分) (2020九下·江阴期中) 如图,四边形的顶点都在坐标轴上,若与面积分别为和,若双曲线恰好经过的中点,则的值为________.三、解答题 (共5题;共45分)11. (5分)计算(1)计算:|1﹣ |﹣ + .(2)求x的值:4(x+1)2﹣9=0.12. (5分) (2020八下·沙坪坝月考) 化简求值(1)若2x-y= ,求代数式x2-xy+ y2的值.(2)先化简,然后选择一个你喜欢的x值求出该代数式的值.13. (15分)(2020·高新模拟) 如图,反比例函数的图象与一次函数的图象交于两点, .(1)求反比例函数与一次函数的函数表达式;(2)在反比例函数的图象上找点,使得点构成以为底的等腰三角形,请求出所有满足条件的点的坐标.14. (10分)江津某服装店今年9月用4000元购进了一款秋衣若干件,上市后很快售完,服装店于10月初又购进同样数量的该款秋衣,由于第二批衬衣进货时价格比第一批衬衣进货时价格提高了20元,结果第二批衬衣进货用了5000元(1)第一批秋衣进货时的价格是多少?(2)第一批秋衣售价为120元/件,为保证第二批衬衣的利润率不低于第一批衬衣的利润率,那么第二批衬衣每件售价至少是多少元?(提示:利润=售价﹣成本,利润率 = )15. (10分) (2019九上·慈溪期中) 已知抛物线y=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C , OC=3.(1)求抛物线的解析式及顶点D的坐标;(2)点P为抛物线在直线BC下方图形上的一动点,当△PBC面积最大时,求点P的坐标;(3)若点Q为线段OC上的一动点,问:AQ+ QC是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共4题;共4分)7-1、8-1、9-1、10-1、三、解答题 (共5题;共45分)11-1、11-2、12-1、12-2、13-1、13-2、14-1、14-2、15-1、15-2、15-3、。
广东省揭阳市九年级下学期数学3月月考试卷
广东省揭阳市九年级下学期数学3月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2017·泰安模拟) ﹣2的绝对值是()A . ﹣B .C . 2D . ﹣22. (2分) (2016七上·博白期中) 下表是淮河某河段今年雨季一周内水位变化情况,(其中0表示警戒水位)那么水位最高是()星期一二三四五六日水位变化/米+0.03+0.41+0.25+0.100﹣0.13﹣0.2A . 周一B . 周二C . 周三D . 周五3. (2分)据中国新闻网报道,在2014年11月17日公布的全球超级计算机500强榜单中,中国国防科技大学研制的“天河”二号超级计算机,以峰值计算速度每秒5.49亿亿次、持续计算速度每秒3.39亿亿次双精度浮点运算的优异性能位居榜首,第四次摘得全球运行速度最快的超级计算机桂冠.用科学记数法表示“5.49亿亿”,记作()A . 5.49×1018B . 5.49×1016C . 5.49×1015D . 5.49×10144. (2分) (2019八上·如皋期末) 下列运算中,计算结果正确的是()A .B .C .D .5. (2分) (2019九上·丽江期末) 使式子有意义的x的取值范围是().A . x≤1B . x≤1且x≠﹣2C . x≠﹣2D . x<1且x≠﹣26. (2分)已知(m-3)x|m|-2=18是关于x的一元一次方程, 则()A . m=2B . m=-3C . m=±3D . m=17. (2分) (2019七下·北京期末) 根据如图可以验证的乘法公式为()A . (a+b)(a-b)=a2-b2B . (a+b)2=a2+2ab+b2C . (a-b)2=a2-2ab+b2D . ab(a+b)=a2b+ab28. (2分) (2019七下·大石桥期中) 如图,表示的点在数轴上表示时,所在哪两个字母之间()A . C与DB . A与BC . A与CD . B与C二、填空题 (共8题;共13分)9. (1分) (2017七上·县期中) 如果一袋水泥的标准重量是50千克,如果比标准重量少2千克记作-2千克,则比标准重量多1千克应记为________.10. (1分) (2019八下·南安期末) 某种细菌病毒的直径为0.00005米,0.00005米用科学记数法表示为________米.11. (1分) (2019八下·孝南月考) 若的整数部分是a,小数部分是b,则=________.12. (1分) (2017九下·东台期中) 若a+b=5,ab=6,则a2+b2=________.13. (2分)(2018·辽阳) 分解因式:4ax2-ay2=________.14. (1分) (2017七上·彭泽期中) 若a﹣3b=﹣2,那么代数式6﹣2a+6b的值是________.15. (1分) (2018九上·荆州期末) 关于x的一元二次方程kx2﹣x+2=0有两个不相等的实数根,那么k的取值范围是________.16. (5分) (2019七下·洛江期末) 若﹣2x+y=5,则y=________(用含x的式子表示).三、解答题 (共6题;共40分)17. (10分) (2019七上·文昌期末) 解方程:(1)(2)18. (10分).19. (5分)已知x2-y2=20,求[(x-y)2+4xy][(x+y)2-4xy]的值.20. (5分) (2016八下·龙湖期中) 计算:.21. (5分) (2019七上·龙湖期末) 当x为何值时,整式 +1和的值互为相反数?22. (5分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共13分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共6题;共40分)17-1、17-2、18-1、19-1、20-1、21-1、22-1、。
广东省揭阳市九年级下学期数学3月月考试卷
广东省揭阳市九年级下学期数学3月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2016七上·怀柔期末) 数轴上有A,B,C,D四个点,其中绝对值等于2的点是()A . 点AB . 点BC . 点CD . 点D2. (2分)在﹣4,0,﹣1,3这四个数中,最小的数是()A . ﹣4B . 2C . -1D . 33. (2分) (2017七下·石景山期末) 某种植物花粉的直径约为0.000035米,其中0.000035用科学记数法表示为()A . 0.35×B . 3.5×C . 35×D . 3.5×4. (2分)一个长方体的长为4×103厘米,宽为2×102厘米,高为2.5×103厘米,则它的体积为()立方厘米.(结果用科学记数法表示)A . 2×109B . 20×108C . 20×1018D . 8.5×1085. (2分)若式子有意义,则x的取值范围为A . x≥2B . x≠3C . x≥2或x≠3D . x≥2且x≠36. (2分) (2017七下·龙海期中) 下列方程:①x﹣1=1;②x+y=2z;③2x﹣1<y;④3y﹣2=y2;⑤2x﹣y=0;⑥x﹣10>﹣5中一元一次方程的是(),二元一次方程的是(),一元一次不等式的是()A . ①;⑤;⑥B . ④;⑤;⑥C . ④;②;③D . ①;②;③7. (2分)如图的图形面积由以下哪个公式表示()A . a2﹣b2=a(a﹣b)+b(a﹣b)B . (a﹣b)2=a2﹣2ab+b2C . (a+b)2=a2+2ab+b2D . a2﹣b2=(a+b)(a﹣b)8. (2分) (2016七上·乳山期末) 通过估算比较大小,下列结论不正确的是()A .B . ﹣>C .D .二、填空题 (共8题;共13分)9. (1分) (2019七上·金台月考) 把向南走4米记作+4米,那么向北走6米可表示为________米.10. (1分) (2015九上·柘城期末) H7N9病毒的长度约为0.000065mm,用科学记数法表示数0.000065为________.11. (1分) (2019七下·通化期中) 是的整数部分,是的小数部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省揭阳市九年级文理科基础调研数学试卷(3月)
姓名:________ 班级:________ 成绩:________
一、选择题(本题有9小题,每小题2分,共18分) (共9题;共18分)
1. (2分) 3﹣1等于()
A . 3
B . -
C . -3
D .
2. (2分)(2017·河南模拟) 在下列命题中:①平行四边形的一组对边相等;②线段垂直平分线上的点到这条线段两个端点的距离相等;③矩形的两条对角线相等;④四边形相等的四边形是菱形;⑤在直角三角形中,斜边上的中线等于斜边的一半;其逆命题是真命题的是()
A . ①②④
B . ②③④
C . ②④⑤
D . ①③⑤
3. (2分)(2018·河南) 《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y钱,根据题意,可列方程组为()
A .
B .
C .
D .
4. (2分)在矩形ABCD中,DE⊥AC于E,设∠ADE=,且, AB=4,则AD的长为().
A . 3
B .
C .
D .
5. (2分) (2017七下·南江期末) 不等式3x﹣5<3+x的正整数解有()
A . 1个
B . 2个
C . 3个
D . 4个
6. (2分)(2018·滨州) 已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为()
A .
B .
C .
D .
7. (2分)一个扇形半径是5cm,面积是15πcm2 ,这个扇形的周长是()
A . 5πcm
B . 6πcm
C . 5cm
D . 6cm
8. (2分)已知四边形ABCD中,AB=6,CD=8,E、F分别是AD、BC的中点,则线段EF长的取值范围是()
A . 2<EF<14
B . 1<EF<7
C . 6<EF<7
D . 2<EF<6
9. (2分) (2017八下·邵阳期末) 下面四条直线中,直线上每个点的坐标都是方程x-2y=2的解的是()
A .
B .
C .
D .
二、填空题(本题有5小题,每小题3分,共15分) (共5题;共15分)
10. (3分)(2014·南京) 已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:
x…﹣10123…
y…105212…
则当y<5时,x的取值范围是________.
11. (3分)(2017·武汉模拟) 袋中有三个小球,分别为1个红球和2个黄球,它们除颜色外完全相同.随机取出一个小球然后放回,再随机取出一个小球,则两次取出的小球颜色不相同的概率为________.
12. (3分)如图的平面直角坐标系中有一个正六边形ABCDEF,其中C、D的坐标分别为(1,0)和(2,0).若在无滑动的情况下,将这个六边形沿着x轴向右滚动,则在滚动过程中,这个六边形的顶点A、B、C、D、E、F中,会过点(50,2)的是点________ .
13. (3分)计算:(x+5)(x﹣5)=________
14. (3分)(2020·重庆模拟) 如图,正方形ABCD中,AB=2 ,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE、CF.则线段OF长的最小值为________.
三、解答题(本题有4小题,共27分) (共4题;共27分)
15. (5分)已知,求的值.
16. (6分) (2020九上·赣榆期末) 甲、乙两台机床同时加工直径为的同种规格零件,为了检查两台机床加工零件的稳定性,质检员从两台机床的产品中各抽取件进行检测,结果如下(单位:):
甲
乙
(1)分别求出这两台机床所加工零件直径的平均数和方差;
(2)根据所学的统计知识,你认为哪一台机床生产零件的稳定性更好一些,说明理由.
17. (7.0分) (2019八上·西岗期末) 阅读下列材料:
小明遇到这样问题:
如图1,在中,,在AB上取一点D,在AC延长线上取一点E,若,判断PD与PE的数量关系.
小明通过思考发现,可以采用两种方法解决向题:
方法一:过点D作,交BC于F,即可解决向题;
方法二:过点D、点E分别向直线BC引垂钱,垂足分别是F、G,也可解决问题.
(1)请回答:PD与PE的数量关系是________;
(2)任选上述两种方法中的一种方法,在图1中补全图象,并给出证明;
(3)如图2,在中,,将AC绕点A顺时针旋转度后得到AD,过点D作,
交AB于点E,,则图中是否存在与DE相等的线段,请找出来并给出证明.
18. (9分)(2017·历下模拟) 如图1,抛物线y=ax2+bx+3(a≠0)与x轴交于点A、点B(点A在点B左侧),与y轴交于点C,点D为抛物线的顶点,已知点A、点B的坐标分别为A(﹣1,0)、B(3,0).
(1)
求抛物线的解析式;
(2)
在直线BC上方的抛物线上找一点P,使△PBC的面积最大,求P点的坐标;
(3)
如图2,连接BD、CD,抛物线的对称轴与x轴交于点E,过抛物线上一点M作MN⊥CD,交直线CD于点N,求当∠CMN=∠BDE时点M的坐标.
参考答案
一、选择题(本题有9小题,每小题2分,共18分) (共9题;共18分) 1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
二、填空题(本题有5小题,每小题3分,共15分) (共5题;共15分) 10-1、
11-1、
12-1、
13-1、
14-1、
三、解答题(本题有4小题,共27分) (共4题;共27分)
15-1、
16-1、
16-2、17-1、
17-3、18-1、
18-2、
18-3、。